
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DATA-AWARE AND SCALABLE SENSITIVITY ANALY-
SIS FOR DECISION TREE ENSEMBLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision tree ensembles are widely used in critical domains, making robustness
and sensitivity analysis essential to their trustworthiness. We study the feature
sensitivity problem, which asks whether an ensemble is “sensitive” to a speci-
fied subset of features - such as protected attributes- whose manipulation can alter
model predictions. Existing approaches often yield examples of sensitivity that lie
far from the training distribution, limiting their interpretability and practical value.
We propose a data-aware sensitivity framework that constrains the sensitive exam-
ples to remain close to the dataset, thereby producing realistic and interpretable
evidence of model weaknesses. To this end, we develop novel techniques for data-
aware search using a combination of mixed-integer linear programming (MILP)
and satisfibility modulo theories (SMT) encodings. Our contributions are fourfold.
First, we strengthen the NP-hardness result for sensitivity verification, showing it
holds even for trees of depth 1. Second, we develop MILP-optimizations that sig-
nificantly speed up sensitivity verification for single ensembles and for the first
time can also handle multiclass tree ensembles. Third, we introduce a data-aware
framework generating realistic examples close to the training distribution. Fi-
nally, we conduct an extensive experimental evaluation on large tree ensembles,
demonstrating scalability to ensembles with up to 800 trees of depth 8, achiev-
ing substantial improvements over the state of the art. This framework provides a
practical foundation for analyzing the reliability and fairness of tree-based models
in high-stakes applications.

1 INTRODUCTION

Decision tree ensembles are a popular AI model, known for their simplicity, power and interpretabil-
ity. They are ubiquitous across multiple industries, ranging from banking (Chang et al., 2018;
Madaan et al., 2021) and healthcare (Ghiasi & Zendehboudi, 2021; Kelarev et al., 2012) to wa-
ter resources engineering (Niazkar et al., 2024) and telecommunication (Shrestha & Shakya, 2022).
Given that this class of models forms a cornerstone for automated decision-making in various in-
dustries, it is important to be able to trust their answers and provide guarantees on their reliability.
Towards this goal, there has been significant research in the past decade on formalizing and verifying
various safety properties of tree ensembles.

In this paper, we focus on one such problem: understanding the influence that a particular subset of
input features can have on the output of a decision tree classifier. This notion of sensitivity of the
model to a feature set has been studied in various contexts in previous works. It has been related to
individual fairness and causal discrimination (Dwork et al., 2011; Calzavara et al., 2022; Galhotra
et al., 2017; Blockeel et al., 2023), which are central to building responsible AI systems. A model
is called sensitive to a specified set of features if the output of the model can be changed by keeping
every other feature the same and varying only the specified input features. Thus the problem of
feature sensitivity verification (or simply sensitivity) is to check whether a given tree ensemble
model E is sensitive to a specified subset of features F ⊆ F , i.e, whether there exist two inputs,
called a (sensitive) counterexample pair that are identical on F \ F , but on which E gives different
outputs. Knowledge of sensitivity to specific subsets of input features is important for understanding
and mitigating attacks that aim to change model outputs by manipulating a small set of protected
input features. This analysis can also help uncover unwanted patterns in the trained models that may
arise from social biases in the training data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Two counterexample pairs from a tree ensemble trained on MNIST. (Left) A
counterexample pair where the left image is classified as 3 and the right as 8; but both are
meaningless blobs. (Right) A pair closer to the training distribution. The left image is classified as
3 and the right as 8; where both resemble a 3, but the second is confidently misclassified, providing
a more useful witness of sensitivity.

Recently, Ahmad et al. (2025) showed that sensitivity verification is NP-hard for ensembles with
trees of maximum depth at least 3, and gave a tool utilizing a pseudo-Boolean encoding to tackle
the problem for binary classifiers. However, their NP-hardness proof (via a 3-SAT reduction) does
not extend to ensembles of trees with depth at most 1 or 2, leaving the hardness of the sensitivity
problem open for such ensembles. Trees of depth 1, also called decision stumps, have been long
studied in the literature Wang et al. (2020); Horváth et al. (2022); Martı́nez-Muñoz et al. (2007) and
are of interest in several applications Chen et al. (2023); Huynh et al. (2018).

A second, major challenge is that sensitive counterexample pairs may a priori lie far from actual
data points, providing only weak evidence of a model’s sensitivity. To see an illustrative example
of this, consider Figure 1, where a tree ensemble trained on MNIST with 786 features yields two
counterexample pairs. In the left pair, the decision flips (3 to 8), but neither image likely appears in
the training set, so this does not reveal a model weakness. In contrast, the right pair is informative:
the first image closely resembles a real training image (3) and is correctly classified, but modifying
20/786 features causes misclassification to 8 while remaining near the data distribution. Do similar
cases occur when |F | = 1? They do, even in tabular datasets, as illustrated in Section C in the
Appendix. This raises the question: can we identify sensitive counterexample pairs that are closer
to the real data distribution, enabling meaningful conclusions about model sensitivity? Such coun-
terexamples are valuable for downstream tasks, such as retraining or hardening the model, but in
this work we focus solely on their identification, which is already a challenging problem.

We start by showing that the sensitivity problem is NP-hard even for ensembles of decision tree
stumps (trees of depth 1) via a novel reduction from the subset-sum problem. Next, to find coun-
terexample pairs closer to the data, we develop two complementary strategies - one using a prod-
uct of marginal distributions as an objective function and another constraint-solver based approach
where we avoid regions of sparsely populated data during the search. The pseudo-Boolean approach
of Ahmad et al. (2025) is difficult to extend with such objective functions and hence we revisit
a mixed integer linear program (MILP) approach for sensitivity verification. However, a baseline
MILP implementation, based on the original encoding of Kantchelian et al. (2016) performs worse
than the pseudo-Boolean method, highlighting the challenge of this approach. We introduce novel
optimizations to the MILP encoding that result in a significant speed up, making it feasible to analyze
large ensembles, while guiding the search toward meaningful counterexample pairs (i.e., close to the
data distribution). We also show that our new MILP encoding can be extended to obtain to-the-best-
of-our-knowledge the first tool for sensitivity verification over multiclass tree ensemble classifiers.
Empirically, we demonstrate the effectiveness of our approach on ensembles trained using XGBoost
(Chen & Guestrin, 2016), achieving an order of magnitude improvement in runtime compared to
earlier methods, as well as higher quality counterexamples, measured by their proximity to the data
distribution. Thus, our main contributions are:

• We show that sensitivity verification is NP-hard even for ensembles of depth-1 trees.

• We significantly advance sensitivity verification by enabling discovery of counterexample
pairs closer to the training distribution, through two complementary strategies: one using
a product-of-marginals objective, and another a novel constraint-solving based approach to
compute clause summaries and prune data-sparse regions in the input space.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We design a MILP-based encoding with key novel optimizations for sensitivity verification,
implemented via a combination of MILP and SMT solvers, and - to the best of our knowl-
edge - are the first to extend sensitivity verification to multiclass decision tree ensembles.

• We implement our approach in a tool SVIM and perform extensive experiments on 18
datasets and 36 tree ensembles for binary and multiclass settings. SVIM can verify tree
ensembles with up to 800 trees of depth 8, significantly outperforming the state of the art.

Related Work. A closely related problem is local robustness, which involves finding adversarial
perturbations that can cause misclassification. In the context of decision trees, this problem was
originally defined in Kantchelian et al. (2016) who showed its NP-hardness and used an MILP en-
coding to solve it. Since then, a rich line of work has emerged for robustness verification (Devos
et al., 2021; Chen et al., 2019a; Ranzato & Zanella, 2020; Törnblom & Nadjm-Tehrani, 2019; Wang
et al., 2020), using different techniques, from input-output mappings in Törnblom & Nadjm-Tehrani
(2019) to abstract interpretation in Ranzato & Zanella (2020) to dynamic programming Wang et al.
(2020) and clique-based approaches in the state-of-the-art tool, VERITAS (Devos et al., 2021). Most
recently, Devos et al. (2024) extended the last approach to local robustness verification for multiclass
tree-ensembles. While specific ideas from robustness verification are useful for sensitivity verifica-
tion (and we do build on some of them), the locality of the robustness problem allows a mixture
of simplifying optimizations given the knowledge of one input. In constrast, sensitivity verification
involves a universal quantification over two inputs, making it a more complex problem.

2 PRELIMINARIES

In a classification problem, we are given an input space X ⊆ Rd defined over a d-dimensional
feature space F , and an output space Y = {0, 1, . . . , C − 1}, where C is the number of classes. We
intend to learn the unknown mapping E : X → Y . For any x ∈ X , we will denote the value of
feature f ∈ F for x as xf . A decision tree is recursively defined as either a leaf node or an internal
node. Each leaf node n has a leaf value n.val, which is a scalar in R (for binary classification) or
a vector in RC (for multiclass classification). Each internal node n consists of references to child
nodes, decision trees n.yes and n.no and a guard n.guard, which is a linear inequality of the form
Xf < τ . Here f is a feature, Xf denotes the variable for feature f , and τ is a constant. An input
x ∈ X is evaluated on the tree T by a top-down traversal. For each encountered internal node n,
the guard of n, say n.guard = Xf < τ is evaluated by substituting X ← x in the inequality. If
the guard inequality evaluates to true, we move to n.yes; otherwise, we move to n.no. This process
continues till we reach a leaf node n, and the output of the tree T (x) is given by n.val.

To increase the power of a single decision tree, it is common to use ensembling, where multiple
decision trees are trained, and the outcomes are aggregated to reach a final decision. Formally,
a tree ensemble classifier E : X → Y consists of a set T of decision trees. The output of the
ensemble is found by aggregating the outputs of each decision tree. There are three notions of
outputs from a tree ensemble: (i) Erawc (x), which represents a linear aggregation of the outputs of
the ensemble for class c, typically a sum over the outputs of all trees in the ensemble, (ii) Eprobc (x):
the predicted class probability of class c and (iii) the output label E(x) = arg maxc Eprobc (x). In the
binary classification setting, where Y = {0, 1}, each leaf node stores n.val ∈ R and Eraw1 (x) =∑

T∈T T (x), Eraw0 (x) = −Eraw1 (x), Eprob1 (x) = SIGMOID (Eraw1 (x)), Eprob0 (x) = 1 − Eprob1 (x),
where SIGMOID : R→ R is the sigmoid function defined as SIGMOID(x) = 1/(1 + e−x).

3 FEATURE SENSITIVITY AND HARDNESS

In this section, we define the sensitivity verification problem and provide our improved hardness
results. Given a decision tree ensemble classifier E , our goal is to find two points x(1) and x(2) in the
input space X , such that they differ only in a specified subset of features F ⊆ F and have the same
values for all the remaining features, while producing different output labels when passed to the
classifier, i.e., E(x(1)) ̸= E(x(2)). This problem becomes more significant if, not only are their out-
put labels different, but the predicted class probabilities of the outputs are also far apart, indicating
a change from a highly confident positive prediction to a highly confident negative prediction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 3.1. Given a tree ensemble for binary classification E : X → {0, 1}, a set of features
F ⊆ F and a parameter g ≥ 0, E is said to be (g, F)-sensitive, if we can find two inputs x(1), x(2)

(called a counterexample pair) such that (x(1))F\F = (x(2))F\F and Eprob1 (x(1)) ≥ 0.5 + g and
Eprob1 (x(2)) ≤ 0.5 − g. The sensitivity verification problem asks if a given tree ensemble classifier
E is (g, F)-sensitive.

In what follows, we often fix g and refer to F -sensitivity; when F is clear from context, we simply
write sensitivity. Ahmad et al. (2025) showed that sensitivity is NP-Hard for tree ensembles with
maximum depth ≥ 3 for |F | = 1, |F | = constant and F = F . However, as noted by the authors,
their reduction (from 3-SAT) does not work for depth 1 and 2. Our first result is to close this gap by
showing NP-hardness at depth 1 using a novel reduction from the subset sum problem, a well-known
NP-complete problem Garey & Johnson (1979).
Theorem 3.2. Sensitivity verification with |F | = 1 is NP-Hard for tree ensembles with depth ≥ 1.

