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Abstract001

There has been increasing interest in using002
Large Language Models (LLMs) for trans-003
lating natural language into graph query lan-004
guage (NL2GQL). While progress has been005
made, current approaches often fail to fully ex-006
ploit the potential of LLMs to autonomously007
plan and collaborate on complex NL2GQL008
tasks. To address this gap, we propose NAT-009
NL2GQL, an innovative multi-agent frame-010
work for NL2GQL translation. The framework011
consists of three complementary agents: the012
Preprocessor agent, the Generator agent, and013
the Refiner agent. The Preprocessor agent han-014
dles tasks such as entity recognition, query015
rewriting, and schema extraction. The Gen-016
erator agent, a fine-tuned LLM trained on017
NL-GQL data, generates corresponding GQL018
statements based on queries and their related019
schemas. The Refiner agent refines the GQL or020
context using error feedback from the GQL ex-021
ecution results. In the absence of high-quality022
open-source NL2GQL datasets based on nGQL023
syntax, we developed StockGQL, a Chinese024
dataset derived from a Chinese financial market025
graph database, which will be made publicly026
available to support future research. Experi-027
ments on the StockGQL and SpCQL datasets028
demonstrate that our approach significantly out-029
performs baseline methods, underscoring its030
potential to drive advancements in NL2GQL031
research.032

1 Introduction033

Graph data is gaining prominence in modern data034

science for its ability to reveal complex relation-035

ships, enhance information connectivity, and sup-036

port intelligent decision-making. It is particularly037

valuable in fields such as finance, healthcare, and038

social networks, where managing highly connected039

and structurally complex data is crucial (Zhao et al.,040

2022a; Sui et al., 2024). Graph data requires spe-041

cialized graph databases (DBs) for efficient storage042

NL2GQL System

What are the stock codes 
held by the fund managed 
by the fund manager Tom?

 User

MATCH (f:manager{name:'Tom'})-
[:manage]->(p:fund)-[:hold]->(s:stock)
RETURN s.stock.code

  
 Nodes:
         'entity_type': 'manager', 'properties': {'name', 'string', 'degree', 'string', ...}
         'entity_type': 'fund', 'properties': {'code', 'string', 'name', 'string', ...}
         'entity_ype': 'stock', 'properties': {'code', 'string', 'registered_capital', 'float', ...}
                  ...       
 Edges:
         'edge_type': manage, 'properties': {'name', 'string', 'degree', 'string', ...}
         'edge_type': hold, 'properties': {'name', 'string', 'degree', 'string', ...}
                  ...

Schema

Graph database

 question
 answer

 execute

 schema

 generate

stock.code:
=========
sh00001
sh00002

 answer

Figure 1: The demonstration of the NL2GQL task trans-
forming the user’s natural language into a graph query
language that can be executed on a NebulaGraph.

and processing (Pavliš, 2024). Popular graph DBs, 043

including Neo4j, NebulaGraph, and JanusGraph, 044

offer distinct features but share similar query graph 045

languages (GQLs) (e.g., Cypher, nGQL, and Grem- 046

lin), enabling users to analyze data efficiently. 047

Despite the growing importance of graph data, 048

ordinary users often struggle with graph DBs due 049

to their complex operations and lack of technical 050

expertise, limiting their adoption in real-world ap- 051

plications (Guo et al., 2022). Additionally, the com- 052

plex syntax of GQL creates further obstacles, espe- 053

cially for users attempting to translate natural lan- 054

guage (NL) into GQL, a task known as NL2GQL. 055

These challenges make NL2GQL a particularly de- 056

manding problem (Liang et al., 2024b; Zhou et al., 057

2024). Figure 1 shows an NL2GQL example for 058

NebulaGraph, highlighting key components like 059

natural language understanding, DB schema com- 060

prehension, and GQL generation. This emphasizes 061

the need for a system that automates NL2GQL, sim- 062

plifying graph data queries and analysis to promote 063

wider adoption. 064

NL2GQL is a specialized application of the 065

Seq2Seq task. Modern methods have moved from 066

template-based approaches to generative models, 067

offering more flexibility and accuracy in handling 068

complex queries. The study (Guo et al., 2022) first 069

applied a Seq2Seq framework to NL2GQL and 070
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introduced the SpCQL dataset. The work (Zhao071

