
Neural Keyphrase Generation: Analysis and Evaluation

Anonymous ACL submission

Abstract

Keyphrase generation aims at generating top-001
ical phrases from a given text either by copy-002
ing from the original text (present keyphrases)003
or by producing new keyphrases (absent004
keyphrases) that capture the semantic mean-005
ing of the text. Encoder-decoder models are006
most widely used for this task because of their007
capabilities for absent keyphrase generation.008
However, there has been little to no analy-009
sis on the performance and behavior of such010
models for keyphrase generation. In this pa-011
per, we study various tendencies exhibited by012
two strong models: T5 (based on a pre-trained013
transformer) and ExHiRD (based on a recurrent014
neural network). We analyze prediction confi-015
dence scores, model calibration, and the effect016
of position on present keyphrases generation.017
Moreover, we motivate and propose a novel018
metric, SoftKeyScore, to evaluate the similar-019
ity between two sets of keyphrases by using020
soft-scores to account for partial matching and021
semantic similarity. We find that SoftKeyScore022
performs better than the standard F1 metric for023
evaluating two sets of given keyphrases. We024
will release our code.025

1 Introduction026

Keyphrases are phrases that capture the core ideas027

and topics of a given document. Keyphrase gener-028

ation is the task of predicting a set of keyphrases029

from a given document. Among these keyphrases,030

some exist within the source document (present031

keyphrases), and some are absent from the docu-032

ment (absent keyphrases). Keyphrases are widely033

used in various applications, such as document in-034

dexing and retrieval (Jones and Staveley, 1999;035

Boudin et al., 2020), document clustering (Hulth036

and Megyesi, 2006), and text summarization (Wang037

and Cardie, 2013). Hence, keyphrase generation is038

of great interest to the scientific community.039

In recent years, neural encoder-decoder040

(seq2seq) models are adapted to generate both041

absent and present keyphrases (Meng et al., 2017). 042

Most contemporary approaches (Yuan et al., 2020; 043

Chan et al., 2019a; Chen et al., 2020) to keyphrase 044

generation aim at autoregressively decoding a 045

sequence of concatenated keyphrases from a 046

given source document. Typically, these models 047

are equipped with cross-attention (Luong et al., 048

2015; Bahdanau et al., 2015) and a copy (or 049

pointer) mechanism (Gu et al., 2016; See et al., 050

2017). Although several variants and extensions of 051

seq2seq models have been proposed to enhance 052

keyphrase generation (Meng et al., 2017; Yuan 053

et al., 2020; Chan et al., 2019a; Swaminathan et al., 054

2020; Chen et al., 2020), there have been limited 055

attempts at deeper analysis on the tendencies of 056

the neural seq2seq in this task. 057

Moreover, despite the ubiquitous success of pre- 058

trained models (typically Transformers) on several 059

NLP tasks, there is a dearth of exploration of pre- 060

trained models for keyphrase generation. While 061

most pre-trained models such as BERT (Devlin 062

et al., 2019) and ELECTRA (Clark et al., 2020) 063

are focused on encoding, recently there have been 064

a few pre-trained seq2seq transformers (e.g., T5, 065

BART, and PEGASUS) (Raffel et al., 2020; Lewis 066

et al., 2020; Zhang et al., 2020) which are natural 067

choices to be adapted for keyphrase generation. 068

In this work, we explore T51 (Raffel et al., 2020), 069

a pre-trained seq2seq Transformer, and contrast its 070

performance with a strong recurrent neural network 071

(RNN) based seq2seq architecture for keyphrase 072

generation (ExHiRD) (Chen et al., 2020) on differ- 073

ent aspects of the task. 074

Overall, our contributions are as follows: 075

1. We introduce keyphrase perplexity (KPP) to 076

gauge model confidence. Using KPP, we ana- 077

lyze the prediction confidence of a pre-trained 078

1Interestingly, the pre-training objective in T5 for gen-
erating a series of concatenated spans which are masked in
the source text also happens to be particularly similar to the
downstream task of our desire (keyphrase generation).