Proof. Consider an instance of the integer subset sum problem, i.e., we are given a set of n integers
U and an integer k, and we want to find a subset U ⊆ U , such that Σl∈U = k. We call the ith

integer ui where i varies from 0 to n − 1. For every index i, we create a Boolean feature fi. Then
we create a decision tree of depth 1 which splits on fi giving output 0 if fi is false and ui otherwise.
We create another Boolean feature f ′ and a decision tree of depth 1 which splits on f ′ giving output
−k − 0.5 if f ′ is false and −k + 0.5 otherwise. We call the ensemble of all these trees to be
E : {0, 1}n+1 → {0, 1} with the trees being Ti where i varies from 0 to n − 1 and T ′. We claim
that E is {f ′}-sensitive iff there exists U ⊆ U such that

∑
l∈U l = k. With this claim, the theorem

immediately follows. A formal proof of the claim is given in Appendix B due to lack of space.

We remark that when |F/F | is bounded, we can solve the depth 1 problem in polynomial time (see
Appendix B). This completes the complexity-theoretic picture for the sensitivity problem.

4 DATA-AWARE SENSITIVITY VERIFICATION

Sensitivity, as defined in Definition 3.1, requires finding a counterexample pair showing sensitivity,
but does not specify how close the inputs x(1) and x(2) in the pair must be to real-world data . In-
deed, this is not surprising, as the definition is itself independent of data (including training data),
and only depends on the trained model. But, as a consequence, counterexample pairs may include
inputs that are arbitrarily far from the true data distribution, as illustrated in Figure 1 in the Intro-
duction. Additional examples are in Appendix C. Our goal, therefore, is to find more meaningful
counterexample pairs, towards which we extend Definition 3.1 with a utility function.
Definition 4.1. Given a (binary) tree ensemble classifier E : X −→ {0, 1}, a set of sensitive features
F ⊆ F , a gap parameter g ≥ 0 and a data distribution/utility function u : X × X → [0, 1], we say
that E is (g, F, u)-sensitive, if there exist two inputs x(1), x(2) ∈ X such that x(1)

F\F = x
(2)
F\F ,

σ(E(x(1))) ≥ 0.5 + g, σ(E(x(2))) ≤ 0.5− g and u(x(1), x(2)) is maximal among all such pairs.

We could also add a threshold parameter ϵ ∈ [0, 1] and require u(x(1), x(2)) ≥ ϵ. Typically, u serves
as a proxy for how similar x(1), x(2) are to the training distribution. Given a (possibly training)
dataset D, we want the utility function u : X × X → [0, 1] to represent the likelihood of the input
pair being drawn from or close to D. In this work, we investigate two approaches to achieve this.

Utility Function. For simplicity, we first assume that all input features are independent. This allows
us to calculate the likelihood of each feature independently and then multiply the results. For a given
feature f , consider the guards in the ensemble that involve f . Suppose a feature f appears in Kf

guards, with sorted thresholds τf1 < · · · < τfKf
. We assume that the Xf takes value within range

[τf1, τfKf
), which we can ensure by introducing guards Xf < −∞ and Xf < ∞. This partitions

the space of feature f into Kf − 1 intervals. We estimate the marginal probability of f lying in each
interval [τf(k−1), τfk) by calculating the count of points in D for which f lies in [τf(k−1), τfk) and
dividing this by the total count of points in D. That is, for any feature f and real value v, we have,

πf (v) =

Kf∑
k=2

(
1(τf(k−1)≤v<τfk) ·

|{x ∈ D | τf(k−1) ≤ xf < τfk)}|
|D|

)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

And for any input x = (x1, x2, x3, . . . , xd), assuming independence of features, we define π(x) =
πf1(x1) · πf2(x2) . . . πfn(xd), where π : X → [0, 1] is the product distribution estimated from D.
With this the utility function just becomes u(x(1), x(2)) = π(x(1)) · π(x(2)).

Intuitively, under the independence assumption, it measures how likely inputs are to be drawn from
the distribution D, guiding our approach to look for more meaningful counterexamples. In the next
section we show how this can be encoded effectively, and our experiments indicate that in many
benchmarks it does gives better counterexample pairs (i.e., closer to data). However, its effectiveness
diminishes in datasets with high feature dependencies, which motivates an orthogonal approach.

Restricting search space using clause summaries. Our second approach attempts to com-
pute summaries of the input space that describe cavities - regions where no data points exist.

fi

ubi

lbi

fjubjlbj

•
•

•

•

• •

•

•

•

• •

Figure 2: There are no
training set data points
within the green box.

Our goal is to ensure that these cavities are excluded from our sensitivity
search. For simplicity, we focus on cavities represented as a bounded
boxes in the input space. Given a value of w (a width parameter), we
create the following template for points in D that fall in a cavity:∧

i∈[1,w]

(Xfi ≥ lbi ∧Xfi < ubi) (1)

where each lbi and ubi take values from one of the guards associated
with feature fi appearing in the tree ensemble. In Figure 2, we illustrate
a green cavity in 2-D space, where all the data points are projected in
dimensions fi and fj . Therefore, we avoid finding sensitivity pairs in
(Xfi ≥ lbi ∧ Xfi < ubi) ∧ (Xfj ≥ lbj ∧ Xfj < ubj). The difficulty is to find such cavities in
the data set. For this, we observe that given a box which is a conjunction of interval regions, its
negation is a clause, in a form that can be processed by a constraint solver. Hence, our main idea
is to find such cavities in the input data-set using a state-of-the-art Satisfiability Modulo Theories
(SMT) solver De Moura & Bjørner (2008), as we detail in Section 5.3.

5 AN IMPROVED MILP ENCODING

We build on the MILP encoding for decision trees introduced by Kantchelian et al. (2016). The
encoding, when used directly for senstivity verification, is less efficient than the pseudo-Boolean
approach as shown in Ahmad et al. (2025). However, we develop novel optimizations to the encoding
for sensitivity analysis, which allow the MILP encoding to outperform the pseudo-Boolean encoding
by a large margin, achieving an order-of-magnitude runtime reduction compared to SENSPB.

Base Encoding. The encoding represents the decision tree ensemble as a set of linear inequalities.
It uses a set of binary variables pfk to denote the predicates that appear on the internal node’s guard
is true, and a set of continuous variables 0 ≤ ln ≤ 1 to denote which leaf node is visited in each tree.
The output of the tree ensemble is then computed as a linear combination of the leaf values, weighted
by the predicate variables. For each input feature f , we ensure consistency across the predicate
variables corresponding to the feature, since if τ1 < τ2, then Xf < τ1 implies Xf < τ2. Let the
corresponding predicate variables be pf1, pf2, . . . , pfKf

. We require that pf1 = 1 =⇒ pf2 = 1,
pf2 = 1 =⇒ pf3 = 1 . . . pf(Kf−1) = 1 =⇒ pfKf

= 1. We encode this in MILP as Eq. (2).

pf1 ≤ pf2 ≤ · · · ≤ pfKf
(2) l1 + l2 + · · ·+ lN = 1 (3)

Let l1, l2, . . . , lN be the leaf variables corresponding to a tree. We require two leaf consistency
conditions. First, we require that exactly one of these leaf variables is set to 1 and every other leaf
variable is set to 0, which can be enforced as in Eq. (3). Second, we require that if a leaf variable is
set to 1, then every predicate variable in the path to the leaf node needs to be set such that the path
is followed. For each internal node n of tth tree, consider the set TSet of leaf nodes in the subtree
rooted at n.yes and set FSet of the leaf nodes of subtree rooted at n.no. Let Xf < τfk be the guard
of node n (recall that Xf refers to variables while xf are concrete input values). If n is a root node,
then we add the constraint given in Eq. (4), and for any non-root node, the constraint in Eq. (5).

1−
∑

n∈FSet

ln = pfk =
∑

n∈TSet

ln (4) 1−
∑

n∈FSet

ln ≥ pfk ≥
∑

n∈TSet

ln (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The constraints in Eq. (2) to Eq.(5) are from Kantchelian et al. (2016). To model the sensitivity
problem, we create two instances of all the variables to encode the runs of the two differentiating
inputs given to the tree ensemble. We will add superscripts to indicate the copies. We need to ensure
that the two inputs differ only in the specified set of features F ⊆ F . For this, denoting by VF the
set of all predicate variables such that their guards contain some f ∈ F , we add the constraint in
Eq. (6). Finally, for binary trees, Eprob(x) > 0.5 + g ⇐⇒ Eraw(x) > SIGMOID−1(0.5 + g). Let
us define δ = SIGMOID−1(0.5+ g). Because of the symmetry of SIGMOID about y = 0.5, we have
that SIGMOID−1(0.5 − g) = −δ. Thus, we introduce the constraint described in Eq. (Gap-bin).
Recall that for a leaf node n, n.val denotes its value. Let A be the set of all leaves in all trees.∧

p
(1)
fk ̸∈ VF

p
(1)
fk = p

(2)
fk (6)

∑
n∈A

l(1)n n.val ≥ δ ∧
∑
n∈A

l(2)n n.val ≤ −δ (Gap-bin)

Any feasible solution to these constraints corresponds to two inputs x(1) and x(2), which differ only
in the feature set F and produce outputs such that E(x(1)) ≥ 0.5 + g and E(x(2)) ≤ 0.5− g.

Optimizations to the Encoding. We now describe the novel optimizations that we develop and
prove their corrections. Subsequently, we will also explain how we incorporate data-awareness.

5.1 CONSTRAINTS ON UNAFFECTED AND AFFECTED LEAVES

For each leaf, we call the set of all the guards in the path from the root to the leaf as the ancestry
of that leaf. A leaf is called unaffected if, for each guard in the ancestry of the leaf, the guard
predicate does not contain a feature from the set of varying features. Let U denote the set of indices
of all unaffected leaves. For each such leaf, we add a constraint on the two variables l

(1)
n , l

(2)
n as

defined in Eq. (UnAff). Intuitively, if a leaf is reached in a run of the first input, then it will also
be reached in the second. Adding this constraint explicitly helps the solver reach a feasible solution
faster, especially in cases where the sensitive feature only affects a small subset of the leaves. This
is particularly important for features that are present in guards that are farther away from root nodes.
In practice, a large fraction of leaves belong to U .

Next, given that a significant fraction of the leaves are unaffected in practical scenarios, we also
add constraints to ensure that Leaf variables that are not in U (i.e., they correspond to “affected”
leaves) are capable of influencing the output. This is done by subtracting the two constraints in
Eq. (Gap-bin) and using Eq. (equation UnAff) to remove any terms corresponding to unaffected
leaves, leading to the constraints in Eq. (Aff-bin). This constraint has significantly fewer terms than
Eq. (Gap-bin) while capturing its essence, leading to significantly faster running times.∧

ln∈U

l(1)n = l(2)n (UnAff) ∑
ln ̸∈ U

(
l(1)n n.val − l(2)n n.val

)
≥ 2× δ (Aff-bin)

Crucially, as the following theorem shows (with Proof in Appendix D), adding these optimizations
does not change the set of feasible solutions.
Theorem 5.1. Let C denote the MILP equation obtained as a conjunction of Equations (2), (3), (4),
(5),(6) and (Gap-bin). The set of feasible solutions of C and the MILP obtained by conjuncting C
with the constraints induced by Eq. (UnAff) and Eq. (Aff-bin) are equal.