et al., 2023) developed a SQL2Cypher algorithm072

for mapping SQL to Cypher, though the approach is073

limited by the differences between GQL and SQL.074

The paper (Tran et al., 2024) proposes the CoBGT075

model, combining BERT, GraphSAGE (Hamilton076

et al., 2017), and Transformer for key-value ex-077

traction, relation-property prediction, and Cypher078

query generation.079

LLMs have revolutionized performance in NLP080

tasks, with applications extending to DB re-081

search (Zhu et al., 2024; Ren et al., 2024; Peng082

et al., 2024; Zhou et al., 2023; Lao et al., 2023),083

where they bridge natural language and structured084

query languages for more intuitive DB interac-085

tions. Research on LLMs for graph DBs, especially086

NL2GQL, is growing. Tao et al. (2024) uses heuris-087

tic prediction and LLM revision, showing effec-088

tiveness in some domains. Zhou et al. (2024) com-089

bines smaller models for ranking and rewriting with090

larger models for the final NL-to-GQL transforma-091

tion. Liang et al. (2024b) proposes constructing an092

NL2GQL dataset using domain-specific graph DBs093

and tokenization to enhance accuracy.094

LLM-based methods exhibit some effective-095

ness in solving NL2GQL tasks, but their stream-096

lined approach carries a major challenge—error097

accumulation. Incorrect extraction of the related098

schema can lead to flawed GQL generation. For099

example, as shown in Figure 1, the correct re-100

lated schema for the query should include the101

nodes "manager," "fund," and "stock," and edges102

"manage" and "hold." If the extracted schema103

omits "stock" and "hold," the generated GQL, such104

as MATCH (f:manager{name:’Tom’})-[:manage]-105

>(p:fund) RETURN s.fund.code, will produce in-106

correct results.107

In this study, we propose NAT-NL2GQL, a108

multi-agent framework for translating NL2GQL,109

as shown in Figure 3. The framework consists110

of three agents: the Preprocessor, Generator, and111

Refiner. The Preprocessor agent handles data pre-112

processing tasks, such as extracting values from the113

graph DB, performing named entity recognition114

(NER), rewriting user queries, linking paths, and115

extracting related schemas. The Generator agent,116

a fine-tuned LLM trained on the NL-GQL dataset,117

generates the GQL based on the context and user118

queries. The Refiner agent refines the GQL or con-119

text using error information from GQL execution120

results. These agents interact iteratively for up to121

three rounds. Given that different graph DBs have122

varying GQL syntaxes, we propose a general frame- 123

work to handle these differences. To address the 124

lack of high-quality NL2GQL datasets, we devel- 125

oped StockGQL, derived from a financial market 126

NebulaGraph DB. We evaluated our framework 127

using the StockGQL and SpCQL datasets (Guo 128

et al., 2022), showing significant improvements 129

over baseline methods in NL2GQL accuracy. Ab- 130

lation experiments further confirm the importance 131

of each module in enhancing task performance. 132

Key Contributions. To summarize, this paper 133

makes the following contributions: 134

• First, to alleviate error accumulation inherent 135

in streamlined methods, we designed a collab- 136

orative and iterative multi-agent framework to 137

tackle the NL2GQL task. 138

• Second, based on a Chinese financial market 139

NebulaGraph DB, we constructed the Stock- 140

GQL dataset, which can serve as a testbed for 141

future NL2GQL research. 142

• Third, our proposed method surpassed the 143

baseline methods on both StockGQL and 144

SpCQL datasets, which denotes the new state- 145

of-the-art NL2GQL results in both general 146

and specific domains. 147

2 Related works 148

NL2GQL is a typical NLP task that has emerged 149

with the widespread adoption of graph data and can 150

be classified as a seq-to-seq task (Guo et al., 2022; 151

Zhao et al., 2023). Its primary function is to convert 152

users’ NL questions into GQL queries that can be 153

executed on a graph DB. This task involves user 154

queries understanding, graph schema linking, and 155

GQL generation (Liang et al., 2024b; Zhou et al., 156

2024). Early efforts focused on using hand-crafted 157

rules to translate NL into GQL (Zhao et al., 2022b). 158

Modern approaches primarily incorporate state-of- 159

the-art (SOTA) models to optimize performance. 160

We categorize LLM-based NL2GQL methods into 161

two types: PLMs-based methods and LLMs-based 162

Methods. 163

PLMs-based methods. Fine-tuning PLMs within 164

a sequence-to-sequence framework is one of the 165

most widely used approaches for generative tasks 166

in NLP. Initially, Guo et al. (2022) constructed 167

a text-to-Cypher dataset and designed three base- 168

lines: seq2seq, seq2seq + attention (Dong and Lap- 169

ata, 2016), and seq2seq + copying (Gu et al., 2016). 170
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However, the results on the two evaluation met-171

rics, EX and EX, were not satisfactory. Reference172

(Tran et al., 2024) employs the BERT (Kenton and173

Toutanova, 2019) model for key-value extraction174

and uses GraphSAGE (Hamilton et al., 2017) to175

analyze the relational properties of the DB. These176

features are then fed into a transformer to generate177

the Cypher query. Their proposed small Text-to-178

Cypher dataset outperforms seq2seq models like179

T5 (Raffel et al., 2020) and GPT-2 (Radford et al.,180

2019). Reference (Liang et al., 2024a) introduces181

the KEI-CQL framework, a heuristic-like approach182

that utilizes pre-trained language models to extract183

semantic features from natural language queries184

and populate predefined slots in Cypher query185

sketches, effectively addressing the NL2GQL chal-186

lenge.187

LLM-based methods. Leveraging the powerful188

understanding and generation capabilities of LLMs189

to tackle the NL2GQL task has become a recent190

research hotspot. Reference (Tao et al., 2024)191

attempts to combine heuristic methods with LLM-192

based approaches. They first extract GQL clauses193

using heuristic rules, then concatenate these clauses194

to form a complete GQL, and finally use an LLM195

for refinement. Reference (Zhou et al., 2024) de-196

constructs the NL2GQL task into individual sub-197

tasks, using a combination of smaller models and198

LLMs for each stage. Specifically, smaller models199

are employed during the initial ranking and rewrit-200

ing phases, while an LLM is used for the final201

generation step. In contrast, Liang et al. (2024b)202

aligns LLMs with domain-specific graph DBs to203

address NL2GQL tasks within those DBs. They204

construct an NL2GQL dataset based on a domain-205

specific graph DB, then fine-tune an LLM with206

this dataset, enabling the LLM to effectively tackle207

NL2GQL tasks in the specific domain. However,208

streaming-based task decomposition methods of-209

ten struggle with error accumulation. In response210

to the observed challenge, we introduce the NAT-211

NL2GQL framework. Detailed comparisons with212

similar tasks (e.g., Text2SQL, KBQA) are provided213

in Appendix 8.9.214

3 PRELIMINARIES215

NL2GQL Task Definition. The input consists216

of an NL query X and a graph DB G, which is217

represented as G = {(s, r, o) | s, o ∈ V, r ∈ E}.218

Here, V and E denote the sets of vertices and edges,219

respectively. The objective is to generate a correct220

GQL query based on the provided question and the 221

graph DB. 222

LLM-based NL2GQL Systems. The in-context
learning approach enables LLMs to generate accu-
rate answers by incorporating a few examples into
the prompt. This can be formalized as follows:

Q̂ = LLMICL(I,D,NL)

Here, I represents the task description, D consists 223

of demonstrations from annotated datasets, and NL 224

refers to the input question. 225

4 StockGQL Dataset Build 226

We use the self-instruct method (Wang et al., 2022) 227

to create StockGQL, based on a real-world finan- 228

cial stock NebulaGraph DB, with privacy process- 229

ing applied to named entities. Figure 2 illustrates 230

our approach. Next, we will provide a detailed 231

explanation of each step’s functionality. 232

Schema Extraction. As shown in Step 1 of Fig- 233

ure 2, we extract the schema from the graph DB, 234

identifying the nodes, edges, and their attributes. 235

This forms the foundation for creating a structured 236

representation of the graph, enabling subsequent 237

query generation and processing. 238

Subschema Extraction. A subschema is a subset 239

of the graph’s schema, containing only partial in- 240

formation. Step 2 of Figure 2 involves extracting a 241

subschema by applying specific rules to identify all 242

possible path combinations, from 0-hop to 6-hop 243

paths. 244

Data Generation. Step 3 in Figure 2 shows the 245

data generation module, detailed in Algorithm 1. 246

Using the ICL method, we sample K data points 247

from the pool, which initially contains 16 manually 248

crafted examples. These are used to create masked 249

NL-GQL pairs, where entity names are replaced 250

with placeholders in both the query and the GQL. 251

An example is shown below: 252

Masked query : What is the code of stock [s]? 253

Masked GQL : MATCH (s:stock{name:’[s]’}) 254

RETURN s.stock.code 255

We use the placeholder [s] to represent stock entity 256

names in both the natural language query and the 257

corresponding GQL. 258

We generate each subschema for m times to 259

cover as many attributes of all entities as possi- 260

ble. Using the self-instruct approach, the process 261
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SChema:{
Nodes:
 {‘tag’ : chairman,.. }
 {‘tag’ : stock,..  } ,
        ...       
Edges:
 {‘tag’ : hold,...}   
 {‘tag’ :  is_chairman,...}
      ...
} Graph 

DB

SubSChema:{
Nodes:
  {‘tag’ : chairman,.. },
  {‘tag’ : stock,.. },
      ...
Edges:
  {‘tag’ : is_chairman,...}
}

Subschema 
extraction

Masked data pairs:

Masked Query:
Who is the chairman of  [s] ?

Masked GQL :
match (c:chairman)-[:is_chairman]-> 
(s:stock {name:'[s]'})
return c.chairman.name
    ...

Data 
generation

Schema extraction
1

2 3

Data pairs:
Query:
Who is the chairman of Tencent 
Technology?

GQL :
match (c:chairman)-[:is_chairman]                 
-> (s:stock {name:'Tencent 
Technology'})
return c.chairman.name
     ...

Data validation
4

Name entity  
  filling

Data pairs:

Query:
Who is the chairman of Tencent ?

GQL :
match (c:chairman)-[:is_chairman]         
-> (s:stock {name:'Tencent 
Technology'})
  return c.chairman.name
     ...

   Name entity 
colloquialization

6

Data pairs:
Query:
Who holds the position of 
chairman at Tencent?

GQL :
match (c:chairman)-[:is_chairman]         
-> (s:stock {name:'Tencent 
Technology'})
  return c.chairman.name
...