1

model (T5) and a trained-from-scratch RNN-079

based seq2seq model (ExHiRD). In addition,080

we explore the models’ calibration to study081

confidence versus generation performance.082

2. We empirically evaluate and contrast the per-083

formance of T5 and ExHiRD, on standard084

F1-based measures.085

3. We examine the variance of model perfor-086

mance with that of the position of extracted087

present keyphrases in the source document.088

4. We propose an evaluation framework, Soft-089

KeyScore, to measure the similarity of two090

sets of keyphrases (the predicted set and the091

gold set) using soft-scoring functions to ac-092

count for partial matches and semantic similar-093

ities between predicted keyphrases and target094

keyphrases. We perform evaluation to verify095

the correlation of the various evaluation met-096

rics against human annotated scores.097

2 Related Work098

The current focus of research on keyphrase gen-099

eration has been increasingly shifting towards the100

use of neural generative (sequence-to-sequence)101

models (Meng et al., 2017) particularly because102

of their capability to generate absent keyphrases.103

Meng et al. (2017) used a Recurrent Neural Net-104

work (RNN) model along with CopyNet (Copy-105

RNN) for keyphrase generation. Chen et al. (2018)106

extended CopyRNN by utilizing correlations be-107

tween the predicted keyphrases. Chen et al. (2019)108

introduced a title-guided encoding scheme in a109

seq2seq model. All these methods, however, could110

only predict one keyphrase and they had to rely on111

beam search to predict more keyphrases. Yuan et al.112

(2020) solved this issue by allowing their model to113

predict a concatenated sequence of variable number114

of keyphrases. Chan et al. (2019a) used reinforce-115

ment learning to enhance the task performance,116

whereas Swaminathan et al. (2020) performed pre-117

liminary studies on the use of Generative Adver-118

sarial Networks on the task. Chen et al. (2020)119

introduced a new decoding architecture (exclusive120

hierarchical decoding) to capture the hierarchical121

structure of keyphrases (ExHiRD). We use Ex-122

HiRD as one of our models for our analysis along123

with a transformer-based model (T5). Wu et al.124

(2021) take a joint training approach to learn both125

keyphrase extraction and generation through differ-126

ent layers instead of using a single seq2seq frame-127

work for both present and absent keyphrase predic-128

tion. Ye et al. (2021) decode multiple keyphrases in 129

parallel while also using an assignment algorithm 130

to reduce penalization from misaligned orders in 131

predicted and gold keyphrases. 132

There have been a few empirical analyses on 133

some aspects of the generation models. Meng 134

et al. (2021) showed the experimental results for 135

different hyperparameter changes including the 136

change of ordering format for concatenating target 137

keyphrases. Çano and Bojar (2019) explored the ap- 138

plication of abstractive summarization techniques 139

and evaluation metrics for keyphrase generation. 140

Calibration and uncertainty of neural models 141

(Guo et al., 2017) have started to gain attention on 142

several natural language processing tasks, includ- 143

ing neural machine translation (Müller et al., 2019; 144

Kumar and Sarawagi, 2019; Wang et al., 2020), 145

natural language understanding (Desai and Dur- 146

rett, 2020), and coreference resolution (Nguyen 147

and O’Connor, 2015). For example, Wang et al. 148

(2020) focused on the calibration of neural ma- 149

chine translation (NMT) models to understand the 150

generative capability of the models at inference 151

(decoding time) under the exposure bias (Ranzato 152

et al., 2016), that captures the difference in training 153

and inference caused by teacher forcing in auto- 154

regressive models. We explore the calibration of 155

keyphrase generation models to better understand 156

model behavior in this scenario. 157

3 Methodology 158

In this section, first, we briefly describe the two 159

models: ExHiRD and T5; second, we formulate 160

and define keyphrase perplexity and discuss cali- 161

bration of generative models; lastly, we present a 162

novel framework for soft-scoring-based evaluation 163

of two sets of keyphrases. 164

3.1 Models 165

For our analysis, we consider two models: ExHiRD 166

and T5. We chose ExHiRD because it is one of 167

the strongest performing keyphrase generation ar- 168

chitectures without relying on reinforcement learn- 169

ing or GAN. We chose T5 because applications of 170

pre-trained Transformer-based models like T5 are 171

becoming almost ubiquitous in NLP and T5 serves 172

as a natural choice for keyphrase generation given 173

its seq2seq architecture. Both models are trained 174

on concatenated sequence of target keyphrases as 175

in Yuan et al. (2020). Implementation details for 176

the models are presented in Appendix A. 177

2

ExHiRD ExHiRD (Chen et al., 2020) is an RNN-178

based seq2seq model with attention and copy-179

mechanism. It uses a hierarchical decoding strategy180

to address the hierarchical nature of a sequence of181

keyphrases, where each keyphrase is, in turn, a182

sub-sequence of words. ExHiRD also proposes183

exclusion mechanisms to improve the diversity of184

keyphrases generated and reduce duplication.185

T5 T5 (Raffel et al., 2020) is a pre-trained186

seq2seq Transformer (Vaswani et al., 2017), which187

is pre-trained on C4 corpus (a dataset with clean188

English text obtained by scraping the web). The T5189

architecture includes an encoder-decoder architec-190

ture with various layers of self-attention and cross191

attention. We use t5-base model with 12 layers192

from the Transformers library (Wolf et al., 2020).193

3.2 Understanding Model Behavior194

3.2.1 Keyphrase Perplexity195

We introduce the Keyphrase Perplexity metric to196

gauge model confidence on a particular predicted197

keyphrase. Keyphrase perplexity is rooted in the198

general concept of perplexity. Perplexity is a199

widely used metric for evaluating language models.200

For a sequence of tokens w1:n = w1, w2, ..., wn,201

of length n, perplexity is the inverse normalized202

probability p of generating them and can be de-203

fined as: PP (w1:n) = p(w1, w2, ..., wn)
−1/n. For204

an auto-regressive decoder, the probability p of the205

sequence can be factorized and reformulated as:206

PP (w1:n) =

(
n∏

i=1

p(wi|w1, w2, . . . wi−1)

)−1/n

(1)207

We adapt this formulation to define keyphrase208

perplexity (KPP) over a sub-sequence wj:k =209

wj , wj+1, ..., wk within the sequence w1:n (1 ≤210

j ≤ k ≤ n). Here, we assume that sub-sequence211

wj:k corresponds to a keyphrase. Our definition of212

KPP (wj:k) is as follows:213

KPP (wj:k) =

 k∏
i=j

p(wi|w1, w2, . . . wi−1)