5.2 OBJECTIVE FUNCTION

Modern MILP solvers are built to optimize over an objective function and are highly engineered
with multiple heuristics to traverse the search space while being mindful of the objective function.
For our setting, we just need to find a single feasible solution to the set of constraints C as defined
in Theorem 5.1. Among these constraints, Eq. (Gap-bin) captures the essence of the two outputs
being different and reduces the set of feasible solutions by a significant amount.We can utilize the
objective function to amplify the importance of this constraint for the solver by adding a constraint
in Eq. Obj-bin), capturing the difference between the two equations in Eq. (Gap-bin).

MAX
∑
n∈A

(
l(1)n n.val − l(2)n n.val

)
(Obj-bin)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This addition leads to significant improvement in running times, as the objective function can guide
the MILP solver in choosing the better edge when faced with multiple candidates during the simplex-
solving process instead of arbitrarily choosing between each of the available constraints. In ap-
pendix I, we present the full encoding of an illustrative example.

5.3 MODIFICATION IN MILP FOR DATA-AWARE SEARCH

Finally, we modify the MILP encoding to solve data-aware sensitivity as defined in Def. 4.1.

Utility Function. Given the utility function as defined in Section 4, we replace the objective function
in Eq. (Obj-bin) by the following objective, which maximizes the value of the utility function:

MAX
∑
f∈F

Kf∑
k=2

(log(πf (τf(k−1)))− log(πf (τfk)))(p
(1)
fk + p

(2)
fk). (7)

Importantly, we convert the product of marginals to log values, as MILP solvers only handle additive
constraints on the objective function. The proof that the above formulation indeed maximizes the
utility function under the product assumption is given in Lemma E.1 in Appendix E.

Computing clause summaries. Next we define constraints that can identify cavities in data and
their negations, i.e., clauses that guide the sensitivity search. In Eq. (1), we need to learn the features
and their bounds. Let rif be a Boolean variable indicating fi is f , and sik indicating lbi = τfk, and
tik indicating ubi = τfk, where τfk is the k-th guard for feature f . For each x ∈ D, we add:∨

i∈[1,w]

∧
f∈F, k,k′∈[1,Kf]

(rif ∧ sik ∧ tik′ → ((xf < τfk ∨ xf ≥ τfk′)))


To avoid redundancies, we enforce the ordering of features: i < j → fi < fj . While solving

the constraints to find a clause that satisfies all samples, we also add an objective function to guide
towards learning tight clauses as: MIN

(∑
i∈[1,w](

∑|K|
k=1 k · sik −

∑|K|
k′=1 k

′ · tik′)
)

, where K =

maxf (Kf). This ensures that we select the smallest guard k for the lower bound of some feature
and the largest guard k′ for the upper bound of the feature. We iteratively compute one clause
at a time and add constraints to exclude solutions corresponding to previously computed clauses.
Initially, we learn clauses of size one and progressively increase the size up to a user-defined limit.
The computed clauses provide a summary of D, capturing how the data is distributed across the
input space and add the learned clauses to the constraints. Any solution to the query is required to
satisfy these clauses, thereby making it more likely to align with the data.

6 EXTENSION TO MULTI-CLASS TREE ENSEMBLES

We extend our formalism and encoding to the multi-class setting. Let Y = {0, 1, . . . , C−1} denote
the set of C classes in a multiclass tree ensemble. The set of trees T is partitioned into C equal
partitions, one for each class denoted by T0, T1, . . . , TC−1. The trees in a partition Tc are one-vs-
rest classifiers for the class c; that is, they consider class c as the positive class, and everything else
combined as the negative class and train like a binary classifier. Formally, Erawc (x) =

∑
T∈Tc

T (x),
and Eprobc (x) = SOFTMAXc

(
Eraw0 (x), . . . , ErawC−1(x)

)
, where SOFTMAXc : RC −→ R is the softmax

function defined as SOFTMAXc(x0, x1, ..., xC−1) = exc/ΣC−1
k=0 e

xk . The output is the class with
the highest probability, i.e., E(x) = Argmaxc∈YEc(x). Thus, given a tree ensemble for multiclass
classification E : X → {0, 1, . . . , C − 1}, c(1), c(2) ∈ {0, 1, . . . C − 1}, we find x(1), x(2) ∈ X such
that E(x(1)) = c(1) ̸= E(x(2)) = c(2). We also extend the parameterized version of Def. 3.1 by
requiring that the difference between probability of most and second-most probable class is large:
Definition 6.1. Given tree ensemble E : X → Y , F ⊆ F , g ≥ 0, two classes c(1), c(2) ∈
Y , E is (g, F, c(1), c(2))−sensitive if there exist x(1), x(2) such that (x(1))F\F = (x(2))F\F ,
∀c ̸= c(1), Eprob

c(1)
(x(1)) ≥ g × Eprobc (x(1)), and ∀c ̸= c(2), Eprob

c(2)
(x(2)) ≥ g × Eprobc (x(2)).

Now to extend our MILP encoding to the multiclass setting it turns out that we only need to mod-
ify Eq. (Gap-bin), Eq. (Aff-bin) and Eq. (Obj-bin) (and its data-aware variant). We present the
modifications and prove their correctness in Appendix F.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Binary classifiers
SNO ModelName #Trees Dep. #Feat.

1 breast cancer robust 4 4 10
2 breast cancer unrobust 4 5 10
3 diabetes robust 20 4 8
4 diabetes unrobust 20 5 8
5 ijcnn robust 60 8 22
6 ijcnn unrobust 60 8 22
7 adult {200,300,500}{4,5} 15
8 churn {200,300,500}{4,5} 21
9 pimadiabetes {200,300,500}{4,5} 9
10 german credit {500,800} {4,5} 20

Multi classifiers
SNO ModelName #Trees Dep. #Classes

1 covtype robust 100 6 10
2 covtype unrobust 100 6 10
3 fashion robust 100 6 10
4 fashion unrobust 100 6 10
5 ori mnist robust 100 6 10
6 ori mnist unrobust 100 6 10
7 Iris 100 1 3
8 Red-Wine 100 4 5

Table 1: Benchmark details. Binary models 1–6 are taken from Chen et al. (2019b); 7–10 are
trained on UCI datasets Dua & Graff (2019) using all combination of #Trees ∈ {200, 300, 500}
and Depth ∈ {5, 6} (six configurations). Multiclass models 1–6 are from Chen et al. (2019b);
models 7–8 are trained on UCI datasets Dua & Graff (2019). Dep. refers to the average depth in the
ensemble across all trees of the model.

(a) Binary classification (b) Multiclass classification

Figure 3: Cactus plot comparing runtimes of single feature sensitivity for binary and multiclass.

7 EXPERIMENTS

We implement the MILP encoding from Section 5 with all structural optimizations and then add
our two data-aware objectives in a tool called SVIM. We trained models with XGBoost v1.7.1;
we evaluate sensitivity using a single CPU core per run with a per-instance 3600 seconds timeout.
We use Gurobi Gurobi Optimization, LLC (2024) as the MILP solver. We focus on single-feature
sensitivity; results on varying multiple (viz., 2, 3 and 4) features are presented in App. H.4. We
address the following research questions: RQ1. How does our MILP encoding with optimizations
fare against the baseline and state-of-the-art for (i) binary and (ii) multi-class classification? RQ2.
How does data-aware sensitivity perform in giving better quality counterexamples? How do we
measure it, what do we compare it against and how do each of our strategies help?

Binary Classification. To answer RQ1(i), we compare the performance of SVIM against SENSPB
the tool using pseudo-Boolean encoding from Ahmad et al. (2025), and KANT, the baseline MILP
encoding (adapted from Kantchelian et al. (2016)). We use a wide set of benchmarks mentioned
in Table 1 (left), with number of trees ranging from 4 − 800, with depth from 4 − 8. Considering
each single-feature variant as a separate instance and with gap ∈ {0.5, 1, 1.5} this yields a total
of 1,290 benchmark instances. Figure 3(a) reports results for the 1,103 instances whose runtime is
≥ 1 s; we omit 187 instances solved in < 1 s for fair comparison, which demonstrates the superior
performance of SVIM. SVIM achieves average speedups of approximately 8× over KANT and 5×
over SENSPB, with no timeouts whereas SENSPB times out for 205 and KANT for 153 instances.

Multiclass Classification. For RQ1(ii) we compare SVIM against the baseline MILP (still called
KANT), as SENSPB does not handle multiclass ensembles. We also repurposed the versatile ro-
bustness verification tool VERITAS from Devos et al. (2024) that can handle multiclass ensembles,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

None Clause Prob Probclause

mean 0.57 0.306 0.26 0.17

Method Win% Draw% Loss%
Clause vs None 80.5 3.2 16.1
Prob vs None 76.6 1.15 22.1

Prob vs Clause 56.6 1.1 42.1
Probclause vs None 86.7 1.1 12.1
Probclause vs Prob 56.4 15.3 28.1

Probclause vs Clause 72.7 1.7 25.5

Figure 4: In top-left, we report the mean ℓ2 distance of all instances for each method. In the
bottom-left table, we report the win, draw, and loss rates for all pairwise method comparisons. On
the right side, cactus plot of the distance (from data set to counterexample found) across binary
benchmarks. Instances are sorted by non data-aware baseline (none, orange, solid); for each
position, distances of Prob (red, dotted), Clause (green, dashed), and Probclause (blue, solid) are
evaluated on same instance (no re-sorting). Lower curves indicate better quality.

to solve sensitivity. As it timed out on all except two instances, we detail these results in App. G.
Table 1(right) lists the multiclass benchmarks. For fashion and ori mnist, which have 784 features,
we restricted to single-feature sensitivity for the 100 most frequently used features in the tree model.
For the others, we tested on all features, making a total of 538 benchmark instances. Our results
are in Fig3(b), where we again dropped 17 instances which were solved in < 1 sec. The results
demonstrate that SVIM outperforms KANT by roughly 15x average speed up, and does not timeout
on any of these benchmarks, whereas KANT times out on 256.

Data-Aware Sensitivity Verification. For RQ2, to evaluate data-aware sensitivity, we compare (i)
the baseline (no data-awareness) with (ii) the utility-based objective that steers solutions toward
data-dense regions (called Prob), (iii) the clause-summary strategy that prunes empty-data regions
(called Clause), (iv) the combination of both (called Probclause), which SVIM uses. For each of
them, we compute the ℓ2 distance over insensitive features from the data to the nearest counterex-
ample identified (in fact to the counterexample region as explained in App. H.2) Experiments are
conducted on the same binary classification benchmarks (from Table 1) with gap ∈ {0.5, 1, 1.5}.
We used z3De Moura & Bjørner (2008) to synthesize clauses with a maximum of 3 literals, with
counterexample-guided refinement, followed by greedy literal-pruning to minimize each clause
without reducing coverage. We also discard clauses that enclose an input point, and limit to 1500
synthesized clauses. Our results in Fig 4 show that Utility-based vs. baseline: wins 76.65% of
pairs (losses 22.19%, draws 1.15%), with mean distance advantage 0.435 on wins and mean deficit
0.11 on losses. Clause-summary vs. baseline: wins 80.59% (losses 16.13%, draws 3.26%), with
mean advantage 0.34 (wins) and mean deficit 0.09 (losses). Combined (Probclause): strongest over-
all—wins 86.04% of pairs versus baseline, with mean advantage 0.47 on wins and mean deficit 0.06
on losses. In summary, our results show significant improvement in quality of counterexample pairs
(measured by their ℓ2 distance from data), with best results obtained by probclause used by SVIM.

We also performed ablation studies on binary and multiclass ensembles to evaluate the contribution
of the MILP optimizations, affected and unaffected constraints that we present in App. H.3.

8 CONCLUSION

In this work, we defined a data-aware variant of the sensitivity problem on tree ensembles and devel-
oped two approaches to solve this. We developed a new MILP encoding with several improvements,
that allows us to improve the quality of the sensitivity witness reported while at the same time pro-
viding upto 5× speedup for binary classification over the existing methods and 15× for multiclass
classification. One obvious direction for future work is to develop methods for training tree ensem-
bles such that sensitivity can be reduced. This is analogous to the development of various tools for
training decision trees that are hardened for local robustness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All claims and theorems in the paper are formally proved, either in the paper itself or in the Appendix
below (after References). Further, more details regarding the experimental setup including training
details have been mentioned in the Appendix. More experimental ablation results are also given in
the appendix. We will provide the code and trained models in a public repository upon acceptance.

