
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEMORY EFFICIENT BLOCK COORDINATE DESCENT
METHOD FOR HESSIAN-INFORMED ZEROTH-ORDER
OPTIMIZER

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) for specific downstream tasks has tradi-
tionally relied on memory-intensive optimizers using classical backpropagation,
which demands substantial memory to store model states for gradient compu-
tation, motivating the development of memory-efficient zeroth-order optimizers
that operate in a forward-only manner. However, the slower convergence of the
zeroth-order optimizer remains a challenge, which recent research addresses by
incorporating Hessian information to accelerate training, although storing even
the diagonal Hessian requires memory equivalent to that of the model weights,
leading to significant memory usage. To mitigate this problem, we propose a
novel approach that integrates the block coordinate descent (BCD) method with
a Hessian-informed zeroth-order optimizer, allowing us to treat model layers as
separate blocks and update only a subset of layers per training iteration, thereby
reducing memory requirements and accelerating convergence. Specifically, at
each iteration, an active block of layers is selected according to the chosen BCD
rule, such as ascending order, and their weights are updated while the other layers
remain fixed, with diagonal Hessian information stored and updated exclusively
for the active layers. For fine-tuning foundation models of medium size (OPT-1.3B
and LLaMA-2-7B), our method achieves up to 39% memory reduction compared
to existing Hessian-informed zeroth-order methods, while preserving baseline
accuracy and memory usage to zeroth-order methods across various tasks, offer-
ing a memory-efficient alternative method for LLMs fine-tuning, especially on
memory-constrained devices.

1 INTRODUCTION

Fine-tuning transformer-based large models is an essential step in adapting pre-trained models to
specific downstream tasks and further improving performance (Raffel et al., 2020). This process also
allows the model to continue training on lower-end devices compared to those used for pre-training,
thus improving accessibility and reducing the training cost. For this intent, parameter-efficient fine-
tuning (PEFT) techniques, such as LoRA (Hu et al., 2021), have been proposed to enable fine-tuning
on consumer-level GPUs or even edge devices, providing significant economic and practical benefits.
Typically, fine-tuning employs traditional optimizers like SGD or Adam (Kingma, 2014), which
use backpropagation to update model weights. This process requires storing parameters, gradients,
activations, and possibly other optimizer states, significantly increasing memory requirements (Lv
et al., 2023b;a; Rajbhandari et al., 2020). As model sizes have increased and larger batch sizes are
employed for training, the memory demands of traditional optimizers have become a significant
bottleneck for devices with limited memory resources, even when using existing PEFT methods (Cai
et al., 2020). Our work aims to address this challenge by exploring memory-efficient techniques
further to reduce the memory overhead during fine-tuning on low-end devices.

To tackle the memory inefficiency issue, recent advancements have explored the use of zeroth-
order optimizers such as MeZO (Malladi et al., 2023) that estimate the gradients with only forward
passes, which eliminates the need for backpropagation, thereby significantly reducing memory
consumption by avoiding the storage of intermediate optimizer states. Though memory-efficient, the
slower convergence rates of zeroth-order optimizers have limited their practical utility. To accelerate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

MeZO
Memory Efficient,
Slow Convergence

HiZOO
2× Memory,
Faster Convergence

Random Perturbation

B-PDF (ours)

Updates

Memory Efficient,
Faster Convergence

Hessian Information

Hessian Information

Practical Alternative to MeZO

Figure 1: Illustration of MeZO, HiZOO and our proposed training pipeline.

convergence, researchers have incorporated second-order information, such as diagonal Hessian
approximations as proposed in HiZOO (Zhao et al., 2024b), into the optimization process. However,
this solution comes at the cost of memory overhead, as storing even diagonal Hessian values introduces
substantial memory cost comparable to the storage required for the model weights themselves, thereby
negating the original memory-saving intent of applying zeroth-order optimization.

To efficiently and effectively utilize second-order information, we consider the traditional block
coordinate descent (BCD) method, which solves optimization problems successively along coordinate
directions, and propose a block coordinate descent Newton method (BCD-Newton) to tackle our
challenge. Inspired by recent advances in applying BCD with Adam (Kingma, 2014) and AdamW
Loshchilov (2017) optimizations for training large language models (LLMs) (Pan et al., 2024; Luo
et al., 2024), we introduce a layer-wise block coordinate descent scheme to optimize memory usage,
treating model layers as independent blocks and selectively activates a subset of layers during each
iteration. In practice, block selection is guided by various BCD rules, including ordered selection and
block-wise importance sampling, to achieve optimal training performance. This approach significantly
reduces the memory required to store Hessian information. In our optimization step, beyond the basic
zeroth-order method with two forward passes, a three-step forward pass is employed to incorporate
second-order updates, thereby facilitating faster convergence. The second-order term is stored as a
diagonal Hessian estimate matrix, sized according to the active block of selected transformer layers,
and is updated throughout the training process. Thus, we propose a novel optimizer that addresses the
memory-convergence trade-off inherent in Hessian-informed zeroth-order optimization by integrating
BCD techniques, while simultaneously improving convergence rates.

Through extensive experiments on a single RTX 4090 or RTX A6000 GPU, we demonstrate that our
method enhances training efficiency and memory management while fine-tuning foundation models,
including OPT-1.3B (Zhang et al., 2022b) and LLaMA-2-7B (Touvron et al., 2023). As a BCD zeroth-
order Newton method, it empirically delivers superior convergence speed and accuracy compared
to MeZO. Additionally, compared to the HiZOO baseline, our approach achieves approximately
a 50% speedup and a 40% reduction in memory usage with comparable baseline accuracy across
multiple GLUE (Wang, 2018) and SuperGLUE (Wang et al., 2019) tasks. These improvements make
our method particularly well-suited for fine-tuning large models on devices with limited memory,
expanding the accessibility of large language models in real-world applications.

