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Abstract

Keyphrase generation aims at generating top-
ical phrases from a given text either by copy-
ing from the original text (present keyphrases)
or by producing new keyphrases (absent
keyphrases) that capture the semantic mean-
ing of the text. Encoder-decoder models are
most widely used for this task because of their
capabilities for absent keyphrase generation.
However, there has been little to no analy-
sis on the performance and behavior of such
models for keyphrase generation. In this pa-
per, we study various tendencies exhibited by
two strong models: TS (based on a pre-trained
transformer) and ExHiRD (based on a recurrent
neural network). We analyze prediction confi-
dence scores, model calibration, and the effect
of position on present keyphrases generation.
Moreover, we motivate and propose a novel
metric, SoftKeyScore, to evaluate the similar-
ity between two sets of keyphrases by using
soft-scores to account for partial matching and
semantic similarity. We find that SoftKeyScore
performs better than the standard F; metric for
evaluating two sets of given keyphrases. We
will release our code.

1 Introduction

Keyphrases are phrases that capture the core ideas
and topics of a given document. Keyphrase gener-
ation is the task of predicting a set of keyphrases
from a given document. Among these keyphrases,
some exist within the source document (present
keyphrases), and some are absent from the docu-
ment (absent keyphrases). Keyphrases are widely
used in various applications, such as document in-
dexing and retrieval (Jones and Staveley, 1999;
Boudin et al., 2020), document clustering (Hulth
and Megyesi, 2006), and text summarization (Wang
and Cardie, 2013). Hence, keyphrase generation is
of great interest to the scientific community.

In recent years, neural encoder-decoder
(seq2seq) models are adapted to generate both

absent and present keyphrases (Meng et al., 2017).
Most contemporary approaches (Yuan et al., 2020;
Chan et al., 2019a; Chen et al., 2020) to keyphrase
generation aim at autoregressively decoding a
sequence of concatenated keyphrases from a
given source document. Typically, these models
are equipped with cross-attention (Luong et al.,
2015; Bahdanau et al., 2015) and a copy (or
pointer) mechanism (Gu et al., 2016; See et al.,
2017). Although several variants and extensions of
seq2seq models have been proposed to enhance
keyphrase generation (Meng et al., 2017; Yuan
et al., 2020; Chan et al., 2019a; Swaminathan et al.,
2020; Chen et al., 2020), there have been limited
attempts at deeper analysis on the tendencies of
the neural seq2seq in this task.

Moreover, despite the ubiquitous success of pre-
trained models (typically Transformers) on several
NLP tasks, there is a dearth of exploration of pre-
trained models for keyphrase generation. While
most pre-trained models such as BERT (Devlin
et al., 2019) and ELECTRA (Clark et al., 2020)
are focused on encoding, recently there have been
a few pre-trained seq2seq transformers (e.g., T5,
BART, and PEGASUS) (Raffel et al., 2020; Lewis
et al., 2020; Zhang et al., 2020) which are natural
choices to be adapted for keyphrase generation.

In this work, we explore T5! (Raffel et al., 2020),
a pre-trained seq2seq Transformer, and contrast its
performance with a strong recurrent neural network
(RNN) based seq2seq architecture for keyphrase
generation (ExHiRD) (Chen et al., 2020) on differ-
ent aspects of the task.

Overall, our contributions are as follows:

1. We introduce keyphrase perplexity (KPP) to
gauge model confidence. Using KPP, we ana-
lyze the prediction confidence of a pre-trained

'Interestingly, the pre-training objective in T5 for gen-
erating a series of concatenated spans which are masked in
the source text also happens to be particularly similar to the
downstream task of our desire (keyphrase generation).



model (T5) and a trained-from-scratch RNN-
based seq2seq model (ExHiRD). In addition,
we explore the models’ calibration to study
confidence versus generation performance.

2. We empirically evaluate and contrast the per-
formance of TS5 and ExHiRD, on standard
F1-based measures.

3. We examine the variance of model perfor-
mance with that of the position of extracted
present keyphrases in the source document.