REFERENCES

Arhaan Ahmad, Tanay Vineet Tayal, Ashutosh Gupta, and S. Akshay. Sensitivity verification for
additive decision tree ensembles. In The Thirteenth International Conference on Learning Rep-
resentations, 2025. URL https://openreview.net/forum?id=h0vC0fm1q7.

Hendrik Blockeel, Laurens Devos, Benoı̂t Frénay, Géraldin Nanfack, and Siegfried Ni-
jssen. Decision trees: from efficient prediction to responsible ai. Frontiers in Artifi-
cial Intelligence, 6, 2023. ISSN 2624-8212. doi: 10.3389/frai.2023.1124553. URL
https://www.frontiersin.org/journals/artificial-intelligence/
articles/10.3389/frai.2023.1124553.

Stefano Calzavara, Lorenzo Cazzaro, Claudio Lucchese, and Federico Marcuzzi. Explainable global
fairness verification of tree-based classifiers. 2023 IEEE Conference on Secure and Trustworthy
Machine Learning (SaTML), pp. 1–17, 2022. URL https://api.semanticscholar.
org/CorpusID:252545325.

Yung-Chia Chang, Kuei-Hu Chang, and Guan-Jhih Wu. Application of extreme gradient boost-
ing trees in the construction of credit risk assessment models for financial institutions. Ap-
plied Soft Computing, 73:914–920, 2018. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.
2018.09.029. URL https://www.sciencedirect.com/science/article/pii/
S1568494618305465.

Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust decision trees against adver-
sarial examples. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1122–1131. PMLR, 09–15 Jun 2019a. URL https://proceedings.mlr.
press/v97/chen19m.html.

Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane S. Boning, and Cho-Jui Hsieh. Ro-
bustness verification of tree-based models. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 12317–12328, 2019b. URL https://proceedings.neurips.cc/paper/2019/
hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html.

Jing Chen, Lianlian Wu, Kunhong Liu, Yong Xu, Song He, and Xiaochen Bo. EDST: a decision
stump based ensemble algorithm for synergistic drug combination prediction. BMC Bioinform.,
24(1):325, 2023. doi: 10.1186/S12859-023-05453-3. URL https://doi.org/10.1186/
s12859-023-05453-3.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/
2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 3540787992.

Laurens Devos, Wannes Meert, and Jesse Davis. Versatile verification of tree ensembles. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine

10

https://openreview.net/forum?id=h0vC0fm1q7
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2023.1124553
https://api.semanticscholar.org/CorpusID:252545325
https://api.semanticscholar.org/CorpusID:252545325
https://www.sciencedirect.com/science/article/pii/S1568494618305465
https://www.sciencedirect.com/science/article/pii/S1568494618305465
https://proceedings.mlr.press/v97/chen19m.html
https://proceedings.mlr.press/v97/chen19m.html
https://proceedings.neurips.cc/paper/2019/hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html
https://doi.org/10.1186/s12859-023-05453-3
https://doi.org/10.1186/s12859-023-05453-3
http://doi.acm.org/10.1145/2939672.2939785

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Learning, volume 139 of Proceedings of Machine Learning Research, pp. 2654–2664. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/devos21a.html.

Laurens Devos, Lorenzo Cascioli, and Jesse Davis. Robustness verification of multi-class tree en-
sembles. Proceedings of the AAAI Conference on Artificial Intelligence, 38(19):21019–21028,
Mar. 2024. doi: 10.1609/aaai.v38i19.30093. URL https://ojs.aaai.org/index.php/
AAAI/article/view/30093.

Dheeru Dua and Casey Graff. Uci machine learning repository. https://archive.ics.uci.
edu/ml, 2019.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness
through awareness. CoRR, abs/1104.3913, 2011. URL http://arxiv.org/abs/1104.
3913.

Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: testing software for dis-
crimination. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2017, pp. 498–510, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450351058. doi: 10.1145/3106237.3106277. URL https:
//doi.org/10.1145/3106237.3106277.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

Mohammad M. Ghiasi and Sohrab Zendehboudi. Application of decision tree-based ensemble
learning in the classification of breast cancer. Computers in Biology and Medicine, 128:104089,
2021. ISSN 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.2020.104089. URL https:
//www.sciencedirect.com/science/article/pii/S0010482520304200.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. (de-
)randomized smoothing for decision stump ensembles. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
146b4bab3f8536a07905f25d367b4924-Abstract-Conference.html.

Phuoc-Hai Huynh, Van Hoa Nguyen, and Thanh-Nghi Do. Random ensemble oblique decision
stumps for classifying gene expression data. In Proceedings of the Ninth International Symposium
on Information and Communication Technology, SoICT 2018, Danang City, Vietnam, December
06-07, 2018, pp. 137–144. ACM, 2018. doi: 10.1145/3287921.3287987. URL https://doi.
org/10.1145/3287921.3287987.

Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. Evasion and hardening of tree ensemble
classifiers. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 2387–2396. JMLR.org,
2016. URL http://proceedings.mlr.press/v48/kantchelian16.html.

Andrei V Kelarev, Andrew Stranieri, JL Yearwood, and Herbert F Jelinek. Empirical study of
decision trees and ensemble classifiers for monitoring of diabetes patients in pervasive healthcare.
In 2012 15th International Conference on Network-Based Information Systems, pp. 441–446.
IEEE, 2012.

Mehul Madaan, Aniket Kumar, Chirag Keshri, Rachna Jain, and Preeti Nagrath. Loan default pre-
diction using decision trees and random forest: A comparative study. IOP Conference Series:
Materials Science and Engineering, 1022(1):012042, jan 2021. doi: 10.1088/1757-899X/1022/
1/012042. URL https://dx.doi.org/10.1088/1757-899X/1022/1/012042.

11

https://proceedings.mlr.press/v139/devos21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/30093
https://ojs.aaai.org/index.php/AAAI/article/view/30093
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
http://arxiv.org/abs/1104.3913
http://arxiv.org/abs/1104.3913
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/3106237.3106277
https://www.sciencedirect.com/science/article/pii/S0010482520304200
https://www.sciencedirect.com/science/article/pii/S0010482520304200
https://www.gurobi.com
https://www.gurobi.com
http://papers.nips.cc/paper_files/paper/2022/hash/146b4bab3f8536a07905f25d367b4924-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/146b4bab3f8536a07905f25d367b4924-Abstract-Conference.html
https://doi.org/10.1145/3287921.3287987
https://doi.org/10.1145/3287921.3287987
http://proceedings.mlr.press/v48/kantchelian16.html
https://dx.doi.org/10.1088/1757-899X/1022/1/012042

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gonzalo Martı́nez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez. Selection of decision
stumps in bagging ensembles. In Joaquim Marques de Sá, Luı́s A. Alexandre, Wlodzislaw Duch,
and Danilo P. Mandic (eds.), Artificial Neural Networks - ICANN 2007, 17th International Con-
ference, Porto, Portugal, September 9-13, 2007, Proceedings, Part I, volume 4668 of Lecture
Notes in Computer Science, pp. 319–328. Springer, 2007. doi: 10.1007/978-3-540-74690-4\ 33.
URL https://doi.org/10.1007/978-3-540-74690-4_33.

Majid Niazkar, Andrea Menapace, Bruno Brentan, Reza Piraei, David Jimenez, Pranav Dhawan,
and Maurizio Righetti. Applications of xgboost in water resources engineering: A systematic
literature review (dec 2018–may 2023). Environmental Modelling and Software, 174:105971,
2024. ISSN 1364-8152. doi: https://doi.org/10.1016/j.envsoft.2024.105971. URL https://
www.sciencedirect.com/science/article/pii/S136481522400032X.

Francesco Ranzato and Marco Zanella. Abstract interpretation of decision tree ensemble clas-
sifiers. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5478–5486,
Apr. 2020. doi: 10.1609/aaai.v34i04.5998. URL https://ojs.aaai.org/index.php/
AAAI/article/view/5998.

Sagar Maan Shrestha and Aman Shakya. A customer churn prediction model using xgboost for
the telecommunication industry in nepal. Procedia Computer Science, 215:652–661, 2022.
ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2022.12.067. URL https://www.
sciencedirect.com/science/article/pii/S187705092202138X. 4th Interna-
tional Conference on Innovative Data Communication Technology and Application.

John Törnblom and Simin Nadjm-Tehrani. An abstraction-refinement approach to formal verifi-
cation of tree ensembles. In Computer Safety, Reliability, and Security: SAFECOMP 2019
Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku, Finland, September 10,
2019, Proceedings, pp. 301–313, Berlin, Heidelberg, 2019. Springer-Verlag. ISBN 978-3-
030-26249-5. doi: 10.1007/978-3-030-26250-1 24. URL https://doi.org/10.1007/
978-3-030-26250-1_24.

Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, and Cho-Jui Hsieh. On lp-norm
robustness of ensemble decision stumps and trees. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 10104–10114. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/wang20aa.html.

APPENDIX

The appendix is organized into 5 sections, in the order in which they occurred in the paper:

• In Section A, we provide a table of notation used throughout the paper for easy reference.

• In Section B, we provide Additional Proofs and theoretical results relevant to Section 3.

• In Section C, we provide data-aware sensitivity examples from Tabular Data as promised
in Section 4.

• In Section D, we prove the correctness of our encoding optimizations from Section 4.

• In Section F, we describe the multi-class ensemble encoding into MILP that was left out of
Section 5 due to lack of space.

• In Section G, we describe the difficulty with using the VERITAS Devos et al. (2024) frame-
work for comparison and how we can encode our sensitivity problem in that framework
and perform some comparisons.

• In Section H, we provide additional experimental setup details as well as additional exper-
iments including:

– (a) an ablation study for our encoding improvements/optimizations on binary and mul-
ticlass tree ensembles

– (b) a multi-feature sensitivity analysis.

12

https://doi.org/10.1007/978-3-540-74690-4_33
https://www.sciencedirect.com/science/article/pii/S136481522400032X
https://www.sciencedirect.com/science/article/pii/S136481522400032X
https://ojs.aaai.org/index.php/AAAI/article/view/5998
https://ojs.aaai.org/index.php/AAAI/article/view/5998
https://www.sciencedirect.com/science/article/pii/S187705092202138X
https://www.sciencedirect.com/science/article/pii/S187705092202138X
https://doi.org/10.1007/978-3-030-26250-1_24
https://doi.org/10.1007/978-3-030-26250-1_24
http://proceedings.mlr.press/v119/wang20aa.html
http://proceedings.mlr.press/v119/wang20aa.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• In section I, we provide an illustrative example of our encoding for a small decision tree
ensemble.