−1/m

(2)214

where m = k − j + 1 is the number of tokens215

in the keyphrase wj:k. Essentially, for KPP ,216

we simply use the conditional probabilities of to-217

kens within the keyphrase wj:k under consider-218

ation. During our analysis, any probability of219

the form p(wi|w1, w2, . . . wi−1) indicates the pre- 220

dicted model probability for token wi given that 221

tokens w1, w2, . . . wi−1 have been already gener- 222

ated. We do not include starting, ending, separator, 223

end of sequence tokens probabilities. As in per- 224

plexity, a lower keyphrase perplexity (KPP) indi- 225

cates higher confidence in the prediction, whereas 226

a higher KPP indicates lower confidence. 227

One limitation of this KPP formulation is that 228

it does not negate the conditioning effect of pre- 229

vious keyphrases (included in sub-sequence w1 to 230

wj−1 while measuring the KPP of the keyphrase 231

starting from wj). However, removing this limi- 232

tation is not straight-forward; so we take a naive 233

assumption of treating the overall probabilities of 234

keyphrases as independent of the other keyphrases. 235

3.2.2 Calibration of Generative Models 236

Model calibration includes modeling the accuracy 237

of model predictions as a function of its generated 238

posterior probabilities. A calibrated model has 239

alignment between its empirical likelihood (accu- 240

racy) and its probability estimates. For example, 241

a calibrated model that has a confidence of 90% 242

while making predictions, would correctly predict 243

90 out of 100 possible samples. Formally, cali- 244

bration models the joint distribution P (Q,Y) over 245

generated model probabilities Q ∈ R and labels Y . 246

P (Y = y|Q = q) = q signifies perfect calibration 247

of a model (Guo et al., 2017). 248

Expected calibration error (ECE) is a popular 249

measure of model miscalibration (Naeini et al., 250

2015). ECE is computed by partitioning the pre- 251

dictions according to their generated probabilites 252

into k bins and summing up the weighted average 253

of the absolute value of the difference between the 254

accuracy and model confidence of a particular bin. 255

ECE =
k∑

i=1

bi
n
|acc(bi)− confid(bi)| (3) 256

where n is the number of samples, bi is the number 257

of samples in the ith bin with k bins, 1 ≤ i ≤ k. 258

We also make use of reliability diagrams that 259

depict the accuracy of the model as a function of 260

the probability accross k bins. In Equation 2, we 261

use KPP to gauge prediction perplexity by com- 262

puting the inverse of the normalized value of the 263

product of posterior probabilities for the tokens of a 264

generated keyphrase. To bin keyphrases according 265

to their posterior probabilities, we use inverse of 266

KPP to plot the reliability diagrams and compute 267

3

ECE. Hence, the normalized posterior probability268

of a keyphrase is (KPP)−1.269

3.3 Soft Keyphrase Score (SoftKeyScore)270

Previous work has mostly used extensions of stan-271

dard F1-based metrics to measure the performance272

of keyphrase generation models. Such evaluation273

metrics usually operate based on exact matches be-274

tween predicted and gold keyphrases. Such a strat-275

egy cannot account for partial matches or semantic276

similarity. For example, if the prediction is "sum-277

marization model" and the gold is "summarization278

system", despite both semantic similarity and par-279

tial matching, the score will be 0. These kind of280

minor deviations are ubiquitous in keyphrase gen-281

eration yet they are harshly penalized by the “exact282

match” evaluation metrics. We discuss more such283

examples in §4. This phenomenon motivates us to284

explore soft-scoring based evaluation metrics.285

Çano and Bojar (2019) explored the use of met-286

rics such as ROUGE that can accomodate for some287

level of partial matches but they are still suited288

mainly for comparing a sequence against another289

sequence. We want to compare a set of phrases290

with another set. Chan et al. (2019b) use Wikipedia291

information to control some level of name-variation292

over keyphrases of the same meaning but they still293

rely on strict binary scoring. In contrast to the294

above methods, we propose the SoftKeyScore as295

a suitable metric for evaluation between sets of se-296

quences (keyphrases) as opposed to fully ordered297

sequences. We present our methodology below.298

Assume we have two sets G = {g1, g2, ..., g|G|}299

and P = {p1, p2, ..., p|P |}. G can be the set300

of gold keyphrases and P can be the set of pre-301

dicted keyphrases. Assume we also have some302

soft-scoring function score(x, y) which takes two303

phrases (x and y) as input and outputs a scalar304

∈ [0, 1] to indicate the degree of match between305

x and y. Given these elements, we propose the306

following evaluation framework:307

Pscore =
1

|P |
·
∑
pi∈p

max
gj∈G

score(pi, gj) (4)308

Rscore =
1

|G|
·
∑
gj∈g

max
pi∈P

score(pi, gj) (5)309

Fscore = 2 · ·Pscore ·Rscore

Pscore +Rscore
(6)310

Here, Fscore indicates the final result of Soft-311

KeyScore. It is analogous to F1; the difference312

is how the precision and recall is computed. Pscore 313

and Rscore are analogous to precision and recall, 314

respectively. With a soft scoring function (score), 315

however, one phrase pi in set P can match with 316

multiple phrases in set G. Thus, in Eqs. 4 and 317

5, we use a greedy matching strategy where we 318

choose the maximum matching score for any com- 319

parison between a phrase in one set to all phrases 320

in the other set. This overall framework is very sim- 321

ilar to the framework used for BERTScore (Zhang 322

et al., 2019). However, the crucial difference is that 323

we are using a generic matching function to mea- 324

sure similarity between two sequences (keyphrases) 325

instead of two token embeddings. In fact, one of 326

our proposed scoring functions (discussed below) 327

uses the BERTScore. 328

SoftKeyScore is invariant to the order of phrases. 329

This is suitable in our context of evaluating sets 330

of keyphrases. At the same time, by using the 331

right score function (like BERTScore), we can 332

account for the order among the words within 333

phrases (due to its contextualized embeddings). 334

More on the implementation details of this frame- 335

work can be found in Appendix B. Below we dis- 336

cuss two concrete instances of the score func- 337

tion that we explore in our calculation of Soft- 338

KeyScore: Keyphrase Match Rate (KMR) score 339

and BERTScore. 340

3.3.1 Keyphrase Match Rate (KMR) 341

We propose Keyphrase Match Rate (KMR) as 342

the complement of Translation Error Rate (TER) 343

(Snover et al., 2006). TER is used to evaluate 344

predictions of neural machine translation (NMT) 345

models by computing the number of edits required 346

to modify the generated sequence into the target 347

sequence. We slightly modify the original TER 348

score by adding pad tokens to the shorter sequence 349

(keyphrase) to keep the lengths of the two se- 350

quences in comparison equal. Pad tokens change 351

some deletions to substitutions but that does not 352

change the total edit cost since both have the same 353

cost. This strategy ensures that TER stays in [0, 1]. 354

Given that we want to measure the similarity be- 355

tween two keyphrases, we formulate KMR as: 356

1 − TER. Given our modified TER, KMR also 357

ranges in [0, 1]. A KMR score of 1 denotes a per- 358

fect match. KMR can account for the degree of 359

partial matching between the two phrases although 360

it can be deficient in capturing deeper aspects of 361

semantic similarities. 362

4

Model Inspec Krapivin SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

Present Keyphrases

ExHiRD† 0.291 0.253 0.347 0.286 0.335 0.284 0.374 0.311
T5 0.340 0.287 0.328 0.271 0.306 0.275 0.387 0.335

Absent Keyphrases

ExHiRD† 0.022 0.011 0.043 0.022 0.025 0.017 0.032 0.016
T5 0.025 0.014 0.053 0.028 0.023 0.016 0.036 0.018

Table 1: † indicates that the results are taken from Chen et al. (2020) but we used their publicly available code to
reproduce the results. F1@5 only keeps the top 5 keyphrase predictions (following Chen et al. (2020), incorrect
keyphrases were added if there were < 5 predictions). F1@M uses the full model prediction for evaluation.

