Participatory Live Coding and Learning-Centered Assessment in
Programming for Data Science

Sarah M Brown !

Abstract

Programming for Data Science is a programming
intensive data science course. This paper dis-
cusses a revision of the course to center student
learning. The revision effort centered the desired
learning outcomes and resulted in a course that
charted an explicit path toward achieving them for
students. This paper summarizes the design over-
all and provides practical details about the instruc-
tion via participatory live coding and assessment
with a competency based grading scheme.

1. Introduction

In this paper, we present an undergraduate course that
teaches introductory data science through a programming
intensive lens. As originally designed the course involved
lectures using slides and prefilled Jupyter Notebooks fol-
lowed by in class group work. In this format, the instructor
provides the conceptual ideas for all material, foundational
to advanced, and students figure out more practical details
in group work and outside of class. Live coding flips the
instructional model: the instructor provides core concept
with their practical details and students build on the base
knowledge to learn more advanced aspects independently.
Active learning in this version was independent rather than
in groups through formative assessment and following along
coding. The changes in assessment were designed to create
a more equitable and inclusive learning environment while
maintaining high expectations for all students.

Section 2 describes the goals of the course through its con-
text. Section 3 provides an overview of the design and how
the pieces work together. The remainder of the paper goes
into greater detail about how participatory live coding (Sec-
tion 4) and learner-centric assessment (Section 5) worked in
practice.

"Department of Computer Science and Statistics, University of
Rhode Island, Kingston, Rhode Island, USA. Correspondence to:
Sarah M Brown <brownsarahm@uri.edu>.

Proceedings of the 2™ Teaching in Machine Learning Workshop,
PMLR, 2021. Copyright 2021 by the author(s).

2. Course Context

Programming for Data Science is a required course for Data
Science (DS) Majors and a popular elective for Computer
Science (CS) Majors as it fulfills the requirement for a
programming-intensive elective. The prerequisite is one
programming course, but no statistics or math. CS majors
take Computer Programming taught in C++, after Survey of
Computer Science taught in Python. DS majors take Intro
to Computer Programming taught in Python, which covers
topics with less theoretical depth than the CS majors’ course.
Many students fulfill prerequisites at community colleges
that teach in Java, so some students come to the class with
no prior experience in Python. This course is a prerequisite
to Machine Learning, which covers the implementation of
machine learning algorithms and is also required for DS
majors and popular among CS majors.

In this context, the role of this course is to give students
a chance to deepen their programming skills and have an
overview of data science so that they can succeed in under-
standing the algorithmic details of machine learning in a
future course. To do this, communication about their work,
data organization, examining results of machine learning
models are essential as these skills will support students
to focus on the machine learning algorithms in the subse-
quent course. For some students, this will be their only
course exposure to machine learning concepts prior to grad-
uation, so hands-on experience with a variety of models and
a focus on careful selection of models is appealing. The
course’s five learning outcomes are: (/) Describe the pro-
cess of data science, define each phase, and identify standard
tools. (2) Access and combine data in multiple formats for
analysis. (3) Perform exploratory data analyses including
descriptive statistics and visualization. (4) Select models for
data by applying and evaluating multiple models to a single
dataset. (5) Communicate solutions to problems with data
in common industry formats.

3. Design Overview

The course was developed using a reverse instructional de-
sign process, focused on guiding students to achieve the
learning outcomes. To plan assessment, then instruction, the

Participatory Live Coding and Learning-Centered Assessment in Programming for Data Science

learning outcomes were broken down into 15 component
skills each of which was decomposed further to a 3 stage
progression, shown in Table 1. The first level represents a
basic understanding: the general terms and core concepts,
typically at the understand level of Bloom’s Taxonomy. The
second level represents the ability to apply concepts with
guidance as demonstrated in class, at the apply or analyze
level of Bloom’s Taxonomy. The third level is the ability to
apply the general concepts beyond the scope demonstrated
in class, operating at the evaluate or create levels of Bloom’s
Taxonomy. Each level of each skill is called an achievement
and these served as the basis of grading.

The content of the course was sequenced to build skills early
that would support later skills and activities were crafted to
review prior topics. We used loading data as a lens to review
of basic programming and reinforcement of the overview of
Data Science. Next, we covered exploratory data analysis
using pandas in order build understanding of what well
structured data looks like and make the concepts of data
science more concrete. Then we covered Data cleaning,
as a context for studying ways to manipulate data frames
and review the data science process again, emphasizing
how the stages interact and aren’t always discrete. While
cleaning data, we used skills visualizations and summary
statistics to examine progress. This allowed for repetition
and reinforcement. Databases served as context to discuss
constructing datasets from pieces and a chance to reinforce
concepts from accessing data.