A NOTATION TABLE

In this section, we provide a table of notation used throughout the paper for easy reference.
Symbol Meaning

X input space of the classifiers
Y output space of the classifiers
F set of all features
f a feature in F
x an input in X
xf value of feature f for input x

T a decision tree
n a node in a decision tree
n.val leaf value of leaf node n
n.guard = Xf < τ guard condition of internal node n
n.yes child node of internal node n for true guard evaluation
n.no child node of internal node n for false guard evaluation
T (x) output of tree T on input x
Xf variable for feature f
T set of decision trees in the ensemble
Tc set of decision trees in the ensemble for class c
E a decision tree ensemble

x(1), x(2) inputs to the ensemble
F set of features to check sensitivity against
g minimum probability threshold for data-aware sensitivity
u(x(1), x(2)) utility function to maximize
D training data samples
τfk threshold in the kth guard of feature f
Kf the number of guards for feature f
πf marginal probability function for feature f
w maximum size of the cavity constraints in Eq. 1.
lbi lower bound on feature fi in the cavity constraints in Eq. 1
ubi upper bound on feature fi in the cavity constraints in Eq. 1

pfk Boolean variable for the truth value of kth guard of feature f
li Variable denoting leaf i is visited.
δ Sigmod−1(0.5− g)
VF set of all predicate variables for features in F
A set of all leaf nodes in the ensemble
U set of all unaffected leaves

rfi Boolean variable to indicate that the feature in ith conjunct of cavity
is feature f

sik Boolean variable to indicate that the ith conjunct of cavity uses kth
guard of its feature as lower bound

tik Boolean variable to indicate that the ith conjunct of cavity uses kth
guard of its feature as upper bound

B ADDITIONAL PROOFS AND THEORETICAL RESULTS

Theorem B.1. The feature sensitivity problem with |F | = 1 is NP-Hard for tree ensembles with
depth ≥ 1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. Consider an instance of the integer subset sum problem, i.e., we are given a set of n integers
U and an integer k, and we want to find a subset U ⊆ U , such that Σl∈U = k. We call the ith integer
ui where i varies from 0 to n− 1. For every index i, we create a Boolean feature fi. Then we create
a decision tree of depth 1 which splits on fi giving output 0 if fi is false and ui otherwise. We create
another Boolean feature f ′ and a decision tree of depth 1 which splits on f ′ giving output −k − 0.5
if f ′ is false and −k + 0.5 otherwise. These trees are depicted in Figure 5. We call the ensemble of
all these trees to be E : {0, 1}n+1 → {0, 1} with the trees being Ti where i varies from 0 to n − 1
and T ′.
Claim. We claim that E is {f ′}-sensitive iff there exists U ⊆ U such that

∑
l∈U l = k.

To see this, consider a function S : {0, 1}n+1 → P(U) where P(U) denotes the power set of U
defined as S(x) = {ui ∈ U|xi = 1 for some i ∈ {0, 1, . . . , n − 1}}. By construction of the trees,
Σl∈S(x)l = Σn−1

i=0 Ti(x) where x ∈ {0, 1}n+1. If E is sensitive to {f ′}, then there exist x(1) and
x(2) such that Eraw(x(1)) < 0 and Eraw(x(2)) > 0 and x

(1)
⊥f ′ = x

(2)
⊥f ′ , where x⊥f ′ refers to input x

projected into all features except f ′. By construction, x(1)
f ′ = 0 and x

(2)
f ′ = 1. Then Eraw(x(1)) =

Σn−1
i=0 Ti(x

(1))+T ′(x(1)) < 0 =⇒ Σl∈S(x(1))l−k−0.5 < 0 =⇒ Σl∈S(x(1))l < k+0.5. Similarly,
Eraw(x(2)) = Σn−1

i=0 Ti(x
(2)) + T ′(x(2)) > 0 =⇒ Σl∈S(x(2))l − k + 0.5 > 0 =⇒ Σl∈S(x(2))l >

k − 0.5. Also, by construction of S, S(x(1)) = S(x(2)) since x(1) and x(2) only differ on f ′ and S
is independent of that value. Let S(x(1)) = S(x(2)) = U . Thus, k− 0.5 < Σl∈U l < k+0.5. As all
numbers are integers, Σl∈U l = k and thus there exists U ⊆ U such that Σl∈U l = k.

If there exists U ⊆ U such that Σl∈U l = k then consider x(1) and x(2) such that x(1)
i = x

(2)
i = 1 if

ui ∈ U and x
(1)
j = x

(2)
j = 0 if uj /∈ U where i, j ∈ {0, 1, . . . , n−1} . Also, x(1)

f ′ = 0 and x
(2)
f ′ = 1.

Note S(x(1)) = S(x(2)) = U . Thus, E(x(1)) = Σl∈S(x(1))l + T ′(x(1)) = k − k − 0.5 = −0.5 < 0

and E(x(2)) = Σl∈S(x(2))l + T ′(x(2)) = k − k + 0.5 = 0.5 > 0. Also x
(1)
⊥f ′ = x

(2)
⊥f ′ . Thus, E is

sensitive to {f ′} as the above x(1) and x(2) are a required pair of inputs to show sensitivity.

Thus, by proving in both directions, we have shown if we can solve sensitivity for decision tree
ensembles of depth-1, then we can solve integer subset sum problem. Thus, sensitivity is at least as
hard as integer subset sum and thus it is NP-Hard for depth 1.

fi < 1

0ui

TF

f ′ < 1

−k − 0.5−k + 0.5

TF

Figure 5: Trees for Proof of Theorem B.1

Finally, we show that when |F/F | is bounded, we can solve the depth 1 problem in polynomial
time.
Theorem B.2. The feature sensitivity problem with bounded |F/F | is solvable in polynomial time
for tree ensembles with depth 1.

Proof. Given a sensitivity problem with decision tree ensemble of trees of depth 1 E =
{T0, T1, . . . }, feature set F , features for checking sensitivity against F and a scalar k such that
|F/F | ≤ k, we can solve the problem in polynomial time. Let |E| = m i.e. there are total m
decision trees and |F| = n i.e there a total of n features.

As each tree splits on only 1 feature, we can create a set of trees corresponding to each feature.
Thus, we create a function S(f) from the set of feature space to a subset of all trees. Note, it is a
partition of all the trees as each tree will split on exactly one feature.

For all f ∈ F , consider the set S(f). We will calculate the minimum and maximum value of sum
output of trees in S(f) and their corresponding features values. There are a total of |S(f)| + 1
distinct possible values and thus can be found in O(m) time.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We will add the minimums and maximums found above and get a global minimum and maximum
value say m and M . We need to find whether there exists an assignment to features in F/F such
that the sum of output corresponding to trees of these features lies between −M and −m.

For each feature f ∈ F/F , the possible number of distinct outputs is |S(f)| + 1. Therefore, the
total possible number of outputs are

∏
f∈F/F (S(f) + 1) which is O(mk). Thus, by checking for

all possible outputs, we can find whether such output exists or not. If it does, then the ensemble is
sensitive otherwise it isn’t. Thus we have a polynomial time algorithm as k is not a parameter but a
bound.

C DATA-AWARE SENSITIVITY EXAMPLES IN TABULAR DOMAINS

This section presents examples that demonstrate the effectiveness of incorporating data awareness
into sensitivity analysis, using models trained on tabular datasets. In each case, we compare sensitive
input pairs discovered with and without data-aware methods, showing how the inclusion of data
distribution knowledge leads to more realistic counterexamples. Please note that the IJCNN model
is trained by Chen et al. (2019b), and the dataset for this model is unfortunately not available with
the original feature names. The feature names are simply mentioned as f1 to f22.

Sensitive Example of IJCCN Chen et al. (2019b): In the examples 1 and example 2 below, we anal-
yse the sensitivity with respect to features 3 and 15 in the model trained on the IJCNN dataset. Both
methods detect a sensitive pair by varying only these features respectively, resulting in change in the
model’s prediction. However, the distance from the training data distribution reveals a clear differ-
ence: The pair found without data awareness has a distance of 1.077(example 1) and 1.06 (example
2), indicating it is quite far from any possible realistic data point and may not be very helpful in
practice. In contrast, the pair identified with data awareness has a distance of just 0.327(example 1)
and 0.34 (example 2), meaning it is much closer to the data distribution and training data.The in-
sensitive features in the training data points that are far away from the sensitive pair are highlighted
with cyan color.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Example 1: IJCNN ROBUST Chen et al. (2019b)
Sensitive Point Found Without Data Awareness Analysis For Sensitive Feature 3
Point1: {’f1’: 0.0, ’f2’: 1.0, ’f3’: 0.0, ’f4’: 0.0, ’f5’: 1.0, ’f6’:

1.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 1.0, ’f10’: 0.0, ’f11’: 0.872834, ’
f12’: 1.21062, ’f13’: 0.637325, ’f14’: 0.356398, ’f15’: 0.482769, ’
f16’: 0.390789, ’f17’: 0.609402, ’f18’: 0.558829, ’f19’: 0.607626, ’
f20’: 0.696077, ’f21’: 0.448006, ’f22’: 0.619263}

Point2: : {’f1’: 0.0, ’f2’: 1.0, ’f3’: 1.0, ’f4’: 0.0, ’f5’: 1.0, ’f6’:
1.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 1.0, ’f10’: 0.0, ’f11’: 0.872834,

’f12’: 1.210621, ’f13’: 0.637325, ’f14’: 0.356398, ’f15’: 0.482769,
’f16’: 0.390789, ’f17’: 0.609402, ’f18’: 0.558829, ’f19’: 0.607626,
’f20’: 0.696077, ’f21’: 0.448006, ’f22’: 0.619263}

Distance from data: 1.07757866169
Nearest Training Datapoint: {’f1’: 0.0, ’f2’: 1.0, ’f3’: 0.0, ’f4’: 0.0,

’f5’: 0.0, ’f6’: 0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’:
0.0, ’f10’: 0.0, ’f11’: 0.540556, ’f12’: 0.250375, ’f13’:
0.467001, ’f14’: 0.470297, ’f15’: 0.570899, ’f16’: 0.527529,
’f17’: 0.517118, ’f18’: 0.51931, ’f19’: 0.51546, ’f20’: 0.55852,
’f21’: 0.53037, ’f22’: 0.52894}

Sensitive Point Found With Data Awareness Analysis For Sensitive Feature 3
Point1: {’f1’: 0.0, ’f2’: 0.0, ’f3’: 0.0, ’f4’: 0.0, ’f5’: 1.0, ’f6’:

0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’: 0.0, ’f11’: 0.678628, ’
f12’: 0.541327, ’f13’: 0.512386, ’f14’: 0.516051, ’f15’: 0.516459, ’
f16’: 0.497491, ’f17’: 0.475932, ’f18’: 0.495826, ’f19’: 0.459603, ’
f20’: 0.502477, ’f21’: 0.50531, ’f22’: 0.507861}

Point2: {’f1’: 0.0, ’f2’: 0.0, ’f3’: 1.0, ’f4’: 0.0, ’f5’: 1.0, ’f6’:
0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’: 0.0, ’f11’: 0.678628, ’
f12’: 0.541327, ’f13’: 0.512386, ’f14’: 0.516051, ’f15’: 0.516459, ’
f16’: 0.497491, ’f17’: 0.475932, ’f18’: 0.495826, ’f19’: 0.459603, ’
f20’: 0.502477, ’f21’: 0.50531, ’f22’: 0.507861}

Distance from data: 0.327039
Nearest Training Datapoint: {’f1’: 0.0, ’f2’: 0.0, ’f3’: 0.0, ’f4’: 0.0,

’f5’: 1.0, ’f6’: 0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’: 0.0,
’f11’: 0.536865, ’f12’:
0.250375, ’f13’: 0.51317, ’f14’: 0.50743, ’f15’: 0.526203, ’f16’:
0.497706, ’f17’: 0.484023, ’f18’: 0.524588, ’f19’: 0.541842,
’f20’: 0.467001, ’f21’: 0.470298, ’f22’: 0.570898}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Example 2: IJCNN ROBUST Chen et al. (2019b)
Sensitive Point Found Without Data Awareness Analysis For Sensitive Feature 15
Point1: {’f1’: 0.0, ’f2’: 1.0, ’f3’: 1.0, ’f4’: 0.0, ’f5’: 1.0, ’f6’:

1.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’: 1.0, ’f11’: 0.822872, ’
f12’: 0.276149, ’f13’: 0.448491, ’f14’: 0.653076, ’f15’:
0.64666, ’f16’: 0.615426, ’f17’: 0.36238, ’f18’: 0.561026, ’f19’:
0.533231, ’f20’: 1.199128, ’f21’: 0.394238, ’f22’: 0.558881}