3.3.2 BERTScore363

BERTScore (Zhang et al., 2019) is a recently pro-364

posed evaluation metric for evaluation of natural365

language generation models. BERTScore uses a366

similar method as described in Eqs. 4 to 6 but with367

the following differences:368

1. Instead of sets (P and G) the evaluation is369

done on two sequences of tokens (prediction370

sequence and reference sequence).371

2. Instead of phrases from some given sets, the372

equivalent of score function in BERTScore373

compares contextualized token embeddings374

from the given sequences using dot-product.375

In our context, we use BERTScore as another376

instance of the score function as described pre-377

viously to measure the similarity between two378

phrases. BERTScore can take into account both379

partial matching and deeper semantic similarities380

between the two phrases. Note that if we just use381

BERTScore replacing SoftKeyScore, the evalua-382

tion will no longer be invariant to the order of the383

keyphrases because of the use of contextualized384

embeddings over a “sequence" (it will no longer385

remain a set) of keyphrases.386

4 Experiments and Results387

4.1 Datasets388

We select four widely used benchmarks for our389

experimentation: KP20k (Meng et al., 2017),390

Krapivin (Krapivin et al., 2009), Inspec (Hulth,391

2003) and SemEval (Kim et al., 2010). We use392

KP20k training set (∼500,000 samples) for train-393

ing our models. We use KP20k test set and rest394

of the datasets (the test subset) for performance395

evaluation and analysis. Further implementation396

details are in Appendix A.397

4.2 F1 Evaluation Details 398

We used similar post-processing for evaluation 399

as Chen et al. (2020). Concretely, we stemmed 400

both target keyphrases and predicted keyphrases 401

using Porter stemmer. We removed all duplicates 402

from predictions after stemming. We determined 403

whether a keyphrase is present or not by check- 404

ing the stemmed version of the source document. 405

For F1@5, following Chen et al. (2020), if there 406

were less than 5 predictions, we append incorrect 407

keyphrases to the predictions to make it exactly 5. 408

4.3 Results, Analyses, and Observations 409

Model Performance (Exact match): We com- 410

pare the results of T5 and ExHiRD using macro- 411

averaged F1@5 and F1@M metrics in Table 1. 412

We find that despite lacking the advantage of pre- 413

training, ExHiRD performs competitively with 414

T5. Note that F1@M compares all the generated 415

keyphrases with the gold labels whereas F1@5 416

compares the first five keyphrases with the labels. 417

Keyphrase Perplexity Analysis: We compare 418

keyphrase perplexities (KPP) of both T5 and Ex- 419

HiRD. As can be seen from Figure 1, both mod- 420

els have lower KPP (thus, higher confidence) for 421

present keyphrases than absent keyphrases. How- 422

ever, T5 is substantially more confident about its 423

present keyphrase predictions compared to Ex- 424

HiRD. This could be the effect of its pre-training. 425

Both models tend to have higher KPP for absent 426

keyphrases showcasing that they are having diffi- 427

culty in learning to generate absent keyphrases. 428

In Figure 2, we show that the conditional proba- 429

bilities of tokens in a keyphrase tend to be low at 430

the boundaries (at the beginning of a keyphrase), 431

but start to increase monotonically as the decoder 432

5

Figure 1: Histograms depicting number of keyphrases
in keyphrase perplexity bins of size 0.1 for present and
absent keyphrase generation. Dashed lines indicate the
median of each distribution.

Figure 2: ExHiRD and T5’s conditional probabilities for
the first five tokens generated in a keyphrase (present
and absent) in accordance to their relative positions
within the keyphrase on KP20K test set. ExHiRD gener-
ates tokens at word-level; T5 generates at subword-level.

move towards the end of the keyphrase. Intuitively,433

it makes sense that a model will have less confi-434

dence predicting the start of a keyphrase because435

it requires settling on a specific keyphrase to gen-436

erate out of many potential candidates. However,437

the first keyphrase token, once already generated,438

will condition and restrict the space of plausible439

candidates for the second token thereby increasing440

its confidence. For the same reason, probabilities441

near the end of a keyphrase tend to be much higher.442

Model Calibration In Figure 1, we saw that T5443

predicts keyphrases with higher model confidence444

than ExHiRD. But does the higher confidence ac-445

tually translate into better predictions? Figure 3446

shows the reliability diagrams for ExHiRD and T5447

for both present and absent keyphrases. We can448

Dataset ExHiRD T5

Inspec 9.99 26.75
Krapivin 9.11 58.86
SemEval 10.18 26.64
KP20k 13.32 36.97

Table 2: Expected calibration error (ECE) for ExHiRD
and T5 on various datasets. T5’s calibration is worse
than ExHiRD (lower the better).

Figure 3: Reliability diagrams for model calibration of
ExHiRD and T5. Dotted black line depicts perfectly
calibrated model. We can see that ExHiRD is better
calibrated than T5.

see that calibration of ExHiRD is better than T5. 449

T5’s high confidence keyphrase predictions does 450

not translate into optimal accuracy values. In Table 451

2, T5’s ECE is much higher than ExHiRD for all 452

four datasets. We can say that T5 is an overconfi- 453

dent model. This may be due to the fact that T5 454

operates at subword level, and once the initial to- 455

kens of the keyphrase are predicted, T5 generates 456

the rest of the tokens with very high confidence. 457

Dataset Positional range
1 2 3 4 5

Inspec 1,326 845 686 602 173
Krapivin 706 206 182 159 59
SemEval 346 126 103 54 20
KP20k 39,571 9,865 8,313 6,317 1,704

Table 3: Number of keyphrases present keyphrases in
gold labels binned into five sections, each having 20%
characters of the source document.

