
Under review as a conference paper at ICLR 2023

D-CIPHER: DISCOVERY OF CLOSED-FORM PARTIAL
DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Closed-form differential equations, including partial differential equations and
higher-order ordinary differential equations, are one of the most important tools
used by scientists to model and better understand natural phenomena. Discov-
ering these equations directly from data is challenging because it requires mod-
eling relationships between various derivatives that are not observed in the data
(equation-data mismatch) and it involves searching across a huge space of pos-
sible equations. Current approaches make strong assumptions about the form of
the equation and thus fail to discover many well-known phenomena. Moreover,
many of them resolve the equation-data mismatch by estimating the derivatives,
which makes them inadequate for noisy and infrequent observations. To this end,
we propose D-CIPHER, which is robust to measurement artifacts and can uncover
a new and very general class of differential equations. We further design a novel
optimization procedure, CoLLie, to help D-CIPHER search through this class effi-
ciently. Finally, we demonstrate empirically that it can discover many well-known
equations that are beyond the capabilities of current methods.

1 INTRODUCTION

Scientists have been using mathematical equations to describe the world for centuries. In particular,
closed-form differential equations turned out to be one of the best tools to model physical phenom-
ena. A differential equation describes a relationship between a quantity and its derivatives (rates
of change); it is called closed-form if this relationship is described by a mathematical expression
consisting of a finite number of variables, constants, arithmetic operations, and some well-known
functions (e.g., exponent, logarithm, trigonometric functions)1. Closed-form differential equations
provide a general description of reality in a concise representation that is amenable to closer inspec-
tion by scientists. This renders them transparent and interpretable to human experts.

Discoveries of these equations required a thorough knowledge of the theory, strong mathematical
skills, substantial creativity, and good intuition. The goal of this work is to discover closed-form
differential equations directly from data thus accelerating the process of scientific discovery.

Challenges in discovering differential equations from data

• Partial and higher-order derivatives. Many algorithms (Brunton et al., 2016; Qian et al., 2022)
can only identify Ordinary Differential Equations (ODEs) which evolve only with respect to one
variable (usually time). In contrast, many natural phenomena are described by equations involving
many variables (e.g., spatial coordinates) called Partial Differential Equations (PDEs). Many
equations also involve higher-order derivatives.

• Derivatives not observed. Discovering differential equations from data is challenging because
the derivatives are usually not observed in the dataset (equation-data mismatch (Qian et al., 2022)).
This makes verifying a candidate equation a non-trivial task. Most of the methods proposed in
the literature try to resolve this issue by estimating the derivatives (Brunton et al., 2016; Rudy
et al., 2017). However, estimating the derivative is difficult, especially when the data is sampled
infrequently or with high noise (Qian et al., 2022; Messenger & Bortz, 2021a).

• Strong assumptions and constrained search space. The majority of algorithms for identifying
differential equations make many assumptions about the form of the equation. In particular, they

1Detailed discussion in Appendix A.2

1

Under review as a conference paper at ICLR 2023

make the evolution assumption (defined and explained later) and assume that the equation can be
represented as a linear combination of prespecified functions and differential operators (Brunton
et al., 2016; Messenger & Bortz, 2021a). However, many well-known equations, such as a forced
harmonic oscillator or an inhomogeneous wave equation, cannot be represented in that way.

Currently, a few algorithms tackle only some of these challenges. In particular, Weak SINDy (Mes-
senger & Bortz, 2021a) is able to discover PDEs without estimating the derivative by utilizing a
variational approach. However, the form of the equation is constrained to be in a form amenable
for a sparse regression algorithm. D-CODE (Qian et al., 2022), on the other hand, uses a varia-
tional approach in conjunction with a symbolic regression algorithm to discover closed-form ODEs.
However, it cannot handle higher-order derivatives or multiple independent variables, so it cannot
be used to discover closed-form PDEs. The algorithms that do not require the evolution assumption
appeared in (Mangan et al., 2016) and (Kaheman et al., 2020) but they require derivative estimation
and only consider equations represented as linear combinations of prespecified functions.

Contributions. In this work, we develop the Discovery of Closed-form Partial and Higher-order
Differential Equations in a Robust Way framework (D-CIPHER) that does not estimate the deriva-
tives, requires fewer assumptions, has a broader search space than previous techniques, and works
for both higher-order ODEs and PDEs. Our contributions are as follows:

• We examine the landscape of different types of PDEs from the discovery perspective. In particular,
we introduce new notions such as evolution form, evolution assumption, derivative-bound part,
and derivative-free part. We use them to describe what kinds of PDEs can be discovered with
current methods and to motivate our new class of differential equations. (Section 2)

• We propose a new general class of PDEs (Variational-Ready PDEs) that admit the variational
formulation (and thus allows to circumvent the derivative estimation). We also prove a theorem
that motivates a novel objective function. (Section 4)

• We use the novel objective function to develop D-CIPHER, a new algorithm that searches over
the Variational-Ready PDEs. (Section 5)

• We develop a new optimization procedure (CoLLie) to efficiently solve a constrained least-squares
problem and thus help D-CIPHER search through this space efficiently. (Section 6)

2 PARTIAL DIFFERENTIAL EQUATIONS

In this section, we provide background information about Partial Differential Equations and intro-
duce new notions necessary for the following discussion.

Notation and definitions. We denote the set {1, 2, . . . , n} as [n] and the set of non-negative integers
as N0. Throughout this paper we let M,N,K ∈ N be some natural numbers and let Ω ⊂ RM be
an open set inside RM . A comprehensive table with all symbols used in this work can be found in
Appendix A together with some definitions restated more formally.

Going beyond ODEs. The simplest differential equations are ordinary differential equations that
describe quantities that evolve with respect to only one independent variable, usually time. Most
methods assume that the ODE is explicit and as such can be represented as a system of first-order
ODEs:

u̇j(t) = fj(t,u(t)) (1)

where u̇j represents the derivative of uj . Then the discovery problem is reduced to deciding the
order of the derivative (usually first or second) and the discovery of fj .

For PDEs, it is not enough to talk about the derivative, as we can take derivatives with respect to
different variables. We denote the mixed derivative as ∂α, where α ∈ NM0 is called a multi-index,
and define it as ∂α = ∂α1

1 ∂α2
2 . . . ∂αMM . Each ∂αii = ∂αi/∂xαii is a αth

i -order partial derivative with
respect to xi (the ith independent variable)2. We define the order of α as |α| =

∑M
i=1 αi. We call

∂α non-trivial if |α| > 0.

A PDE of order K is any equation of the form

f(x,u(x), ∂[K]u(x)) = 0 ∀x ∈ Ω (2)

2Throughout this work we assume that the functions we use are smooth enough for the equality of mixed
partials (Spivak, 2018) to hold. In that case, any mixed derivative can be uniquely specified by a multi-index.

2

Under review as a conference paper at ICLR 2023

where ∂[K]u are all non-trivial mixed derivatives of all uj (j ∈ [N]) up to the K th order. We call a
PDE closed-form if f is closed-form.

As PDEs might include many different combinations of derivatives, there is no generally accepted
counterpart of explicit ODEs in the space of PDEs.

Evolution Assumption. Although there is no generally accepted notion of an explicit PDE, we
define an evolution form of a PDE to be an equation of the form

∂αuj(x) = f(x,u(x), ∂[K]/αu(x)) ∀x ∈ Ω (3)

where ∂[K]/α is ∂[K] with ∂α omitted, α is a known multi-index and j ∈ [N]. Note that if M = 1
and |α| = K then Equation 3 becomes exactly the definition of an explicit ODE.

In fact, many algorithms for PDE discovery assume a particular evolution form (Messenger & Bortz,
2021a). We call it an evolution assumption (EA). However, this assumption requires the knowledge
of α and j which might not be trivial. Usually, ∂α is assumed to be the first derivative with respect
to time (∂t) (Rudy et al., 2017) but it is not the case for many well-known PDEs such as the wave
equation or Gauss’s law.

D-CIPHER does not need the evolution assumption. Moreover, it can discover some PDEs that
cannot be put into the evolution form.

Linear combinations. Current PDE discovery algorithms (Rudy et al., 2017; Messenger & Bortz,
2021a; Chen et al., 2021) consider PDEs that can be represented as a linear combination of functions.
That means the PDE has the form

P∑
p=1

θpfp(x,u(x), ∂[K]u(x)) = 0 ∀x ∈ Ω (4)

where θp ∈ R for p ∈ [P] are the only constants that are optimized. As there are lot of expressions
that cannot be put in that form, these algorithms fail to discover more complex equations. In par-
ticular, for an unknown θ ∈ R functions such as sin(θxi), eθxi or 1

xi+θ
cannot be learned by these

algorithms.

Unlike previous methods, D-CIPHER is not limited to PDEs that can be represented as a linear
combination of functions. To describe the family of PDEs that D-CIPHER can discover we need to
introduce the notions of derivative-bound and derivative-free parts.

Derivative-bound part and derivative-free part. Any PDE can be expressed in the form

f(x,u(x), ∂[K]u(x))− g(x,u(x)) = 0 ∀x ∈ Ω (5)

where we collect all the terms with the derivatives into f(x,u(x), ∂[K]u(x)) and all terms without
the derivatives into g(x,u(x)). We call f the derivative-bound part and g the derivative-free part.
We also denote them as ∂-bound and ∂-free. The significance of the ∂-free part is that it can be
evaluated directly given u, whereas the ∂-bound part requires access to the derivatives which are not
observed. It is important to note that for first-order ODEs, f is trivial and is just equal to u̇j .

The challenge of unobserved derivatives might put constraints on the ∂-bound part of the PDE and
thus in practice, it might not be possible to search over all closed-form PDEs. However, we observe
that no such constraints need to be put on the ∂-free part (as it does not include the derivatives).
We take full advantage of this observation and search separately for the two parts. We search over
all closed-form functions g and for each candidate, we try to find the best counterpart f among the
allowed expressions. This is very different from the previous approaches, which either do not need
to find f as they work only for first-order ODEs (Qian et al., 2022) or they constrain equally both the
∂-bound part and ∂-free part to be a linear combination of some pre-specified functions (Messenger
& Bortz, 2021a).

3 RELATED WORKS

Symbolic Regression. The goal of symbolic regression is to find a closed-form expression that best
models the given dataset both in terms of accuracy and simplicity. In contrast with the conventional
regression analysis which optimizes the parameters of a pre-specified model, symbolic regression

3

Under review as a conference paper at ICLR 2023

Table 1: Columns correspond to challenges outlined in Section 1 and answer the following ques-
tions: Can it discover PDEs? Does it avoid derivative estimation? Is the evolution assumption
unnecessary (Equation 3)? Can it discover any closed-form ∂-free part (Equation 5)? References:
[1] (Brunton et al., 2016), [2] (Mangan et al., 2016), [3] (Rudy et al., 2017), [4] (Long et al., 2019),
[5] (Messenger & Bortz, 2021a), [6] (Reinbold et al., 2020), [7] (Qian et al., 2022)

Method PDEs No ∂ estimation No EA Any closed-form ∂-free part

SINDy [1] 7 7 7 7
SINDy-implicit [2] 7 7 3 7
PDE-FIND [3] 3 7 7 7
PDE-Net 2.0 [4] 3 7 7 7
WSINDy [5,6] 3 3 7 7
D-CODE [7] 7 3 7 3
D-CIPHER 3 3 3 3

aims at discovering both the general structure and the parameters of the model. Most of the existing
work focuses on developing optimization algorithms. Genetic Programming (Koza, 1992) has been
widely used for that task (Schmidt & Lipson, 2009). A different strategy has been employed in
AI Feynman (Udrescu et al., 2020; Udrescu & Tegmark, 2020) that uses neural networks to reduce
the search space by identifying simplifying properties like symmetry or separability. Optimization
methods based on pre-trained neural networks (Biggio et al., 2021), reinforcement learning (Petersen
et al., 2021), and Meijer-G functions (Alaa & van der Schaar, 2019) have also been proposed.

Data-driven discovery of closed-form differential equations. Data-driven discovery of physi-
cal laws is an established area of machine learning (Bongard & Lipson, 2007; Schmidt & Lipson,
2009). The pioneering work in that area was SINDy (Brunton et al., 2016) that constrained the space
of equations to linear combinations of functions from a predefined library and used sparse regres-
sion to discover explicit ODEs. It was later extended to include implicit ODEs (Mangan et al., 2016;
Kaheman et al., 2020) and PDEs (Rudy et al., 2017; Schaeffer, 2017). Various other extensions
were proposed by improving the derivative estimation and the training procedure (Rao et al., 2022;
Xu, 2021), adding additional selection criteria (Mangan et al., 2017) and learning the library using
genetic programming Maslyaev et al. (2019); Chen et al. (2021); Xu et al. (2020). A different ap-
proach is taken by (Long et al., 2019) (an extension of (Long et al., 2018)) which uses convolutional
and symbolic neural networks. It is important to note that all of these methods still assume the PDE
to be a linear combination as discussed in Section 2 (Equation 4) which significantly limits their
search space. Some other developments are based on Gaussian processes (Raissi et al., 2018; Raissi
& Karniadakis, 2018) but they require the exact form of the PDE and only optimize the parameters.