        Style
 transformaton

7

5

Figure 2: This is the flowchart for constructing the dataset, where the parts of the data that have changed relative to
the previous step in Step 5, Step 6, and Step 7 are highlighted. The GQL is based on the nGQL syntax.

Algorithm 1: Masked NL-GQL Data Pairs
Generation

Input: A set of subschemas; Data pool D; Number of
demonstrations K; Iterations number m; Task
description I

1 foreach s in subschemas do
2 for i = 1 to m do
3 Sample K items from Data pool;
4 Build demonstrations E using the sampled

items;
5 Generate Masked NL-GQL Data Pairs;
6 d_list← LLMICL(I , E , s);
7 Add d_list to D;

8 return D

iterates until all subschemas have been covered, at262

which point it will terminate.263

Data Validation. This step filters out erroneous264

data where NL and GQL are inconsistent. We fol-265

low the approach outlined in (Liang et al., 2024b),266

using an entity-filled, CoT-based GQL2NL method267

to generate NL′ from GQL. The data is then fil-268

tered based on low embedding similarity between269

NL and NL′. As a result, we obtain a large num-270

ber of high-quality masked NL-GQL data pairs.271

Name Entity Filling. This step involves filling in272

the previously masked data by extracting relevant273

named entities from the graph DB based on the274

mask type. For example, [s] corresponds to stock275

entity names.276

Name Entity Colloquialization. In this step, we 277

randomly select a dataset with named entities and 278

manually rewrite the entities in both the NL and 279

GQL as abbreviated forms. This simulates real- 280

world scenarios where users commonly use the 281

abbreviation of the entity names. For example, in 282

Step 6 of Figure 2, the colloquialization of Tencent 283

Technology has been changed to Tencent. 284

Style Transformation. The final step is to enhance 285

query diversity by rephrasing the NL, adjusting its 286

wording and phrasing to suit different contexts or 287

user needs while preserving the original meaning. 288

This includes tailoring the NL to different linguistic 289

preferences, tones, or levels of formality, ensuring 290

clarity and relevance across various scenarios with- 291

out changing its intended purpose. 292

It is worth noting that our method is generaliz- 293

able to both general and domain-specific areas, 294

enabling the generation of NL2GQL datasets 295

in various languages, based on different Graph 296

DBs, across a wide range of domains. We have 297

constructed the Chinese StockGQL dataset. A sta- 298

tistical analysis of the data, shown in Table 1, re- 299

veals that 63% of the queries involve more than 300

2 hops, with 26% involving more than 3 hops. 301

The dataset includes 12 types of nodes, 13 types 302

of edges, and 62 types of properties. StockGQL 303

is an NL2GQL dataset based on the nGQL syn- 304

tax, designed for complex multi-hop, multi-type 305
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queries. We hope its open-source release will ad-306

vance NL2GQL research and model development.307

The dataset format is shown in Appendix 8.1.308

Dataset 0-hop 1-hop 2-hop 3-hop 4-hop Others

Train (4572) 528 1167 1666 942 253 16
Dev (655) 70 163 207 155 54 6
Test (1229) 172 378 414 194 62 9

Table 1: Statistics on the number of hops contained in
StockGQL dataset.

5 Method309

In this section, we explain the NAT-NL2GQL work-310

flow. As shown in Figure 3, it consists of three311

agents: Preprocessor, Generator, and Refiner. The312

agents work together iteratively to complete the313

task. Next, we will provide a detailed description314

of the specific functions of each module.315

5.1 Preprocessor Agent316

As highlighted in (Liang et al., 2024b; Zhou et al.,317

2024), extracting the NL-relevant schema from the318

full graph DB schema offers three main benefits:319

reducing schema size to avoid context length issues,320

eliminating irrelevant noise to improve GQL accu-321

racy, and speeding up GQL generation. The Pre-322

processor agent extracts relevant schemas, aligns323

named entities in the query with those in the DB,324

and rewrites the query as needed, including tasks325

like NER, entity alignment, schema revision, link-326

ing completion, and query rewriting.327

LLM-based NER. Extracting named entities from328

NL is crucial for identifying the related schema.329

Previous studies have shown that LLMs can effec-330

tively recognize named entities (Xie et al., 2023;331

Xiao et al., 2024; Xu et al., 2023). Building on332

this, the Preprocessor agent uses LLM-based NER333

to extract entities from the query, helping pinpoint334

relevant schema parts. This reduces the schema335

search space and ensures accurate mappings be-336

tween query entities and graph DB counterparts for337

precise GQL generation. We use ChatGPT-4 for338

entity extraction, following the prompt structure in339

Appendix 8.2.340

Entity Alignment. After extracting named entities,
we align them with corresponding entity names
in the graph DB. This ensures accurate mapping
to relevant nodes or edges, enabling precise query
generation. We first build a dictionary D, where
each key is an entity type and its value is a list of
names. We then compare extracted entity names

with those in the dictionary. If an exact match is
found, the entity type name is assigned. For un-
matched entities, we use locality-sensitive hashing
(LSH) (Datar et al., 2004) to select the most similar
entity name. This process is formulated as:

D̂ = LSH(Z,D, γ)

d̂ = argmax
di∈D̂

Cosine(Emb(X ), Emb(di))

Here, Z denotes the extracted named entities from 341

the NL using LLM-based NER, D is the entity 342

dictionary from the graph DB, and D̂ consists of 343

entities retrieved using LSH similarity to X with 344

threshold γ. Emb(X ) represents the embedding of 345

X encoded via all-MiniLM-L12-v1, and d̂ denotes 346

the entity names extracted based on cosine simi- 347

larity to X . After alignment, we obtain the entity 348

names with their corresponding types. 349

Linking Completion. While multiple entity types 350

are extracted, they may not necessarily form a con- 351

nected subgraph. To handle queries that require 352

reasoning across different entity types, we link re- 353

lated entities. We begin by extracting entity and 354

attribute names from the graph database schema, 355

matching them with those in the query, and elim- 356

inating duplicates. To obtain a relevant subgraph, 357

we use the search algorithm from (Liang et al., 358

2024b) to identify the smallest subgraph that in- 359

cludes all the extracted entities. Finally, we apply 360

the algorithm in Appendix 8.4 to complete the in- 361

termediate entities and relationships, resulting in a 362

candidate related schema. 363

Related Schema Revision. Due to various fac- 364

tors, such as potential errors in NER, entities with 365

identical names, inconsistent attribute naming in 366

the graph database , the candidate related schema 367

may include redundant nodes and edges. We ap- 368

ply further filtering using ChatGPT-4 to retain only 369

the most relevant entities and relationships. The 370

specific prompt is provided in Appendix 8.3, and 371

experimental results show that this significantly 372

improves accuracy. 373

Question Rewriting. Queries may include col- 374

loquial terms or abbreviations, which need to be 375

aligned with graph DB entities for accurate GQL 376

generation. After aligning named entities, mis- 377

matches are replaced with corresponding entity 378

names. Some entities may not match exactly, but 379

the related schema revision step filters out irrele- 380

vant ones. This process rewrites NL entity names 381

for consistency with the graph DB. For example, 382

the original query: 383
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Generator

Preprocessor

Graph 
DB

NL NER

Rewrite

Info:{
NL
Rewritten NL
Related Schema 
}

Graph DB

GQL

Right Yes

N
O

GQL & Answer

3 times

Info

GQL

Error Info

Error Info

 Packaged 
Information
       or
Refined GQL
        

Refine

Refiner

Refined GQL

Prompt         LoRA

Related Schema

Packaged 
Information

Rewritten NL

Linking

Info

Figure 3: Our NAT-NL2GQL framework consists of three synergistic agents: the Preprocessor agent, the Generator
agent, and the Refiner agent. The entire process follows a cyclic and iterative flow, with the three agents collabora-
tively handling data preprocessing, GQL generation, and GQL refinement.