Positional Variance We analyze both ExHiRD 458

and T5’s present keyphrase predictions with respect 459

to their position in the input text. We divided the 460

input text into five sections with 20% of characters 461

in each, and binned the keyphrases appearing in 462

them accordingly. In Table 3, we see that the ma- 463

jority of gold labels for the present keyphrases are 464

in the first section (bin) of the input sequence. In 465

Figure 4, we see that ExHiRD progressively fails to 466

6

Examples F1 FKMR FBERTScore

DeBERTa RoBERTA SciBERT

Pred: performance evaluation, information retrieval, web search engine
Gold: performance, information retrieval, world wide web, search engine 0.286 0.375 0.520 0.568 0.618

Pred: bgp, network engineering, routing protocols
Gold: routing, traffic engineering, modeling, bgp 0.286 0.500 0.538 0.549 0.671

Pred: pwarx identification, chiu’s clustering algorithm,
affine sub model estimation, hyperplane partitions
Gold: experimental validation, clustering, identification, hybrid systems,
pwarx models, chiu’s clustering technique

0.000 0.083 0.234 0.260 0.493

Table 4: Examples of FKMR and FBERTScore with different pre-trained weights when compared against F1. FKMR

and FBERTScore indicates SoftKeyScore using KMR and BERTScore respectively

Figure 4: Error percentage of present keyphrase genera-
tion with respect to their position in the original text.

identify keyphrases in the later sections of the input467

text, whereas T5 not only performs well in identi-468

fying keyphrases present in the initial sections of469

the text, but it also performs better than ExHiRD470

in predicting keyphrases from the later sections471

(bins). This pattern is particularly prominent on472

KP20k. The bias towards predicting earlier present473

keyphrases is, most likely, further compounded by474

the fact that the present keyphrases are ordered ac-475

cording to their position of first occurrence within476

the target sequence. For an autoregressive model,477

it would be also likely to be easier to learn to pre-478

dict the earlier sections of the target. As such the479

models can be biased to be good at only predict-480

ing keyphrases that occur early in the source text.481

However, the potential main reason for the bias is482

simply the fact that the majority of keyphrases exist483

in the earlier segments of a document as shown in484

Table 3. Nevertheless, T5 appears more resistant485

to these biases, despite being exposed to the same486

data and similarly ordered target sequences. These487

results hint also to a “better understanding” of the488

overall semantics of the document by the T5 model,489

and hence, its improved generation of short phrase490

document summaries (i.e., keyphrases).491

SoftKeyScore Evaluation: Table 4 provides 492

some concrete examples that demonstrate the po- 493

tential of SoftKeyScore over standard F1 measures. 494

As we can see, F1 metrics are quite low despite 495

high similarities of the predictions and targets. Soft- 496

KeyScore, (with BERTScore), can better fit our 497

intuitions about similarity between sets of phrases. 498

In Table 5, we experiment with various pre- 499

trained transformer language models to compute 500

BERTScore for SoftKeyScore. We use DeBERTa 501

(He et al., 2021), RoBERTa (Liu et al., 2020), 502

and SciBERT (Beltagy et al., 2019) to compute 503

BERTScore. Further details about the models 504

are in Appendix B. Overall, we see that Soft- 505

KeyScores over KMR and BERTScore have sig- 506

nificantly more number of matches with partial 507

or similar keyphrases when compared to baseline 508

F1@M scores in Table 1. This finding is particu- 509

larly important when evaluating absent keyphrases. 510

Using exact-match based F1, absent keyphrase per- 511

formance is often too low to meaningfully compare. 512

Some past work (Meng et al., 2017; Yuan et al., 513

2020) have even attempted to show just the recall 514

after over-generation (Recall@50) of keyphrases. 515

Such metrics can fail to capture the performance 516

of the models in a more practical context. How- 517

ever, with SoftKeyScore we find much higher ab- 518

sent keyphrase performance (without being recall- 519

oriented) allowing for more score-readability and 520

better comparison. Interestingly, we find that Ex- 521

HiRD is often outperforming T5 in SoftKeyScore 522

compared to the hard (exact-match) F1 evaluation. 523

Human evaluation To assess the quality of pre- 524

dicted keyphrases we use help from a CS majoring 525

student. The student was asked to provide an ap- 526

propriate score to signify the closeness between 527

the predicted set of keyphrases and the gold set of 528

keyphrases in [0, 1]. The student scored T5 predic- 529

tion and the corresponding gold sets of 500 sample 530

7

Score ExHiRD T5
Inspec Krapivin Semeval KP20k Inspec Krapivin Semeval KP20k

Present keyphrases

FKMR 0.366 0.366 0.393 0.408 0.392 0.347 0.349 0.415
FBS DeBERTa 0.388 0.370 0.396 0.428 0.405 0.344 0.359 0.433
FBS RoBERTa 0.442 0.434 0.467 0.459 0.459 0.414 0.464 0.466
FBS SciBERT 0.588 0.572 0.528 0.588 0.587 0.550 0.490 0.589

Absent keyphrases

FKMR 0.042 0.076 0.042 0.054 0.049 0.071 0.040 0.054
FBS DeBERTa 0.049 0.088 0.044 0.065 0.067 0.081 0.042 0.067
FBS RoBERTa 0.072 0.135 0.087 0.083 0.089 0.122 0.086 0.087
FBS SciBERT 0.160 0.253 0.128 0.173 0.187 0.212 0.117 0.182

Table 5: SoftKeyScore of present and absent keyphrase performance using KMR and BERTScore with different pre-
trained weights. FKMR and FBERTScore (FBS) indicates SoftKeyScore with KMR and BERTScore respectively.