4. We propose an evaluation framework, Soft-
KeyScore, to measure the similarity of two
sets of keyphrases (the predicted set and the
gold set) using soft-scoring functions to ac-
count for partial matches and semantic similar-
ities between predicted keyphrases and target
keyphrases. We perform evaluation to verify
the correlation of the various evaluation met-
rics against human annotated scores.

2 Related Work

The current focus of research on keyphrase gen-
eration has been increasingly shifting towards the
use of neural generative (sequence-to-sequence)
models (Meng et al., 2017) particularly because
of their capability to generate absent keyphrases.
Meng et al. (2017) used a Recurrent Neural Net-
work (RNN) model along with CopyNet (Copy-
RNN) for keyphrase generation. Chen et al. (2018)
extended CopyRNN by utilizing correlations be-
tween the predicted keyphrases. Chen et al. (2019)
introduced a title-guided encoding scheme in a
seq2seq model. All these methods, however, could
only predict one keyphrase and they had to rely on
beam search to predict more keyphrases. Yuan et al.
(2020) solved this issue by allowing their model to
predict a concatenated sequence of variable number
of keyphrases. Chan et al. (2019a) used reinforce-
ment learning to enhance the task performance,
whereas Swaminathan et al. (2020) performed pre-
liminary studies on the use of Generative Adver-
sarial Networks on the task. Chen et al. (2020)
introduced a new decoding architecture (exclusive
hierarchical decoding) to capture the hierarchical
structure of keyphrases (ExHiRD). We use Ex-
HiRD as one of our models for our analysis along
with a transformer-based model (T5). Wu et al.
(2021) take a joint training approach to learn both
keyphrase extraction and generation through differ-
ent layers instead of using a single seq2seq frame-
work for both present and absent keyphrase predic-

tion. Ye et al. (2021) decode multiple keyphrases in
parallel while also using an assignment algorithm
to reduce penalization from misaligned orders in
predicted and gold keyphrases.

There have been a few empirical analyses on
some aspects of the generation models. Meng
et al. (2021) showed the experimental results for
different hyperparameter changes including the
change of ordering format for concatenating target
keyphrases. Cano and Bojar (2019) explored the ap-
plication of abstractive summarization techniques
and evaluation metrics for keyphrase generation.

Calibration and uncertainty of neural models
(Guo et al., 2017) have started to gain attention on
several natural language processing tasks, includ-
ing neural machine translation (Miiller et al., 2019;
Kumar and Sarawagi, 2019; Wang et al., 2020),
natural language understanding (Desai and Dur-
rett, 2020), and coreference resolution (Nguyen
and O’Connor, 2015). For example, Wang et al.
(2020) focused on the calibration of neural ma-
chine translation (NMT) models to understand the
generative capability of the models at inference
(decoding time) under the exposure bias (Ranzato
et al., 2016), that captures the difference in training
and inference caused by teacher forcing in auto-
regressive models. We explore the calibration of
keyphrase generation models to better understand
model behavior in this scenario.

3 Methodology

In this section, first, we briefly describe the two
models: ExHiRD and T5; second, we formulate
and define keyphrase perplexity and discuss cali-
bration of generative models; lastly, we present a
novel framework for soft-scoring-based evaluation
of two sets of keyphrases.

3.1 Models

For our analysis, we consider two models: ExHiRD
and T5. We chose ExHiRD because it is one of
the strongest performing keyphrase generation ar-
chitectures without relying on reinforcement learn-
ing or GAN. We chose T5 because applications of
pre-trained Transformer-based models like TS are
becoming almost ubiquitous in NLP and T5 serves
as a natural choice for keyphrase generation given
its seq2seq architecture. Both models are trained
on concatenated sequence of target keyphrases as
in Yuan et al. (2020). Implementation details for
the models are presented in Appendix A.



ExHiRD ExHiRD (Chen et al., 2020) is an RNN-
based seq2seq model with attention and copy-
mechanism. It uses a hierarchical decoding strategy
to address the hierarchical nature of a sequence of
keyphrases, where each keyphrase is, in turn, a
sub-sequence of words. ExHiRD also proposes
exclusion mechanisms to improve the diversity of
keyphrases generated and reduce duplication.