Point2: {’f1’: 0.0, ’f2’: 1.0, ’f3’: 1.0, ’f4’: 0.0, ’f5’: 1.0, ’f6’:
1.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’: 1.0, ’f11’: 0.822872, ’
f12’: 0.276149, ’f13’: 0.448491, ’f14’: 0.653076, ’f15’:
0.30856, ’f16’: 0.615426, ’f17’: 0.36238, ’f18’: 0.561026, ’f19’:
0.533231, ’f20’: 1.199128, ’f21’: 0.394238, ’f22’: 0.558881}

Distance from data 1.0647264749
Nearest Training Datapoint:: {’f1’: 0.0, ’f2’: 1.0, ’f3’: 0.0, ’f4’:

0.0, ’f5’: 0.0, ’f6’: 0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’:
0.0, ’f11’: 0.579145, ’f12’: 0.18406, ’f13’: 0.456363, ’f14’:
0.543959, ’f15’: 0.531502, ’f16’: 0.449082, ’f17’:
0.483391, ’f18’: 0.520606, ’f19’: 0.511848, ’f20’: 0.527679,
’f21’: 0.474918, ’f22’: 0.477095}

Sensitive Point Found With Data Awareness Analysis For Sensitive Feature 15
Point1 : {’f1’: 0.0, ’f2’: 1.0, ’f3’: 0.0, ’f4’: 0.0, ’f5’: 0.0, ’f6’:

0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’: 0.0, ’f11’: 0.797221, ’
f12’: 0.341174, ’f13’: 0.540222, ’f14’: 0.380818, ’f15’:
1.168982, ’f16’: 0.457969, ’f17’: 0.368609, ’f18’: 0.457974, ’f19’:
0.527069, ’f20’: 0.399163, ’f21’: 0.567169, ’f22’: 0.501212}

Point2 : {’f1’: 0.0, ’f2’: 1.0, ’f3’: 0.0, ’f4’: 0.0, ’f5’: 0.0, ’f6’:
0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’: 0.0, ’f11’: 0.797221, ’
f12’: 0.341174, ’f13’: 0.540222, ’f14’: 0.380818, ’f15’:
0.412158, ’f16’: 0.457969, ’f17’: 0.368609, ’f18’: 0.457974, ’f19’:
0.527069, ’f20’: 0.399163, ’f21’: 0.567169, ’f22’: 0.501212}

Distance from data 0.3449
Nearest Training Datapoint:: {’f1’: 0.0, ’f2’: 1.0, ’f3’: 0.0, ’f4’:

0.0, ’f5’: 0.0, ’f6’: 0.0, ’f7’: 0.0, ’f8’: 0.0, ’f9’: 0.0, ’f10’:
0.0, ’f11’: 0.579295, ’f12’: 0.16411, ’f13’: 0.44351, ’f14’:
0.45535, ’f15’: 0.542591, ’f16’: 0.501968, ’f17’: 0.500353,
’f18’: 0.5093, ’f19’: 0.495474, ’f20’:
0.515701, ’f21’: 0.511422, ’f22’: 0.517442}

Sensitive Examples of Adult: (based on Adult dataset Dua & Graff (2019)): Here, we present the
analysis of the ‘adult’ dataset in examples 3 and 4, this time examining the sensitivity of the features
‘age’ and ‘sex’. The non-data-aware (baseline) method identifies the sensitive pairs with larger
distances of 0.656 and 0.9899 for sensitive features ‘age’ and ‘sex’, respectively. The data-aware
method, however, identifies pairs that are much closer to the data distances of 0.019 and 0.108.
In example 4, the baseline(non-data-aware) method reports an ‘age’ value of 86, even though the
closest datapoint has an age of ‘40’. The data-aware method, however, identifies a pair with an
age value of ‘46’, very close to the nearest datapoint, which has an age of ‘45’. A similar pattern
appears for capital-gain and capital-loss. The baseline method(non-data-aware) selects a pair with
values 10,585 (capital-gain) and 3,142 (capital-loss), while the nearest datapoint has values 0 and
2,258. The data-aware method, by comparison, identifies a pair where both features are 0, matching
the nearest datapoint exactly. The insensitive features in the training data points that are far away
from the sensitive pair are highlighted with cyan color.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Example 3: Adult Dua & Graff (2019)
Sensitive Point Found Without Data Awareness Analysis For Sensitive Feature ‘age’
Point1: {’age’:66, ’workclass’: ’Never-worked’, ’fnlwgt’: 574792.14018,

’education’: ’Some-college’, ’education-num’: 16, ’marital-status’:
’Widowed’, ’occupation’: ’Transport-moving’, ’relationship’: ’
Unmarried’, ’race’: ’White’, ’sex’: ’Male’, ’capital-gain’: 10585, ’
capital-loss’: 2309, ’hours-per-week’: 92, ’native-country’: ’Poland
’},

Point2: {’age’:86, ’workclass’: ’Never-worked’, ’fnlwgt’: 574792.14018,
’education’: ’Some-college’, ’education-num’: 16, ’marital-status’:
’Widowed’, ’occupation’: ’Transport-moving’, ’relationship’: ’
Unmarried’, ’race’: ’White’, ’sex’: ’Male’, ’capital-gain’: 10585, ’
capital-loss’: 2309, ’hours-per-week’: 92, ’native-country’: ’Poland
’}

Distance from data : 0.6569890
Nearest Training Datapoint: {’age’: 32, ’workclass’: ’Private’,

’fnlwgt’: 226975, ’education’: ’Some-college’, ’education-num’:
10, ’marital-status’: ’Never-married’, ’occupation’: ’Sales’,
’relationship’:
’Own-child’, ’race’: ’White’, ’sex’: ’Male’, ’capital-gain’: 0,
’capital-loss’: 1876, ’hours-per-week’: 60, ’native-country’:
’United-States’}

Sensitive Point Found With Data Awareness Analysis For Sensitive Feature ‘age’
Point1: {’age’: 46, ’workclass’: ’Self-emp-inc’, ’fnlwgt’:

180532.54372, ’education’: ’Doctorate’, ’education-num’: 13.500002,
’marital-status’: ’Married-civ-spouse’, ’occupation’: ’Exec-
managerial’, ’relationship’: ’Husband’, ’race’: ’Black’, ’sex’: ’
Female’, ’capital-gain’: 0, ’capital-loss’: 0, ’hours-per-week’: 40,
’native-country’: ’Puerto-Rico’},

Point2: {’age’: 33, ’workclass’: ’Self-emp-inc’, ’fnlwgt’:
180532.54372, ’education’: ’Doctorate’, ’education-num’: 13.500002,
’marital-status’: ’Married-civ-spouse’, ’occupation’: ’Exec-
managerial’, ’relationship’: ’Husband’, ’race’: ’Black’, ’sex’: ’
Female’, ’capital-gain’: 0, ’capital-loss’: 0, ’hours-per-week’: 40,
’native-country’: ’Puerto-Rico’}

Distance from data 0.0191765741
Nearest Training DataPoint: {’age’: 44, ’workclass’: ’Private’,

’fnlwgt’: 211759, ’education’: ’Bachelors’, ’education-num’: 13, ’
marital-status’: ’Married-civ-spouse’, ’occupation’: ’Exec-
managerial’, ’relationship’: ’Husband’, ’race’: ’Other’, ’sex’:
’Male’, ’capital-gain’: 0, ’capital-loss’: 0, ’hours-per-week’: 40,
’native-country’: ’Puerto-Rico’}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Example 4: Adult Dua & Graff (2019)
Sensitive Point Found Without Data Awareness Analysis For Sensitive Feature ‘sex’
Point1: {’age’: 86, ’workclass’: ’Without-pay’, ’fnlwgt’: 520260.32927,

’education’: ’HS-grad’, ’education-num’: 16.0, ’marital-status’: ’
Never-married’, ’occupation’: ’Transport-moving’, ’relationship’: ’
Unmarried’, ’race’: ’Amer-Indian-Eskimo’, ’sex’:
’Female’, ’capital-gain’: 10585, ’capital-loss’: 3142, ’hours-per-
week’: 99, ’native-country’: ’Laos’},

Point2: {’age’: 86, ’workclass’: ’Without-pay’, ’fnlwgt’: 520260.32927,
’education’: ’HS-grad’, ’education-num’: 16.0, ’marital-status’: ’
Never-married’, ’occupation’: ’Transport-moving’, ’relationship’: ’
Unmarried’, ’race’: ’Amer-Indian-Eskimo’, ’sex’:
’Male’, ’capital-gain’: 10585, ’capital-loss’: 3142, ’hours-per-week
’: 99, ’native-country’: ’Laos’}

Distance from data: 0.98998791099
Nearest Training Datapoint: { ’age’: 40, ’workclass’:

’Private’,’fnlwgt’: 287983, ’education’: ’Bachelors’,
’education-num’:
13, ’marital-status’: ’Never-married’, ’occupation’:
’Tech-support’, ’relationship’: ’Not-in-family’, ’race’:
’Asian-Pac-Islander’, ’sex’: ’Female’, ’capital-gain’: 0,
’capital-loss’: 2258, ’hours-per-week’: 48, ’native-country’:
’Philippines’,}

Sensitive Point Found With Data Awareness Analysis For Sensitive Feature ‘sex’
Point1:{’age’: 46, ’workclass’: ’Self-emp-inc’, ’fnlwgt’: 284508.95444,

’education’: ’Doctorate’, ’education-num’: 13, ’marital-status’: ’
Married-civ-spouse’, ’occupation’: ’Craft-repair’, ’relationship’: ’
Husband’, ’race’: ’Black’, ’sex’:
’Male’, ’capital-gain’: 0, ’capital-loss’: 0, ’hours-per-week’: 50,
’native-country’: ’France’},

Point2: {’age’: 46, ’workclass’: ’Self-emp-inc’, ’fnlwgt’:
284508.95444, ’education’: ’Doctorate’, ’education-num’: 13, ’
marital-status’: ’Married-civ-spouse’, ’occupation’: ’Craft-repair’,
’relationship’: ’Husband’, ’race’: ’Black’, ’sex’:

’Female’, ’capital-gain’: 0, ’capital-loss’: 0, ’hours-per-week’:
50, ’native-country’: ’France’}

Distance from data: 0.1081739837784343
Nearest Training Datapoint: {’age’: 45, ’workclass’:

’Private’, ’fnlwgt’: 238567, ’education’: ’Bachelors’, ’education-
num’: 13, ’marital-status’: ’Married-civ-spouse’, ’occupation’:
’Exec-managerial’, ’relationship’: ’Husband’, ’race’: ’White’, ’sex
’: ’Male’, ’capital-gain’: 0, ’capital-loss’: 0, ’hours-per-week’:
40, ’native-country’: ’England’}

Sensistive Examples of Pimadiabetes: (Dua & Graff (2019)):

Finally, we present one more sensitive pair example, the Pima Diabetes dataset (with no categor-
ical features), in example 5, and examine the sensitivity of feature (‘BloodPressure’). Again, the
non-data-aware method identifies the sensitive pairs with larger distances of 0.35 , where almost
all feature values are far from the data(which we show in cyan color) . However, the data-aware
method again identifies the pairs that are much closer to the data distances of 0.03,where only fea-
ture ”Glucose” is far and the others are close. The examples clearly show that data-aware search
finds sensitive pairs closer to the data.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Example 5: Pimadiabetes Dua & Graff (2019)
Sensitive Point Found Without Data Awareness Analysis For Sensitive Feature 2
Point1: {’Pregnancies’: 17, ’Glucose’: 188, ’BloodPressure’:

122, ’SkinThickness’: 33, ’Insulin’: 846, ’BMI’: 67.1, ’
DiabetesPedigreeFunction’: 2.42, ’Age’: 81},

Point2: {’Pregnancies’: 17.0, ’Glucose’: 188, ’BloodPressure’:
76, ’SkinThickness’: 33, ’Insulin’: 846, ’BMI’: 67.1, ’
DiabetesPedigreeFunction’: 2.42, ’Age’: 81}

Distance from data: 0.3534358888
Nearest Training Datapoint: {’Pregnancies’: 10, ’Glucose’:

148, ’BloodPressure’: 84, ’SkinThickness’: 48, ’Insulin’: 237,
’BMI’: 37.6, ’DiabetesPedigreeFunction’: 1.001, ’Age’: 51}

Sensitive Point Found With Data Awareness Analysis For Sensitive Feature 2
Point 1:{’Pregnancies’: 2e-06, ’Glucose’: 139, ’BloodPressure’:70, ’

SkinThickness’: 0, ’Insulin’: 0, ’BMI’: 32.75, ’
DiabetesPedigreeFunction’: 0.3595, ’Age’: 21}

Point2: {’Pregnancies’: 2e-06, ’Glucose’: 139, ’BloodPressure’:79, ’
SkinThickness’: 0, ’Insulin’: 0, ’BMI’: 32.75, ’
DiabetesPedigreeFunction’: 0.3595, ’Age’: 21}

Distance from data: 0.03051399
Nearest Training Datapoint: {’Pregnancies’: 0, ’Glucose’:

132, ’BloodPressure’: 78, ’SkinThickness’: 0, ’Insulin’: 0, ’BMI’:
32.4, ’DiabetesPedigreeFunction’: 0.393, ’Age’: 21}

D PROOF OF THEOREM 5.1 (CORRECTNESS OF OPTIMIZATIONS)

In this section, we prove Theorem 5.1, which says that our encoding optimiziations, that gave rise
to significant improvement in performance, are sound.