In summary, our main contributions are three-fold:

• We propose a novel block coordinate descent fine-tuning pipeline that integrates the previous
Hessian-informed zeroth-order optimizer, reducing the memory overhead to make the
method a practical and convergence-enhanced alternative to MeZO.

• We design improved block coordinate descent schemes that reduce the compute and memory
cost of the Hessian-informed forward-only optimizer. By adaptively updating weights across
block coordinates of the model layers, this method manages blockwise updates efficiently
and reduces memory and computational costs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We conduct experiments on fine-tuning OPT-1.3B and LLaMA2-7B, demonstrating that our
method reduces training memory by over 39% without a loss in accuracy compared to the
full diagonal Hessian baseline.

2 RELATED WORK

First and second order Optimization for LLMs. Traditional first-order optimizers, such as SGD,
AdaGrad (Duchi et al., 2011), and RMSProp (Tieleman et al., 2012), are foundational tools in deep
learning. Adam (Kingma, 2014), with its adaptive moment estimates for faster convergence, and its
variant AdamW (Loshchilov, 2017), which modifies the weight decay term to improve generalization,
have become the dominant optimizers for fine-tuning large language models (LLMs). Second-order
optimization methods incorporating Hessian information, such as K-FAC (Martens & Grosse, 2015),
EVA (Zhang et al., 2022a), Adahessian (Yao et al., 2021), and Sophia (Liu et al., 2023), have been
explored to further accelerate convergence. However, estimating the Hessian is computationally and
memory intensive, particularly with the growing size of LLMs, which makes these second-order
methods less practical for fine-tuning on devices with limited memory resources.

Zeroth-order (ZO) Optimization. A classical zeroth-order optimization method is SPSA (Spall,
1992), along with its corresponding SGD variant, ZO-SGD, which estimates the gradient using
two forward passes before and after parameter perturbation. Recently, MeZO (Malladi et al., 2023)
adapted ZO-SGD by incorporating the random number generator, enabling an in-place implementation
that significantly reduces memory usage for storing random vectors during training. Based on MeZO,
recent work explores its variants like incorporated sparsity for memory efficiency (Guo et al., 2024).
Additionally, Zhang et al. (2024) conducted a benchmark study to analyze and enhance zeroth-order
fine-tuning methods. However, the convergence performance of ZO methods often falls behind that
of first-order methods. To improve convergence, HiZOO (Zhao et al., 2024b) proposed to utilize
Hessian information through diagonal Hessian estimation. Beyond these approaches, several other
gradient-free methods have been proposed, such as using evolutionary algorithms for gradient-free
optimization (Sun et al., 2022b;a).

Memory-efficient Fine-tuning for LLMs. Numerous algorithms have been developed to reduce
memory costs for training LLMs. Based on backpropagation, practical techniques such as gradient
checkpointing (Chen et al., 2016) recompute gradients, FlashAttention (Dao et al., 2022) employs
tiling and recomputation to leverage cache for improved efficiency, and the ZeRO optimizers (Ra-
jbhandari et al., 2020; Ren et al., 2021) enable offloading to manage memory usage effectively.
Additionally, researchers have utilized compression and quantization methods to approximate gra-
dients, activations, and other optimizer states, enhancing training performance (Jiang et al., 2022;
Li et al., 2024). On another front, methods like LOMO (Lv et al., 2023b;a) fuse gradient updates to
accelerate training. One notable approach to fine-tuning is parameter-efficient fine-tuning (PEFT)
methods, which includes techniques such as Adapters (LoRA) (Hu et al., 2021; Houlsby et al., 2019),
prompt tuning (Lester et al., 2021), and selective methods like bias-only fine-tuning (Zaken et al.,
2021) and layer-wise freezing (Brock et al., 2017). In addition, Zhao et al. (2024a) recently introduced
GaLore which reduces memory costs by projecting gradients into a low-rank compact space.

Block Coordinate Descent (BCD) methods for LLM Optimization. In BCD, the optimization
objective is minimized successively along coordinate directions. When applied to LLM fine-tuning,
this approach can be seen as a branch of selective methods in parameter-efficient fine-tuning. The re-
cently proposed BAdam (Luo et al., 2024) showcases the effectiveness of combining block coordinate
descent with Adam. Similarly, LiSA (Pan et al., 2024) improves performance by selectively updating
transformer layers with AdamW optimizer, outperforming LoRA across tasks on LLaMA-2-70B.

Overall, our method offers a complementary optimizer-based solution that can be combined with
techniques like compression and system-level approaches to improve memory efficiency. Amid the
rapid advancements in efficient training for LLMs and other foundation models, the most closely
related works to ours are HiZOO and BAdam. However, our approach distinguishes itself by
addressing the memory overhead of these methods in two key ways: first, by eliminating the need for
backpropagation through zeroth-order optimization, and second, by reducing the memory cost of
Hessian-informed methods through block coordinate descent. Furthermore, unlike PEFT methods,
our approach enables full parameter fine-tuning, which has been demonstrated to yield superior
performance in various tasks (Ding et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 REVISITING MEMORY CONSUMPTION FROM BCD PERSPECTIVE

In this section, we provide a brief overview of how zeroth-order (ZO) and Hessian-informed ZO
optimizer methods work by introducing the core concepts of MeZO (Malladi et al., 2023) and
HiZOO (Zhao et al., 2024b). Next, we introduce block coordinate descent (BCD) methods such as
BAdam (Luo et al., 2024). To ensure consistency, we have adapted the definitions from these works.
Finally, we reconsider the memory consumption of these methods, which leads us to propose our
BCD-integrated Newton method optimizer.