TS T5 (Raffel et al., 2020) is a pre-trained
seq2seq Transformer (Vaswani et al., 2017), which
is pre-trained on C4 corpus (a dataset with clean
English text obtained by scraping the web). The T5
architecture includes an encoder-decoder architec-
ture with various layers of self-attention and cross
attention. We use t 5-base model with 12 layers
from the Transformers library (Wolf et al., 2020).

3.2 Understanding Model Behavior

3.2.1 Keyphrase Perplexity

We introduce the Keyphrase Perplexity metric to
gauge model confidence on a particular predicted
keyphrase. Keyphrase perplexity is rooted in the
general concept of perplexity. Perplexity is a
widely used metric for evaluating language models.
For a sequence of tokens wy., = wiy, wa, ..., Wn,
of length n, perplexity is the inverse normalized
probability p of generating them and can be de-
fined as: PP (wy.,) = p(w1, wa, ..., wy,) /™. For
an auto-regressive decoder, the probability p of the
sequence can be factorized and reformulated as:

—1/n
PP(wyy) = (Hp (wi|wy, wa, .. .wi_1)>
(D

We adapt this formulation to define keyphrase
perplexity (KX PP) over a sub-sequence wj.;, =
Wj, Wj41, ..., w, Within the sequence wi., (1 <
j < k < n). Here, we assume that sub-sequence
w.x, corresponds to a keyphrase. Our definition of
KPP(wj.) is as follows:
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where m = k — j 4+ 1 is the number of tokens
in the keyphrase w;.;. Essentially, for KPP,
we simply use the conditional probabilities of to-
kens within the keyphrase w;.;, under consider-
ation. During our analysis, any probability of

the form p(w;|wy, wa, . ..w;—1) indicates the pre-
dicted model probability for token w; given that
tokens wy, wa, ... w;—1 have been already gener-
ated. We do not include starting, ending, separator,
end of sequence tokens probabilities. As in per-
plexity, a lower keyphrase perplexity (X P P) indi-
cates higher confidence in the prediction, whereas
a higher K PP indicates lower confidence.

One limitation of this K P P formulation is that
it does not negate the conditioning effect of pre-
vious keyphrases (included in sub-sequence w; to
wj_1 while measuring the K PP of the keyphrase
starting from w;). However, removing this limi-
tation is not straight-forward; so we take a naive
assumption of treating the overall probabilities of
keyphrases as independent of the other keyphrases.

3.2.2 Calibration of Generative Models

Model calibration includes modeling the accuracy
of model predictions as a function of its generated
posterior probabilities. A calibrated model has
alignment between its empirical likelihood (accu-
racy) and its probability estimates. For example,
a calibrated model that has a confidence of 90%
while making predictions, would correctly predict
90 out of 100 possible samples. Formally, cali-
bration models the joint distribution P(Q,Y") over
generated model probabilities () € R and labels Y.
P(Y = y|Q = q) = q signifies perfect calibration
of a model (Guo et al., 2017).

Expected calibration error (ECE) is a popular
measure of model miscalibration (Naeini et al.,
2015). ECE is computed by partitioning the pre-
dictions according to their generated probabilites
into k bins and summing up the weighted average
of the absolute value of the difference between the
accuracy and model confidence of a particular bin.

k

Z %\acc(bi) —confid(b;))]  (3)

i=1
where n is the number of samples, b; is the number
of samples in the it" bin with k bins, 1 < i < k.

ECE =

We also make use of reliability diagrams that
depict the accuracy of the model as a function of
the probability accross k bins. In Equation 2, we
use K PP to gauge prediction perplexity by com-
puting the inverse of the normalized value of the
product of posterior probabilities for the tokens of a
generated keyphrase. To bin keyphrases according
to their posterior probabilities, we use inverse of
K PP to plot the reliability diagrams and compute



ECE. Hence, the normalized posterior probability
of a keyphrase is (K PP)~!.