Metric Metric ↔ Human

F1 0.3664
FKMR 0.4033

FBS DeBERTa 0.3910
FBS RoBERTa 0.3854
FBS SciBERT 0.3543

Table 6: Pearson correlation for various metrics against
human scores of sets of predicted and gold keyphrases.

documents from the KP20k test dataset.531

In Table 6, we show the Pearson correlation532

between various metrics when compared against533

the human scores. We see that FKMR, FBS De-534

BERTa and FBS RoBERTa are better correlated535

with human scores than the F1 metric. Interestingly,536

FBS SciBERT has the worst correlation. We find537

that SciBERT is generally more generous (overly-538

optimistic) with the magnitude of its similarity539

score than the other metrics whereas the human540

judgment is on a more conservative (realistic) side.541

Thus, SciBERT did not align well with the human542

evaluation. FKMR, which is generally more con-543

servative in its scoring, has the best correlation544

with the human evaluation. However, F1 is too545

conservative because even a minor difference in546

two keyphrases (predicted and gold) would imply547

a match score of 0 between them for F1.548

5 Conclusion and Discussion549

In this work, we evaluate, analyze, and com-550

pare two powerful seq2seq models for keyphrase551

generation—one is an RNN-based model (Ex-552

HiRD) with a hierarchical decoding strategy and an-553

other is a massively pre-trained Transformer-based554

model (T5). Moreover, we propose a novel and555

more powerful technique (SoftKeyScore) for eval-556

uating keyphrase generation performance (using557

soft-matching instead of exact matching).558

Findings and Future Directions Here, we dis- 559

cuss our main findings of the paper and motivate 560

their use for future work. First, we find that the 561

model confidence of absent keyphrase predictions 562

are much lower than present keyphrase predictions 563

for both models. Thus, the models know to be more 564

uncertain with absent keyphrase generation (for 565

which both models indeed have poor performance). 566

However, upon checking for model calibrations, 567

interestingly, we find that T5 is more overconfident 568

(poorly calibrated) compared to ExHiRD. There is 569

potential for further work on models’ calibration. 570

Second, we find that the models are much 571

less confident in predicting the starting tokens of 572

a keyphrase. We believe deciding on the start 573

of the keyphrase is much harder than predict- 574

ing the follow-up tokens. Based on this find- 575

ing, we may be able to make more efficient semi- 576

autoregressive models that sequentially decode dif- 577

ferent keyphrases but simultaneously decode dif- 578

ferent tokens within a particular keyphrase. 579

Third, T5 is better at predicting present 580

keyphrases from later positions in the given texts. 581

This finding suggests that T5 may generalize better 582

on out of domain datasets (e.g., legal documents) 583

where there may be no strong bias for keyphrases 584

to occur mainly in the early sections of documents. 585

There is also room for extensions for better predic- 586

tion of present keyphrases at later positions. 587

Fourth, we motivate and propose a soft-scoring 588

based evaluation metric (SoftKeyScore) which we 589

believe shows more potential than the standard 590

F1-based metric. Particularly, absent keyphrase 591

generation may gain more significant benefit 592

from SoftKeyScore because generated abstractive 593

keyphrases which are semantically similar (but non- 594

identical at the lexical level) to a target keyphrase 595

can be more meaningfully evaluated. 596

8

References597

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram598
Singer. 2019. Memory efficient adaptive optimiza-599
tion. In Advances in Neural Information Processing600
Systems, volume 32, pages 9749–9758. Curran Asso-601
ciates, Inc.602

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-603
gio. 2015. Neural machine translation by jointly604
learning to align and translate. In 3rd International605
Conference on Learning Representations, ICLR606
2015.607

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:608
A pretrained language model for scientific text. In609
Proceedings of the 2019 Conference on Empirical610
Methods in Natural Language Processing and the 9th611
International Joint Conference on Natural Language612
Processing (EMNLP-IJCNLP), pages 3606–3611.613

Florian Boudin, Ygor Gallina, and Akiko Aizawa. 2020.614
Keyphrase generation for scientific document re-615
trieval. In Proceedings of the 58th Annual Meeting of616
the Association for Computational Linguistics, pages617
1118–1126.618

Erion Çano and Ondřej Bojar. 2019. Keyphrase genera-619
tion: A text summarization struggle. In Proceedings620
of the 2019 Conference of the North American Chap-621
ter of the Association for Computational Linguistics:622
Human Language Technologies, Volume 1 (Long and623
Short Papers), pages 666–672, Minneapolis, Min-624
nesota. Association for Computational Linguistics.625

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King.626
2019a. Neural keyphrase generation via reinforce-627
ment learning with adaptive rewards. In Proceedings628
of the 57th Annual Meeting of the Association for629
Computational Linguistics, pages 2163–2174.630

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King.631
2019b. Neural keyphrase generation via reinforce-632
ment learning with adaptive rewards. In Proceedings633
of the 57th Annual Meeting of the Association for634
Computational Linguistics, pages 2163–2174, Flo-635
rence, Italy. Association for Computational Linguis-636
tics.637

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and638
Zhoujun Li. 2018. Keyphrase generation with corre-639
lation constraints. In EMNLP, pages 4057–4066.640

Wang Chen, Hou Pong Chan, Piji Li, and Irwin King.641
2020. Exclusive hierarchical decoding for deep642
keyphrase generation. In Proceedings of the 58th643
Annual Meeting of the Association for Computational644
Linguistics, pages 1095–1105.645

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and646
Michael R Lyu. 2019. Title-guided encoding for647
keyphrase generation. In AAAI, pages 6268–6275.648

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and649
Christopher D. Manning. 2020. Electra: Pre-training650
text encoders as discriminators rather than generators.651

In International Conference on Learning Representa- 652
tions. 653

Shrey Desai and Greg Durrett. 2020. Calibration of 654
pre-trained transformers. In Proceedings of the 2020 655
Conference on Empirical Methods in Natural Lan- 656
guage Processing (EMNLP), pages 295–302, Online. 657
Association for Computational Linguistics. 658