3.1 PRELIMINARIES OF ZEROTH-ORDER OPTIMIZERS

3.1.1 SPSA, ZO-SGD, AND MEZO

Let L(θ;B) represent the loss function for training the model with parameters θ ∈ Rd on the
minibatch B, omitting the B for simplicity. The SPSA algorithm (Spall, 1992) perturbs the model
using z ∈ Rd, sampled from N (0, Id), and estimates the gradient on the minibatch as follows:

∇̂L(θ) = L(θ + µz)− L(θ − µz)

2µ
z ≈ zz⊤∇L(θ) (1)

where µ is the perturbation scale.

The corresponding SPSA optimizer, ZO-SGD, employs two forward passes to estimate the gradients.
With learning rate η, ZO-SGD updates the parameters as θt+1 = θt − η∇̂L(θ;Bt). In this vanilla
algorithm, the sampled vector z requires memory equivalent to that of the perturbed weights, resulting
in a memory cost that is twice that of inference.

In contrast, MeZO (Malladi et al., 2023) introduces an in-place implementation using a random
number generator. Only a random seed s needs to be sampled and stored at each step, allowing the
generator to be reset by s to regenerate the vector z. This approach eliminates the need to save the
vector, reducing the memory cost to match that of inference.

3.1.2 HIZOO

To harness second-order information through MeZO for enhanced convergence rates, Zhao et al.
(2024b) introduce HiZOO, utilizing a diagonal Hessian-based preconditioner that adjusts the update
sizes of parameters based on their curvature. By estimating and storing only the diagonal Hessian,
HiZOO requires O(d) memory, significantly less than the O(d2) needed for the full Hessian matrix.

Let Σ denote the estimated inverse Hessian matrix, approximating the diagonal Hessian as a positive
definite matrix, with Σ−1 ≈ ∇2L(θ). Define Σt as the matrix at training step t, initialized as
Σ0 = Id. Storing Σt incurs a memory cost of O(d), and it is updated at each step. In addition, to
mitigate noise in the computation, an exponential moving average (EMA) is employed, leading to the
following update rule for the diagonal Hessian estimate:

Σ−1
t+1 = (1− αt)Σ

−1
t + αt

∣∣∣diag(Σ̂t)
∣∣∣ , (2)

where αt is a smooth scale, and |diag(Σ̂t)| ensures that all entries of Σt remain non-negative.

HiZOO approximates the diagonal Hessian using three forward passes to compute L(θ + µΣ1/2z),
L(θ − µΣ1/2z), and L(θ). By applying Taylor’s expansion, we obtain:

L(θ ± µΣ1/2z) = L(θ)± µ⟨L(θ),Σ1/2z⟩+ µ2

2
z⊤Σ1/2∇2L(θ)Σ1/2z +O(µ3), (3)

the difference ∆L is then calculated as:

∆L =L(θ + µΣ1/2z) + L(θ − µΣ1/2z)− 2L(θ)
=µ2z⊤Σ1/2∇2L(θ)Σ1/2z +O(µ3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Based on the lemma from Ye (2023):
1

2
· Ez(z

⊤Σ1/2∇2L(θ)Σ1/2z · (Σ−1/2zz⊤Σ−1/2 −Σ−1)) = ∇2L(θ), (4)

substitute ∆L into the left side, and we obtain:

1

2
E
[
∆L
µ2
·
(
Σ−1/2zz⊤Σ−1/2 −Σ−1

)]
= ∇2L(θ) +O(µ).

Consequently, the estimation of the diagonal Hessian∇2L(θ) at θ is:

Σ̂t(θ) =
∆L
2µ2

(
Σ

−1/2
t ziz

⊤
i Σ

−1/2
t −Σ−1

t

)
. (5)

In this manner, HiZOO approximates the diagonal entries of ∇2L(θ) by diag(Σ′
t(θ)), requiring one

more forward pass per step compared with MeZO.

3.1.3 BLOCK COORDINATE DESCENT

At each iteration, block coordinate descent (BCD) fixes all other parameters and optimizes the
objective function over the selected coordinates, resulting in an optimization problem with reduced
dimension. For large language models, a natural block partition is to organize transformer layers in
ascending order. Formally, an ordered block partition π = {π1, . . . , πi, . . . , πD} divides the entire
model parameters θ ∈ Rd into D blocks, such that θ = {θπ1 , . . . ,θπi , . . . ,θπD

} with θπi ∈ Rdi

and
∑D

i=1 di = d. Based on the main idea of BCD, BAdam (Luo et al., 2024) propose to incorporate
Adam updates as its inner solver and optimize over only one active block θπi

at a time while keeping
the other inactive blocks fixed. Mathematically, BAdam solves the following subproblem at the t-th
block-epoch for i = 1, . . . , D to update the active block θπi

:

θt+1
πi
∈ argmin

θπi
∈Rdi

L(θt+1
π1

, . . . ,θt+1
πi−1

,θπi
,θt

πi+1
, . . . ,θt

πD
). (6)

This subproblem Equation 6 keeps inactive blocks fixed at their latest values, leading to a significantly
lower-dimensional optimization problem compared to minθ L(θ).