Variational approach. Recently, the variational approach has been used as a viable alternative
to derivative estimation. However, they have only been used for differential equations in a linear
combination form (Messenger & Bortz, 2021a;b; Reinbold et al., 2020) or closed-form first-order
ODEs (Qian et al., 2022). Extending the variational approach to closed-form PDEs is not trivial
as PDEs are much more complex than ODEs and not all closed-form PDEs admit the variational
formulation. In fact, the approaches that learn the library mentioned in the previous paragraph can
produce exactly such terms which prohibits the use of variational formulation. To address these
challenges we use the new notions defined in Section 2 to define a new and general class of PDEs in
Section 4 that admit the variational formulation.

4 VARIATIONAL-READY PDES

In this section, we propose a new and very general class of PDEs, the Variational-Ready PDEs (VR-
PDEs), which can be characterized without referring to the derivative. The VR-PDEs allow arbitrary
∂-free part but make some minor restrictions on the ∂-bound part. These restrictions allow one to
use the variational formulation of PDEs to circumvent derivative estimation entirely. Despite the
minor restriction, VR-PDEs contain many well-known PDEs, including all linear PDEs, Maxwell’s
equations, and Navier-Stokes equations (additional examples provided in Appendix B).

To define the new class of PDEs, we need the following definition.

4

Under review as a conference paper at ICLR 2023

Definition 1 (Extended derivative and differential operator). Let α ∈ NM0 , |α| ≤ K, be a multi-
index. Let h : RM+N → R and a : RM → R be smooth functions. An extended derivative E ,
denoted (α, a, h), maps a vector field u : RM → RN to a function E [u] : RM → R defined as:

E [u](x) = a(x)∂α[h(x,u(x))] (6)

E is called closed-form if a and h are closed-form. We call E non-degenerate if |α| > 0.

Now, let (Ep)p∈[P] be a finite sequence of non-degenerate extended derivatives. The extended dif-
ferential operator, denoted as E[P] is an operator defined as:

E[P][u](x) =

P∑
p=1

Ep[u](x) (7)

Remark. Any linear operator L =
∑
α∈A aα∂

α acting on uj is an extended differential operator.

Definition 2 (Variational-Ready PDE). Let E[P] be an extended differential operator, and let g :

RM+N → R be a continuous function. We denote a Variational-Ready PDE (VR-PDE) by a pair(
E[P], g

)
and define it as:

E[P][u](x)− g(x,u(x)) = 0 ∀x ∈ Ω (8)

We extend the standard variational formulation of PDEs (Proposition 1 in Appendix B) from linear
PDEs to all VR-PDEs. The following definition is useful in further discussion.

Definition 3. Consider a field u : Ω → RN , and an extended derivative E = (α, a, h). Let
φ : Ω→ R be a testing function (CK function 3 with compact support). We define the functional

F(E ,u, φ) =

∫
Ω

h(x,u(x))(−1)|α|∂α[a(x)φ(x)]dx

We can now use this functional to formulate variational characterization of VR-PDEs.

Theorem 1. u : Ω→ RN , where uj ∈ CK , is a solution to a VR-PDE in Equation 8 if and only if

P∑
p=1

F(Ep,u, φ)−
∫

Ω

[g(x,u(x))φ(x)] dx = 0 (9)

for all testing functions φ : Ω→ R.

Proof. Appendix B.
This theorem motivates the variational loss function as we expect the left-hand side of Equation 9
to be closer to 0 the closer the canditate PDE is to the true one. To calculate how well a set of vector
fields D = {u(d)}Dd=1 matches a VR-PDE

(
E[P], g

)
we propose the following loss function.

L
(
E[P], g

)
=

D∑
d=1

S∑
s=1

(
P∑
p=1

F(Ep,u(d), φs)−
∫

Ω

g(x,u(d)(x))φs(x)dx

)2

(10)

where {φs}Ss=1 is a set of predefined testing functions.

This novel loss function makes it possible to evaluate to what extent any VR-PDE matches the
observed data. This loss can be used as an optimization objective in any algorithm that searches
over some subspace of closed-form VR-PDEs. We propose D-CIPHER in Section 5 as an example
of such an algorithm.

5 D-CIPHER

In this section, we formulate the problem of PDE discovery and then we introduce a novel algorithm
(D-CIPHER) to solve it.

3We say u : RM → R is in CK if ∂αu exists and is continuous for all |α| ≤ K.

5

Under review as a conference paper at ICLR 2023

Problem formulation We are given a dataset of observed fields D = {v(d)}Dd=1 with a finite sam-
pling grid G ⊂ Ω. Each v(d)(x) is a noisy measurement, i.e., v(d) : G → RN is defined as

v
(d)
j (x) = u

(d)
j (x) + ε

(d)
j (x) ∀x ∈ G ∀j ∈ [N] (11)

where ε(d)
j (x) is a realization of a zero-mean random variable (noise), each u(d)

j : Ω → R is a CK

function, and every true field u(d) is governed by the same closed-form PDE f . The task is to infer
the closed-form PDE, f , from the dataset D = {v(d)}Dd=1 and the sampling grid G. We assume that
f is inside the class of closed-form VR-PDEs (Section 4) and its ∂-bound part is inside a subspace
of extended differential operators spanned by a user-specified dictionary (see Step 1 below).

We propose an algorithm that consists of three steps. In the first step, we define the subspace of
closed-form VR-PDEs we want to search over to reflect our knowledge of the problem. In the second
step, we reconstruct the fields from noisy measurements. In the last step, we solve an optimization
problem using a modified symbolic regression algorithm. For more details, check Appendix C.

Step 1: Choose the form and incorporate prior knowledge. A human expert should encode
their prior knowledge of the problem into a dictionary of non-degenerate extended derivatives Q
= {Êp}p∈[P]. We use this dictionary to search over a finite-dimensional subspace of closed-form
operators spanned by this set. In other words, we assume that the VR-PDE is of the form:

P∑
p=1

βpÊp[u](x)− g(x,u(x)) = 0 ∀x ∈ Ω (12)

where β ∈ RP , g is any closed-form function of M +N variables, and Êp = (αp, ap, hp).

For instance, a dictionary might include only the partial derivatives up to a certain order. For a 1+1
second-order equation that meansQ = {∂t, ∂x, ∂tx, ∂2

t , ∂
2
x}. That is already enough to discover heat

and wave equations with any closed-form source. If, for instance, the user suspects the presence of
the advection term uux (as in the Burgers’ equation), the term ∂x(u2) can be included in the library.

It’s important to note that we do not assume any particular form of g apart from being closed-form.

Step 2: Estimate the fields. As the dataset D consists of noisy and infrequently sampled fields, we
first need to estimate the ”true” fields û(d) from v(d). Any choice of reconstruction algorithm can
be used and the user should choose it according to the problem setting and their domain knowledge.

Step 3: Optimize. We minimize the loss function in Equation 10 for the estimated fields {û(d)}Dd=1
among all PDEs of the form in Equation 12. We solve the following optimization problem:

min
g

min
||β||1=1

D∑
d=1

S∑
s=1

(
P∑
p=1

F(βpÊp, û(d), φs)−
∫

Ω

g(x, û(d)(x))φs(x)dx

)2

(13)

As we want to discover both g and β we cannot use the standard penalties on β such as the λ||β||2
or λ||β||1, as the loss would be minimized by g = 0 and β = 0. Therefore we put the constraint
||β||1 = 1. We choose the L1 norm to encourage sparsity in the coordinates of the vector β.

The inner minimization in Equation 13 can be rewritten as a constrained least-squares problem.

min
||β||1=1

∑
(d,s)∈[D]×[S]

(
β · z(d,s) − w(d,s)

)2

(14)

where Êp = (αp, ap, hp) and z(d,s) ∈ RP , w(d,s) ∈ R are defined as

z(d,s)
p =

∫
Ω

hp(x, û
(d)(x))(−1)|αp|∂αp(ap(x)φs(x))dx

w(d,s) =

∫
Ω

g(x, û(d)(x))φs(x)dx

(15)

We show the full derivation in Appendix C. z(d,s) can be precomputed at the beginning of the algo-
rithm without estimating the derivatives of the reconstructed fields. They can be easily calculated if
the derivatives of the testing functions φs and the derivatives of ap can be analytically computed.

6

Under review as a conference paper at ICLR 2023

As the optimization problem in Equation 14 has to be solved many times for different closed-form
expressions g, it poses some unique challenges. As standard approaches are not sufficiently fast, we
design a new heuristic algorithm to solve this problem. We describe it in the next section.

6 COLLIE

The problem in Equation 14 from the previous section can be formulated as follows. Given matrix
A ∈ Rm×n and vector b ∈ Rm, find a vector z ∈ Rn that minimizes ||Az−b||22 such that ||z||1 = 1.
The task is challenging as the unit L1 sphere is not convex. A method that guarantees an optimal
solution is based on an observation that the (n − 1)-dimensional L1 sphere consists of 2n (n − 1)-
simplices (which are convex). Minimizing ||Az − b||22 on a simplex is a quadratic program (Boyd
et al., 2004) with many available solvers (Andersen et al., 2013; Stellato et al., 2020; ApS, 2019).
However, that means that the computation time scales exponentially with the number of dimensions.
This is prohibitively long for the inner optimization of our algorithm. Therefore we design a heuristic
algorithm CoLLie (Constrained L1 Norm Least Squares) that finds an approximate solution but is
significantly faster (Figure 1). We provide a detailed description of CoLLie in Appendix D.

2 3 4 5 6 7
n

10 3

10 2

10 1

100

Ti
m

e
(s

)

(A)

2 3 4 5 6 7
n

0.0

0.003

0.006

0.009

Av
g.

 re
la

tiv
e

er
ro

r (B)

2 5 7
n

10 15

10 10

10 5

100

Re
la

tiv
e

er
ro

r

(C)

CoLLie
CVXOPT

Figure 1: We compare CoLLie with an algorithm that uses CVXOPT (Andersen et al., 2013) to solve
each of the convex subproblems. We report the relative error between the loss obtained by CoLLie
and the minimum loss achieved by CVXOPT. Panels B and C show the averages and the distributions
of relative errors. The average relative error is below 0.005 and the bulk of the distribution is below
10−7. At the same time CoLLie is orders of magnitude faster (Panel A).

.
7 EXPERIMENTS

We perform a series of synthetic experiments to show how well D-CIPHER is able to discover some
well-known differential equations4 (Table 2). First, we demonstrate that D-CIPHER performs better
than current methods when discovering PDEs in a linear combination form (Section 7.1). Then we
demonstrate it can discover PDEs with a closed-form ∂-free part that cannot be expressed as a linear
combination and thus are beyond the capabilities of current methods (Section 7.2). We contrast D-
CIPHER with its ablated version where the derivatives are estimated and the standard MSE loss is
used instead of the variational loss (details in Appendix E.1). For additional information about the
experiments (e.g., implementation details, data generation, experimental settings) see Appendix E.

Table 2: Equations used in the experiments. ”LC” column specifies if the equation can be repre-
sented as a linear combination (Equation 4). ”VR” column specifies if the PDE is Variational-Ready

Name Equation LC VR

Homogeneous heat equation ∂tu− θ1∂
2
xu = 0 3 3

Burger’s equation ∂tu+ u∂xu− θ1∂
2
xu = 0 3 3

Kuramoto-Sivashinsky equation ∂tu+ ∂2
xu+ ∂4

xu+ u∂xu = 0 3 3
Forced and damped harmonic oscillator ∂2

t + 2θ1θ2∂tu+ θ2
2u = θ3 sin(θ4t) 7 3

SLM model (Appendix F.1) ∂tu+ ∂xu = −2eθ1xu 7 3
Inhomogeneous heat equation ∂tu− θ1∂

2
xu = θ2e

θ3t 7 3
Inhomogeneous wave equation ∂2

t u− θ1∂
2
xu = θ2e

t sin(θ3t) 7 3

Evaluation metrics. To establish how well a discovered PDE matches the ground truth, we evaluate
its ∂-free and ∂-bound parts separately. For the ∂-free part, we assign a binary variable indicating

4All experiment code will be published upon acceptance.

7

Under review as a conference paper at ICLR 2023

whether the correct functional form of the equation was recovered (please check Appendix E.8 for
details). For the ∂-bound part, we measure the RMSE between the found coefficients of β and the
target ones. We report the averages and standard deviations for both parts. We call the averages
respectively Success Probability and Average RMSE.

Implementation. We use B-Splines (De Boor, 1978) as the testing functions and we estimate the
fields in Step 2 of D-CIPHER with a Gaussian Process (Williams & Rasmussen, 2006). The outer
optimization in Step 3 is performed using a modified genetic programming algorithm (Koza, 1992)
and the inner optimization by CoLLie (Section 6).