In weeks 6-11, new machine learning models served as con-
text to motivate different aspects of evaluation and modeling
as shown in Table 2. We used the Sci-kit Learn API to take
a model-centric approach, while sticking with the program-
ming focus of the course (Buitinck et al., 2013). Sci-kit
Learn provides a large number of typical models with a
consistent API, this made it easy for students to try out new
models independently to extend what was taught. We used
object inspection in Python to examine the attributes of the
estimator objects to learn about the model parameters and
the built in Jupyter help to learn about the hyperparameters.
Each mode motivated a new data science concept or skill:
naive bays classifiers introduced the concept of classifica-
tion and classifier performance; decision trees motivated
cross validation; Support Vector Machines motivated param-
eter tuning; Knearest neighbors clustering and regularized
regression motivated model comparison. This sequencing
allowed for covering a variety of models and a straightfor-
ward path to reinforcing the core concepts and providing
multiple opportunities to practice each skill. Models were
presented with usage heuristics but without the algorithmic
details of the £it methods.

The final three weeks covered nontabular data through case
studies that allowed for reinforcement of many different

skills and centered students interests. Nontabular data was
framed as an extension of what was covered previously: we
can represent data in tabular forms and then apply what
we know. There was greater interest in natural language
processing than in images, so we spent two weeks on text
representations and only one week with images. After fo-
cusing on various representations of text, deep learning was
presented as a complex model that can do both the represen-
tation and classification at once. This framing meant the last
few weeks were another opportunity to reinforce everything
covered to this point, giving students more opportunities to
earn missed achievements if they were behind while still
creating opportunities for students who were up to date to
extend what they hard learned. Fireside chat style interviews
with practicing data scientists, introduced helped students
see that what we had covered in class directly connected to
what data science is like in industry.

4. Class Sessions

During class time, I delivered instruction via participatory
live coding, where the instructor types and explains code in
real time and students follow along, typing the same code,
getting practice in real time (Word et al., 2021; Nederbragt
et al., 2020). Participatory live coding models realistic pro-
gramming, students observe the instructor make mistakes,
get errors, and debug them in real time. Error messages
are difficult to parse for novices, so seeing the instructor
parse and resolve them helps reach proficiency in this much
faster than relying on internet searches alone. Additionally,
debugging a model that does not perform as expected is an
even more complicated process, but with this model, we can
see this in real time®. With the aid of Jupyter Notebooks,
students have a copy of the code produced in class, with
their own notes. In the Carpentries, where this model of
teaching was popularized, the audience is novices, who are
coming to programming as a supplemental skill to support
their research. In that context, the learners need a minimal
mental model of how the code works to move into a compe-
tent practitioner role, these learners have good knowledge
of what data analyses they wish to do and attend the work-
shop to learn to code as a tool. This course is a 300 level
elective for computer science and data science majors; these
students come to the class with significant prior experience
in programming and need more depth in their programming,
but with less experience in producing knowledge from data.

These differences require adaptations to the practice. First,
the more advanced material and short sessions(50 min-
utes, 3 times weekly vs 2 day bootcamp) make some nec-
essary code excerpts prohibitively long to type live. To
accommodate, we used IPython load magic with a short
url that pointed to the markdown download page for a

3e.g. while covering Decision trees

https://rhodyprog4ds.github.io/BrownFall20/notes/2020-10-21.html

Participatory Live Coding and Learning-Centered Assessment in Programming for Data Science

Table 1. Select Achievement Definitions. There are three achievements for each of 15 skills, describing a progression of learning for
that skill. The keyword for each skill is a shorthand that was used throughout the course: from the schedule, to assignment text, and the

gradebook. A full listing can be found on the syllabus®

keyword skill Level 1 Level 2 Level 3
access | Access datain mul- | Load data from at least one format; | Load data for processing from the most | Access data from uncommon formats
tiple formats Identify the most common data for- | common formats; Compare and con- | and identify best practices for formats
mats trast most common formats in different contexts
visualize | Visualize data identify plot types, generate basic plots | Generate multiple plot types with com- | generate and customize complex plots
from Pandas plete labeling with Pandas with plotting libraries
prepare | prepare data for | identify if data is or is not ready for | apply data reshaping, cleaning, and fil- | apply data reshaping, cleaning, and fil-
analysis analysis, potential problems with data tering as directed tering manipulations reliably and cor-
rectly by assessing data as received
classification | Apply classifica- | Describe what classification is Apply a prescribed classification | Select and apply appropriate classifica-
tion model to a dataset tion models to different datasets
compare | compare models Qualitatively compare model classes Compare model classes specifically; | Evaluate tradeoffs between different
compare performance of fit models model comparison types
workflow | Use standard tools | Solve well structured problems with a | Plan and execute solutions to fully | Scope, choose appropriate tools and
to solve data sci- | single tool pipeline specified problems; apply new features | solve open-ended data science prob-
ence problems of standard tools lems; compare common tools

Table 2. Course Schedule with skills emphasized each week. Skills
are defined in Table 1 and linked by the keyword column

‘Week Topics Skills
1 Overview, Python Review python, process
2 Loading data access, prepare, summarize
3 Exploratory Data Analysis summarize, visualize
4 Data Cleaning prepare, summarize, visualize
5 Databases & Merges access, construct, summarize
6 Naive Bayes Classification classification, evaluate
7 decision trees, cross validation classification, evaluate
8 Linear Regression regression, evaluate
9 Kmeans Clustering clustering, evaluate