3.3 Soft Keyphrase Score (SoftKeyScore)

Previous work has mostly used extensions of stan-
dard F-based metrics to measure the performance
of keyphrase generation models. Such evaluation
metrics usually operate based on exact matches be-
tween predicted and gold keyphrases. Such a strat-
egy cannot account for partial matches or semantic
similarity. For example, if the prediction is "sum-
marization model" and the gold is "summarization
system", despite both semantic similarity and par-
tial matching, the score will be 0. These kind of
minor deviations are ubiquitous in keyphrase gen-
eration yet they are harshly penalized by the “exact
match” evaluation metrics. We discuss more such
examples in §4. This phenomenon motivates us to
explore soft-scoring based evaluation metrics.

Cano and Bojar (2019) explored the use of met-
rics such as ROUGE that can accomodate for some
level of partial matches but they are still suited
mainly for comparing a sequence against another
sequence. We want to compare a set of phrases
with another sef. Chan et al. (2019b) use Wikipedia
information to control some level of name-variation
over keyphrases of the same meaning but they still
rely on strict binary scoring. In contrast to the
above methods, we propose the SoftKeyScore as
a suitable metric for evaluation between sets of se-
quences (keyphrases) as opposed to fully ordered
sequences. We present our methodology below.

Assume we have two sets G = {g1, g2, -, 9|G|}
and P = {p1,p2,..,pp|}. G can be the set
of gold keyphrases and P can be the set of pre-
dicted keyphrases. Assume we also have some
soft-scoring function score(z,y) which takes two
phrases (z and y) as input and outputs a scalar
€ [0,1] to indicate the degree of match between
x and y. Given these elements, we propose the
following evaluation framework:

1
Pscare = ﬁ : pze:pglgé score(pi, gj) (4)
1
Rscore = @ : = gléi;j( SCO?"e(piv g]) (5)
j
Fscore —9. 'Pscore : Rscore (6)

PSCO’I‘€ + RSCO'I‘€

Here, Fs..-. indicates the final result of Soft-
KeyScore. It is analogous to F7; the difference

is how the precision and recall is computed. Pscore
and Rgqore are analogous to precision and recall,
respectively. With a soft scoring function (score),
however, one phrase p; in set P can match with
multiple phrases in set G. Thus, in Eqs. 4 and
5, we use a greedy matching strategy where we
choose the maximum matching score for any com-
parison between a phrase in one set to all phrases
in the other set. This overall framework is very sim-
ilar to the framework used for BERTScore (Zhang
et al., 2019). However, the crucial difference is that
we are using a generic matching function to mea-
sure similarity between two sequences (keyphrases)
instead of two token embeddings. In fact, one of
our proposed scoring functions (discussed below)
uses the BERTScore.

SoftKeyScore is invariant to the order of phrases.
This is suitable in our context of evaluating sets
of keyphrases. At the same time, by using the
right score function (like BERTScore), we can
account for the order among the words within
phrases (due to its contextualized embeddings).
More on the implementation details of this frame-
work can be found in Appendix B. Below we dis-
cuss two concrete instances of the score func-
tion that we explore in our calculation of Soft-
KeyScore: Keyphrase Match Rate (KMR) score
and BERTScore.

3.3.1 Keyphrase Match Rate (KMR)

We propose Keyphrase Match Rate (K M R) as
the complement of Translation Error Rate (TER)
(Snover et al., 2006). TER is used to evaluate
predictions of neural machine translation (NMT)
models by computing the number of edits required
to modify the generated sequence into the target
sequence. We slightly modify the original TER
score by adding pad tokens to the shorter sequence
(keyphrase) to keep the lengths of the two se-
quences in comparison equal. Pad tokens change
some deletions to substitutions but that does not
change the total edit cost since both have the same
cost. This strategy ensures that TER stays in [0, 1].
Given that we want to measure the similarity be-
tween two keyphrases, we formulate KM R as:
1 — TER. Given our modified TER, KMR also
ranges in [0, 1]. A KMR score of 1 denotes a per-
fect match. KMR can account for the degree of
partial matching between the two phrases although
it can be deficient in capturing deeper aspects of
semantic similarities.