7.1 DISCOVERING LINEAR COMBINATIONS: COMPARISON WITH OTHER METHODS

We compare D-CIPHER against two variants of PDE-FIND Rudy et al. (2017) and WSINDy Rein-
bold et al. (2020) with optimization performed by Stepwise Sparse Regression (Boninsegna et al.,
2018) or Forward Regression Orthogonal Least-Squares (Billings, 2013). We note that D-CIPHER
is specifically designed to discover PDEs that are beyond the capabilities of current methods, i.e.,
where the derivative-free part can be any closed-form expression. Current methods are usually tested
on equations where the derivative-free part is trivial (identically equal to 0). Even though these al-
gorithms are specialized to discover these simpler kinds of equations, D-CIPHER performs better
than (or equally well as) PDE-FIND and WSINDy, regardless of the optimization algorithm, when
tested on Burgers’ equation the homogeneous heat equation, and Kuramoto–Sivashinsky equation
(Figure 2). This demonstrates gain from both the variational loss and the new optimization routine.

PDE-FIND (S)&(F)

PDE-FIND (S)&(F)

WSINDy (S)&(F)

PDE-FIND (S)&(F)

WSINDy (S)&(F)

Figure 2: Simulation results for the Burgers’ equation, homogeneous heat equation, and Ku-
ramoto–Sivashinsky equation. We report the Average RMSE of the ∂-bound part of the equation.
Note that some of the benchmarks overlap

.

7.2 DISCOVERING EQUATIONS BEYOND CURRENT METHODS

Forced and damped harmonic oscillator. As the oscillator is described by a second-order ODE, it
cannot be discovered by D-CODE (Qian et al., 2022). D-CIPHER discovers the correct functional
form of the ∂-free part and achieves a low RMSE for the coefficients ofβ in most of the experimental
settings. The performance is higher than or comparable to the ablated version of D-CIPHER, thus
demonstrating gain from using the variational approach. We present the results in Figure 3.

10 3 10 2 10 1 100

Noise ratio (R)
0.0

0.2

0.4

0.6

0.8

Su
cc

es
s P

ro
ba

bi
lit

y

0.1 0.2 0.3 0.4
Sampling interval (t)

0.0
0.2
0.4
0.6
0.8

Su
cc

es
s P

ro
ba

bi
lit

y

1 5 10 15
Number of samples (D)

0.0
0.2
0.4
0.6
0.8

Su
cc

es
s P

ro
ba

bi
lit

y

10 3 10 2 10 1 100

Noise ratio (R)

0.0

0.02

0.04

0.06

0.08

Av
g.

 R
M

SE

0.1 0.2 0.3 0.4
Sampling interval (t)

0.0

0.02

0.04

0.06

0.08

Av
g.

 R
M

SE

1 5 10 15
Number of samples (D)

0.0

0.04

0.08

0.12

Av
g.

 R
M

SE

Forced and damped harmonic oscillator

D-CIPHER
Abl. D-CIPHER

Figure 3: Success probability of discovering the correct ∂-free part of the equation and the average
RMSE between the recovered ∂-bound part and the target one across different experimental settings.
We compare D-CIPHER against its ablated version (Abl. D-CIPHER).

8

Under review as a conference paper at ICLR 2023

Inhomogeneous heat equation. D-CIPHER is able to discover the correct equation even in settings
with very high noise. It performs better than the ablated version, thus showing the importance of the
variational objective. The result are presented in Table 3.

Table 3: We report the success probability of discovering the ∂-free part and the Average RMSE of
the ∂-bound part for the inhomogeneous heat equation. Standard deviations shown in brackets.

Method Success probability Average RMSE
σR = 0.05 0.1 0.2 σR = 0.05 0.1 0.2

D-CIPHER 0.64 (.07) 0.42 (.07) 0.12 (.05) 0.15 (.009) 0.21 (.007) 0.24 (.005)
Ablated D-CIPHER 0.46 (.07) 0.20 (.06) 0.04 (.03) 0.18 (.009) 0.24 (.008) 0.27 (.007)

Inhomogeneous wave equation. This equation does not have the standard evolution form, as it
does not involve the ∂t term. Thus, even without the source term, most of the current methods
cannot be applied directly to discover this equation. In Figure 4 we show the absolute difference
between the true field and the fields computed from the sources discovered by D-CIPHER and its
ablated version across different measurement settings. D-CIPHER finds the correct functional form
with coefficients not far from the ground truth. The ablated version fails to discover the correct
functional form and the found ∂-free part does not reproduce the correct behavior of the equation.

Figure 4: We solve the inhomogeneous wave equation for the ∂-free parts found by the D-CIPHER
and its ablated version (Abl. D-CIPHER). We show the absolute difference between the computed
fields and the true field generated by ∂-free part 2× et sin(3t).

8 DISCUSSION

Applications. As D-CIPHER can potentially discover any closed-form ∂-free part, it is especially
useful when this part of the PDE captures an essential component of the phenomenon. We demon-
strate it by finding the heat and vibration sources as well as the driving force of an oscillator. Beyond
the spatio-temporal physical equations, D-CIPHER might prove useful in discovering population
models structured by age, size, and spatial position (Webb, 1985; 2008), age-dependent epidemio-
logical models Hoppensteadt (1974), and predator-prey models with age-structure (Promrak et al.,
2017). All these equations are VR-PDEs where the ∂-free parts are crucial elements of the equations
signifying the rates of mortality, infection, recovery, or growth.

Limitations and open challenges. D-CIPHER may fail in some scenarios, either due to challenging
experimental settings or a challenging underlying PDE. Challenging experimental settings might
include unobserved variables, high measurement noise, infrequent sampling, and inadequate domain
(e.g., small time horizon). Challenging PDE forms might include a PDE outside of the VR-PDE
class or a ∂-free part with a complex expression that is difficult to find. We note that we address some
of these challenges by utilizing a variational approach, defining VR-PDEs to be a very general class
of equations, and designing CoLLie enabling a thorough search across closed-form expressions.

9

Under review as a conference paper at ICLR 2023

Ethics Statement. We want to emphasize that D-CIPHER was designed to facilitate the process of
scientific discovery by extracting closed-form PDEs from data. It is not intended to or capable of
replacing human experts in the modeling process. No human-derived data was used.

Reproducibility Statement. The assumptions of Theorem 1 are discussed in Section 4 and the
proof is presented in Appendix B.2. The details of D-CIPHER and CoLLie are discussed in Section
5 and 6, as well as in Appendix C and D. The implementation details, data generation procedures,
hyperparameters, and experimental settings are described in Appendix E for D-CIPHER and in
Appendix D for CoLLie. All experiment code will be published upon acceptance.

REFERENCES

Ahmed M Alaa and Mihaela van der Schaar. Demystifying black-box models with symbolic meta-
models. Advances in Neural Information Processing Systems, 32:11304–11314, 2019.

MS Andersen, J Dahl, and L Vandenberghe. CVXOPT: A Python package for convex optimization,
Version 1.1. 6, 2013, 2013.

MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019. URL
http://docs.mosek.com/9.0/toolbox/index.html.

L. Biggio, T. Bendinelli*, A. Neitz, A. Lucchi, and G. Parascandolo. Neural Symbolic Regression
that Scales. In 38th International Conference on Machine Learning, July 2021.

Stephen A. Billings. Nonlinear System Identification: NARMAX Methods in the Time, Frequency,
and Spatio-Temporal Domains. John Wiley & Sons, September 2013. ISBN 978-1-119-94359-4.

J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems. Pro-
ceedings of the National Academy of Sciences, 104(24):9943–9948, June 2007. ISSN 0027-8424,
1091-6490. doi: 10.1073/pnas.0609476104.

Lorenzo Boninsegna, Feliks Nüske, and Cecilia Clementi. Sparse learning of stochastic dynamical
equations. The Journal of Chemical Physics, 148(24):241723, June 2018. ISSN 0021-9606,
1089-7690. doi: 10.1063/1.5018409.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

Richard P Brent. Algorithms for minimization without derivatives. Courier Corporation, 2013.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the Na-
tional Academy of Sciences, 113(15):3932–3937, April 2016. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1517384113.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Yuntian Chen, Yingtao Luo, Qiang Liu, Hao Xu, and Dongxiao Zhang. Any equation is a forest:
Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE).
arXiv:2106.11927 [cs.NE], 2021.

D G Crighton. Model Equations of Nonlinear Acoustics. Annual Review of Fluid Mechanics, 11(1):
11–33, 1979. doi: 10.1146/annurev.fl.11.010179.000303.

Carl De Boor. A practical guide to splines, volume 27. springer-verlag New York, 1978.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least Angle Regression. The
Annals of Statistics, 32(2):93, 2004.

Lev D Elsgolc. Calculus of variations. Courier Corporation, 2012.

F. G. (Friedrich Gerard) Friedlander. Introduction to the theory of distributions / F.G. Friedlander.
Cambridge University Press, Cambridge, 1982. ISBN 0-521-24300-9.

10

http://docs.mosek.com/9.0/toolbox/index.html

Under review as a conference paper at ICLR 2023

Frank Hoppensteadt. An Age Dependent Epidemic Model. Journal of the Franklin Institute, 297
(5):325–333, May 1974. ISSN 00160032. doi: 10.1016/0016-0032(74)90037-4.

James M. Hyman and Basil Nicolaenko. The Kuramoto-Sivashinsky equation: A bridge between
PDE’S and dynamical systems. Physica D: Nonlinear Phenomena, 18(1):113–126, January 1986.
ISSN 0167-2789. doi: 10.1016/0167-2789(86)90166-1.

Kadierdan Kaheman, J. Nathan Kutz, and Steven L. Brunton. SINDy-PI: a robust algorithm for
parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences, 476(2242):20200279, October 2020.
doi: 10.1098/rspa.2020.0279. URL https://royalsocietypublishing.org/doi/
10.1098/rspa.2020.0279. Publisher: Royal Society.

Doyo Kereyu and Genanew Gofe. Convergence Rates of Finite Difference Schemes for the Diffusion
Equation with Neumann Boundary Conditions. American Journal of Computational and Applied
Mathematics, pp. 11, 2016.

John R. Koza. Genetic programming: on the programming of computers by means of natural selec-
tion. Complex adaptive systems. MIT Press, Cambridge, Mass, 1992. ISBN 978-0-262-11170-6.

Yoshiki Kuramoto. Instability and Turbulence of Wavefronts in Reaction-Diffusion Systems.
Progress of Theoretical Physics, 63(6):1885–1903, June 1980. ISSN 0033-068X. doi: 10.1143/
PTP.63.1885.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian process meets big data:
A review of scalable GPs. IEEE Transactions on Neural Networks and Learning Systems, 31(11):
4405–4423, 2020. doi: 10.1109/TNNLS.2019.2957109.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from Data. In
Proceedings of the 35th International Conference on Machine Learning, pp. 3208–3216. PMLR,
July 2018. ISSN: 2640-3498.

Zichao Long, Yiping Lu, and Bin Dong. PDE-Net 2.0: Learning PDEs from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, December 2019.
ISSN 0021-9991. doi: 10.1016/j.jcp.2019.108925.

Lynn H. Loomis. Advanced calculus / Lynn H. Loomis and Shlomo Sternberg. Addison-Wesley
series in mathematics. Addison-Wesley Pub. Co., Reading, Mass. ; London, 1968. ISBN 0-201-
04305-X. Publication Title: Advanced calculus.

N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor. Model selection for dynamical systems
via sparse regression and information criteria. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473(2204):20170009, August 2017. ISSN 1364-5021, 1471-
2946. doi: 10.1098/rspa.2017.0009.

Niall M. Mangan, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Inferring Biological
Networks by Sparse Identification of Nonlinear Dynamics. IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, 2(1):52–63, June 2016. ISSN 2332-7804. doi: 10.
1109/TMBMC.2016.2633265. Conference Name: IEEE Transactions on Molecular, Biological
and Multi-Scale Communications.

Mikhail Maslyaev, Alexander Hvatov, and Anna Kalyuzhnaya. Data-Driven Partial Derivative Equa-
tions Discovery with Evolutionary Approach. In João M. F. Rodrigues, Pedro J. S. Cardoso, Jânio
Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael H. Lees, Jack J. Dongarra, and
Peter M.A. Sloot (eds.), Computational Science – ICCS 2019, Lecture Notes in Computer Sci-
ence, pp. 635–641, Cham, 2019. Springer International Publishing. ISBN 978-3-030-22750-0.
doi: 10.1007/978-3-030-22750-0 61.

Daniel A. Messenger and David M. Bortz. Weak SINDy for partial differential equations. Journal of
Computational Physics, 443:110525, October 2021a. ISSN 00219991. doi: 10.1016/j.jcp.2021.
110525.

11

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0279
https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0279

Under review as a conference paper at ICLR 2023

Daniel A. Messenger and David M. Bortz. Weak SINDy: Galerkin-Based Data-Driven Model Se-
lection. Multiscale Modeling & Simulation, 19(3):1474–1497, January 2021b. ISSN 1540-3459,
1540-3467. doi: 10.1137/20M1343166.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, and others. SymPy: sym-
bolic computing in Python. PeerJ Computer Science, 3:e103, 2017. Publisher: PeerJ Inc.

A. R. Mitchell and D. F. Griffiths. The finite difference method in partial differential equations.
Wiley, Chichester [Eng.] ; New York, 1980. ISBN 978-0-471-27641-8.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K
Kim, and Joanne T Kim. Deep Symbolic Regression: Recovering Mathematical Expressions
From Data via Risk-seeking Policy Gradients. ICLR 2021, 2021.