3.2 REVISITING MEMORY CONSUMPTION FROM BCD PERSPECTIVE

Who consumed my memory? Second-order methods incorporate full or diagonal Hessian matrix, or
its estimation, as a preconditioner to accelerate convergence, but this introduces a significant memory
cost of O(d). For large models such as LLaMA-2-7B (Touvron et al., 2023) with d = 7 billion
parameters, this requires 2d memory in FP16 precision, resulting in approximately over 14GB of
memory storage. When combined with the memory required for model parameters, this easily exceeds
the capacity of consumer-level devices, undermining MeZO’s original goal of achieving memory
efficiency. Our experiments further demonstrate that directly applying Hessian-based optimization
steps significantly increases memory usage, as shown in Table 1. Even though approaches such as
HiZOO offer performance improvements, the considerable memory overhead from storing Hessian
information becomes a bottleneck, particularly when fine-tuning large models. This dilemma leads
to a situation where the benefits of second-order methods are outweighed by their heavy memory
consumption, limiting their practicality in memory-constrained environments. Furthermore, the
memory consumption increases with batch size for both first-order and Hessian-based methods,
intensifying the memory overhead, as illustrated in Figure 2.

How to reduce Hessian memory consumption? To address this memory-convergence trade-off,
we propose integrating block coordinate descent (BCD) into the zeroth-order Newton optimization.
BCD allows us to partition the model into blocks, optimizing only a subset of layers at each iteration
while keeping the rest fixed. This approach dramatically reduces the memory required for storing
Hessian information, as it is only computed for the active blocks. For instance, by partitioning the
aforementioned LLaMA-2-7B model into D = 32 blocks, corresponding to its 32 transformer layers,
we reduce the additional memory cost associated with Hessian storage to 2d

D , bringing it to under
1GB of memory. This significantly improves memory efficiency while preserving the advantages of
second-order optimization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Moreover, we further optimize memory usage by applying MeZO to update the embedding and
language modeling head layers, avoiding the instability and overhead often associated with second-
order methods. Our integration of BCD not only achieves comparable memory usage to MeZO but
also leverages the improved convergence rates of Hessian-informed updates.

Table 1: Experiments of actual GPU memory consumption for various algorithms.

DEVICE MODEL SGD BCD LORA MEZO HIZOO OURS B-PDF

RTX 4090 OPT-1.3B 23G 21G 11G 4.4G 7.5G 4.6G
RTX A6000 LLAMA-2-7B > 48G 46G 40G 31G > 48G 32G

THEORETICAL AVG MEMORY IN UNITS SGD BCD OR LORA MEZO HIZOO OURS B-PDF
PARAM+ACTIVATION+GRAD+HESSIAN 3d d ∼ 3d d 2d d+ d/D

To validate our analysis, we conducted preliminary experiments (detailed in Section 5) measuring the
GPU memory consumption of various optimizers during the fine-tuning of medium-sized language
models, specifically OPT-1.3B (Zhang et al., 2022b) on an RTX 4090 (24GB) and LLaMA-2-7B
on an RTX A6000 (48GB). As Table 1 and Figure 2 briefly illustrate, HiZOO’s incorporation of
second-order information increases memory demand by over 70%. Notably, the actual allocated
memory includes residual state memory such as temporary buffers and fragments (Rajbhandari et al.,
2020), which means the overall memory requirement exceeds that of the parameters alone, resulting in
the overall increase short of a full 100%. In contrast, our BCD-integrated method significantly reduces
memory consumption, bringing it in line with MeZO while maintaining comparable performance. As
we will further demonstrate in Section 5, our proposed B-PDF method achieves comparable accuracy,
and offers a practical, memory-efficient alternative to MeZO with the extra benefit of incorporating
second-order information.

Flexibility in BCD Block Selection. Beyond the natural block partitioning of model layers in
ascending order, BCD can be adapted with various strategies such as descending order, random
reshuffling, or importance sampling (Luo et al., 2024; Pan et al., 2024). For instance, LiSA (Pan
et al., 2024) proposes a layer-wise importance sampling approach, which updates selected layers
while keeping others frozen, utilizing AdamW as the optimizer. In this approach, layers are randomly
selected based on predefined probability values. In Section 4.1, we will present several BCD methods
for block selection. This flexibility allows BCD to be adapted to different optimization scenarios,
enhancing the overall training process while maintaining memory efficiency.

4 METHODOLOGY

4.1 BCD-INTERGRATED ZEROTH-ORDER NEWTON METHOD OPTIMIZER

Motivated by the revisiting of the second-order Hessian memory consumption, we identified a signifi-
cant bottleneck caused by the storage of diagonal Hessian estimation, which introduced substantial
memory overhead, particularly for large models. Ultimately, to address this memory-convergence
trade-off, we propose a new method that integrates block coordinate descent (BCD) with a zeroth-
order Newton optimizer, termed Block-wise diagonal-Hessian Preconditioned Coordinate Descent
Forward-only optimizer (B-PDF). Recognizing the layerwise structure of the transformer model, we
treat each layer as a block for Hessian-informed zeroth-order optimization. By partitioning the model
into blocks and updating only a subset of layers at each iteration, we reduce the Hessian storage
requirement while maintaining the convergence benefits of second-order methods. Additionally, we
update the embedding and language model (LM) head layers solely through ZO optimization to
mitigate the instability and overhead typically associated with second-order methods, resulting in a
more memory-efficient and scalable approach for fine-tuning large models.