Model Inspec Krapivin SemEval KP20k
mayM  FQ5 | QM FQ5 | F1QM F@Q5 | FrQM F @5
Present Keyphrases
ExHiRDt | 0.291 0.253 0.347 0.286 0.335 0.284 0.374 0.311
T5 0.340 0.287 0.328 0.271 0.306 0.275 0.387 0.335
Absent Keyphrases
ExHiRDt | 0.022 0.011 0.043 0.022 0.025 0.017 0.032 0.016
T5 0.025 0.014 0.053 0.028 0.023 0.016 0.036 0.018

Table 1: t indicates that the results are taken from Chen et al. (2020) but we used their publicly available code to
reproduce the results. F; @5 only keeps the top 5 keyphrase predictions (following Chen et al. (2020), incorrect
keyphrases were added if there were < 5 predictions). ;@M uses the full model prediction for evaluation.

3.3.2 BERTScore

BERTScore (Zhang et al., 2019) is a recently pro-
posed evaluation metric for evaluation of natural
language generation models. BERTScore uses a
similar method as described in Egs. 4 to 6 but with
the following differences:

1. Instead of sets (P and G) the evaluation is
done on two sequences of tokens (prediction
sequence and reference sequence).

2. Instead of phrases from some given sets, the
equivalent of score function in BERTScore
compares contextualized token embeddings
from the given sequences using dot-product.

In our context, we use BERTScore as another
instance of the score function as described pre-
viously to measure the similarity between two
phrases. BERTScore can take into account both
partial matching and deeper semantic similarities
between the two phrases. Note that if we just use
BERTScore replacing SoftKeyScore, the evalua-
tion will no longer be invariant to the order of the
keyphrases because of the use of contextualized
embeddings over a “sequence"” (it will no longer
remain a set) of keyphrases.

4 Experiments and Results

4.1 Datasets

We select four widely used benchmarks for our
experimentation: KP20k (Meng et al., 2017),
Krapivin (Krapivin et al., 2009), Inspec (Hulth,
2003) and SemEval (Kim et al., 2010). We use
KP20k training set (~500,000 samples) for train-
ing our models. We use KP20k test set and rest
of the datasets (the test subset) for performance
evaluation and analysis. Further implementation
details are in Appendix A.

4.2 F; Evaluation Details

We used similar post-processing for evaluation
as Chen et al. (2020). Concretely, we stemmed
both target keyphrases and predicted keyphrases
using Porter stemmer. We removed all duplicates
from predictions after stemming. We determined
whether a keyphrase is present or not by check-
ing the stemmed version of the source document.
For F; @5, following Chen et al. (2020), if there
were less than 5 predictions, we append incorrect
keyphrases to the predictions to make it exactly 5.

4.3 Results, Analyses, and Observations

Model Performance (Exact match): We com-
pare the results of TS and ExHiRD using macro-
averaged F1@5 and F1@QM metrics in Table 1.
We find that despite lacking the advantage of pre-
training, ExHiRD performs competitively with
T5. Note that Fy@M compares all the generated
keyphrases with the gold labels whereas F;@5h
compares the first five keyphrases with the labels.

Keyphrase Perplexity Analysis: We compare
keyphrase perplexities (K P P) of both TS and Ex-
HiRD. As can be seen from Figure 1, both mod-
els have lower K PP (thus, higher confidence) for
present keyphrases than absent keyphrases. How-
ever, TS5 is substantially more confident about its
present keyphrase predictions compared to Ex-
HiRD. This could be the effect of its pre-training.
Both models tend to have higher K P P for absent
keyphrases showcasing that they are having diffi-
culty in learning to generate absent keyphrases.

In Figure 2, we show that the conditional proba-
bilities of tokens in a keyphrase tend to be low at
the boundaries (at the beginning of a keyphrase),
but start to increase monotonically as the decoder
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Figure 1: Histograms depicting number of keyphrases
in keyphrase perplexity bins of size 0.1 for present and
absent keyphrase generation. Dashed lines indicate the
median of each distribution.
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Figure 2: ExHiRD and T5’s conditional probabilities for
the first five tokens generated in a keyphrase (present
and absent) in accordance to their relative positions
within the keyphrase on KP20K test set. ExHiRD gener-
ates tokens at word-level; T5 generates at subword-level.

move towards the end of the keyphrase. Intuitively,
it makes sense that a model will have less confi-
dence predicting the start of a keyphrase because
it requires settling on a specific keyphrase to gen-
erate out of many potential candidates. However,
the first keyphrase token, once already generated,
will condition and restrict the space of plausible
candidates for the second token thereby increasing
its confidence. For the same reason, probabilities
near the end of a keyphrase tend to be much higher.