J. Promrak, G. C. Wake, and C. Rattanakul. Predator-prey Model with Age Structure. The
ANZIAM Journal, 59(2):155–166, October 2017. ISSN 1446-1811, 1446-8735. doi: 10.1017/
S1446181117000360. Publisher: Cambridge University Press.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-CODE: Discovering Closed-
form ODEs from Observed Trajectories. The Tenth International Conference on Learning Repre-
sentations, 2022.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlin-
ear partial differential equations. Journal of Computational Physics, 357:125–141, March 2018.
ISSN 0021-9991. doi: 10.1016/j.jcp.2017.11.039.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Numerical Gaussian Processes
for Time-Dependent and Nonlinear Partial Differential Equations. SIAM Journal on Scientific
Computing, 40(1):A172–A198, January 2018. ISSN 1064-8275, 1095-7197. doi: 10.1137/
17M1120762.

Chengping Rao, Pu Ren, Yang Liu, and Hao Sun. Discovering Nonlinear PDEs from Scarce Data
with Physics-Encoded Learning. ICLR 2022, 2022.

Patrick A. K. Reinbold, Daniel R. Gurevich, and Roman O. Grigoriev. Using noisy or incomplete
data to discover models of spatiotemporal dynamics. Physical Review E, 101(1):010203, January
2020. ISSN 2470-0045, 2470-0053. doi: 10.1103/PhysRevE.101.010203.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven discovery
of partial differential equations. Science Advances, 3(4):e1602614, April 2017. ISSN 2375-2548.
doi: 10.1126/sciadv.1602614.

Hayden Schaeffer. Learning partial differential equations via data discovery and sparse optimiza-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473
(2197):20160446, January 2017. ISSN 1364-5021, 1471-2946. doi: 10.1098/rspa.2016.0446.

Michael Schmidt and Hod Lipson. Distilling Free-Form Natural Laws from Experimental Data.
Science, 324(5923):81–85, April 2009. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.
1165893.

Michael Spivak. Calculus On Manifolds: a Modern Approach To Classical Theorems Of Advanced
Calculus. CRC Press, 2018. ISBN 978-0-429-50190-6 978-0-429-97045-0. OCLC: 1029237047.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting solver
for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020. doi:
10.1007/s12532-020-00179-2.

12

Under review as a conference paper at ICLR 2023

Trevor Stephens. gplearn: Genetic programming in python, with a scikit-learn inspired and compati-
ble api, 2022. URL https://gplearn.readthedocs.io/en/stable/index.html.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 0035-9246. Publisher: [Royal
Statistical Society, Wiley].

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, April 2020. ISSN 2375-2548. doi: 10.1126/
sciadv.aay2631.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. AI
Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. 34th Conference
on Neural Information Processing Systems (NeurIPS 2020), 2020.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Sachin Wani and Sarita Thakar. Crank-Nicolson Type Method for Burgers Equation. International
Journal of Applied Physics and Mathematics, 3:324–328, January 2013. doi: 10.7763/IJAPM.
2013.V3.230.

G. F. Webb. Population Models Structured by Age, Size, and Spatial Position. In J. M. Morel,
F. Takens, B. Teissier, Pierre Magal, and Shigui Ruan (eds.), Structured Population Models in Bi-
ology and Epidemiology, volume 1936, pp. 1–49. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008. ISBN 978-3-540-78272-8 978-3-540-78273-5. doi: 10.1007/978-3-540-78273-5 1. Series
Title: Lecture Notes in Mathematics.

Glenn F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. CRC Press, January
1985. ISBN 978-0-8247-7290-1.

Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Hao Xu. DL-PDE: Deep-Learning Based Data-Driven Discovery of Partial Differential Equations
from Discrete and Noisy Data. Communications in Computational Physics, 29(3):698–728, June
2021. ISSN 1815-2406, 1991-7120. doi: 10.4208/cicp.OA-2020-0142.

Hao Xu, Haibin Chang, and Dongxiao Zhang. DLGA-PDE: Discovery of PDEs with incomplete
candidate library via combination of deep learning and genetic algorithm. Journal of Computa-
tional Physics, 418:109584, October 2020. ISSN 0021-9991. doi: 10.1016/j.jcp.2020.109584.

13

https://gplearn.readthedocs.io/en/stable/index.html

Under review as a conference paper at ICLR 2023

TABLE OF SUPPLEMENTARY MATERIALS

1. Appendix A: notation and definitions

2. Appendix B variational formulation for linear PDEs and the proof of Theorem 1

3. Appendix C: details of the D-CIPHER framework, including pseudocode

4. Appendix D: details of the CoLLie algorithm

5. Appendix E: details of experiments and the implementation

6. Appendix F: additional experiments and discussion

A NOTATION AND DEFINITIONS

A.1 NOTATION

Table 4: Symbols used in this work
Symbol Meaning

[n] a set of numbers {1, . . . , n}
N a set of natural numbers, i.e., {1, 2, 3, . . . , }
N0 a set of non-negative integers, i.e., {0, 1, 2, 3, . . .}
M the dimension of the domain of a vector field
N the dimension of the codomain of a vector field
K denotes the smoothness of functions or the maximum order of derivatives
D the size of the dataset of observed fields
S the number of testing functions
Ω an open set in RM
u̇(t) the derivative of u at t
α a multi-index, an element of NM0
|α| the order of α, |α| =

∑M
i αi

∂αii αth
i -order partial derivative with respect to the ith variable

∂α ∂α1
1 ∂α2

2 . . . ∂αMM
CK a set of functions with continuous partial derivatives ∂α for all |α| ≤ K
E an extended derivative, Definition 1
E[P] an extended differential operator, Definition 1
F the functional used in the variational loss, Definition 3
L(E[P], g) the variational loss, Equation 10
G a sampling grid, Definition 10
u a true field, Definition 9
v an observed field, Definition 10
D a dataset of observed trajectories
ε the noise
Q a dictionary of non-degenerate extended derivatives
β a vector describing the ∂-bound part of the VR-PDE
σR a noise ratio
∆t a sampling interval

A.2 DEFINITIONS

In this section, we collect the definitions of some of the important terms used in the paper for easy
reference.

Definition 4 (Closed-form expressions and functions). A closed-form expression is a mathematical
expression that consists of a finite number of variables, constants, arithmetic operations, and certain
well-known functions (e.g., logarithm, trigonometric functions). A function f is called closed-form
if it can be represented by a closed-form expression. E.g., f(x, y) = x2 log(y) + sin(3z).

14

Under review as a conference paper at ICLR 2023

Remark. In practice, we do not want to consider any finite expression. Any symbolic regression
algorithm penalizes expressions that are too long putting a soft constraint on the number of elements
used. That is why deep neural networks are not considered closed-form even if they satisfy the
conditions in Definition 4.
Definition 5 (Multi-index). An n-dimensional multi-index α is an n-tuple

α = (α1, α2, . . . , αn)

where ∀i ∈ [n] αi ∈ N0. Thus α ∈ Nn0 . We define the order of α as |α| =
∑n
i=1 αi.

Definition 6. For any n-dimensional multi-index α we define a mixed derivative

∂α = ∂α1
1 ∂α2

2 . . . ∂αnn

where ∂αii = ∂αi/∂xαii is a αth
i -order partial derivative with respect to xi (the ith independent

variable). We call ∂α non-trivial if |α| > 0. We denote the list of all non-trivial partial derivatives
of u up to order K as ∂[K]u.
Definition 7 (Closed-form Partial Differential Equation). Let f be a closed-form real smooth func-
tion. We say that a vector field u : Ω→ RN is governed by a K th-order closed-form PDE described
by f if

f(x,u(x), ∂[K]u(x)) = 0 ∀x ∈ Ω (16)

where ∂[K]u are all non-trivial mixed derivatives of all uj (j ∈ [N]) up to the K th order.
Definition 8 (Testing function). Support of a function φ : Ω→ R is defined as

supp φ = {x ∈ Ω : φ(x) 6= 0}

where B is the topological closure of B in Ω.

φ is called a testing function if it is a CK function with compact support.
Definition 9 (True Field). We define a true field on Ω as a vector valued function u : Ω → RN
where each uj : Ω→ R is a CK function.
Definition 10 (Observed field and sampling grid). We define a sampling grid G to be a finite subset
of Ω. Let u : Ω → RN be a true field on Ω. An observed field sampled from u on a grid G is a
function v : G → RN of the form

vj(x) = uj(x) + εj(x) ∀x ∈ G ∀j ∈ [N]

where εj(x) corresponds to noise, a realisation of a zero-mean random variable.

Definition 11 (L1 sphere). Let n ∈ N. We define n-dimensional L1 sphere to be a subset of Rn+1

defined as:
{x ∈ Rn+1 | ||x||1 = 1} ⊂ Rn+1 (17)

Definition 12 (Standard simplex). Let n ∈ N. We define standard n-simplex to be a subset of Rn+1

defined as:

{x ∈ Rn+1 |
n+1∑
i=1

xi = 1 ∧ xi ≥ 0 ∀i ∈ [n+ 1]} ⊂ Rn+1 (18)

B VARIATIONAL-READY PDES

B.1 VARIATIONAL FORMULATION OF PDES

In this section, we provide the standard variational formulation of PDEs for linear PDEs (Friedlan-
der, 1982).
Definition 13 (Linear differential operator). Let A be a finite set of multi-indices. A linear differ-
ential operator L is defined as

L =
∑
α∈A

aα∂
α

where aα ∈ CK is a non-zero sufficiently smooth function of dependent variables. If maxα∈A |α| =
n then we call L an nth-order linear differential operator. If all aα are constants we say that L has
constant coefficients.

15

Under review as a conference paper at ICLR 2023

The adjoint of L, denoted L†, is a linear differential operator defined as

L†u(x) =
∑
α∈A

(−1)|α|∂α(aα(x)u(x)) (19)

Proposition 1 (Variational Formulation of PDEs for linear PDEs). Let K ∈ N. Consider a scalar
field u : Ω → R, such that u ∈ CK , a K th-order linear differential operator L, and a continuous
function g : Ω→ R. Let φ : Ω→ R be a testing function. Then u satisfies a linear PDE

L[u(x)]− g(x) = 0 ∀x ∈ Ω (20)

if and only if ∫
Ω

[
u(x)L†φ(x)− g(x)φ(x)

]
dx = 0 (21)

for all testing functions φ : Ω→ R.

Note that the integrals are always well-defined as φ has a compact support.

B.2 THEOREM

Before we prove the Theorem 1, we need the following lemma, which is a particular formulation
of the Fundamental lemma of calculus of variations (Elsgolc, 2012). We also need a generalized
version of the divergence theorem (Loomis, 1968).
Lemma (Fundamental lemma of calculus of variations). Let K ∈ N, Ω be an open set in RM ,
and u : Ω → R be a continuous function. Then u is equal to 0 on the whole Ω if and only if∫

Ω
u(x)φ(x)dx = 0 for all CK functions φ : Ω→ R with compact support.

Proof. If u is identically 0 on Ω then all the integrals are trivially equal to 0.

We now prove the converse.

Let as assume for contradiction that there exists a point x0 ∈ Ω such that u(x0) 6= 0. Without loss
of generality we assume u(x0) = ε > 0. As u is continuous there exists an open ball around x0 of
radius δ, denoted Bδx0

= {x ∈ Ω | ||x− x0||2 < δ}, such that ∀x ∈ Bδx0
u(x) > ε/2 > 0.

Now let φ be a CK function that is positive on Bδx0
and 0 elsewhere. Such a function can always

be created by appropriately shifting and scaling φ(x) = e−1/(1−||x||22) · 1{||x||2<1}. Its support is a
closed ball B̄δx0

= {x ∈ Ω | ||x− x0||2 ≤ δ} which is compact. Then∫
Ω

u(x)φ(x)dx =

∫
Bδx0

u(x)φ(x)dx > 0 (22)

as both u(x) and φ(x) are positive on Bδx0
. Thus we found a continuous function φ with compact

support such that: ∫
Ω

u(x)φ(x)dx 6= 0 (23)

Therefore u is identically 0 on Ω.

To make this section self-contained, we provide the statement of the generalized divergence theorem
(Loomis, 1968).
Theorem 2 (Divergence theorem). Let Ω be an open set in RM and let f, g be continuous on
Ω̄ = Ω ∪ ∂Ω and continuously differentiable on Ω. Then∫

Ω

∂1
i [f(x)]g(x)dx = −

∫
Ω

f(x)∂1
i [g(x)]dx+

∫
∂Ω

νif(x)g(x)dx (24)

where ν is a normal unit vector to the boundary ∂Ω.

In a 1-dimensional setting, the statement of the theorem reduces to the integration by parts.

We can now prove Theorem 1.