Proof. We first prove that equation UnAff is already subsumed by equation 2-equation 6. This
is established using a proof by contradiction. Assume to the contrary and let n ∈ U such that
l
(1)
n ̸= l

(2)
n . Since the leaf variables are forced to be either 0 or 1 (by equation 4), assume without

loss of generality that l(1)n = 1 and l
(2)
n = 0.

By equation 3, there exists leaf n′ such that l(2)n′ = 1 and the leaves n and n′ belong to the same tree.
Let n′′ be the last common node in the paths from the root to leaves n and n′, respectively. Let n′′

be labeled with with Xf < τk and pfk be the corresponding predicate. Since n′′ is in the ancestry
of n′ and n ∈ U , we have that p(1)fk = p

(2)
fk (by equation 6).

Without loss of generality, assume that leaf n is present in the subtree rooted at n′′.no, while leaf n′

is present in the one rooted at n′′.yes. Since l
(1)
n = 1, equation 5 implies that 1 − 1 ≥ p

(1)
fk =⇒

p
(1)
fk = 0. At the same time, since l

(2)
n′ = 1, equation 5 implies that p(2)fk ≥ 1 =⇒ p

(2)
fk = 1 ̸= p

(1)
fk

leading to a contradiction. Hence, l(1)n = l
(2)
n ∀i ∈ U is implied by equation 2-equation 6 and hence

the set of feasible solutions does not change on the addition of equation UnAff.

As mentioned earlier, we show that equation UnAff and equation Gap-bin together imply equa-
tion Aff-bin. Subtracting the two inequalities in equation Gap-bin, we get that when equation Gap-
bin holds, then

∑
l
(1)
n n.val − l

(2)
n n.val ≥ 2× δ.

However, for the leaves belonging to U , the difference terms are 0 by definition, i.e.∑
n∈U l

(1)
n n.val − l

(2)
n n.val = 0. Using these two equations we conclude that if equation Un-

Aff holds and equation Gap-bin holds, then we must have
∑

n ̸∈ U l
(1)
n n.val − l

(2)
n n.val ≥ 2 × δ,

which completes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E PROOF FOR THE CORRECTNESS OF THE DATA-AWARE OBJECTIVE
FUNCTION

The following lemma establishes the correctness of the data-aware objective function given in equa-
tion 7.
Lemma E.1. The objective function in 7 maximizes u(x(1), x(2)).

Proof. Let p(1)fk be true for smallest k. Due to the consistency constraints, all p(1)f(k+1), ..., p
(1)
fKf

are

true. Let p(2)fk′ be true for smallest k′. Therefore, the sum will reduce to
∑

f∈F log(πf (τf(k−1))) +

log(πf (τf(k′−1))) − 2 log(πf (τfKf
)). We may ignore the last term as it is a constant and we

may replace τf(k−1) by x
(1)
f because x

(1)
f ∈ [τf(k−1), τfk) and τf(k′−1) by x

(2)
f because x

(2)
f ∈

[τf(k′−1), τfk′). Therefore, the total sum will be
∑

f∈F log(πf (x
(1)
f)) + log(πf (x

(2)
f)), Since the

objective function is maximizing the sum, it is maximizing our utility function u(x(1), x(2)) =

Πf∈Fπf (x
(1)
f) · πf (x

(2)
f).

F MILP ENCODING FOR MULTICLASS SENSITIVITY

In the main paper, we had extended the Sensitivity problem from binary to multiclass classification.
Here we provide the details regarding how we extend the MILP encoding to tackle the multiclass
setting. We observe that for the (g, F, c(1), c(2))−sensitivity problem for a multiclass ensemble, only
equation Gap-bin, equation Aff-bin and equation Obj-bin need to be modified. We now describe
these changes. Let Lc denote the indices of the leaf variables corresponding to the trees of class c.

The change in equation Gap-bin follows from Definition 6.1. To encode that
∀c ̸= c(1), Eprob

c(1)
(x(1)) ≥ g × Eprobc (x(1)), we instead move to the space of ERaw, i.e. the

values before applying SOFTMAX. Given the definition of SOFTMAX,

Eprob
c(1)

(x(1)) ≥ g × Eprobc (x(1))

=⇒
EXP(Eraw

c(1)
(x(1)))∑

EXP(Erawci (x(1)))
≥ g ×

EXP(Ecraw(x(1)))∑
EXP(Erawci (x(1)))

=⇒ Erawc(1) (x
(1)) ≥ Erawc (x(1)) + ln g

We call ln g as η, to get the new gap constraints∧
c̸=c(1)

∑
ln∈L

c(1)

l(1)n n.val >
∑

ln∈Lc

l(1)n n.val + η

∧
c̸=c(2)

∑
ln∈L

c(2)

l(2)n n.val >
∑

ln∈Lc

l(2)n n.val + η
(Gap-multi)

With this new constraint gap constraint, we can arrive at a constraint for the affected leaves, sim-
ilar to equation Aff-bin, by adding the two constraints in equation Gap-multi and using reasoning
analogous to that of the binary classification setting.

∑
ln∈L

c(1)

n ̸∈ U

(
l(1)n n.val − l(2)n n.val

)
+

∑
ln∈L

c(2)

n̸∈U

(
l(2)n n.val − l(1)n n.val

)
> 2× η (Aff-multi)

An objective function can be formulated as before:

MAX
∑

ln∈L
c(1)

(
l(1)n n.val − l(2)n n.val

)
+

∑
ln∈L

c(2)

(
l(2)n n.val − l(1)n n.val

)
(Obj-multi)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Theorem F.1. The set of feasible solutions of the MILP defined by equation 2 ∧ equation 3 ∧
equation 4 ∧ equation 5 ∧ equation 6 ∧ equation Gap−multi and that of the MILP defined by
adding equation Aff-multi are equal.

The only difficult part in the proof is to see how we obtain equation Aff-multi. Let us choose c = c(2)

in the first half and c = c(1) in the second half in equation Gap-multi. We obtain∑
ln∈L

c(1)

l(1)n n.val >
∑

ln∈L
c(2)

l(1)n n.val + η

∑
ln∈L

c(2)

l(2)n n.val >
∑

ln∈L
c(1)

l(2)n n.val + η
(8)

Add the two equations

∑
ln∈L

c(1)

(l(1)n − l(2)n)n.val +
∑

ln∈L
c(2)

(l(2)n − l(1)n)n.val > 2η (9)

Since for the unaffected leafs l(1)n − l
(2)
n is zero. We derive the desired equation.

∑
ln∈L

c(1)

n ̸∈ U

(
l(1)n n.val − l(2)n n.val

)
+

∑
ln∈L

c(2)

n ̸∈ U

(
l(2)n n.val − l(1)n n.val

)
> 2× η (Aff-multi)

G COMPARISON WITH VERITAS

One of the comments that we left in the main paper was the comparison or lack there-of with the
tool VERITAS, a versatile tool for robustness verification of decision tree ensembles, for which there
is a multi-class variant available. In this section, we explain why we cannot easily compare with that
tool and also how it can be modified so that we can compare it. Firstly, VERITAS does not solve the
problem directly as it is not designed for sensitivity. So as the first step, we modified the tool enable
the multiclass sensitivity analysis. Note that VERITAS is a more generalizable tool and we approach
the problem differently. To encode the multiclass feature sensitivity problem in VERITAS, we create
two instances of a given tree ensemble and optimize the following objective:

MAX
(
D0(x

(1), x(2))−MAXc,c ̸=0(Dc(x
(1), x(2)))

)
(10)

where D is defined as follows:

Dc(x
(1), x(2)) =


Eraw
c(1)

(x(1)) + Eraw
c(2)

(x(2)), if c = 0

Eraw0 (x(1)) + Eraw0 (x(2)), if c = c(1)

Eraw
c(2)

(x(1)) + Eraw
c(1)

(x(2)), if c = c(2)

Erawc (x(1)) + Erawc (x(2)), otherwise

We define the objective value found by VERITAS being ”better than” SVIM if the output of VERI-
TAS is greater than 2× η.

Here we provide the proof of correctness of this comparison.

From the equation Gap-multi, we can conclude:

Erawc(1) (x
(1))−MAXc,c ̸=c(1)Erawc (x(1)) ≥ η (11)

Erawc(2) (x
(2))−MAXc,c ̸=c(2)Erawc (x(2)) ≥ η (12)

(13)

Ideally we would like to maximize the sum of LHS of the above equations. We will prove that our
objective is an upper bound for the output described above.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Claim. For all x(1) and x(2), : D0(x
(1), x(2)) − MAXc,c ̸=0(Dc(x

(1), x(2))) ≥ Eraw
c(1)

(x(1)) −
MAXc,c ̸=c(1)Erawc (x(1)) + Eraw

c(2)
(x(2))−MAXc,c ̸=c(2)Erawc (x(2)).

As MAX(a, b) ≤ MAX(a) + MAX(b), MAXc,c ̸=0(Dc(x
(1), x(2))) ≤ MAXc,c ̸=c(1)Erawc (x(1)) +

MAXc,c ̸=c(2)Erawc (x(2)). Thus negating and adding D0(x
(1), x(2)) to both sides, we arrive at our

claim. Hence our claim is true.

As our claim is true for all x(1) and x(2) and ∀xf(x) ≥ g(x) =⇒ MAXx(f(x)) ≥ MAXx(g(x)),
our objective is an upper bound over the ideal objective.

Thus, we can safely say if VERITAS outputs a value less than 2 ∗ η or it timeouts, while our tool
gives a sat output, our tool is better than VERITAS . If our tool gives sat but VERITAS provides a
higher output, we deem VERITAS to be better. If our tool gives unsat, then we ignore that instance.

We give VERITAS 1200 seconds to run for each experiment and compare with the best output found
till then. For all other tools, we compare time taken for them to find a satisfying pair of examples.
The results of the experiments are given in Table 2. The Veritas algorithm finds progressively larger
and larger gaps. %V indicates the amount of “gap” found by Veritas during the given time as
compared to SVIM. For instance, consider the Iris row where we report 2%, which implies that the
gap found by SVIMis 50 times bigger than the gap found by Veritas. We have added this explanation
in the paper.