梁dong是董事长的股票关联的产业下游的产业有哪384

些？385

(What are the downstream industries related to the indus-386

tries associated with the chairman Liang Dong’s stock?)387

can be revised to :388

梁东是董事长的股票关联的产业下游的产业有哪389

些？390

5.2 Generator Agent391

Once data pre-processing is complete, we gener-392

ate the GQL using the obtained information. To393

optimize memory usage while maintaining perfor-394

mance, we apply Parameter Efficient Fine-Tuning395

(PEFT) techniques, such as LoRA (Hu et al., 2021),396

which fine-tunes only a small subset of parame-397

ters. This approach is ideal for GQL generation,398

balancing model size and computational efficiency.399

We fine-tune the selected base LLMs using LoRA.400

As shown in Figure 3, the fine-tuning prompt com-401

bines the original NL, rewritten NL, and related402

schema. During training, the golden related schema403

from labeled GQL is used, while during inference,404

the Preprocessor agent predicts the related schema.405

5.3 Refiner Agent406

Many studies show that rewriting queries with syn-407

tax errors improves query accuracy (Pourreza et al.,408

2024a; Talaei et al., 2024; Zhou et al., 2024). How- 409

ever, these methods often rely on LLMs to correct 410

syntax errors, which usually involve only minor 411

modifications to the original query and may not 412

address more complex issues. Additionally, error 413

information typically highlights only the first error 414

encountered, making it unsuitable for queries with 415

multiple errors. Most importantly, if the related 416

schema or query from earlier steps is incorrect, fix- 417

ing the GQL syntax alone may not resolve the issue, 418

as it may still not align with the original query. In 419

such cases, the error information should prompt 420

a review of the auxiliary information from earlier 421

steps. 422

As shown in the refine prompt in Appendix 8.5, 423

our approach differs by using the question, prepro- 424

cessed data, GQL, and error information to deter- 425

mine whether the related schema is correct. If the 426

schema is correct, we directly rewrite the GQL. If 427

it’s wrong, this indicates an error in the previous 428

data preprocessing step. In that case, we package 429

the information and send it to the Preprocessor 430

agent, treating both the GQL and error details as 431

historical data for re-execution. We also set an it- 432

eration limit, terminating the process if the GQL 433

remains incorrect after several attempts. The Re- 434

finer agent then decides whether to modify the GQL 435

or save the historical data to restart the process, as 436

shown in Figure 4. 437
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Method Backbones StockGQL SpCQL
EM(%) EX(%) EM(%) EX(%)

ICL(K=4)

GLM-4-9B-Chat 30.43 28.23 7.03 8.22
Qwen2.5-14B-Instruct 31.16 27.18 7.87 8.92
LLaMA-3.1-8B-Instruct 24.74 23.35 7.42 8.21
LLaMA-3.2-3B-Instruct 8.62 8.46 6.03 7.27
ChatGPT-3.5-Turbo 29.29 29.21 7.37 7.62
ChatGPT-4o 40.68 38.08 9.22 10.26

Fine-Tuning GLM-4-9B-Chat 80.96 81.77 53.86 52.12
Qwen2.5-14B-Instruct 82.67 83.65 53.91 51.57
LLaMA-3.1-8B-Instruct 82.75 83.91 54.16 50.57
LLaMA-3.2-3B-Instruct 82.51 82.99 49.18 48.83

Others’ approach SpCQL 1.4 1.8 2.3 2.6
Align-NL2GQL 82.99 84.06 54.21 52.86
R3-NL2GQL 81.86 84.13 55.06 53.06

Ours Qwen2.5-14B-Instruct & ChatGPT-4o 85.44 ↑2.45 86.25 ↑2.12 59.99 ↑4.93 58.69 ↑5.63

Table 2: Comparison between our method and the baseline method. The bold numbers indicate the best results .
The red upward arrow denotes an improvement, and the red number in parentheses indicates the exact improvement
value compared to the best baseline method.

  
 Nodes:
         'entity_type': 'fund', 'properties': {'name':'string', 'code':'string', 'scale':'float',...}
         'entity_ype': 'stock', 'properties': {'code': 'string', 'registered_capital',:'float', ...}
         'entity_type': 'industry', 'properties': {'name: 'string', 'scale': 'string',...}
Edges:
         'edge_type': hold, 'start_tag':'fund','end_tag':'stock','properties': {'name':'string', ...}
         'edge_type': associate, 'start_tag':'stock','end_tag':'industry','properties': {'name':'string', ...}
                          

哪些公募基金持有与属于汽车零部件产业的股票？
（Which public funds hold stocks belonging to the automotive parts industry?）

Related 
SChema

GQL Error Ifo

AssertionError: SemanticError: Alias used but 
not defined: `public_offering_fund'

MATCH   (p:fund)-[:hold]->(:stock)-[:associate]->(:industry{name:'汽车零部件'}) 
RETURN  p.fund.name

Refined GQL

Refiner agent

MATCH   (:fund)-[:hold]->(:stock)-[:associate]-
>(:industry{name:'汽车零部件'}) 
RETURN  fund.name

NL

Figure 4: A refined example.

6 Experiment Results438

6.1 Experimental Setup439

Datasets. We conducted experiments on the Stock-440

GQL and SpCQL (Guo et al., 2022) datasets. The441

SpCQL dataset uses Cypher GQL, while Stock-442

GQL follows nGQL syntax.443

Baseline Methods. To validate and compare the ef-444

fectiveness of our method, as shown in Table 2. we445

selected three types of baseline methods: ICL ap-446

proaches, fine-tuning approaches, and a method447

from previous related work. For the ICL ap-448

proaches, the prompt format we designed is il-449

lustrated in Appendix 8.6. In the fine-tuning ap-450

proaches, the complete schema is incorporated into451

the input.452

Evaluation Metrics. We follow the approach in453

(Guo et al., 2022; Liang et al., 2024b), using exact-454

set-match accuracy (EM) and execution accuracy455

(EX)to evaluate our method. EM measures the456

consistency of individual components, segmented457

by keywords, between the predicted query and its458

corresponding ground truth, while EX assesses the 459

consistency of the execution results in the DB. 460

Implementation Details. Experiments were con- 461

ducted on an A800 GPU, using GLM-4-9B-Chat, 462

Qwen2.5-14B-Instruct, LLaMA-3.1-8B-Instruct, 463

LLaMA-3.2-3B-Instruct, ChatGPT-3.5-Turbo, and 464

ChatGPT-4 as the LLMs. The number of demon- 465

strations k was set to 4, and the LSH threshold γ 466

was set to 0.6. 467

6.2 Main Results 468

An analysis of the results in Table 2 leads to the 469

following conclusions: First, our approach outper- 470

forms all baselines. On the StockGQL dataset, it 471

surpasses the best baseline by 2.45% on the EM 472

metric and 2.12% on the EX metric. On the SpCQL 473

dataset, it improves by 4.93% on EM and 5.63% 474

on EX. Second, the ICL method performs poorly 475

for NL2GQL, likely due to the lack of high-quality 476

GQL corpora during model training. A possible so- 477

lution is to gather high-quality GQL data to retrain 478

base LLMs. Third, the SpCQL dataset is more chal- 479

lenging than StockGQL due to more entity name 480

mismatches, which explains the larger improve- 481

ment seen in SpCQL, where our entity alignment 482

approach is particularly effective. Lastly, while 483

LLaMA-3.1-8B-Instruct outperforms LLaMA-3.2- 484

3B-Instruct with ICL, their performances are nearly 485

identical after fine-tuning. This suggests smaller 486

models are less suited for ICL but more effective 487

with fine-tuning when enough data is available. 488
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6.3 Further Analysis489