16

Under review as a conference paper at ICLR 2023

Proof. Let us denote Ep = (αp, ap, hp). Then the PDE in Equation 8 can be written as:
P∑
p=1

ap(x)∂αp [hp(x,u(x))]− g(x,u(x)) = 0 ∀x ∈ Ω (25)

The LHS is continuous as all ap and hp are smooth, g is continuous, u ∈ CK , and |αp| ≤ K ∀p ∈
[P]. Thus we can use the fundamental lemma of calculus of variations to say that the Equation 25 is
true if and only if ∫

Ω

[
P∑
p=1

ap(x)∂αp [hp(x,u(x))]− g(x,u(x))

]
φ(x)dx = 0 (26)

for all testing functions φ. We transform the LHS of Equation 26 using linearity to:
P∑
p=1

∫
Ω

ap(x)∂αp [hp(x,u(x))]φ(x)−
∫

Ω

g(x,u(x))φ(x)dx (27)

Let us now focus on ∫
Ω

ap(x)∂αp [hp(x,u(x))]φ(x) (28)

and let us denote αp = (αp1, . . . , αpM). Then ∂αp = ∂
αp1
1 . . . ∂

αpM
M and the expression can be

written as ∫
Ω

∂
αp1
1 . . . ∂

αpM
M [hp(x,u(x))]ap(x)φ(x)dx (29)

Let us denote the support of φ as B. As φ is equal to zero outside of its support, we can write the
expression as ∫

B
∂
αp1
1 . . . ∂

αpM
M [hp(x,u(x))]ap(x)φ(x)dx (30)

Without loss of generality, let us assume that αp1 > 0. By the divergence theorem, this can be
rewritten as

−
∫
B
∂
αp1−1
1 . . . ∂

αpM
M [hp(x,u(x))]∂1

1 [ap(x)φ(x)]dx (31)

because the integral over the boundary is equal to 0∫
∂B
ν1∂

αp1−1
1 . . . ∂

αpM
M [hp(x,u(x))]ap(x)φ(x)dx = 0 (32)

as φ has a compact support (and thus vanishes on the boundary). We can perform this operation αp1
times to shift the whole derivative ∂αp11 to the second part of the equation and obtain

(−1)αp1
∫
B
∂
αp2
2 . . . ∂

αpM
M [hp(x,u(x))]∂

αp1
1 [ap(x)φ(x)]dx (33)

Then we repeat this for other derivatives and we end up with the following expression:

(−1)αp1 · . . . · (−1)αpM
∫
B
hp(x,u(x))∂

αp1
1 . . . ∂

αpM
M [ap(x)φ(x)]dx (34)

As the integrand is zero outside of B, this can be rewritten as:

(−1)|αp|
∫

Ω

hp(x,u(x))∂αp [ap(x)φ(x)]dx (35)

or more compactly, using the functional defined in Definition 3, as:
F(Ep,u, φ) (36)

Therefore Equation 27 can be written as:
P∑
p=1

F(Ep,u, φ)−
∫

Ω

[g(x,u(x))φ(x)] dx (37)

Thus, we proved that Equation 25 is true if and only if
P∑
p=1

F(Ep,u, φ)−
∫

Ω

[g(x,u(x))φ(x)] dx = 0 (38)

for all testing functions φ.

17

Under review as a conference paper at ICLR 2023

B.3 EXAMPLES

The examples of VR-PDEs can be found in Table 5.

Table 5: Examples of equations which are Variational-Ready

Name Equation Linear VR

Damped wave eq. with a source utt + ρut − κ∇2u = g(x) 3 3
Gauss law ∇ ·E = ρ/ε0 3 3
Burger’s equation ut + uux − νuxx = 0 7 3
Navier-Stokes equations ut + (u · ∇)u− ν∇2u = −1/ρ∇p+ g 7 3
Korteweg-De Vries equation ut + uxxx − 6uux = 0 7 3
Kuramoto-Sivashinsky equation ut + uxx + uxxxx + uux = 0 7 3
Fisher’s equation ut − κuxx = ru(1− u) 7 3
Liouville’s equation uxx + uyy = κeρu 7 3
Porous medium equation ut −∇2(uκ) = 0 7 3
Sine-Gordon equation utt − uxx = − sin(u) 7 3

C D-CIPHER

C.1 REWRITE THE INNER OPTIMIZATION AS A CONSTRAINED LEAST SQUARES

Let us rewrite the objective in Equation 13.

D∑
d=1

S∑
s=1

(
P∑
p=1

F(βpÊp, û(d), φs)−
∫

Ω

g(x, û(d)(x))φs(x)dx

)2

(39)

First, let us observe that

F(βpÊp, û(d), φs) =

∫
Ω

hp(x, û
(d)(x))(−1)|αp|∂αp [βpap(x)φs(x)]dx = βpz

(d,s)
p (40)

if we let z(d,s)
p ∈ R be defined as

z(d,s)
p =

∫
Ω

hp(x, û
(d)(x))(−1)|αp|∂αp(ap(x)φs(x))dx (41)

Moreover, if we define w(d,s) ∈ R as

w(d,s) =

∫
Ω

g(x, û(d)(x))φs(x)dx (42)

we can rewrite expression 39 as
D∑
d=1

S∑
s=1

(
P∑
p=1

βpz
(d,s)
p − w(d,s)

)
(43)

Now, the sum over p can be written as a dot product between z(d,s) ∈ RP and β ∈ RP . We can also
combine the sums over d and s. We obtain∑

(d,s)∈[D]×[S]

(
β · z(d,s) − w(d,s)

)2

(44)

which is exactly the same as the objective in Equation 14.

C.2 PSEUDOCODE

The pseudocode of D-CIPHER is presented in Algorithm 1.

18

Under review as a conference paper at ICLR 2023

Algorithm 1 D-CIPHER

Input: Observed fields D = {v(d)}Dd=1, grid G
Input: Symbolic regression optimization algorithm O
Input: Smoothing algorithm S
Input: Testing functions {φs}Ss=1

Input: Dictionary Q = {Êp}Pp=1, Êp = (αp, ap, hp) . Step 1
Output: Target PDE
û(d) = S(v(d)) ∀d ∈ [D] . Step 2
initialize matrix Z ∈ RD×S × RP
Z

(d,s)
p ←

∫
Ω
hp(x, û

(d)(x))(−1)|αp|∂αp(ap(x)φs(x))dx
procedure LOSS(g)

initialize vector w ∈ RD×S
w(d,s) ←

∫
Ω
g(x, û(d)(x))φs(x)dx

β ← COLLIE(Z,w) . Section 6
L = ||Zβ −w||22
return L

end procedure
g = O(LOSS) . Step 3
initialize vector w ∈ RD×S
w(d,s) ←

∫
Ω
g(x, û(d)(x))φs(x)dx

β ← COLLIE(Z,w) . Section 6
return

∑P
p=1 βpÊp[u](x)− g(x,u(x)) = 0

𝜙𝑠 𝑠=1
𝑆

Test functions

𝒗(𝑑)
d=1

D

ෝ𝒖(𝑑)
d=1

D

Step 2: Estimate the fields

መℰ𝑝 𝑝=1

𝑃 𝜕𝑡𝑢

𝜕𝑥
2𝑢

𝜕𝑡𝜕𝑥𝑢

𝜕𝑥 𝑢2

𝜕𝑡
2𝑢

Step 1: Choose the dictionary

𝒁 ∈ ℝ𝐷𝑆 × ℝ𝑃

Compute (Eq. 15)

Symbolic
Regression e.g., log 𝑡 𝑒𝑥

2
sin(𝑢)

𝑔:ℝ𝑀+𝑁 → ℝ
𝒘 ∈ ℝ𝐷𝑆

Compute (Eq. 15)

CoLLie

Step 3: Optimization

min
𝜷 1=1

𝒁𝜷 −𝒘 2
Loss

Dataset

Figure 5: This diagram describes how the algorithm works. After the optimization procedure is
finished, we get the best found closed-form function g and use CoLLie to find the best vector β. The
found equation has the form

∑P
p=1 βpÊp[u](x)− g(x,u(x)) = 0

C.3 DIAGRAM

The diagram in Figure 5 depicts how D-CIPHER works.

19

Under review as a conference paper at ICLR 2023

C.4 TESTING FUNCTIONS

Testing functions, by definition, need to be sufficiently smooth functions (in CK class) with compact
support. Moreover, the result proved in (Qian et al., 2022) suggests that these functions should be a
subset of a Hilbert basis in L2 space. In particular, that means they should be orthonormal.

We use B-Splines (De Boor, 1978) as the testing functions in our experiments because we can control
their smoothness and the derivatives are easy to compute. We scale and shift them appropriately so
that they are orthonormal.

D COLLIE

D.1 LAGRANGIAN

The problem that CoLLie is supposed to solve is a constrained least-squares optimization defined
as:

minimize ||Az − b||22
subject to ||z||1 − 1 = 0

(45)

whereA ∈ Rm×n has a full column rank, b ∈ Rm, and z ∈ Rn for some m,n ∈ N.

We consider the Lagrangian L : Rn × R → R associated with this problem (Boyd et al., 2004)
defined as

L(z, λ) = ||Az − b||22 + λ(||z||1 − 1) (46)

Now let us define ẑ : R→ Rn as

ẑ(λ) = arg min
z∈Rn

L(z, λ) = arg min
z∈Rn

||Az − b||22 + λ||z||1 (47)

The goal of our algorithm is to find λ∗ ∈ R such that ||ẑ(λ∗)||1 = 1. Let us define a function
q : R→ R as

q(λ) = ||ẑ(λ)||1 (48)
The goal can be phrased as finding λ∗ ∈ R such that q(λ∗) = 1.

Let us note that ẑ(0) is just a solution to the ordinary least squares (OLS) problem with no constraints
and its norm is q(0).

D.2 EXTENDING LARS

Case 1. q(0) ≥ 1.

If we assume that ẑ is continuous then q is also continuous. From the continuity and the fact that
limλ→+∞ q(λ) = 0 and q(0) ≥ 1 we infer that there exists a λ ≥ 0 such that q(λ) = 1. Moreover,
for λ ≥ 0 the problem in Equation 47 is the same as in LASSO (Tibshirani, 1996). Therefore we
just need to perform LASSO for different λ and choose the one that gives the solution with L1 norm
equal to 1.

To do it in practice we use Least Angle Regression (LARS) (Efron et al., 2004), a popular algorithm
used to minimize the LASSO objective. It generates complete solution paths, i.e., a function c :
R+ → Rn defined as

c(λ) = arg min
z∈Rn

||Az − b||22 + λ||z||1 (49)

which is equivalent to ẑ for λ ≥ 0. An illustration of LARS solution paths can be seen in Figure
6. Each line corresponds to a function ci which describes the coefficient for the ith covariate. The
paths are defined from some λ0 where all ci(λ0) = 0 to λ = 0 where c(0) = ẑ(0). In other words,
the solution paths cover the whole range of constraints from the strictest, effectively imposing the
L1 norm of z to be 0, up to no constraints, solving the OLS problem.

The solution paths from the LARS algorithm are piecewise linear and the outputs are the values of
the coefficients for points (λ0 > . . . > λn = 0) where the slopes change. We calculate the norm

20

Under review as a conference paper at ICLR 2023

at each of these points, ||c(λi)||1, and find j ∈ [n] such that ||c(λj−1)||1 < 1 ≤ ||c(λj)||1. As
each ci is a linear function on [λj , λj−1] and we know both c(λj−1) and c(λj), we can effectively
search for λ ∈ [λj , λj−1] such that ||c(λ)||1 = 1. The search can be performed by any root-finding
algorithm. We use Brent’s method (Brent, 2013).

Case 2. 0 < q(0) < 1.

This is much more difficult as it corresponds to solving the problem in Equation 47 for λ < 0. The
solutions given by the LARS algorithm are too small. In fact, the solution with the biggest norm is
c(0) = ẑ(0), the OLS solution, with norm exactly q(0) < 1.

To address this challenge, we propose the following heuristic. We extend the solution paths gener-
ated by LARS beyond λ = 0 for λ < 0. We assume that the paths will continue to be piecewise
linear and that they will keep the slope they have in the last interval [λn = 0, λn−1]. Let us denote
this slope as

∆ci =
ci(0)− ci(λn−1)

0− λn−1
(50)

This is graphically represented in Figure 6. Formally, these extended paths, c̄ : R → R are defined
as:

c̄i(λ) =

{
ci(λ), λ ≥ 0

ci(0) + λ∆ci, λ < 0
(51)

Now, we want to find λ < 0 such that ||c̄(λ)||1 = 1. To achieve this in practice, we first make the
following observations.

For any λ < 0 we say that c̄i(λ) is on the right side if c̄i(λ)∆ci ≤ 0 and we say that c̄i(λ) is on the
wrong side if c̄i(λ)∆ci > 0. In other words, being on the wrong side just means that the path is yet
to cross the x-axis if we keep decreasing λ. We can easily find λ′ such that for all λ < λ′ all c̄i(λ)
are on the right side (none of the paths will ever cross the x-axis).

λ′ = min

{
0− ci(0)

∆ci
| i ∈ [n] ∧ ci(0)∆ci > 0

}
(52)

If ||c̄(λ′)||1 ≥ 1 we just need to search the interval [λ′, 0] for λ such that ||c̄(λ′)||1 = 1.