Model Calibration In Figure 1, we saw that T5
predicts keyphrases with higher model confidence
than ExHiRD. But does the higher confidence ac-
tually translate into better predictions? Figure 3
shows the reliability diagrams for ExHiRD and T5
for both present and absent keyphrases. We can

Dataset | ExHiRD T5

Inspec 9.99 26.75
Krapivin 9.11 58.86
SemEval 10.18 26.64

KP20k 13.32 36.97

Table 2: Expected calibration error (ECE) for ExHiRD
and T5 on various datasets. T5’s calibration is worse
than ExHiRD (lower the better).
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Figure 3: Reliability diagrams for model calibration of
ExHiRD and T5. Dotted black line depicts perfectly
calibrated model. We can see that ExHiRD is better
calibrated than T5.

see that calibration of ExHiRD is better than T5.
T5’s high confidence keyphrase predictions does
not translate into optimal accuracy values. In Table
2, T5’s ECE is much higher than ExHiRD for all
four datasets. We can say that TS is an overconfi-
dent model. This may be due to the fact that T5
operates at subword level, and once the initial to-
kens of the keyphrase are predicted, T5 generates
the rest of the tokens with very high confidence.

Positional range
1 2 3 4 5

Inspec 1,326 845 686 602 173
Krapivin 706 206 182 159 59
SemEval 346 126 103 54 20

KP20k | 39,571 9,865 8313 6,317 1,704

Dataset

Table 3: Number of keyphrases present keyphrases in
gold labels binned into five sections, each having 20%
characters of the source document.

Positional Variance We analyze both ExHiRD
and T5’s present keyphrase predictions with respect
to their position in the input text. We divided the
input text into five sections with 20% of characters
in each, and binned the keyphrases appearing in
them accordingly. In Table 3, we see that the ma-
jority of gold labels for the present keyphrases are
in the first section (bin) of the input sequence. In
Figure 4, we see that ExXHiRD progressively fails to



Examples | Fi | Fxur | FeeRTSCOPe
| | | DeBERTa RoBERTA  SciBERT

Pred: performance evaluation, information retrieval, web search engine
Gold: performance, information retrieval, world wide web, search engine 0286 0375 0520 0568 0.618
Pred: bgp, network engineering, routing protocols
Gold: routing, traffic engineering, modeling, bgp 0.286 | 0.500 0.538 0.549 0.671
Pred: pwarx identification, chiu’s clustering algorithm,
affine sub model estimation, hyperplane partitions
Gold: experimental validation, clustering, identification, hybrid systems, 0.000 | 0.083 0.234 0.260 0.493
pwarx models, chiu’s clustering technique

Table 4: Examples of Fx s r and Fp g rrscore With different pre-trained weights when compared against F1. Fxarr
and FpgRrrscore indicates SoftKeyScore using KMR and BERTScore respectively
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Figure 4: Error percentage of present keyphrase genera-
tion with respect to their position in the original text.

identify keyphrases in the later sections of the input
text, whereas TS not only performs well in identi-
fying keyphrases present in the initial sections of
the text, but it also performs better than ExHiRD
in predicting keyphrases from the later sections
(bins). This pattern is particularly prominent on
KP20k. The bias towards predicting earlier present
keyphrases is, most likely, further compounded by
the fact that the present keyphrases are ordered ac-
cording to their position of first occurrence within
the target sequence. For an autoregressive model,
it would be also likely to be easier to learn to pre-
dict the earlier sections of the target. As such the
models can be biased to be good at only predict-
ing keyphrases that occur early in the source text.
However, the potential main reason for the bias is
simply the fact that the majority of keyphrases exist
in the earlier segments of a document as shown in
Table 3. Nevertheless, T5 appears more resistant
to these biases, despite being exposed to the same
data and similarly ordered target sequences. These
results hint also to a “better understanding” of the
overall semantics of the document by the T5 model,
and hence, its improved generation of short phrase
document summaries (i.e., keyphrases).