Breakdown Analysis. We analyzed the model’s490

performance on StockGQL by hop count, as shown491

in Figure 5. The accuracy generally decreases492

as the hop number increases, indicating higher493

difficulty. Lower accuracy for 0-hop queries is494

due to their flexible, conversational nature, while495

multi-hop queries become more challenging for496

the model, highlighting the complexity of handling497

intricate dependencies and the need for advanced498

techniques to manage these queries.499

Impact of the Related Schema. As emphasized500

by previous works (Liang et al., 2024b; Zhou et al.,501

2024) and Table 4, related schema extraction is cru-502

cial. We compared our method with R3-NL2GQL503

and Align-NL2GQL on StockGQL. The results in504

Table 3 show that our method achieves the highest505

accuracy. While it performs well, improving the506

related schema extraction further remains a promis-507

ing direction for future work.508

Performance with Various Base LLMs. The509

Preprocessor and Refiner agents use ChatGPT-4o,510

while the Generator is fine-tuned with LoRA on511

Qwen2.5-14B-Instruct. We experimented with var-512

ious base LLMs for each agent and compared the513

results, summarized in Table 5. The findings indi-514

cate that the Generator agent is more robust to base515

LLM choices after fine-tuning, while the Prepro-516

cessor and Refiner agents, using unmodified base517

LLMs, are more sensitive to model choice, signifi-518

cantly affecting overall performance. Further anal-519

ysis is provided in Appendix 8.7 and Appendix 8.8.520
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Figure 5: The EM and EX accuracy of our method on
StockGQL, statistically by hop count.

6.4 Ablation Study521

The ablation study in Table 6 shows that removing522

any component reduces performance. Replacing523

the fine-tuned generator with ChatGPT-4o’s ICL524

method causes the largest drop. The "Without Re-525

generation" setting highlights the Refiner’s role in526

Method Acc(%)

Ours 86.00
Ours(w/o filtering) 72.50
Align-NL2GQL 80.15
R3-NL2GQL 81.04

Table 3: Comparison of accuracy across different meth-
ods for extracting related schemas on StockGQL.

Method EM(%) EX(%)

Error Related Schema 20.34 21.16
All Schema 82.67 84.05
Golden Related Schema 91.46 92.84

Table 4: The table shows the impact of the related
schema on GQL accuracy for StockGQL.

Agent LLM EM(%) EX(%)

Preprocessor

Qwen2.5-14B-Instruct 77.95 79.01
ChatGPT-3.5-Turbo 80.88 79.98
ChatGPT-4o 85.44 86.25

Generator
GLM-4-9B-Chat 85.03 85.84
LLaMA-3.1-8B-Instruct 85.35 86.09
LLaMA-3.2-3B-Instruct 85.19 85.92
Qwen2.5-14B-Instruct 85.44 86.25

Refiner
Qwen2.5-14B-Instruct 84.21 84.95
ChatGPT-3.5-Turbo 84.87 85.68
ChatGPT-4o 85.44 86.25

Table 5: Impact of base LLMs on NAT-NL2GQL per-
formance on StockGQL.

detecting schema errors and initiating re-extraction, 527

leading to some improvement. 528

Method EM(%) EX(%)

Ours 85.44 86.25

Without Preprocessor 80.55 ↓(4.88) 80.06 ↓(6.19)
Generator -> ChatGPT-4o 50.04 ↓(35.40) 47.93 ↓(38.32)
Without Refiner 83.40 ↓(2.04) 83.16 ↓(3.09)
Without Regeneration 84.21 ↓(1.23) 84.13 ↓(2.12)

Table 6: Ablation study on StockGQL, with the green
downward arrow showing the decrease and the number
in parentheses indicating the value.

7 Conclusion 529

In this paper, we introduce the NAT-NL2GQL 530

framework to address the NL2GQL task. Our 531

framework comprises three synergistic agents: the 532

Preprocessor Agent, the Generator Agent, and the 533

Refiner Agent. Additionally, we have developed a 534

NL2GQL dataset, named StockGQL. Experimental 535

results show that our approach significantly outper- 536

forms baseline methods. 537
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Limitations538

Although we have already constructed the Stock-539

GQL dataset for the NL2GQL task, the English540

version is still being prepared. We will release it as541

open source once it is complete.542

References543
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8 Appendix 719

8.1 Dataset Format 720

The dataset includes the following fields: 721

• Qid: A unique identifier for each query in the 722

dataset. 723

• Query_masked: The masked version of the 724

original query, where entity names and other 725

sensitive information are replaced with place- 726

holders (e.g., [s] for stock names, [i] for in- 727

dustry names). 728

• GQL_masked: The masked version of the 729

corresponding GQL (Graph Query Language) 730

query. Similar to the query, the entity names 731

in the GQL are replaced with placeholders. 732

• Query: The original, unmasked natural lan- 733

guage query, which is the input that a user 734

would typically provide. 735

• GQL: The corresponding Graph Query Lan- 736

guage (GQL) query based on nGQL syntax. 737

• SubSchema: A part of the overall graph 738

schema that is relevant to the specific query. 739

It includes the nodes, edges, and properties 740

involved in the query, providing a structured 741

representation of the relevant subgraph from 742

the graph DB. 743

• Masked_name: A list of entity names that 744

were masked in the query and GQL. 745
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• Oral_name: Users often use shortened or in-746