If ||c̄(λ′)||1 < 1 then we need to search λ < λ′. However, by definition, for all λ < λ′, all ci(λ)
are on the right side. That means ||c̄(λ)||1 as a function of λ is just a linear function on the interval
(−∞, λ′). To see that, let us observe that

||c̄(λ)||1 =

n∑
i=1

|c̄i(λ)| =
n∑
i=1

sign(c̄i(λ))c̄i(λ) (53)

Additionally, for λ < λ′ all ci(λ) are on the right side, so we have sign(c̄i(λ)) = −sign(∆ci). We
can rewrite ||c̄(λ)||1 as:

||c̄(λ)||1 =

n∑
i=1

(−sign(∆ci)(ci(0) + λ∆ci))

= −
n∑
i=1

sign(∆ci)ci(0)−

(
n∑
i=1

sign(∆ci)∆ci

)
λ

= −
n∑
i=1

sign(∆ci)ci(0)−

(
n∑
i=1

|∆ci|

)
λ

(54)

Therefore the solution can be found using the following equation

λ∗ = λ′ +
1− ||c̄(λ′)||1
−
∑n
i=1 |∆ci|

(55)

Case 3. q(0) = 0. In that case, we just return a precomputed solution to the problem

minimize ||Az||22
subject to ||z||1 − 1 = 0

(56)

21

Under review as a conference paper at ICLR 2023

which we compute by subdividing the problem into 2n quadratic programs and solving each of them
separately using CVXOPT algorithm (Andersen et al., 2013) as described in Section 6.

Figure 6: Panel A shows and example of solution paths calculated by the LARS algorithm. Panel B
shows their extended versions as defined in Case 2 in D.2. The x-axis is reversed, so λ decreases as
it moves to the right.

D.3 COMPARISON

We perform a comparison between CoLLie and an algorithm based on CVXOPT (Andersen et al.,
2013) as described in Section 6. CoLLie uses different procedures depending on the problem, thus
for a fair comparison we generate an equal number of tests falling under Case 1 and Case 2 (two
main cases) as described in D.2. To achieve that, we generate a random m×n matrixA where each
entry is sampled from the standard normal distribution. We use m = 1000 and n ranging from 2 to
7. We then generate a vector ẑ ∈ Rn such that each entry is sampled from a uniform distribution
on [−0.5, 0.5]. Then ẑ is normalized to have L1 norm equal to 1. We sample a number l from a
uniform distribution on [−1, 3] and multiply ẑ by l to obtain z′ = lẑ. By this procedure, we are
guaranteed that cases ||z′||1 < 1 and ||z′||1 ≥ 1 are equally likely. We then let b = Az′. The task
is then to find z with L1 norm equal to 1 that minimizes ||Az − b||22. As q(0) = ||z′||1 = l, Case 1
and Case 2 are equally likely.

We perform 1000 experiments for each n. As losses for optimal solutions can be on widely different
scales, we report the relative error between the loss obtained by CoLLie and the loss obtained by the
algorithm based on CVXOPT, which seems to always find the optimal solution.

The time is measured on a single computer with an Intel Core i5-6500 CPU (4 cores) and 16GB of
RAM.

E EXPERIMENTS

E.1 ABLATED D-CIPHER

The ablated version uses the standard MSE loss with estimated derivatives and thus solves the fol-
lowing optimization problem:

min
g

min
||β||1

D∑
d=1

∑
x∈G

(
P∑
p=1

βpÊp[v(d)](x)− g(x,v(d)(x))

)2

(57)

where v(d) is the observed field, G is the sampling grid, and Êp[v(d)](x) requires derivative estima-
tion.

The ablated version uses the same symbolic regression algorithm to search over closed-form g and
CoLLie for the inner optimization.

22

Under review as a conference paper at ICLR 2023

E.2 IMPLEMENTATION

Step 1. For the homogeneous heat equation and Burgers’ equation we use dictionary Q =
{u, ∂tu, ∂xu, ∂x(u2), ∂2

xu, ∂
2
x(u2)}. For Kuramoto-Sivashinsky equation we use dictionary Q =

{u, ∂tu, ∂xu, ∂x(u2), ∂2
xu, ∂

2
x(u2), ∂3

xu, ∂
3
x(u2), ∂4

xu, ∂
4
x(u2)}. For the damped and forced har-

monic oscillator we use the dictionary {∂t, ∂2
t }, and for the wave and heat equations, we use

{∂t, ∂x, ∂2
t , ∂t∂x, ∂

2
x}.

Step 2. Field estimation is performed using the Gaussian Process Regression from the Python li-
brary scikit-learn (Pedregosa et al., 2011). The kernel is chosen to be the RBF kernel (Williams &
Rasmussen, 2006) with an added White kernel to account for noise. The observed field is initially
standardized by subtracting the mean and dividing by the standard deviation. Then the Gaussian-
ProcessRegressor is fitted to the data. The estimated fields are generated by predicting the values of
a trained Gaussian Process on a full integration grid and then scaling back to their original range (by
multiplying by the standard deviation and adding the mean).

Step 3. The search over the closed-form expression is performed using the symbolic regression
library gplearn (Stephens, 2022). We use a custom fitness function that solves the inner optimiza-
tion problem in Equation 13. This inner optimization is performed by CoLLie (Section 6). The
integration is performed using Riemann sums.

Ablated version of D-CIPHER. The derivative estimation is performed by first fitting a Gaussian
process (in the same way as in Step 2) and then using the finite difference to estimate the derivative
in one of the coordinates for all points in the sampling grid. To obtain higher-order derivatives, a
Gaussian process is fitted again and the derivative is once again calculated using the finite difference
(possibly in a different direction than the first time).

E.3 HYPERPARAMETERS

Gaussian process regression. The kernel parameters of the Gaussian Process are automatically
adjusted during training. The default bounds of the length scale of the RBF kernel and the noise
level of the White kernel are used, i.e., (1e− 5, 1e5).

GPlearn. We do not perform parameter tuning for the gplearn library and use the same parameters as
in D-CODE (Qian et al., 2022) except for the parsimony coefficient and the number of generations.

Table 6: Hyperparameters used in gplearn

Hyperparameter Value

population size 15000
tournament size 20
p crossover 0.6903
p subtree mutation 0.1330
p hoist mutation 0.0361
p point mutation 0.0905
generations 20 and 30

The number of generations is chosen to be 30 for the damped and forced harmonic oscillator and 20
for the inhomogeneous heat and wave equations.

Please check (Stephens, 2022) for the detailed description of these parameters.

We modify the implementation of the parsimony coefficient. The standard implementation adds to
the loss the length of the equation multiplied by the parsimony coefficient. In our implementation,
we increase the loss by the parsimony coefficient. This modification is performed because for differ-
ent experiments we record the loss on widely different scales. To prevent tuning this parameter for
every experimental setting we introduce a penalty that can work on different scales. The parsimony
coefficient is chosen manually by performing experiments for a few values. The value used in the
experiments is 0.05.

The set of allowed mathematical operations is: {+,−,×,÷, sin, exp, log}

23

Under review as a conference paper at ICLR 2023

We want to emphasize that we use the same configuration of gplearn in D-CIPHER and its ablated
version.

Integration and number of testing functions. For the damped and forced harmonic oscillator
we use 10 testing functions and the integration step 0.01. For the inhomogeneous heat and wave
equations we use 100 testing functions and integrate on a grid with steps δt = 0.01 and δx = 0.01.

Derivative estimation in the ablated version of D-CIPHER. The Gaussian process is configured
the same way as described above. The interval used in the finite difference method to estimate the
derivative was chosen to be: 10−3.

E.4 CHOICE OF EQUATIONS

Equations used in Section 7.1 are canonical equations from physics that often appear in other works
about PDE discovery (Rudy et al., 2017). The homogeneous heat equation is a second-order PDE
that models how heat diffuses through a region. It contains the dissipative term ∂2

xu. Burgers’
equation is second-order PDE used, for instance, in fluid mechanics or nonlinear acoustics (Crighton,
1979). It contains the advection term u∂xu and the diffusion term that prevents shock formation.
Kuramoto-Sivashinsky equation is a fourth-order PDE used in modelling reaction-diffusion systems
(Kuramoto, 1980) and is known for its chaotic behavior (Hyman & Nicolaenko, 1986).

In Section 7.2, we chose equations of physical significance that have an interesting ∂-free part that
is not a linear combination (as discussed in Section 2). That makes them impossible to discover by
the current methods. A forced and damped harmonic oscillator is a second-order ODE. Although
D-CODE (Qian et al., 2022) can discover any closed-form first-order ODE, it cannot be used to dis-
cover second-order ODEs. Thus there is currently no algorithm capable of discovering this equation.
Inhomogeneous heat and wave equations are second-order PDEs where the ∂-free part is a source
(of heat and wave respectively). Moreover, the wave equation does not have the standard evolution
form, as it does not involve the ∂t term. Thus even without the source term, most of the current
methods cannot be applied directly to discover this equation.

E.5 DATA GENERATION

Homogeneous heat equation. The fields were generated by solving the equation ∂tu− θ1∂
2
xu = 0

(θ1 = 0.25) with Neumann boundary conditions ∂xu(t, 0) = ∂xu(t,X) = 0 and an initial condition
u(0, x) = u0(x), where u0 is randomly sampled from a Gaussian process. The equation is solved
using the implicit BTCS scheme (Kereyu & Gofe, 2016) with steps δt = 0.001 and δx = 0.001.
The observed field is generated by sampling (t, x) ∈ [0, T]× [0, X], evaluating the true field u(t, x)
and adding Gaussian noise. T = 2 and X = 2 are used in the experiments.

Burger’s equation. The fields are computed by solving ∂tu + u∂xu − θ1∂
2
xU = 0 (θ1 = 0.2)

with an initial condition u(0, x) = u0(x), where u0 is randomly sampled from a Gaussian process,
and with Dirichlet boundary conditions u(t, 0) = u0(0), u(t,X) = u0(X). The equation is solved
the using Crank-Nicolson scheme (Wani & Thakar, 2013) with steps δt = 0.002 and δx = 0.002.
The observed field is generated by sampling (t, x) ∈ [0, T]× [0, X], evaluating the field u(t, x) and
adding Gaussian noise. T = 2 and X = 2 are used in the experiments.

Kuramoto-Sivashinsky equation. The solution is the same as the one used in (Rudy et al., 2017).
The observed field is generated by sampling (t, x) ∈ [0, T]× [0, X], evaluating the field u(t, x) and
adding Gaussian noise. T = 100 and X = 100 are used in the experiments.

Damped and forced harmonic oscillator. The true fields are created by analytically solving the
equation ∂2

t u(t) + 2θ1θ2∂tu(t) + θ2
2u(t) = θ3 sin(θ4t), where θ1 = 0.5, θ2 = 4.0, θ3 = 5.0, θ4 =

3.0, with random initial conditions for u(0) and ∂tu(0). The observed fields are then created by
sampling t ∈ [0, T], evaluating u(t), and adding Gaussian noise. T = 2 was used in the experiments.

Inhomogeneous heat equation. The true fields are computed by solving ∂tu(t, x)− θ1∂
2
xu(t, x) =

θ2e
θ3t, where θ1 = 0.25, θ2 = 1.25, θ3 = 1.8, with Neumann boundary conditions ∂xu(t, 0) =

∂xu(t,X) = 0 and an initial condition u(0, x) = u0(x), where u0 is randomly sampled from a
Gaussian process. The equation is solved using the implicit BTCS scheme (Kereyu & Gofe, 2016)
with steps δt = 0.001 and δx = 0.001. The observed field is generated by sampling (t, x) ∈

24

Under review as a conference paper at ICLR 2023

[0, T] × [0, X], evaluating the true field u(t, x) and adding Gaussian noise. T = 2 and X = 2 are
used in the experiments.

Inhomogeneous wave equation. The true fields are computed by solving ∂2
t u(t, x)−θ1∂

2
xu(t, x) =

θ2e
t sin(θ3t), where θ1 = 1.0, θ2 = 2.0, θ3 = 3.0, with Dirichlet boundary conditions u(t, 0) =

u0(0), u(t,X) = u0(X), where u0 is randomly sampled from a Gaussian process and specifies
the initial condition u(0, x) = u0(x). The equation is solved using the Implicit Difference Method
(Mitchell & Griffiths, 1980) with steps δt = 0.001 and δx = 0.001 . The observed field was
generated by sampling (t, x) ∈ [0, T]× [0, X], evaluating the true field u(t, x) and adding Gaussian
noise. T = 2 and X = 2 were used in the experiments.

E.6 EXPERIMENTAL SETTINGS

Homogeneous heat equation

Noise ratio (σR): 0.001, 0.01, 0.1

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

Grid (G): {0, 0.07, . . . , 2} × {0, 0.07, . . . , 2}
Burgers’ equation

Noise ratio (σR): 0.001, 0.01, 0.1

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

Grid (G): {0, 0.1, . . . , 2} × {0, 0.1, . . . , 2}
Kuramoto-Sivashinsky equation

Noise ratio (σR): 0.001, 0.01, 0.1

Number of samples (D): 1

Domain (Ω): [0, 100]× [0.100]

Grid (G): {0, 1.67, . . . , 100} × {0, 1.67, . . . , 100}
Damped and forced harmonic oscillator

Default values are in bold.