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 659
Kristina Toutanova. 2019. BERT: Pre-training of 660
deep bidirectional transformers for language under- 661
standing. In Proceedings of the 2019 Conference of 662
the North American Chapter of the Association for 663
Computational Linguistics: Human Language Tech- 664
nologies, Volume 1 (Long and Short Papers), pages 665
4171–4186, Minneapolis, Minnesota. Association for 666
Computational Linguistics. 667

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 668
2016. Incorporating copying mechanism in sequence- 669
to-sequence learning. In Proceedings of the 54th 670
Annual Meeting of the Association for Computational 671
Linguistics (Volume 1: Long Papers), pages 1631– 672
1640. 673

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein- 674
berger. 2017. On calibration of modern neural net- 675
works. In Proceedings of the 34th International Con- 676
ference on Machine Learning, volume 70 of Pro- 677
ceedings of Machine Learning Research, pages 1321– 678
1330. PMLR. 679

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and 680
Weizhu Chen. 2021. Deberta: Decoding-enhanced 681
bert with disentangled attention. In International 682
Conference on Learning Representations. 683

Anette Hulth. 2003. Improved automatic keyword ex- 684
traction given more linguistic knowledge. In Pro- 685
ceedings of the 2003 conference on Empirical meth- 686
ods in natural language processing, pages 216–223. 687

Anette Hulth and Beáta Megyesi. 2006. A study on au- 688
tomatically extracted keywords in text categorization. 689
In Proceedings of the 21st International Conference 690
on Computational Linguistics and 44th Annual Meet- 691
ing of the Association for Computational Linguistics, 692
pages 537–544. 693

Steve Jones and Mark S Staveley. 1999. Phrasier: 694
a system for interactive document retrieval using 695
keyphrases. In Proceedings of the 22nd annual in- 696
ternational ACM SIGIR conference on Research and 697
development in information retrieval, pages 160–167. 698

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Tim- 699
othy Baldwin. 2010. Semeval-2010 task 5: Auto- 700
matic keyphrase extraction from scientific articles. 701
In Proceedings of the 5th International Workshop on 702
Semantic Evaluation, pages 21–26. 703

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio 704
Marchese. 2009. Large dataset for keyphrases extrac- 705
tion. 706

9

https://proceedings.neurips.cc/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf
https://doi.org/10.18653/v1/N19-1070
https://doi.org/10.18653/v1/N19-1070
https://doi.org/10.18653/v1/N19-1070
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD

Aviral Kumar and Sunita Sarawagi. 2019. Calibration707
of encoder decoder models for neural machine trans-708
lation. arXiv preprint arXiv:1903.00802.709

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan710
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,711
Veselin Stoyanov, and Luke Zettlemoyer. 2020.712
BART: Denoising sequence-to-sequence pre-training713
for natural language generation, translation, and com-714
prehension. In Proceedings of the 58th Annual Meet-715
ing of the Association for Computational Linguistics,716
pages 7871–7880, Online. Association for Computa-717
tional Linguistics.718

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-719
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,720
Luke Zettlemoyer, and Veselin Stoyanov. 2020.721
Ro{bert}a: A robustly optimized {bert} pretraining722
approach.723

Minh-Thang Luong, Hieu Pham, and Christopher D724
Manning. 2015. Effective approaches to attention-725
based neural machine translation. In Proceedings726
of the 2015 Conference on Empirical Methods in727
Natural Language Processing, pages 1412–1421.728

Rui Meng, Xingdi Yuan, Tong Wang, Peter Brusilovsky,729
Adam Trischler, and Daqing He. 2019. Does or-730
der matter? an empirical study on generating mul-731
tiple keyphrases as a sequence. arXiv preprint732
arXiv:1909.03590.733

Rui Meng, Xingdi Yuan, Tong Wang, Sanqiang Zhao,734
Adam Trischler, and Daqing He. 2021. An empirical735
study on neural keyphrase generation.736

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He,737
Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase738
generation. In Proceedings of the 55th Annual Meet-739
ing of the Association for Computational Linguistics740
(Volume 1: Long Papers), pages 582–592.741

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-742
ton. 2019. When does label smoothing help? In743
Advances in Neural Information Processing Systems,744
volume 32. Curran Associates, Inc.745

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos746
Hauskrecht. 2015. Obtaining well calibrated prob-747
abilities using bayesian binning. In Proceedings of748
the Twenty-Ninth AAAI Conference on Artificial In-749
telligence, AAAI’15, page 2901–2907. AAAI Press.750

Khanh Nguyen and Brendan O’Connor. 2015. Poste-751
rior calibration and exploratory analysis for natural752
language processing models. In Proceedings of the753
2015 Conference on Empirical Methods in Natural754
Language Processing, pages 1587–1598, Lisbon, Por-755
tugal. Association for Computational Linguistics.756

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine757
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,758
Wei Li, and Peter J Liu. 2020. Exploring the limits759
of transfer learning with a unified text-to-text trans-760
former. Journal of Machine Learning Research, 21:1–761
67.762

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, 763
and Wojciech Zaremba. 2016. Sequence level train- 764
ing with recurrent neural networks. In 4th Inter- 765
national Conference on Learning Representations, 766
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, 767
Conference Track Proceedings. 768

Abigail See, Peter J Liu, and Christopher D Manning. 769
2017. Get to the point: Summarization with pointer- 770
generator networks. In Proceedings of the 55th An- 771
nual Meeting of the Association for Computational 772
Linguistics (Volume 1: Long Papers), pages 1073– 773
1083. 774

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin- 775
nea Micciulla, and John Makhoul. 2006. A study of 776
translation edit rate with targeted human annotation. 777
In Proceedings of association for machine translation 778
in the Americas, volume 200. Citeseer. 779

Avinash Swaminathan, Haimin Zhang, Debanjan Ma- 780
hata, Rakesh Gosangi, Rajiv Ratn Shah, and Amanda 781
Stent. 2020. A preliminary exploration of GANs for 782
keyphrase generation. In Proceedings of the 2020 783
Conference on Empirical Methods in Natural Lan- 784
guage Processing (EMNLP), pages 8021–8030, On- 785
line. Association for Computational Linguistics. 786