Dataset #Class Dep. #Trees SVIM KANT %V
covtype robust 10 6 100 139.08 3086.10 0

covtype unrobust 10 6 100 213.78 3087.16 0
fashion robust 10 6 100 118.76 5667.60 0

fashion unrobust 10 6 100 67.63 5001.60 0
ori mnist robust 10 6 100 108.76 3343.97 0

ori mnist unrobust 10 6 100 76 3587.97 0
Iris 3 1 100 0.01 0.01 2

Red-Wine 3 6 100 3.83 3.89 100

Table 2: Multi-Class comparison experiments with VERITAS and KANT. The table reports PAR2
runtimes for the experiments in Fig. 3, counting any timeout as 2 × the timeout.

H ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we provide more details regarding how we trained the models, how we performed our
experiments, and also present additional experimental results. We then explain the counterexample
region that is used to evaluate the distances from data. Then we do an ablation study to understand
the impact of each improvement both in binary and multiclass tree ensembles. Finally, we show
what happens when the sensitive feature set is larger than 1, say 2-4.

H.1 TRAINING DETAILS

We trained XGBoost (v1.7.1; binary:logistic) with one-hot categoricals, rows with missing values
removed, and hyperparameters chosen on a 20% validation split (seed = 42) over maximum depth∈
{5,6} and number of boosting rounds ∈ {200,300,500} (benchmarks 7–9) or 500,800 (benchmark
10).

H.2 COUNTEREXAMPLE REGION

Given an input x and a predicted label y, a counterexample region is a connected subset of the input
space containing x′ such that: (i) the tree ensemble’s prediction is constant throughout the region
(all points fall into the same combination of leaves across all trees), and (ii) every point in the region
has a label y with the same probability (e.g., is misclassified). Intuitively, tree ensembles partition
Rd into axis-aligned polytopes (one per joint leaf pattern); within each polytope, the model’s output
does not change.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A counterexample region is one of these polytopes (or an intersection thereof with additional con-
straints) that certifies a whole set of violating inputs, not just a single adversarial point.

H.3 ABLATION STUDY

(a) Ablation Binary (b) Ablation Multiclass

Figure 6: Timing performance of single feature sensitivity for (a) binary ensembles , and (b)
multiclass ensembles.

To evaluate the contribution of each component in our sensitivity analysis, we conducted an ablation
study by systematically removing key optimizations equation UnAff and equation Aff-bin and eval-
uating the resulting performance. We present these results in Figure 6, for binary tree ensembles in
(left) and multi-class tree ensembles (right). Figure6(left) reports the results for 1102 benchmarks
whose runtime is >1s and omitting 188 instances solved under 1s. Figure6(right) reports the re-
sults for 517 benchmarks whose runtime is >1s, omitting 21 instances solved under 1s Overall,
the added constraints improve solver performance by up to an order of magnitude and dramatically
reduce the number of timed-out instances. An interesting observation in both these plots is that
when equation Aff-bin is added then equation UnAff do not contribute much in the performance (as
can be seen by the overlapping lines). Overall, these results confirm that our enhancements signif-
icantly improve the practical feasibility of sensitivity verification in binary and multiclass decision
tree ensembles.

H.4 MULTIFEATURE SENSITIVITY ANALYSIS

To evaluate the SViM’s ability to handle multi-feature sensitivity (i.e., sensitivity wrt change in more
than one feature simultaneously |F | > 1), we conducted experiments on binary classification mod-
els, allowing 2, 3, and 4 features to vary simultaneously. The results, shown in Figure 7, demonstrate
that even as the number of varying features increases, our tool remains scalable and even improves
in performance. The reason is that the search space explored by the tool decreases as we increase
number of sensitive features (since we search in the space of F \ F). These results demonstrate the
framework’s scalability and effectiveness in performing multi-feature sensitivity analysis.

H.5 ADDITIONAL EXPERIMENTS ON MULTIFEATURES AND MULTI-THREADING
EXPERIMENTS

Multifeature Sensitivity Analysis: We have added additional experiments for multifeature sen-
sitivity analysis. For each benchmark and each m-feature(s) setting, we generate as many test in-
stances as the total number of features. Each instance corresponds to a randomly sampled subset of
m-feature(s) from the feature set. Across all benchmarks (binary classifier) in Table1, this results in
a total of 430 instances for the m-feature(s).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 7: Timing performance of Multifeature sensitivity for Binary Classification

Figure 8: Timing performance of Multifeature sensitivity for Binary Classification

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Binary Classifier Experiments: We reran all instances, shown in Fig. 3(a), with single core and
multithreading (with 8 threads), to check whether having multiple threads increases the performance.
Note that as before, considering each single-feature variant as a separate instance and with gap ∈
{0.5, 1, 1.5} this yields a total of 1,290 benchmark instances. Figure 9(a) reports results for the 948
instances whose runtime is ≥ 1 s; we omit 342 instances solved in < 1 s as this is too small to be
significant (and within margin of computational precision errors). From the experiments, we observe
that multi-threading does not improve performance for the smaller runtimes but helps in the higher
range of runtimes. This happens because the overhead of managing multiple threads outweighs the
benefits when the runtimes are small. However, as the runtimes increase, the advantages of parallel
processing become more pronounced, leading to better performance with multi-threading.

Figure 9: Cactus plot comparing runtimes of single feature sensitivity for binary classifiers. On the
left all instances are single-core runs and on the right, instances of SVIM and KANT were run with
8-thread.

I AN ILLUSTRATIVE EXAMPLE

In Figure 10, we show a tree ensemble with two trees T1 and T2. Each tree has four leaves with
real-valued outputs vali, i = 0, . . . , 7. Let us assume that the sensitive feature set is {f4}. We want
to verify if there exists two inputs x(1) and x(2) differing only in feature f4 such that the output of
the ensemble changes from 0.5− gap to 0.5 + gap.

To formulate this as a MILP, we introduce the following variables:

• p
(1)
41 , p

(1)
71 , p

(1)
91 , p

(1)
92 : binary variables to represent the decisions at the internal nodes of the

trees for input x(1).

• p
(2)
41 , p

(2)
71 , p

(2)
91 , p

(2)
92 : binary variables to represent the decisions at the internal nodes of the

trees for input x(2).

• l
(1)
0 , l

(1)
1 , l

(1)
2 , l

(1)
3 : binary variables indicating which leaf of tree T1 is reached by input x(1).

• l
(1)
4 , l

(1)
5 , l

(1)
6 , l

(1)
7 : binary variables indicating which leaf of tree T2 is reached by input x(1).

• l
(2)
0 , l

(2)
1 , l

(2)
2 , l

(2)
3 : binary variables indicating which leaf of tree T1 is reached by input x(2).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

f7 < c1

f9 < c3f4 < c2

val3val2val1val0

TF

TFTF

f7 < c1

f9 < c3f9 < c4

val7val6val5val4

TF

TFTF

Figure 10: A tree ensemble with two trees T1, T2 having real valued (raw) outputs on leaves

• l
(2)
4 , l

(2)
5 , l

(2)
6 , l

(2)
7 : binary variables indicating which leaf of tree T2 is reached by input x(2).

The objective function in the following is equation Obj-bin for our example.

max val0 l
(1)
0 + val1 l

(1)
1 + val2 l

(1)
2 + val3 l

(1)
3 + val4 l

(1)
4 + val5 l

(1)
5

+ val6 l
(1)
6 + val7 l

(1)
7 − val0 l

(2)
0 − val1 l

(2)
1 − val2 l

(2)
2

− val3 l
(2)
3 − val4 l

(2)
4 − val5 l

(2)
5 − val6 l

(2)
6 − val7 l

(2)
7 (14)

The above objective is subject to the following constraints. In the guards of f9, we assume c4 < c3.
Therefore, the following constraints are due to Equations 2.

p
(1)
91 ≤ p

(1)
92

p
(2)
91 ≤ p

(2)
92 (15)

The following constraints are due to Equations 3.

l
(1)
0 + l

(1)
1 + l

(1)
2 + l

(1)
3 = 1

l
(2)
0 + l

(2)
1 + l

(2)
2 + l

(2)
3 = 1 (16)

l
(1)
4 + l

(1)
5 + l

(1)
6 + l

(1)
7 = 1

l
(2)
4 + l

(2)
5 + l

(2)
6 + l

(2)
7 = 1

The following constraints are due to Equations 4 and 5.

−p(1)71 + l
(1)
0 + l

(1)
1 = 0

p
(1)
71 + l

(1)
2 + l

(1)
3 = 1

−p(1)71 + l
(1)
4 + l

(1)
5 = 0

p
(1)
71 + l

(1)
6 + l

(1)
7 = 1

−p(1)41 + l
(1)
0 ≤ 0

p
(1)
41 + l

(1)
1 ≤ 1

−p(1)92 + l
(1)
2 ≤ 0

p
(1)
92 + l

(1)
3 ≤ 1

−p(1)92 + l
(1)
6 ≤ 0

p
(1)
92 + l

(1)
7 ≤ 1

−p(1)91 + l
(1)
4 ≤ 0

p
(1)
91 + l

(1)
5 ≤ 1

−p(2)71 + l
(2)
0 + l

(2)
1 = 0

p
(2)
71 + l

(2)
2 + l

(2)
3 = 1

−p(2)71 + l
(2)
4 + l

(2)
5 = 0

p
(2)
71 + l

(2)
6 + l

(2)
7 = 1

−p(2)41 + l
(2)
0 ≤ 0

p
(2)
41 + l

(2)
1 ≤ 1 (17)

−p(2)92 + l
(2)
2 ≤ 0

p
(2)
92 + l

(2)
3 ≤ 1

−p(2)92 + l
(2)
6 ≤ 0

p
(2)
92 + l

(2)
7 ≤ 1

−p(2)91 + l
(2)
4 ≤ 0

p
(2)
91 + l

(2)
5 ≤ 1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

The following constraints are due to Equations 6.

−p(1)91 + p
(2)
91 = 0

−p(1)92 + p
(2)
92 = 0 (18)

−p(1)71 + p
(2)
71 = 0

The following constraints are due to equation equation Gap-bin:

val0 l
(1)
0 + val1 l

(1)
1 + val2 l

(1)
2 + val3 l

(1)
3 + val4 l

(1)
4 + val5 l

(1)
5 + val6 l

(1)
6 + val7 l

(1)
7 ≥ gap− 0.5

val0 l
(2)
0 + val1 l

(2)
1 + val2 l

(2)
2 + val3 l

(2)
3 + val4 l

(2)
4 + val5 l

(2)
5 + val6 l

(2)
6 + val6 l

(2)
7 ≤ −0.5− gap

(19)

The following constraints are due to equations equation UnAff and equation Aff-bin respectively,
since only feature f4 is sensitive.

l
(1)
2 = l

(2)
2

l
(1)
3 = l

(2)
3

l
(1)
4 = l

(2)
4 (20)

l
(1)
5 = l

(2)
5

l
(1)
6 = l

(2)
6

l
(1)
7 = l

(2)
7

val0 l
(1)
0 + val1 l

(1)
1 − val0 l

(2)
0 − val1 l

(2)
1 ≥ 2 ∗ gap (21)

The above constraints indicates the key reason of the efficiency of our method. The long sum
of Equation 19 reduces to much shorter sum . Thereby, MILP solver has easier time solving the
problem.

28

	Introduction
	Preliminaries
	Feature Sensitivity and Hardness
	Data-Aware Sensitivity Verification
	An Improved MILP Encoding
	Constraints on Unaffected and Affected Leaves
	Objective Function
	Modification in MILP for Data-Aware search

	Extension to Multi-class Tree Ensembles
	Experiments
	Conclusion
	Notation table
	Additional proofs and theoretical results
	Data-Aware Sensitivity Examples in Tabular Domains
	Proof of Theorem 5.1 (correctness of Optimizations)
	Proof for the correctness of the data-aware objective function
	MILP encoding for multiclass Sensitivity
	Comparison with Veritas
	Additional Experiments and Details
	Training Details
	Counterexample region
	Ablation Study
	Multifeature Sensitivity Analysis
	Additional experiments on Multifeatures and multi-threading experiments

	 An illustrative example