The block partitioning is naturally arranged in ascending order, and various BCD algorithms can
be employed to determine the active block θπi

. Possible strategies include using ascending order,
a layerwise importance sampling scheme based on the mean weight norms of each block πi, the
Gaussian-Southwell-Diagonal rule (Nutini et al., 2017), or dynamically updated probabilistic lists
employing a bandit method. Formally, for the current step T , the parameter block θπb

to update can
be selected using several types of BCD algorithms:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

θπb
=

θπi
, i← [1, · · · , D], ascending / descending / random order,

argmaxθπi

1
T

∑T
t=1 ∥θt

πi
∥2, mean weight norms,

argmaxθπi

|∆L(θπi
)|2

Σπi
, Gauss-Southwell-Diagonal rule,

θπz , z ∼ pz importance sampling / bandit method
· · ·

(7)

We note that while different methods can be effective in their original settings, they vary significantly
in terms of memory and computational costs. In practice, the substantial computation and storage
required for updates by importance-score-based methods led us to select the more efficient default
ascending order rule, and our experiments empirically demonstrate its performance. Now we present
the pseudocode for the proposed algorithm in Algorithm 1.

Algorithm 1 Training Pipeline of the Propose B-PDF Method.

1: Input: parameters θ ∈ Rd, loss function L, perturbation scale µ, learning rate η, smooth scale α
2: for t = 1, . . . , T do
3: Select block θπb

∈ θ according to the BCD rule
4: if a new block is selected then
5: Σ← I|θπb

| ▷ Diagonal Hessian initialization
6: end if
7: Freeze other layers
8: Sample a random seed s ▷ First-time sampling random vector
9: for µi = 0,+µ,−2µ do

10: for θi ∈ θπb
do

11: Sample z ∼ Ns(0, I|θi|)

12: θi ← θi + µiΣ
1/2
t z ▷ In-place perturbation

13: end for
14: ℓsign(µi) = L(θ)
15: end for
16: Σ̂t ← 1

2µ2 (ℓ+ + ℓ− − 2ℓoriginal)(Σ
−1/2
t−1 ziz

⊤
i Σ

−1/2
t−1) ▷ Update diagonal Hessian

17: Σ−1
t ← (1− αt)Σ

−1
t−1 + αt

∣∣∣diag(Σ̂t)
∣∣∣

18: projected_grad← (ℓ+ − ℓ−)Σ
1/2
t /2µ

19: Reset random number generator with seed s ▷ For regenerating the random vector
20: for θi ∈ θπb

do
21: Sample z ∼ Ns(0, I|θi|)
22: θi ← θi − ηt∗ projected_grad ∗z ▷ Update weights
23: end for
24: end for

Remark 1. The optimization objective is to minimize the loss function L(θ) by leveraging diago-
nal Hessian preconditioning within the memory-efficient framework. During each iteration, after
selecting the active blocks for updates, zeroth-order optimization with a diagonal Hessian precondi-
tioner is performed for the chosen layers. The diagonal Hessian estimate will be reinitialized for a
newly selected block, and updates for that block will occur over several subsequent iterations. The
algorithm applies in-place perturbations to the parameters in three steps with the perturbation scale
corresponding to µi = 0,+µ,−2µ, sampling a normally distributed random vector z to perturb the
selected block θπb

. For each perturbation, the loss function L(θ) is computed to estimate the gradient
information. Afterwards, the diagonal Hessian is updated based on the difference in the computed
losses from the perturbed parameters. The gradient for the selected block is then projected using the
updated Hessian, and the weights of the active block are updated accordingly.

Remark 2. The proposed algorithm efficiently combines BCD with a zeroth-order Newton method
by updating only a subset of model layers per iteration. This approach reduces memory usage by
eliminating backpropagation and utilizing block-wise gradient updates, while maintaining conver-
gence speed through the use of diagonal Hessian approximations. The consistent use of random
vectors and selective parameter perturbation further enhance the method’s memory efficiency.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 CONVERGENCE ANALYSIS

As a block coordinate descent variant of HiZOO (Zhao et al., 2024b), our proposed B-PDF preserves
HiZOO’s convergence properties. Since our focus is primarily on the practical analysis and imple-
mentation of memory efficiency, this work emphasizes practical solutions over theoretical exploration.
Nevertheless, we provide a brief summary adapted from their convergence analysis.

Adopt the classical assumptions and update rule θt+1 = θt − ηt∇̂Lµ(θt) as detailed by Zhao et al.
(2024b), with iteration number T and a suitable step size ηt, we have:

E[
1

T

T∑
t=1

∥∇L(θt)∥2] ≤ O(
1√
T
)(L(θ0)− L∗) +O

(
µ2

)
, (8)

where L∗ denotes the minimization of the function L(θ;B). As training progresses, the first term
on the right-hand side of the equation gradually diminishes to zero, while the second term remains
bounded by the perturbation scale. This establishes that our proposed method converges to a bounded
neighbourhood around a stationary point. Moreover, as T →∞, the method converges to the optimal
point, as demonstrated by the equation above.

Proof. A brief proof adapted from HiZOO (Zhao et al., 2024b) is provided in the Appendix B. For
further theoretical details, we refer readers to their original work.