formal terms when querying DBs; this field747

represents the formal version of the colloquial748

name.749

• Answer: The result or output generated by750

executing the corresponding GQL query on751

the graph DB.752

Here is an example. Since our dataset is in Chi-753

nese, we have provided the corresponding English754

translation below the Chinese text for easier read-755

ing.756

• Qid: 10757

• Query_masked:758

[c]是董事长的股票关联的产业下游的产业有哪759

些？760

(What are the downstream industries related to the in-761

dustries associated with the chairman [c]’s stock?)762

• GQL_masked:763

MATCH (c:chairman{name:’[c]’})764

-[:is_chairman_of]->(s:stock)-[:associate]-765

>(i1:industry)-[:affect]->(i2:industry) RETURN766

i2.industry.name767

• Query:768

梁dong是董事长的股票关联的产业下游的产业有769

哪些？770

(What are the downstream industries related to the in-771

dustries associated with the chairman Liang Dong’s772

stock?)773

• GQL:774

MATCH (c:chairman{name:’梁东’})775

-[:is_chairman_of]->(s:stock)-[:associate]-776

>(i1:industry)-[:affect]->(i2:industry) RETURN777

i2.industry.name778

• SubSchema:779

nodes : ["chairman", "stock"„ "industry"]780

edges : ["is_chairman_of", "associate", "affect"]781

• Masked_name:782

[c] : 梁东’783

• Oral_name:784

梁dong’: 梁东’}785

• Answer:786

i2.industry.name : ["电脑硬件(Computer Hardware)",787

"汽车(Car)", "金融服务(Financial services)"]788

789

8.2 NER Prompt 790

The prompt we use for the NER task is shown in 6. 791

8.3 Related Schema Revision Prompt 792

The prompt used for revising the related schema is 793

illustrated in Figure 7. 794

8.4 Linking Completion Algorithm 795

The algorithm for link completion is described in 796

Algorithm 2. 797

8.5 GQL Refinement Prompt 798

The prompt for refining the GQL is shown in Fig- 799

ure 8. 800

8.6 In-Context Learning Prompt 801

The prompt used for in-context learning is shown 802

in Figure 9. 803

8.7 Error Analysis 804

To further evaluate our method, we analyzed the 805

errors on StockGQL, categorized by hop count and 806

error type. As shown in Figure 10, most errors oc- 807

cur within the 0 to 3 hop range, reflecting the higher 808

proportion of test data in this range. The "Error 809

Statistics by Type" show that nearly half of the er- 810

rors are due to schema extraction issues. Thus, im- 811

proving schema extraction accuracy is a key strat- 812

egy. Additionally, many errors stem from misun- 813

derstandings of the query, indicating that question 814

comprehension, especially for colloquial or am- 815

biguous queries, remains a critical challenge. In 816

Appendix 8.8, we present a case study to compare 817

our approach with the baseline method. 818

8.8 Case Study 819

To further demonstrate the strengths of our method, 820

we present a detailed case study in Table 7. From 821

the case, we observe that baseline methods either 822

extract the wrong related schema, generate GQL 823

with syntax errors, or fail to recognize colloquial 824

variations of named entities. In contrast, our ap- 825

proach accurately extracts the related schema, even 826

for multi-hop queries, and effectively interprets col- 827

loquial variations of named entities. This ensures 828

that entity names are recognized and accurately 829

reflected in the generated GQL, even when the in- 830

put deviates from standard formal representations. 831

This highlights the robustness and adaptability of 832

our method in handling complex and varied queries, 833

further reinforcing its effectiveness in real-world 834

applications. 835
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Instruction:
You are an expert in the NLP field. I would appreciate your assistance with an NER task. Given entity
label set: label set. Refer to the given example. Based on the provided entity label set, please recognize
the named entities in the given Question. Please directly output the answer.

Output Format:
In JSON format, for example: {Entity Name: Entity Type, Entity Name: Entity Type}.

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
Answer:

Figure 6: Prompt for performing Name Entity Recognition on questions using ChatGPT-4o.

Instruction:
You are an expert in the NLP field. I am working on an information extraction task that involves
identifying the related schema potentially relevant to a given question from a graph DB schema. I have
already extracted the Candidate Related Schema. Please assist me in verifying whether the Candidate
Related Schema contains any redundancies and ensure that each one is necessary. Based on the provided
examples, kindly provide the correct Candidate Related Schema.

Candidate Related Schema:
-The complete Schema structure of Candidate Related Nodes and Candidate Related Edges.

Output Format:
Please follow the format in the Examples. Directly output the result you consider correct after "Related
Schema:" .

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
Candidate Related Schema:
{Candidate_related_schema}

Related Schema:

Figure 7: Prompt for revising the related schema.

8.9 Comparison with Similar Tasks836

Text2SQL837

Text2SQL is a task in NLP that is quite similar838

to NL2GQL, as both involve transforming user839

queries into statements that can be executed on840

a DB. Recently, there have been many efforts to841

apply LLMs to solve Text2SQL, and these methods842

have achieved good results (Pourreza et al., 2024b;843

Maamari et al., 2024; Li et al., 2024; Caferoğlu 844

and Ulusoy, 2024). However, there are significant 845

differences between the two. 846

• The diversity inherent in GQL presents a se- 847

ries of challenges. Unlike SQL, which has a 848

well-established and standardized query lan- 849

guage for relational DBs, GQL lacks a unified 850

standard (Zhou et al., 2024). This deficiency 851
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Algorithm 2: Linking Completion Algorithm
Input: Graph Schema G = (V,E); Identified Entities Eidentified; Identified Edges Ridentified
Output: Connected Subgraph SG = (Vsubgraph, Esubgraph)

1 Function LinkCompletion(G,Eidentified, Ridentified):
2 Vsubgraph ← ∅
3 Esubgraph ← ∅
4 foreach entity vi ∈ Eidentified do
5 Vsubgraph ← Vsubgraph ∪ {vi}
6 foreach edge rj ∈ Ridentified do
7 Esubgraph ← Esubgraph ∪ {rj}
8 foreach edge ek ∈ Esubgraph do
9 foreach neighbor vl ∈ neighbors(ek) do

10 Vsubgraph ← Vsubgraph ∪ {vl}
11 Esubgraph ← Esubgraph ∪ {ek}

12 while Vsubgraph is not connected do
13 Find the minimum edge to add that connects two disconnected components
14 Esubgraph ← Esubgraph ∪ {min edge}
15 return SG = (Vsubgraph, Esubgraph)

NL 持有华强股票且持仓比例超过7%的基金经理？
(The fund manager who manages the fund that holds Huaqiang stock with a holding ratio exceeding 7%?)

Formal expression
持有华强科技股票且持仓比例超过7%的基金由哪位基金经理管理？

(Which fund manager manages the fund that holds
Huaqiang Technology stock with a holding ratio exceeding 7%?)

Method Related Nodes and Edges Output

ICL(ChatGPT-4o ) full schema MATCH (s:stock{name: ’华强’})<-[h:manage]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.name

Fine-Tuning(full schema)
Qwen2.5-14B-Instruct full schema

MATCH (s:stock{name: ’华强’})<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)
WHERE h.hold.position_ratio > 7%
RETURN fm.fund_manager.name

Align-NL2GQL Nodes:[fund_manager,fund,stock]
Edges: [manage,hold]

MATCH (s:stock{name: ’华强’})<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

R3-NL2GQL Nodes:[fund_manager,stock]
Edges: [hold]

MATCH (s:stock{name: ’华强科技’})<-[h:hold]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

Ours Nodes:[fund_manager,fund,stock]
Edges: [manage,hold]

MATCH (s:stock{name: ’华强科技’})<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

Table 7: A case study in the StockGQL dataset is presented, displaying the results of both our method and the
baseline methods. Due to space limitations, the table uses "Related Nodes and Edges" rather than listing the full
details of the related schema. The segments with predicted errors are highlighted in red, while the correct ones are
marked in blue.

creates obstacles in various areas, including852

dataset construction, the development of mod-853

els capable of generalizing across different854

DBs, and the establishment of consistent train-855

ing paradigms. There is a difference in query856

objectives. NL2GQL aims to execute queries857

on graph DBs, whereas Text2SQL targets rela-858

tional DBs. Graph DBs feature more flexible859

data structures and complex relationships, re- 860

quiring NL2GQL to manage a wider variety 861

of queries and data relationships (Liang et al., 862

2024b). 863

• The flexibility of query languages differs. 864

GQL is more flexible compared to SQL, allow- 865

ing for complex queries on nodes and edges 866
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Instruction:
You are an expert in NebulaGraph DBs, with specialized expertise in nGQL. A prior attempt to execute a
query did not produce the expected results, either due to execution errors or because the returned output
was empty or incorrect. Your task is to analyze the issue using the provided related schema of query and
the details of the failed execution. Based on this analysis, you should offer a corrected version of the
nGQL. Ensure adherence to the nGQL conventions for naming variables, entities, and attributes (e.g.,
‘s.stock.name‘) and verify that all conditional filters use ‘==‘ syntax, such as ‘s.stock.name == ’[s]’‘.