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 787
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 788
Kaiser, and Illia Polosukhin. 2017. Attention is all 789
you need. In Proceedings of the 31st International 790
Conference on Neural Information Processing Sys- 791
tems, pages 6000–6010. 792

Lu Wang and Claire Cardie. 2013. Domain-independent 793
abstract generation for focused meeting summariza- 794
tion. In Proceedings of the 51st Annual Meeting of 795
the Association for Computational Linguistics (Vol- 796
ume 1: Long Papers), pages 1395–1405. 797

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu. 798
2020. On the inference calibration of neural machine 799
translation. In Proceedings of the 58th Annual Meet- 800
ing of the Association for Computational Linguistics, 801
pages 3070–3079, Online. Association for Computa- 802
tional Linguistics. 803

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic- 804
tor Sanh, Clement Delangue, Anthony Moi, Pier- 805
ric Cistac, Morgan Funtowicz, Joe Davison, Sam 806
Shleifer, et al. 2020. Transformers: State-of-the- 807
art natural language processing. In Proceedings of 808
the 2020 Conference on Empirical Methods in Nat- 809
ural Language Processing: System Demonstrations, 810
pages 38–45. 811

Huanqin Wu, Wei Liu, Lei Li, Dan Nie, Tao Chen, 812
Feng Zhang, and Di Wang. 2021. UniKeyphrase: 813
A unified extraction and generation framework for 814
keyphrase prediction. In Findings of the Association 815
for Computational Linguistics: ACL-IJCNLP 2021, 816
pages 825–835, Online. Association for Computa- 817
tional Linguistics. 818

10

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://arxiv.org/pdf/1909.03590.pdf
https://arxiv.org/pdf/1909.03590.pdf
https://arxiv.org/pdf/1909.03590.pdf
https://arxiv.org/pdf/1909.03590.pdf
https://arxiv.org/pdf/1909.03590.pdf
"https://arxiv.org/pdf/2009.10229.pdf"
"https://arxiv.org/pdf/2009.10229.pdf"
"https://arxiv.org/pdf/2009.10229.pdf"
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://doi.org/10.18653/v1/D15-1182
https://doi.org/10.18653/v1/D15-1182
https://doi.org/10.18653/v1/D15-1182
https://doi.org/10.18653/v1/D15-1182
https://doi.org/10.18653/v1/D15-1182
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73

Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu, and819
Qi Zhang. 2021. One2Set: Generating diverse820
keyphrases as a set. In Proceedings of the 59th An-821
nual Meeting of the Association for Computational822
Linguistics and the 11th International Joint Confer-823
ence on Natural Language Processing (Volume 1:824
Long Papers), pages 4598–4608, Online. Association825
for Computational Linguistics.826

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo Thaker,827
Peter Brusilovsky, Daqing He, and Adam Trischler.828
2020. One size does not fit all: Generating and evalu-829
ating variable number of keyphrases. In Proceedings830
of the 58th Annual Meeting of the Association for831
Computational Linguistics, pages 7961–7975.832

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter833
Liu. 2020. PEGASUS: Pre-training with extracted834
gap-sentences for abstractive summarization. In Pro-835
ceedings of the 37th International Conference on836
Machine Learning, volume 119 of Proceedings of837
Machine Learning Research, pages 11328–11339.838
PMLR.839

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-840
berger, and Yoav Artzi. 2019. Bertscore: Evaluating841
text generation with bert. In International Confer-842
ence on Learning Representations.843

11

https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html

A Implementation Details844

ExHiRD is trained from the publicly available code845
2 using the original settings mentioned in the pa-846

per (Chen et al., 2020). T5 was trained with SM3847

optimizer (Anil et al., 2019) for its memory effi-848

ciency. We use a learning rate (lr) of 0.1 and a849

warm up for 2000 steps with the following formu-850

lation: lr = lr·minimum

(
1,
(

steps
warmup_steps

)2)
851

The learning rate was tuned among the following852

choices: [1.0, 0.1, 0.01, 0.001]. We use an effective853

batch size of 64 based on gradient accumulation.854

We train T5 for 10 epochs with a maximum gra-855

dient norm of 5. Both models were trained using856

teacher forcing. We use train, validation and test857

splits from Meng et al. (2017). Following (Meng858

et al., 2019; Chen et al., 2020), the keyphrases in859

the target sequence are ordered according to their860

position of first occurrence within the source text.861

The first occurring keyphrase in the source text862

appears first in the target sequence. The absent863

keyphrases were appended in the end according to864

their original order. Both T5 and ExHiRD experi-865

enced target sequences in that order during train-866

ing. Predictions for both the models were gener-867

ated through greedy decoding. We use a maximum868

length of 50 tokens for T5 during decoding.869

We use a single NVIDIA V100 GPU for training870

and testing all our models.871

B SoftKeyScore Implementation872

When we use KMR, we first stem the phrases be-873

ing compared with Porter Stemmer. We use the874

BERTScore implementation provided by the au-875

thors 3. We use variations of pre-trained trans-876

former model weights to compute BERTScore877

such as microsoft/deberta-large-mnli878

for DeBERTa, roberta-large for RoBERTa879

and scibert-scivocab-uncased for SciB-880

ERT. All the weights are streamlined and made881

available by Wolf et al. (2020). We also use base-882

line rescaling of BERTScore as done by Zhang883

et al. (2019). For both BERTScore and KMR based884

scoring functions, also use a threshold t of 0.4 such885

that the output of the score function becomes 0 if it886

is < t. This makes prevent inflation of the overall887

2https://github.com/Chen-Wang-CUHK/
ExHiRD-DKG

3https://github.com/Tiiiger/bert_score

score from low scoring matches. 888

12

https://github.com/Chen-Wang-CUHK/ExHiRD-DKG
https://github.com/Chen-Wang-CUHK/ExHiRD-DKG
https://github.com/Tiiiger/bert_score