5 EXPERIMENTS

In this section, we build on the experimental settings of MeZO (Malladi et al., 2023) and HiZOO
(Zhao et al., 2024b) to evaluate our proposed B-PDF method in terms of memory consumption,
runtime, and convergence. Our experimental code builds on their open-source repositories, with the
block coordinate descent method integrated. Detailed implementations are provided in Appendix
A. To facilitate implementation and reduce resource requirements, we focus on performance across
several GLUE and SuperGLUE tasks, following their approach. All experiments are conducted
on either a single RTX 4090 (24GB) or RTX A6000 (48GB) GPU. Specific details regarding the
hyperparameter grids can be found in the Appendix C.

5.1 EXPERIMENTS ON OPT-1.3B WITH A SINGLE RTX 4090

Settings. First, we conduct experiments by fine-tuning the OPT-1.3B model on a single RTX 4090
GPU. Following the settings of previous work, we select several GLUE and SuperGLUE tasks
to evaluate the performance of our proposed B-PDF method. These NLP tasks include sentence
classification and text generation. We note that MeZO highlights the significance of incorporating
prompts for optimal performance and is structured accordingly. Therefore, we maintained MeZO’s
original setup and refrained from introducing additional baselines in our experiments. For the first-
order baselines, we include SGD, BCD-based SGD (referred to as BCD in the tables), and LoRA
with SGD. For the zeroth-order methods, we compare MeZO, HiZOO, and our proposed B-PDF.
The batch size is set to 8 for zeroth-order methods and 2 for first-order methods to prevent memory
exhaustion. Our primary goal is to demonstrate that B-PDF reduces HiZOO’s memory consumption
while maintaining speed and accuracy.

Table 2: Experiments on OPT-1.3B on SST-2 dataset.

Method Accuracy Runtime (20,000 steps) Average Memory

First-Order Forward+Backward
SGD 94.3 4min 05s 22688 MB
BCD 92.4 3min 09s 20510 MB
LoRA 92.0 0min 55s 10624 MB

Zeroth-Order
2×Forward MeZO 91.7 54min 55s baseline 4368 MB baseline
3×Forward HiZOO 91.7 99min 44s + 81.61% 7524 MB + 72.25%
3×Forward (ours) 91.9 51min 38s - 6.98% 4589 MB + 5.06%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

6

12

18

24
Parameters Activations Gradients Hessian Information

M
e
m

o
ry

 U
sa

g
e
 (

G
B

)

batch size

Figure 2: Illustration of average GPU memory consumption for fine-tuning the OPT-1.3B model
using different methods, with batchsize = {1, 2}. As the batch size increases, our proposed
B-PDF and MeZO maintain low memory usage, while other methods easily surpass the memory
threshold of devices (red dashed line represents an 8GB memory limit on low-end devices).

Memory Efficiency. For memory efficiency, B-PDF significantly reduces the memory overhead
of incorporating Hessian information while maintaining accuracy. As shown in Tables 1 and 2, our
report on average GPU memory usage during experiments demonstrates that B-PDF has a comparable
memory cost to MeZO, while offering substantial savings in memory consumption compared to
HiZOO and first-order methods such as SGD, BCD-SGD, and LoRA (rank=8). This notable
improvement ensures the practical adoption of the proposed method on low-end devices, where
memory is a primary bottleneck for training, which is also the original reason why the forward-only
approach was developed to save memory down to inference-level requirements. This makes our
method a suitable solution for low-memory training environments. In contrast, HiZOO incurs a
significant 72% higher memory cost than MeZO, indicating an impractical convergence-memory
tradeoff in memory-limited scenarios. Additionally, first-order methods consume even more memory
due to the overhead introduced by backpropagation. For instance, BCD-SGD still requires nearly
full fine-tuning memory to store activations and gradients for backpropagation. Consequently, due to
their substantial memory demands, they are rendered impractical in low-end environments, making
faster convergence irrelevant. This further highlights the advantages and rationale of our approach.

Figure 3: Convergence curves of MeZO, HiZOO and proposed B-PDF on SST-2 training OPT-1.3B.

Convergence Study. Regarding convergence rate, we present the convergence curve relative to
wall-clock time or steps for training on the SST-2 dataset, as illustrated in Figure 3. The results show
that while HiZOO converges more effectively than MeZO for 20,000 steps, it requires nearly double
the completion time. Conversely, our proposed B-PDF achieves convergence between the results
of MeZO and HiZOO while finishing first among the three zeroth-order methods. This speedup is
due to the BCD strategy, which activates only a subset of layers (in the experiment, two layers per
iteration), thereby reducing computational demands. Consequently, our method with three forward
passes still finishes faster than MeZO, which requires only two forward passes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Experiments on OPT-1.3B across different datasets.

Task SST-2 RTE CB BoolQ WSC WIC SQuAD AverageTask Type —————-classification—————- generation

First-Order
SGD 94.3 68.6 71.4 70.0 63.5 61.4 81.6 73.0
BCD 92.4 69.7 69.6 63.2 63.5 61.6 78.8 71.3
LoRA 92.4 66.4 69.6 66.8 63.5 58.5 80.5 71.1

Zeroth-Order
MeZO 91.7 64.3 69.6 65.5 63.5 57.7 77.9 70.0
HiZOO 91.7 64.6 71.4 65.5 63.5 58.5 78.7 70.6
(ours) 91.9 65.3 69.6 65.2 63.5 57.7 77.9 70.2

Furthermore, the experimental crossover results, presented in Table 3 and visualized in Figure 4 in
Appendix D, demonstrate that our method achieves comparable accuracy to baseline methods across
benchmarks. While first-order methods deliver superior results, their actual memory consumption
is several times higher than that of zeroth-order methods, rendering them impractical for low-end
environments. In contrast, our method improves memory efficiency while enhancing convergence,
outperforming MeZO baseline and offering a practical, efficient solution for low-end settings. These
findings position B-PDF as a memory-efficient optimizer and an effective alternative to MeZO.