SoftKeyScore Evaluation: Table 4 provides
some concrete examples that demonstrate the po-
tential of SoftKeyScore over standard F'; measures.
As we can see, [} metrics are quite low despite
high similarities of the predictions and targets. Soft-
KeyScore, (with BERTScore), can better fit our
intuitions about similarity between sets of phrases.

In Table 5, we experiment with various pre-
trained transformer language models to compute
BERTScore for SoftKeyScore. We use DeBERTa
(He et al., 2021), RoBERTa (Liu et al., 2020),
and SciBERT (Beltagy et al., 2019) to compute
BERTScore. Further details about the models
are in Appendix B. Overall, we see that Soft-
KeyScores over KMR and BERTScore have sig-
nificantly more number of matches with partial
or similar keyphrases when compared to baseline
F1@M scores in Table 1. This finding is particu-
larly important when evaluating absent keyphrases.
Using exact-match based F1, absent keyphrase per-
formance is often too low to meaningfully compare.
Some past work (Meng et al., 2017; Yuan et al.,
2020) have even attempted to show just the recall
after over-generation (Recall@50) of keyphrases.
Such metrics can fail to capture the performance
of the models in a more practical context. How-
ever, with SoftKeyScore we find much higher ab-
sent keyphrase performance (without being recall-
oriented) allowing for more score-readability and
better comparison. Interestingly, we find that Ex-
HiRD is often outperforming T5 in SoftKeyScore
compared to the hard (exact-match) F; evaluation.

Human evaluation To assess the quality of pre-
dicted keyphrases we use help from a CS majoring
student. The student was asked to provide an ap-
propriate score to signify the closeness between
the predicted set of keyphrases and the gold set of
keyphrases in [0, 1]. The student scored T5 predic-
tion and the corresponding gold sets of 500 sample



Score . EXHiRD .. s
Inspec  Krapivin Semeval KP20k | Inspec  Krapivin Semeval KP20k
Present keyphrases
Frmr 0.366 0.366 0.393 0.408 | 0.392 0.347 0.349 0.415
Fps DeBERTa | 0.388 0.370 0.396 0.428 | 0.405 0.344 0.359 0.433
Fps RoBERTa | 0.442 0.434 0.467 0.459 | 0.459 0.414 0.464 0.466
Fps SciBERT | 0.588 0.572 0.528 0.588 | 0.587 0.550 0.490 0.589
Absent keyphrases
Frmr 0.042 0.076 0.042 0.054 | 0.049 0.071 0.040 0.054
Fps DeBERTa | 0.049 0.088 0.044 0.065 | 0.067 0.081 0.042 0.067
Fps RoBERTa | 0.072 0.135 0.087 0.083 | 0.089 0.122 0.086 0.087
Fps SciBERT | 0.160 0.253 0.128 0.173 | 0.187 0.212 0.117 0.182

Table 5: SoftKeyScore of present and absent keyphrase performance using KMR and BERTScore with different pre-
trained weights. Fx /g and Fpeprrscore (Fps) indicates SoftKeyScore with KMR and BERTScore respectively.

Metric | Metric <+ Human
F, 0.3664
Frxumr 0.4033
Fps DeBERTa 0.3910
Fps RoBERTa 0.3854
Frs SciBERT 0.3543

Table 6: Pearson correlation for various metrics against
human scores of sets of predicted and gold keyphrases.

documents from the KP20k test dataset.

In Table 6, we show the Pearson correlation
between various metrics when compared against
the human scores. We see that Fx /g, Fpg De-
BERTa and Fgg RoBERTa are better correlated
with human scores than the F1 metric. Interestingly,
Fps SciBERT has the worst correlation. We find
that SciBERT is generally more generous (overly-
optimistic) with the magnitude of its similarity
score than the other metrics whereas the human
judgment is on a more conservative (realistic) side.
Thus, SciBERT did not align well with the human
evaluation. Fxspr, which is generally more con-
servative in its scoring, has the best correlation
with the human evaluation. However, F; is too
conservative because even a minor difference in
two keyphrases (predicted and gold) would imply
a match score of 0 between them for F1.