Procedure:
1. Analyze Query Requirements:
- Question: Consider what information the query is supposed to retrieve.
- Info: The preprocessed data information. - nGQL: Review the nGQL query that was previously executed
and led to an error or incorrect result.
- Error: Analyze the outcome of the executed query to identify why it failed (e.g., AssertionError).
2. Determine whether the Related Schema is correct.
- Based on the above information, first determine whether the extracted related schema is correct.
- If related schema is not correct, directly output "Info Error". Otherwise, modify the nGQL query to
address the identified issues, ensuring it correctly fetches the requested data according to the graph DB
schema and query requirements.

Output Format:
Based on whether the determined Related Schema is correct, output either "Info Error" or your corrected
query. The corrected query as a single line of nGQl code. Ensure there are no line breaks within the query.

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
Related Schema:
{RELATED_SCHEMA}
nGQL:
{nGQL}
Error:
{ERROR}
Output:

Figure 8: The prompt used for GQL refine.

in a graph DB, while SQL is constrained by867

the fixed structure and syntax of relational868

DBs. There is a greater variety of keyword869

types in GQL compared to SQL. GQL en-870

compasses more keyword types, reflecting the871

diverse data structures and query requirements872

in graph DBs. NL2GQL must recognize and873

process these different types of keywords, fur-874

ther complicating the task.875

• The complexity of query paths is notable.876

Queries in graph DBs often involve intri-877

cate paths between multiple nodes and edges.878

NL2GQL must handle these complex paths879

and translate natural language questions into 880

corresponding GQL queries, adding to the 881

overall complexity of the task. 882

The following examples highlight scenarios where 883

NL2GQL excels while Text2SQL faces limitations 884

due to relational model constraints. 885

1. Multi-hop Path Query Question: Find the 886

shortest collaboration path from User A to User 887

B, where all participants in the path belong to the 888

same department. 889

Cypher Implementation: 890

MATCH (a:User {name: "UserA"}), 891

(b:User {name: "UserB"}), 892
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Instruction:
You are an expert in NebulaGraph DBs, please write the nGQL query corresponding to the given Question
directly based on the provided knowledge graph Schema and Examples. Ensure adherence to the
nGQL conventions for naming variables, entities, and attributes (e.g., ‘s.stock.name‘) and verify that all
conditional filters use ‘==‘ syntax, such as ‘s.stock.name == ’[s]’‘. Please provide the answer directly
without any additional explanation. Please provide the answer directly without any additional explanation.
Please provide the answer directly without any additional explanation.

Output Format:
Please output nGQL directly.

Schema:
{SCHEMA}

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
nGQL:

Figure 9: Prompt for In-Context Learning.

0-hop
14%

1-hop
24%

2-hop
38%

3-hop
16%

4-hop
6%

others
2%

Error Statistics by Hop Count

Realted Schema Error
46%

Misunderstanding
29%

Calculation Error
17%

others
8%

Error Statistics by Type

Figure 10: Error analysis statistics chart. On the left is
the error statistics based on the hop count of the jump
in the NL, and on the right is the error statistics based
on the error type.

path = shortestPath((a)893

-[:COLLABORATED_WITH*]-(b))894

WHERE ALL(node IN nodes(path)895

WHERE node.department = a.department)896

RETURN path897

Text2SQL Challenges: In relational databases,898

such multi-hop path queries require recursive899

JOINs (e.g., using WITH RECURSIVE), which900

have poor performance and complex syntax. It is901

not possible to directly express the "shortest path"902

semantics, relying on stored procedures or external903

algorithms.904

2. Cyclic Relationship Detection Question:905

Detect if there exists a collaboration cycle: User A 906

→ User B → User C → User A. 907

Cypher Implementation: 908

MATCH (a:User {name: "UserA"}) 909

-[:COLLABORATED_WITH]->(b:User), 910

(b)-[:COLLABORATED_WITH]->(c:User), 911

(c)-[:COLLABORATED_WITH]->(a) 912

RETURN a, b, c 913

Text2SQL Challenges: Requires self-joins on 914

the same table multiple times (e.g., Users AS u1 915

JOIN Users AS u2 ...), leading to exponential query 916

complexity. It is not possible to directly express 917

cyclical structures and requires manually hardcod- 918

ing the path length (e.g., 3 hops in this example). 919

3. Dynamic Aggregation and Graph Pattern 920

Matching Question: Count the managers in each 921

department who have more than 10 subordinates 922

and whose subordinates have participated in cross- 923

department projects. 924

Cypher Implementation: 925

MATCH (m:Manager)-[:MANAGES] 926

->(e:Employee) 927

WITH m, COUNT(e) AS subordinates 928

WHERE subordinates > 10 929

MATCH (e)-[:PARTICIPATED_IN]-> 930

(p:Project{is_cross_department:true}) 931

RETURN m.name, subordinates, 932

COLLECT(p.name) AS projects 933
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Text2SQL Challenges: Requires combining ag-934