Noise ratio (σR): 0.001, 0.005, 0.01, 0.1, 0.2, 0.5

Number of samples (D): 1, 2, 5, 10, 15

Domain (Ω): [0,2]

Grid (G): {0, 0.08, . . . , 2}, {0,0.1, . . . ,2}, {0, 0.13, . . . , 2}, {0, 0.2, . . . , 2}, {0, 0.4, . . . , 2}
Inhomogeneous heat equation

Noise ratio (σR): 0.05, 0.1, 0.2

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

Grid (G): {0, 0.07, . . . , 2} × {0, 0.07, . . . , 2}
Inhomogeneous wave equation

Noise ratio (σR): 0.001, 0.01, 0.015

Number of samples (D): 10

Domain (Ω): [0, 2]× [0.2]

25

Under review as a conference paper at ICLR 2023

Grid (G): {0, 0.07, . . . , 2} × {0, 0.07, . . . , 2}

E.7 BENCHMARKS

An important hyperparameter in PDE-FIND and WSINDy is the library Θ used. We impose that
Q and Θ ∪ {∂tu} have the same number of elements. Moreover, solutions given by PDE-FIND
and WSINDy are scaled to have the L1 norm equal to 1. Both of these measures are undertaken to
ensure that RMSE error is comparable between the algorithms.

For the homogeneous heat equation and Burgers’ equation we use a library

Θ = {u, ∂x, ∂2
xu, u∂xu, u∂

2
xu}.

For the Kuramoto-Sivashinsky equation, we use a library

Θ = {u, ∂x, ∂2
xu, ∂

3
xu, ∂

4
xu, u∂xu, u∂

2
xu, u∂

3
x, u∂

4
x}.

In the experiments, we have not optimized for the derivative-free part as it is identically equal to 0
in all equations.

E.8 CORRECT FUNCTIONAL FORM

To measure success probability we need to establish whether two closed-form functions match. The
previous approach (Qian et al., 2022) considered their functional forms, i.e., expressions where all
numeric constants are replaced by placeholders. By this measure, functions sin(3x) and sin(3.5x)
match as they have the same functional form sin(Cx), where C is a placeholder.

However, this definition is quite restrictive because functions sin(3x), sin(3x) + 0.001,
1.001 sin(3x), and sin(3x+ 0.001) all have different functional forms.

We consider it an open challenge to design a good metric that would meaningfully reflect whether
the correct equation is discovered. We propose the following.

For a target function f , we consider its augmented form f̃ , defined as f̃(x) = C1f(C3x+C4)+C2,
where all Ci are placeholders. Then all numeric constants are turned into placeholders as well. In
the end, we combine the constants. For instance, C1 + C2 becomes just C3.

As an example, let us consider a function f(x) = 1.3e2x. The augmented functional form is created
in the following way:

1. Augment: C1 × 1.3e2×(C3×x+C4) + C2

2. Replace: C1 × C5e
C6×(C3×x+C4) + C2

3. Combine: C1e
C3x+C4 + C2

We perform this procedure for the target function. We can now take the standard functional form
of the candidate function and check whether it matches the augmented functional form of the tar-
get function, taking into account that some of the constants might not be present in the candidate
expression.

To aid in this procedure, we use a Python library for symbolic mathematics, SymPy (Meurer et al.,
2017).

E.9 COMPUTATION TIME

The average computation time for a single experiment with the damped and forced harmonic oscil-
lator is 281 seconds with a standard error of 4.5 seconds. The average computation time for a single
experiment with an inhomogeneous heat equation is 68 minutes with a standard error of 38 seconds.
This time is measured on a single computer with an Intel Core i5-6500 CPU (4 cores) and 16GB of
RAM.

The experiments are run simultaneously on 5 computers like the one described above. The total
time for all experiments (all seeds, all equations, all experimental settings, and both versions of
D-CIPHER) is 65 hours.

26

Under review as a conference paper at ICLR 2023

E.10 LICENSES

The licenses of the software used in this work are presented in Table 7

Table 7: Software used and their licenses

Software License

gplearn BSD 3-Clause ”New” or ”Revised” License
cvxopt GNU General Public License
cvxpy Apache License
sympy New BSD License
scikit-learn BSD 3-Clause ”New” or ”Revised” License
numpy liberal BSD license
pandas BSD 3-Clause ”New” or ”Revised” License
scipy liberal BSD license
python Zero-Clause BSD license

F ADDITIONAL EXPERIMENTS AND DISCUSSION

F.1 SHARPE-LOTKA-MCKENDRICK MODEL

We test D-CIPHER on a population model called the Sharpe-Lotka-McKendrick model Webb
(1985). The model is described by the following equation

∂tu(t, a) + ∂au(t, a) +m(a)u(t, a) = 0 (58)

where m(a) is age-specific mortality rate. We choose m(a) = 2eθa. We set θ = 1.5 in the
experiments.

We note that the derivative-free part of the target PDE cannot be expressed as a linear combina-
tion of functions from a finite dictionary if the parameters are not known a priori. D-CIPHER is
uniquely positioned among other discovery algorithms as the only technique that can recover any
mortality rate that can be represented as a closed-form expression. We show a comparison between
D-CIPHER and the Ablated D-CIPHER in Table 8

Table 8: Simulation results for the Sharpe-Lotka-McKendrick model. We report the success proba-
bility of discovering the ∂-free part and the Average RMSE of the ∂-bound part. Standard deviations
are shown in brackets

Method Sucess Probability Average RMSE)
σR = 0.001 0.01 σR = 0.001 0.01

D-CIPHER 0.6 (0.15) 0.5 (0.16) 0.007 (0.0008) 0.008 (0.0011)
Abl. D-CIPHER 0.2 (0.13) 0.2 (0.13) 0.017 (0.0009) 0.017 (0.0008)

F.2 DISCOVERING SYSTEMS

Discovering systems of PDEs is a much harder problem than discovering a single PDE. One of the
issues is the fact that we would call indeterminism. It follows from the following fact. If a vector
field u is a solution to two differential equations f1 and f2, i.e.,

f1(x,u(d)(x), ∂[K]u(d)(x)) = 0 ∀x ∈ Ω

f2(x,u(d)(x), ∂[K]u(d)(x)) = 0 ∀x ∈ Ω
(59)

then it is also a solution to any linear combination of these equations, i.e.,

λ1 × f1(x,u(d)(x), ∂[K]u(d)(x)) + λ2 × f2(x,u(d)(x), ∂[K]u(d)(x)) = 0 ∀x ∈ Ω (60)

27

Under review as a conference paper at ICLR 2023

for any λ1, λ2 ∈ R. Moreover, equations can sometimes be differentiated to yield more equations.

Let us take as an example the Cauchy-Riemann equations defined as:

∂xu1 − ∂yu2 = 0∂xu2 + ∂yu1 = 0 (61)

Let us assume that we have a true vector field (u1, u2) that satisfies both equations. Then the
following equations are also satisfied

∂xu1 − ∂yu2 + ∂xu2 + ∂yu1 = 0

∂xu1 − ∂yu2 − ∂xu2 − ∂yu1 = 0
(62)

We can also differentiate the Cauchy-Riemann equations to arrive at the Laplacian equations for u1

and u2.

∂2
xu1 + ∂2

yu1 = 0

∂2
xu2 + ∂2

yu2 = 0
(63)

We could also combine the first-order equations with second-order equations or consider even
higher-order derivatives. Although all these equations are compatible with our vector field (u1, u2),
not all of them are equally desirable to discover. That is why we believe that in any algorithm for
discovering systems of differential equations substantial expert knowledge or inductive biases have
to be encoded to guide the algorithm into the right equations.

Current methods do not consider systems of equations or consider a system of equations of a very
particular form. In the latter case, each equation models a derivative with respect to time of a
different scalar field. The system is assumed to look like this:

∂tu1 = f1(x,u(x), ∂[K]u(x))

∂tu2 = f2(x,u(x), ∂[K]u(x))

· · ·
∂tuL = fL(x,u(x), ∂[K]u(x))

(64)

In addition, the LHS of these equations is often assumed to only contain spatial derivatives.

D-CIPHER can be used to discover some systems of differential equations if enough prior knowl-
edge is provided in the choice of the dictionary Q. Moreover, the discovered equations are not
required to have a particular evolution form as is the case in current approaches.

Firstly, we note that D-CODE Qian et al. (2022) has been shown to discover a system of equations
that looks like Equations 64 when all equations are first-order ODEs. As D-CIPHER reduces to
D-CODE when applied to first-order ODEs, it is also capable of discovering such a system.

We demonstrate that D-CIPHER is able to discover both Cauchy-Riemann equations if we use two
different dictionaries. Each of the dictionaries yields a different equation. Additionally, it is a
well-known fact that if a vector field satisfies Cauchy-Riemann equations then the constituent scalar
fields are harmonic, i.e., they satisfy Laplace’s equation. Based on the same dataset we are also
able to discover both Laplace’s equations given another set of two different dictionaries. We note
that Laplace’s equation does not contain ∂x term, so most of the current methods cannot be directly
applied to discover this equation. The results are presented in Figure 7. The dictionaries used to
discover each of the equations are the following.

For ∂xu1 − ∂yu2 = 0 we use Q1 = {∂xu1, ∂yu2, ∂
2
xu1, ∂yu2}

For ∂xu2 + ∂yu1 = 0 we use Q2 = {∂xu2, ∂yu1, ∂
2
xu2, ∂

2
yu1}

For ∂2
xu1 + ∂2

yu1 = 0 we use Q3 = {∂xu1, ∂yu1, ∂
2
xu1, ∂

2
yu1}

For ∂2
xu2 + ∂2

yu2 = 0 we use Q4 = {∂xu2, ∂yu2, ∂
2
xu2, ∂

2
yu2}

In the experiments, we have not optimized for the derivative-free part as it is identically equal to 0
in all equations.

28

Under review as a conference paper at ICLR 2023

10 3 10 2 10 1

Noise ratio (R)
0.0

0.02

0.04

0.06

Av
g.

 R
M

SE

xu1 yu2 = 0

10 3 10 2 10 1

Noise ratio (R)
0.0

0.02

0.04

0.06

Av
g.

 R
M

SE

xu2 + yu1 = 0

10 3 10 2 10 1

Noise ratio (R)
0.0

0.08

0.16

0.24

Av
g.

 R
M

SE

2
xu1 + 2

yu1 = 0

10 3 10 2 10 1

Noise ratio (R)
0.0

0.15

0.3

0.45

Av
g.

 R
M

SE

2
xu2 + 2

yu2 = 0
D-CIPHER

Figure 7: Simulation results for both Cauchy-Riemann equations and two Laplace’s equations. We
report the Average RMSE of the ∂-bound part in different noise settings

.

F.3 INCREASING THE SIZE OF THE DICTIONARY Q

We test D-CIPHER on the Sharpe-Lotka-McKendrick model (Equation 58) with different dictionar-
ies. We start with a small dictionaryQ1 = {∂tu, ∂au}, and we create every new dictionary from the
previous one by adding one more extended derivative. The final dictionary contains 10 elements,
Q10 = {∂tu, ∂au, ∂2

au, ∂
2
t u, ∂t∂au, ∂a(u2), ∂2

a(u2), ∂t(u
2), ∂2

t (u2), ∂t(u
3), ∂a(u3)}. The Average

RMSE of the ∂-bound part is shown in Figure 8. We do not observe any increase in average error.
Note that in these experiments we just focus on the ∂-bound part and do not optimize the ∂-free part.

2 4 6 8 10
Size of the dictionary

0

0.005

0.010

0.015

Av
g.

 R
M

SE

D-CIPHER

Figure 8: Simulation results for Sharpe-Lotka-McKendrick model. We report the Average RMSE of
the ∂-bound part for different sizes of the dictionary Q

.

F.4 COMPUTATIONAL COMPLEXITY

We want to emphasize that PDE discovery is not a time-critical application (usually this process is
performed manually by scientists) and we believe D-CIPHER’s computation time is acceptable for
such a task. In this section, we describe which parts of the algorithms are most computationally
intensive.

29

Under review as a conference paper at ICLR 2023

Computation in D-CIPHER is performed in Step 2 and Step 3.

Step 2. Computational complexity of Step 2 depends on the choice of the smoothing algorithm. We
want to emphasize that the user can use any smoothing algorithm based on their domain knowledge
and experience, including spline regression, LOWESS, and Kalman filters. Gaussian Process has
time complexity O(n3) where n is the number of data points in a grid G. D-CIPHER is specifically
designed to work for sparse and noisy data, so we have not encountered major computational issues
while performing Gaussian process regression. We also note that significant progress has been made
in adapting Gaussian processes for datasets with many data points Liu et al. (2020).

Step 3. D-CIPHER consists of two optimization loops. The outer optimization is performed by a
symbolic regression algorithm (in our case genetic programming). The inner optimization is per-
formed by CoLLie (Section 6). Searching through a space of closed-form expression requires testing
many candidate equations. D-CIPHER is designed to work with many different algorithms for sym-
bolic regression and it is advised to choose an algorithm that can search through this space most
efficiently.

CoLLie was specifically designed to solve the optimization problem as quickly as possible with a
minor accuracy trade-off (see Figure 1). It is based on LARS which has time complexity O(mn2)
Efron et al. (2004) where m is the number of samples and n is the number of features. In our
case, n = P is usually small as it corresponds to the size of the dictionary and m = SD. In our
experiments, S was set up to 100 and D up to 10. Overall LARS is performed very quickly. The
additional steps in CoLLie require only a few arithmetical operations (linear in n) and a possible
root searching of a single variable function that is efficiently implemented using Brentq algorithm
Brent (2013).