5 Conclusion and Discussion

In this work, we evaluate, analyze, and com-
pare two powerful seq2seq models for keyphrase
generation—one is an RNN-based model (Ex-
HiRD) with a hierarchical decoding strategy and an-
other is a massively pre-trained Transformer-based
model (T5). Moreover, we propose a novel and
more powerful technique (SoftKeyScore) for eval-
uating keyphrase generation performance (using
soft-matching instead of exact matching).

Findings and Future Directions Here, we dis-
cuss our main findings of the paper and motivate
their use for future work. First, we find that the
model confidence of absent keyphrase predictions
are much lower than present keyphrase predictions
for both models. Thus, the models know to be more
uncertain with absent keyphrase generation (for
which both models indeed have poor performance).
However, upon checking for model calibrations,
interestingly, we find that T5 is more overconfident
(poorly calibrated) compared to ExHiRD. There is
potential for further work on models’ calibration.

Second, we find that the models are much
less confident in predicting the starting tokens of
a keyphrase. We believe deciding on the start
of the keyphrase is much harder than predict-
ing the follow-up tokens. Based on this find-
ing, we may be able to make more efficient semi-
autoregressive models that sequentially decode dif-
ferent keyphrases but simultaneously decode dif-
ferent tokens within a particular keyphrase.

Third, TS5 is better at predicting present
keyphrases from later positions in the given texts.
This finding suggests that TS may generalize better
on out of domain datasets (e.g., legal documents)
where there may be no strong bias for keyphrases
to occur mainly in the early sections of documents.
There is also room for extensions for better predic-
tion of present keyphrases at later positions.

Fourth, we motivate and propose a soft-scoring
based evaluation metric (SoftKeyScore) which we
believe shows more potential than the standard
F1-based metric. Particularly, absent keyphrase
generation may gain more significant benefit
from SoftKeyScore because generated abstractive
keyphrases which are semantically similar (but non-
identical at the lexical level) to a target keyphrase
can be more meaningfully evaluated.
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A Implementation Details

ExHiRD is trained from the publicly available code
2 using the original settings mentioned in the pa-
per (Chen et al., 2020). TS5 was trained with SM3
optimizer (Anil et al., 2019) for its memory effi-
ciency. We use a learning rate ({r) of 0.1 and a
warm up for 2000 steps with the following formu-

2
steps
warmup_steps)

lation: Ir = Ir-minimum <1, <
The learning rate was tuned among the following
choices: [1.0,0.1,0.01,0.001]. We use an effective
batch size of 64 based on gradient accumulation.
We train TS5 for 10 epochs with a maximum gra-
dient norm of 5. Both models were trained using
teacher forcing. We use train, validation and test
splits from Meng et al. (2017). Following (Meng
et al., 2019; Chen et al., 2020), the keyphrases in
the target sequence are ordered according to their
position of first occurrence within the source text.
The first occurring keyphrase in the source text
appears first in the target sequence. The absent
keyphrases were appended in the end according to
their original order. Both T5 and ExHiRD experi-
enced target sequences in that order during train-
ing. Predictions for both the models were gener-
ated through greedy decoding. We use a maximum
length of 50 tokens for TS during decoding.

We use a single NVIDIA V100 GPU for training
and testing all our models.

B SoftKeyScore Implementation

When we use KMR, we first stem the phrases be-
ing compared with Porter Stemmer. We use the
BERTScore implementation provided by the au-
thors >. We use variations of pre-trained trans-
former model weights to compute BERTScore
such asmicrosoft/deberta-large-mnli
for DeBERTa, roberta-large for ROBERTa
and scibert-scivocab-uncased for SciB-
ERT. All the weights are streamlined and made
available by Wolf et al. (2020). We also use base-
line rescaling of BERTScore as done by Zhang
etal. (2019). For both BERTScore and KMR based
scoring functions, also use a threshold ¢ of 0.4 such
that the output of the score function becomes 0 if it
is < t. This makes prevent inflation of the overall

https://github.com/Chen-Wang-CUHK/
ExHiRD-DKG
*https://github.com/Tiiiger/bert_score
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score from low scoring matches.
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