gregation (COUNT) with existence checks (EX-935

ISTS subqueries), leading to high complexity in936

nested queries. It is difficult to efficiently han-937

dle graph pattern matching for "cross-department938

projects" (requires multi-table JOINs and complex939

filtering conditions).940

4. Recursive Relationship Query Question:941

Find all indirect subordinates of User A, including942

the subordinates’ subordinates.943

Cypher Implementation:944

MATCH (a:User {name: "UserA"})945

-[:MANAGES*1..]->(sub:Employee)946

RETURN sub.name947

Text2SQL Challenges: In relational databases,948

recursive CTEs (WITH RECURSIVE) must be949

used, but the syntax is obscure and the performance950

is poor. It is difficult to control the recursion depth951

flexibly (e.g., the *1.. notation in this example952

represents an arbitrary depth).953

5. Graph Embedding-Based Semantic Simi-954

larity Query Question: Find users whose interests955

are similar to User A’s, with at least three common956

interests.957

Cypher Implementation:958

MATCH (a:User {name: "UserA"})959

-[:INTERESTED_IN]->(i:Interest)960

WITH a, COLLECT(i) AS interests961

MATCH (u:User)-[:INTERESTED_IN]962

->(i:Interest)963

WHERE u <> a AND SIZE([x IN interests964

WHERE x IN u.interests]) >= 3965

RETURN u.name966

Text2SQL Challenges: Requires handling set967

intersection (common interests), which in SQL968

must be implemented with INTERSECT and sub-969

queries, making the syntax cumbersome. It is not970

possible to directly express graph embedding-based971

similarity calculations (which require external ex-972

tension libraries).973

6. Temporal Graph Analysis Question: List974

all stocks that experienced a drop of more than 5%975

in a single day after five consecutive days of price976

increase.977

Cypher Implementation:978

MATCH (s:Stock)-[r:HAS_DAILY_DATA]979

->(d:DailyData)980

WITH s, d ORDER BY d.date ASC981

WITH s, COLLECT(d) AS data982

WHERE size(data) >= 6983

AND ANY(i IN RANGE(0, size(data)-6) 984

WHERE REDUCE(rising = true, 985

j IN [0..4] | rising AND 986

data[i+j+1].close > data[i+j].close) 987

AND 988

(data[i+5].close - data[i+6].close) 989

/data[i+5].close >= 0.05 990

RETURN s.name 991

Text2SQL Challenges: Requires window func- 992

tions (e.g., LAG/LEAD) and complex condition 993

combinations, reducing readability. It is difficult 994

to efficiently handle dynamic time-series patterns 995

(e.g., "consecutive N days of increase"). 996

The scenario types that can be achieved by 997

NL2GQL but are difficult to implement with 998

Text2SQL is shown in Table 8. In summary, 999

NL2GQL is more complex than Text2SQL due 1000

to its handling of graph DB queries, the flexibility 1001

of GQL, the complexity of data paths and the va- 1002

riety of keyword types. Given these differences, it 1003

is challenging to directly transplant methods from 1004

the Text2SQL task to the NL2GQL task. 1005

KBQA 1006

Knowledge-Based Question Answering (KBQA) 1007

systems leverage structured knowledge bases (KBs) 1008

to answer user queries. SP-based methods, com- 1009

monly known as NL2SPARQL, first translate nat- 1010

ural language questions into SPARQL queries, 1011

which are then executed on the KB to retrieve an- 1012

swers (Lan et al., 2021). This approach is similar 1013

to NL2GQL; however, a significant difference be- 1014

tween NL2GQL and NL2SPARQL in the KGQA 1015

domain lies in the complexity of data storage and 1016

query languages. Graph databases (Graph DBs), 1017

which manage data with intricate relationships, in- 1018

troduce additional complexity (Liang et al., 2024b). 1019

Moreover, NL2GQL requires a deeper focus on 1020

schema information, as entities in graph DBs may 1021

have a diverse range of attribute types (Zhou et al., 1022

2024). NL2GQL is also characterized by complex 1023

graph modalities, a wide variety of query types, 1024

and the unique nature of GQLs (Zhou et al., 2024). 1025

As a result, directly applying KBQA methods to 1026

the NL2GQL task is impractical. 1027

The following are additional examples that show- 1028

case the unique capabilities of NL2GQL and its 1029

corresponding Cypher implementations, which tra- 1030

ditional KBQA methods struggle to handle: 1031

1. Multi-hop Relationship and Co- 1032

participation Count Question: Find friends of 1033

the user ’Alice’ who have at least three common 1034
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Capability NL2GQL Text2SQL
Multi-hop Path Traversal ✓ × (Requires recursive CTE)

Cyclic Structure Detection ✓ × (Complex self-joins)

Recursive Relationship Query ✓ × (Syntax limitations)

Dynamic Graph Pattern Matching ✓ × (Exploding JOINs)

Temporal Graph Analysis ✓ × (Relies on window functions)

Set and Graph Embedding Operations ✓ × (Limited functionality)

Table 8: Summary of scenario types that can be achieved by NL2GQL but are difficult to implement with Text2SQL.

projects with her.1035

Cypher Implementation:1036

MATCH (alice:User {name: "Alice"})1037

-[:FRIEND_OF]->(f1:User)-[:FRIEND_OF]1038

->(f2:User)1039

MATCH (f2)-[:PARTICIPATED_IN]->1040

(p:Project)<-[:PARTICIPATED_IN]-(alice)1041

WITH f2, COUNT(DISTINCT p)1042

AS common_projects1043

WHERE common_projects >= 31044

RETURN f2.name AS mutual_friend,1045

common_projects1046

KBQA Challenges: Dynamic traversal of multi-1047

hop social relationships (2-hop friends) and associa-1048

tion with common projects. KBQA methods gener-1049

ally cannot flexibly combine multi-hop paths with1050

aggregation and filtering conditions (e.g., COUNT1051

>= 3).1052

2. Temporal Event Combination Filtering1053

Question: Identify all users who purchased Prod-1054

uct A in 2023 and rated it five stars within the last1055

six months. Cypher Implementation:1056

MATCH (u:User)-[:PURCHASED]1057

->(p:Product {name: "ProductA"})1058

WHERE p.purchase_date >= '2023-01-01'1059

AND p.purchase_date <= '2023-12-31'1060

WITH u1061

MATCH (u)-[r:RATED]1062

->(p:Product {name: "ProductA"})1063

WHERE r.rating = 5 AND1064

r.date >= date().duration("-6 months")1065

RETURN u.name, r.date AS rating_date1066

KBQA Challenges: Combining temporal win-1067

dows (2023 purchase + recent 6-month rating)1068

and cross-event associations (purchase and rating).1069

KBQA struggles with dynamic time-based calcula-1070

tions.1071

3. Aggregation and Nested Subqueries Ques-1072

tion: Count the managers in each department 1073

whose salary is above the department’s average and 1074

who manage at least two subordinates. Cypher 1075

Implementation: 1076

MATCH (d:Department) 1077

WITH d, AVG(e.salary) AS avg_salary 1078

MATCH (m:Manager)-[:MANAGES] 1079

->(e:Employee {department: d.name}) 1080

WHERE m.salary > avg_salary 1081

WITH m, COUNT(e) AS subordinates 1082

WHERE subordinates >= 2 1083

RETURN d.name AS department, 1084

m.name AS manager, m.salary 1085

, subordinates 1086

KBQA Challenges: First, calculating the depart- 1087

ment’s average salary, which then serves as a filter- 1088

ing condition. KBQA cannot dynamically execute 1089

nested aggregation (department-level aggregation 1090

+ individual-level filtering). 1091

4. Cyclic Subgraph Pattern Detection Ques- 1092

tion: Find all collaborative networks that form 1093

cycles with at least four nodes. Cypher Imple- 1094

mentation: 1095

MATCH path = (a:User) 1096

-[:COLLABORATES_WITH*3..]->(a) 1097

WHERE length(path) >= 3 1098

AND ALL(n IN nodes(path) 1099

WHERE size(apoc.coll.duplicates 1100

(nodes(path))) = 0) 1101

RETURN path 1102

KBQA Challenges: Detecting cyclic structures in 1103

graph theory (path starts and ends at the same node 1104

without repeated nodes). KBQA lacks subgraph 1105

pattern matching capability. 1106

5. Consecutive Temporal Event Detection 1107

Question: Identify all customers who placed two 1108

consecutive orders with decreasing amounts in the 1109

last three months. Cypher Implementation: 1110
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Scenario NL2GQL KBQA
Multi-hop Dynamic Path ✓ × (Relies on predefined paths)

Temporal Event Combinations ✓ × (Time logic is rigid)

Nested Aggregation ✓ × (Only single-layer aggregation)

Cyclic Pattern Detection ✓ ×
Continuous Event Sequence Analysis ✓ ×

Table 9: Summary of scenario types that can be achieved by NL2GQL but are difficult to implement with KBQA.

MATCH (c:Customer)-[o:ORDERED]1111

->(order:Order)1112

WHERE o.date >= date()1113

.duration("-3 months")1114

WITH c, order ORDER BY o.date ASC1115

WITH c, COLLECT(order) AS orders1116

WHERE size(orders) >= 21117

AND ANY(i IN RANGE(0, size(orders)-2)1118

WHERE orders[i].amount1119

> orders[i+1].amount1120

AND orders[i+1].amount1121

> orders[i+2].amount1122

)1123

RETURN c.name, [order IN orders1124

| {date: order.date, amount:1125

order.amount}]1126

AS order_history1127

KBQA Challenges: Detecting consecutive event1128

patterns (decreasing order amounts). KBQA can-1129

not handle dynamic temporal sequence aggregation1130

analysis.1131

The scenario types that can be achieved by1132

NL2GQL but are difficult to implement with1133

Text2SQL is shown in Table 9.1134
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