Table 4: Experiments of fine-tuning LLaMA-2-7B on SST-2 dataset on an RTX A6000 (48 GB).

Zeroth-Order Method Accuracy Average Memory First-Order Method Accuracy Average Memory

MeZO 85.2 31GB baseline LoRA 94.8 41GB +32.3%

B-PDF 90.6 32GB + 3.23% OOM for SGD, BCD, and HiZOO.

5.2 EXPERIMENTS ON LLAMA-2-7B WITH A SINGLE RTX A6000

To further evaluate our proposed method on larger models, we fine-tuned a LLaMA-2-7B model
in FP16 precision on an RTX A6000, using the aforementioned optimization algorithms, as shown
in Table 4. Due to the increased model size, both the first-order method and HiZOO encountered
out-of-memory (OOM) errors, and B-PDF required longer completion times because of the higher
computational cost associated with the larger Hessian estimation. We compared the performance
of three methods: LoRA (rank=8), MeZO, and our proposed B-PDF, on the SST-2 dataset with
batchsize=1. The remaining settings were kept consistent with those in Section 5.1. Despite
the limited batch size and hardware constraints, which caused an accuracy drop from incomplete
convergence, B-PDF still demonstrated performance gains while maintaining comparable memory
consumption as a Hessian-informed method, unlike first-order methods draining GPU memory,
underscoring its potential in memory-constrained environments.

6 CONCLUSION

In this paper, we propose a novel memory-efficient zeroth-order Newton method that integrates block
coordinate descent (BCD) with a diagonal Hessian-preconditioned zeroth-order optimizer for fine-
tuning large language models (LLMs). Our approach effectively mitigates the substantial memory
overhead commonly associated with second-order methods by employing selective block-wise
updates. By combining the BCD technique with the Hessian preconditioner, we achieve significant
reductions in memory consumption while preserving competitive accuracy and convergence speed
performance. Our extensive experiments on OPT-1.3B and LLaMA-2-7B demonstrate that our
method can reduce memory usage by up to 39% compared to existing second-order optimizers
while maintaining baseline accuracy across various downstream tasks. Furthermore, our approach
exhibits faster wall-clock convergence than conventional zeroth-order methods, making it a practical
and scalable solution for fine-tuning large models on resource-constrained devices. Future work
will aim to extend this methodology to larger models and more complex tasks, as well as refine
the block selection strategies to further enhance both efficiency and performance. In summary, our
method provides a promising direction for memory-efficient fine-tuning of LLMs, offering practical
advantages, particularly in memory-limited environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Freezeout: Accelerate training
by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce activations, not trainable
parameters for efficient on-device learning. arXiv preprint arXiv:2007.11622, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny Zhou, and Zhangyang Wang. Back
razor: Memory-efficient transfer learning by self-sparsified backpropagation. Advances in neural
information processing systems, 35:29248–29261, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36, 2024.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method for
large language models. arXiv preprint arXiv:2404.02827, 2024.

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng Qiu. Adalomo: Low-memory optimization
with adaptive learning rate. arXiv preprint arXiv:2310.10195, 2023a.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023b.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent converge faster:
Faster greedy rules, message-passing, active-set complexity, and superlinear convergence. arXiv
preprint arXiv:1712.08859, 2017.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
Layerwise importance sampling for memory-efficient large language model fine-tuning. arXiv
preprint arXiv:2403.17919, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}: Democratizing {Billion-Scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. Bbtv2:
Towards a gradient-free future with large language models. arXiv preprint arXiv:2205.11200,
2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022b.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665–10673, 2021.

Haishan Ye. Mirror natural evolution strategies. arXiv preprint arXiv:2308.00469, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representations,
2022a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

The implementation of the B-PDF function is designed to enhance zero-order optimization (ZOO) by
incorporating selective layer-wise updates based on Hessian-informed perturbations.

In the zo_Hessian_step_update function (Zhao et al., 2024b), the Hessian matrix is initialized
if it does not already exist. This matrix is created by iterating over each trainable parameter of the
model and initializing a tensor of ones with the same dimensions as the respective parameter.
The estimate Hessian matrix serves as a second-order approximation that is updated during the
optimization process.

In our framework, we introduce a layer-specific update mechanism within the optimization function
hizoo_step_update, which implements a periodic selection of layers, referred to as "hizoo
layers." These layers are chosen iteratively every fixed number of steps, with the cycle determined by
a step counter.

The layers can be selected either sequentially, in an ordered manner, or via other rules such as
Gauss-Southwell quadratic diagonal selection (GSQ) (Nutini et al., 2017), which prioritizes layers
based on previous scores.

Following MeZO (Malladi et al., 2023) and HiZOO (Zhao et al., 2024b), we apply a noise-based
perturbation to the selected Hessian-informed layers during each iteration using Gaussian noise. The
noise is scaled by the square root of the corresponding Hessian matrix and a random vector sampled
from a normal distribution. This approach allows the optimization process to focus on specific layers
while updating their parameters iteratively.

By controlling the frequency and scope of these updates, we distribute optimization efforts across
different parts of the network over time. This can ensure that updates are not applied uniformly
but are instead targeted based on layer importance, thereby improving the overall efficiency of the
training process.