Other important parts of the algorithm are the numerical integrations. One such integration is per-
formed at the beginning of the algorithm to compute the matrix Z (see Algorithm 1). It does not
contribute much to the computation time as it is performed only once. The other integration is
performed for each candidate equation to compute vector w. Also, substantial time is spent on
computing the values of the candidate function g used in the integration. Fortunately, both of these
operations can be implemented as vectorized operations which are designed to run very efficiently
on modern hardware. We also discourage overly long equations for g (check the discussion in Ap-
pendix E.3) to limit the number of operations performed.

F.5 CHALLENGES OF DERIVATIVE ESTIMATION

One of the advantages of D-CIPHER compared to other methods is the use of the variational for-
mulation of PDEs that allows it to circumvent derivative estimation. This is important as derivative
estimation is challenging, especially in noisy settings with infrequent sampling. The problem be-
comes more pronounced the higher the order of the derivative. To demonstrate these issues, we
perform a series of synthetic experiments.

Qualitative study. First we qualitatively show how challenging the task of derivative estimation
is. We generate an observed trajectory for the damped and forced harmonic oscillator. Then we
estimate this trajectory using both Guassian Process regression and Spline regression. As shown
in Figure 9 (Panel A), the estimated trajectories are very close to the true trajectory. Then we
estimate the first derivative (Panel B) and the second derivative (Panel C). We show the standard
finite difference methods as well as derivative estimation techniques using Spline regression and
Gaussian Process regression. In both cases we see that the estimated derivatives do not match the
ground truth (calculated analytically) as closely as in Panel A. Moreover the mismatch for the second
derivative seems to be bigger than for the first derivative.

Quantitative study. We investigate this relation quantitatively for the damped and forced harmonic
oscillator and the wave equation. For the oscillator we generate an observed trajectory and then we
estimate its derivatives, up to the fourth order using both finite difference and Gaussian Processes.
We then compare the derivatives with the analytically calculated ground truths and measure root
mean squared error. The results are shown in Figure 10 (Panel A). We can see that the error increases
the higher the order of the derivative. For the wave equation, we perform a similar experiment but
this time we estimate different mixed derivatives. We consider any mixed derivative ∂it∂

j
x, where

30

Under review as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0
x

-0.4

-0.2

0.0

0.2

0.4

u(
x)

(A)

0.0 0.5 1.0 1.5 2.0
x

-1.5

-1.0

-0.5

0.0

0.5

xu
(x

)

(B)

0.0 0.5 1.0 1.5 2.0
x

-4
-2
0
2
4

2 xu
(x

)

(C)

Observed data
Ground truth
Finite Difference
Spline
GP

Figure 9: Panel A shows that estimation of the true trajectory can be performed successfully by both
Spline regression (Spline) and Gaussian Process regression (GP). Panel B shows the estimated first
derivative and Panel C shows the estimated second derivative. We observe that the higher the order
the less accurate is the estimate.

i, j ∈ {0, 1, 2}. We demonstrate the results in Figure 10 (Panel B). We observe that the error
increases the higher the order of the derivative (i+ j).

0 1 2 3 4
Derivative order

0
50

100
150
200
250

RM
SE

(A)

Finite Difference
GP

0
x

1
x

2
x

0
t

1
t

2
t

0.01±0.00 0.04±0.02 0.49±0.23

0.05±0.02 0.22±0.09 1.64±0.73

0.61±0.23 1.67±0.65 8.62±2.99

(B)

2

4

6

8

Figure 10: Panel A demonstrates the error between the estimated derivative and the ground truth
increases with the order of the derivative (performed for the damped and forced harmonic oscillator).
Panel B shows that the same happens for the wave equation. The (i.j) entry of the heatmap should
be interpreted as the RMSE between the estimated derivative ∂it∂

j
x and the ground truth.

F.6 CHALLENGES OF PDE DISCOVERY AND HOW WE ADDRESS THEM

PDE discovery is a very difficult task with many challenges. In Table 9 we summarize some of them
and describe how our work addresses them.

Table 9: Some challenges of PDE discovery and how we address them

Challenge Novel contribution (how we address the challenge)

Noisy measurements We use the variational loss function (Equation 10)
Large diversity of PDEs We allow any closed-form ∂-free part and require no evolu-

tion assumption (Section 2
Learning compact equations We penalize long ∂-free parts and use L1 normalization for

the ∂-bound part (Section 5, Appendix E.3
Efficient search We develop a quick algorithm, CoLLie, for the inner opti-

mization (Section 6
Chaotic systems We do not estimate the initial conditions (Chen et al., 2018)

or perform forward time stepping (Long et al., 2019) which
are computationally unstable for chaotic systems

31

Under review as a conference paper at ICLR 2023

F.7 SIGNIFICANCE OF THE NEW NOTIONS

In this section, we want to justify that the new notions we introduce (evolution assumption, lin-
ear combination form, derivative-bound part, derivative-fee part, Variational-Ready PDEs) are im-
portant theoretical contributions that help us understand the landscape of different PDEs from the
machine learning perspective.

The definitions we introduce let us characterize different classes of PDEs. These new notions com-
plement the standard recognized PDE classes such as semi-linear, quasilinear, hyperbolic, etc. These
standard classes were introduced predominantly to characterize the solving techniques or the prop-
erties of the solutions, whereas the notions we introduce relate to the difficulty of discovering such
equations from data.

Significance of linear combination form and the evolution assumption. In Table 10 we demon-
strate how the presence of the two assumptions, the linear combination form (LC) and the evolution
assumption (EA), influences the optimization problem. We see that with both assumptions, the
problem is relatively straightforward and reduces to sparse linear regression. With only one of the
assumptions present the problem becomes more difficult. With neither of these assumptions, the
problem becomes very difficult and requires some other assumptions. D-CIPHER does not make
either of these assumptions but it assumes the PDE to be of the form described by Equation 12.

Significance of ∂-bound part, ∂-free part and Variational-Ready PDEs. The difficulty of deriva-
tive estimation has been of the main challenges of PDE discovery. The variational formulation
allows to circumvent derivative estimation and thus is more robust to noisy data. Previously, the
variational formulation has been applied only to a subset of equations in a linear combination form
and with the evolution assumption. We observed that any restrictions that the variational formu-
lation might put on the equation come from the terms containing the derivatives. Thus we define
the derivative-bound part and the derivative-free part of the PDE due to their significance for the
variational formulation. That allows us to define Variational-Ready PDEs as currently the broadest
class of PDEs that admit the variational formulation. We believe it is an important contribution as
methods requiring derivative estimation underperform in settings with high noise. This definition
outlines the current limits of any method that circumvents derivative estimation in that way.

Table 10: This table demonstrates how the presence of the two assumptions, the linear combination
form (LC) and the evolution assumption (EA), influences the optimization problem. References: [1]
Brunton et al. (2016), [2] Rudy et al. (2017),[3] Kaheman et al. (2020),[4] Qian et al. (2022)

LC EA Equation form Optimization problem Examples

Yes Yes ∂tuj =
∑P
p=1 θpfp(x,u(x), ∂[K]u(x)) Relatively easy. Can

be formulated as finding
sparse solution to linear
least squares (similar to
ridge regression)

[1,2]

Yes No
∑P
p=1 θpfp(x,u(x), ∂[K]u(x)) = 0 Medium difficulty. Can

be formulated as P sep-
arate linear least squares
problems as above

[3]

No Yes ∂tuj = g(x,u(x)) Medium difficulty. Find
g using symbolic regres-
sion

[4]

No No f(x,u(x), ∂[K]u(x)) = 0 Very difficult. Requires
other assumptions (in
this work, Equation 12)

D-CIPHER

F.8 COMPARISON WITH QIAN ET AL. (2022)

To clarify our contributions, we compare D-CIPHER to Qian et al. (2022) which we think is closest
in spirit to the algorithm we developed as both of them allow any closed-form derivative-free part

32

Under review as a conference paper at ICLR 2023

and use variational formulation to circumvent derivative estimation. We also note how the new
notions we introduce help us compare the two works.

Algorithm presented in Qian et al. (2022) can discover any first-order explicit closed-form ODE,
i.e., an equation of the form.

∂tuj(t) = g(u(t), t)

where g is a closed-form function. It uses the variational formulation of ODEs to circumvent deriva-
tive estimation.

Table 11: Comparison between D-CIPHER and Qian et al. (2022)

Property Qian et al. (2022) D-CIPHER

Applicable to PDEs No Yes
Higher-order derivatives No (only first-order) Yes
Requires evolution assumption Yes No
Derivative-bound part Fixed: ∂tuj Learned:

∑P
p=1 βpÊp[u]

Derivative-free part Any closed-form function Any closed-form function
Derivative estimation No No

Qian et al. (2022) can be considered a special case of D-CIPHER. We can recover it from D-CIPHER
by choosing the dictionary to contain only one element, i.e., Q = ∂tuj .

As the derivative-bound part is fixed, every ODE of that form admits the variational formulation.
This is not true for PDEs as there are derivative-bound parts that might prohibit the variational
formulation. Thus D-CIPHER required careful consideration of the appropriate class of equations
to search over.

As D-CIPHER needs to find both the ∂-free part (function g) and the ∂-bound part, the optimiza-
tion problem is much more complicated. That is why we restrict the derivative-bound part of the
PDE to be spanned by terms from the pre-specified dictionary and develop an efficient optimization
algorithm, CoLLie. We emphasize that, as is the case for Qian et al. (2022), we do not put any
constraints on the derivative-free part of the PDE, apart from it being closed-form.

F.9 ERROR BOUNDS

While we would like to have error bounds for the discovered PDE, we note that the problem we
solve is significantly more difficult than the one considered in other works. The space of PDEs
we consider is much more complex than the space of PDEs in a linear combination form. In other
works (e.g., Rudy et al. (2017), Messenger & Bortz (2021a)), the PDE is basically a vector in RP
and the discovery task is mostly reduced to finding a sparse enough vector that approximately solves
a certain linear equation. Of course, there is a lot of literature that aids in establishing error bounds
in such problem settings. However, D-CIPHER searches over a space RP ×CFE(M +N), where
CFE(M+N) is a space of closed-form expressions inM+N variables. This space is combinatorial
in the functional form and continuous in real constants. This makes it very challenging to derive any
error bounds.

10 3 10 2 10 1

Noise ratio (R)

0.0
0.05

0.1
0.15

0.2
0.25

Av
g.

 R
M

SE

Homogeneous heat equation

10 3 10 2 10 1

Noise ratio (R)
0.0
0.1
0.2
0.3
0.4
0.5

Av
g.

 R
M

SE

Burgers' equation

10 3 10 2 10 1

Noise ratio (R)
0.0

0.05
0.1

0.15
0.2

0.25

Av
g.

 R
M

SE

Kuramoto Sivashinsky equation

GP
Nearest
Linear
Cubic

Figure 11: Comparison of different estimation algorithms that can be used in D-CIPHER. GP -
Gaussian Process regression, Nearest - Nearest point interpolation, Linear - Linear interpolation,
Cubic - Cubic interpolation.

33

Under review as a conference paper at ICLR 2023

F.10 COMPARISON BETWEEN DIFFERENT ESTIMATION ALGORITHMS

Step 2 of D-CIPHER requires estimating the fields. We emphasize that any choice of reconstruction
algorithm can be used, and it should be chosen based on the application and domain knowledge. In
our experiments, D-CIPHER is implemented using Gaussian Process regression (Williams & Ras-
mussen, 2006). In this section, we investigate other common interpolation algorithms. We imple-
ment D-CIPHER with different estimation algorithms. In particular, we compare Gaussian Process
(GP) against: Nearest point interpolation (Nearest), Linear interpolation, and Cubic interpolation
(Cubic). The implementation details of these three algorithms can be found in the scipy (Virtanen
et al., 2020) documentation. The results are presented in Figure 11. We see that the estimation
algorithms that produce smoother functions (GP, Cubic) tend to give better results.

34

	Introduction
	Partial Differential Equations
	Related Works
	Variational-Ready PDEs
	D-CIPHER
	CoLLie
	Experiments
	Discovering Linear Combinations: comparison with other methods
	Discovering equations beyond current methods

	Discussion
	Notation and definitions
	Notation
	Definitions

	Variational-Ready PDEs
	Variational Formulation of PDEs
	Theorem
	Examples

	D-CIPHER
	Rewrite the inner optimization as a constrained least squares
	Pseudocode
	Diagram
	Testing functions

	CoLLie
	Lagrangian
	Extending LARS
	Comparison

	Experiments
	Ablated D-CIPHER
	Implementation
	Hyperparameters
	Choice of equations
	Data generation
	Experimental settings
	Benchmarks
	Correct functional form
	Computation time
	Licenses

	Additional experiments and discussion
	Sharpe-Lotka-McKendrick model
	Discovering systems
	Increasing the size of the dictionary Q
	Computational complexity
	Challenges of derivative estimation
	Challenges of PDE discovery and how we address them
	Significance of the new notions
	Comparison with qiand-code2022
	Error bounds
	Comparison between different estimation algorithms