Additionally, memory management is considered throughout the implementation, as the Hessian
matrix is periodically cleared, and GPU memory is freed using torch.cuda.empty_cache(),
ensuring that the training process remains efficient, even in memory-constrained environments.

In addition, we use torch.clamp API to clamp the intermediate results to meet the precision
requirements and reduce the instability of second-order methods.

Overall, the B-PDF implementation introduces a structured and targeted optimization approach that
leverages layer-wise perturbations to enhance the zero-order optimization process effectively.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B CONVERGENCE ANALYSIS

As a block coordinate descent variant of HiZOO (Zhao et al., 2024b), our proposed B-PDF retains
the convergence properties of HiZOO. Since our focus is on practical memory reduction rather than
theoretical analysis, we offer a brief convergence analysis of our method, adapted from Zhao et al.
(2024b), with adjustments made primarily for consistency. For more in-depth theoretical details, we
direct readers to their original work.

We adopt several classical assumptions:

Assumptions. 1. The objective function L(θ;B) is Ld-smooth with respect to θd, and L∞ =
maxd Ld ; 2. The stochastic gradient∇L(θ;B) has σ2 variance, i.e. E

[
∥∇L(θ;B)−∇L(θ)∥2

]
≤

σ2 ; 3. Each entry of Σt lies in the range [βℓ, βu] with 0 < βℓ ≤ βu.

The the descent direction ∇̂Lµ(θt) defined as:

∇̂Lµ =

πb∑
i=1

L(θt + µΣ
1/2
t zi;B)− L(θt − µΣ

1/2
t zi;B)

2bµ
Σ

1/2
t zi. (9)

and update rule is θt+1 = θt − ηt∇̂Lµ(θt).

Proof. By the update rule of θt and above assumptions, we have

E [L(θt+1)]− E [L(θt)]

≤− ηtE
[
⟨∇L(θt), ∇̂Lµ(θt)⟩

]
+

L∞η2t
2

E
[
∥∇̂Lµ(θt)∥2

]
≤− ηt∥∇L(θt)∥2Σt

+ ηtO (µ∥∇L(θt)∥)
+ 2η2tL∞ (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2)

≤− ηt
2
∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2)

=− ηt
2
(1− 4ηtL(tr(Σt) + βu)) ∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2)

≤− ηt
4
∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2),

where the second inequality is derived from the following lemma (Zhao et al., 2024b):

E
[
∇̂Lµ(θt)

]
= Σt∇L(θt) +O(µ)

E
[
∥∇̂Lµ(θt)∥2

]
≤ 4 (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 4βu (tr(Σt) + βu)Σ
2 +O(µ2).

By rearranging and summing over T iterations, we have:

E

[
1

T

T∑
t=1

∥∇L(θt)∥2
]
≤ 1

Tβℓ

T∑
t=1

∥∇L(θt)∥2Σt

≤4(L(θ1;B)− L(θ∗;B))
Tβℓη

+
8ηL∞ (tr(Σt) + βu)

Tβℓ
σ2 +O(µ2)

=
32L∞ (tr(Σt) + βu) (L(θ1;B)− L(θ∗;B))√

Tβℓ

+
σ2

T 3/2βℓ
+O

(
µ2

)
,

where the first inequality is based on the assumption 3, and η selected as 1
8
√
TL∞(maxt(tr(Σt)+βu

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C HYPERPARAMETER SEARCH

Here, we present the detailed hyperparameter grids used in our experiments. Empirically, we found
that the optimal learning rate for B-PDF is an order of magnitude higher than that for MeZO. Some
outlier values in the results may stem from insufficient parameter search or incomplete convergence,
likely caused by limited training steps and small batch sizes due to hardware memory constraints.

Model Method Hyperparameters Values

Learning rate schedule Linear decay
General Settings in Common Steps 20000

LoRA rank 8

OPT-1.3B First-order

Batch size {1, 2}
Learning rate {1, 3}or{5, 7} × {1e−6, 1e−7}

µ 1e−3
Weight Decay 0

OPT-1.3B Zeroth-order

Batch size {1, 2, 8}
Learning rate {1, 3}or{5, 7} × {1e−5, 1e−6}

µ 1e−3
Weight Decay 0

Hessian Smooth Type Constant 1e−9
BCD-Hessian Smooth Type Constant 1e−5

BCD-Update Interval {5, 10}
BCD-selected layers {1, 2}

LLaMA-2-7B First or Zeroth-order

Batch size {1}
Learning rate {3} × {1e−6, 1e−7}

µ 1e−3
Weight Decay 0

Table 5: The hyperparameter grids used for OPT-1.3B and LLaMA-2-7B experiments.

D ADDITIONAL VISULIZATION RESULTS

Here, we present the bar chart illustrating the test results of OPT-1.3B.

Figure 4: Bar chart illustrating the results of training OPT-1.3B with different methods across various
benchmarks.

16

	introduction
	Related Work
	Revisiting Memory Consumption from BCD Perspective
	Preliminaries of Zeroth-order Optimizers
	SPSA, ZO-SGD, and MeZO
	HiZOO
	Block Coordinate Descent

	Revisiting Memory Consumption from BCD Perspective

	Methodology
	BCD-intergrated Zeroth-Order Newton Method Optimizer
	Convergence Analysis

	Experiments
	Experiments on OPT-1.3B with a single RTX 4090
	Experiments on LLaMA-2-7B with a single RTX A6000

	Conclusion
	Implementation Details
	Convergence Analysis
	Hyperparameter Search
	Additional Visulization Results