10 SVM, parameter tuning optimize, evaluate, clustering
11 KNN, LASSO compare, clustering, regression
12 Text Analysis unstructured
13 Topic Modeling unstructured, workflow
14 Deep Learning workflow, compare

HackMd* pad to import content to and editable notebook
cell: $1load http://drsmb.co/310. This method
was most often used for import statements in the first cell of
each class. The HackMD is editable in real time while main-
taining a consistent url which allowed the instructor to add
text there on the fly and share it with students immediately.
Second, we used code inspection tools to examine data struc-
tures and class objects as a visual for conceptual discussions.
For example, we printed out the object using __dict_
attribute to see how the estimator object changed before and
after fitting. We also made extensive use of built in Jupyter
help views to consider parameters of methods before calling
them. This both gave a visual to complement explanation
and modeled for students where they could get help while
working independently. This is important to model because
after introductory courses that do everything from scratch in
teaching -specific development environments many students
come to this course unfamiliar with using documentation.

In class assessment occurred in Prismia chat’, which pro-
vides a chat-like interface for students and allows the in-

*https://hackmd.io/
Shttps://prismia.chat/

structional team to see all student responses at once, group
them, and reply individually or group-wise. Many questions
were multiple choice questions designed to probe specific
misconceptions, though some were open ended program-
ming questions, where students submitted code to the chat.
This served as formative assessment to reinforce concepts
for students in real time and as way for the instructor to
monitor progress.

At the end of class, students were able to submit additional
questions through an Exit Ticket. Answers to those ques-
tions were appended to the instructor notebook prior to
posting them online a course Jupyter Book. The instructor
notes were also annotated with resources, written expla-
nations, and extra practice exercises using Jupyter Book
special content blocks after converting to Myst Markdown.

5. Assessment

In order to align assessment to the assumed model of
skill acquisition, the course adopted a hybrid competency-
specification based grading scheme. This grading scheme
allowed specification grading of each activity, meaning that
the instructor and teaching assistant did not have to cal-
culate partial credit for assignments and that students had
multiple chances to demonstrate each competency in the
course. Specification grading involves defining a set of
criteria, the specifications, for an assignment and assess-
ing on a binary: the specifications are met or not(Nilson,
2015). In this case the specifications were the achievement
definitions, crucially this allows for some mistakes to be
made if the understanding is demonstrated. Standards based
grading focuses on a student’s best work rather than aver-
aging all attempts and improves outcomes for marginalized
students especially Verschelden, 2017, p64. Competency
based grading allows students to work through material at
their own pace and typically allows for resubmits on assign-
ments. In this course, the grade was based on accumulated

https://hackmd.io/
https://prismia.chat/
https://rhodyprog4ds.github.io/BrownFall20/notes/

Participatory Live Coding and Learning-Centered Assessment in Programming for Data Science

achievements and there were multiple opportunities to earn
each achievement, through the design of assignments, rather
than resubmits. This repetitive structure in assignments also
helped students see the material as connected as they were
required to continue using skills as the semester proceeded.

Students had at least two opportunities to earn each of the 45
(15*3) achievements. Level 1 achievements could be earned
on any type of activity: in class, assignments, or portfolio
checks. Level 2 could be earned only on assignments and
portfolios. Level 3 achievements could only be earned on
portfolio submissions. Each skill was addressed in at least
3 class sessions, at least 2 weekly assignments and at least
2 portfolio submissions®. The communication learning out-
come was built into all assignments and portfolios through
the requirement to explain code and interpret results, using
markdown cells in submitted Jupyter Notebooks.

Assignments were guided data analyses. Each allowed stu-
dents to practice with new concepts and skills within a
direct guidance. Each submitted assignment was graded on
specification for level 2 achievement in each relevant skill
independently; a student could earn a level 2 achievement
for one skill, but not another in a given assignment. If the
submission did not meet the specification for level 2, it was
evaluated for meeting level 1. For example, correctly using
and interpretting summary statistics, and choosing the right
plot type failing to generate the plots in A3 would earn level
2 for summarize, but level 1 for visualize. Students submit-
ted assignments as Jupyter notebooks to a GitHub repository
created with GitHub Classroom from a template repository a
GitHub Action to convert submitted notebooks files to Myst
markdown with Jupytext(Team, 2020). The markdown for-
mat facilitated providing inline feedback through the Feed-
back Pull Request automatically created with GitHub Class-
room by making a human readable file (Gennarelli, 2017;
Team, 2020). This gave student explicit feedback about how
to improve on future assignments aimed at encouraging stu-
dents to continually improve(Verschelden, 2017). Because
achievements were evaluated independently, students could
skip portions of the assignment that assessed achievements
they had already earned. For example, later assignments
included suggestions for extra plots or modifications to the
figures to include in order to earn level 2 for visualization.
A student could also submit an empty repository indicating
that they were choosing to attempt the relevant achievements
through a different assignment.

Portfolios were a chance for students to demonstrate deeper
understanding by building a large Jupyter Book in a single
GitHub Repository over the course of the semester. Stu-
dents wrote an introduction describing what achievements
they were attempting to earn and where in their portfolio
each was addressed. Portfolios were graded on specifica-

Sfull allocation on the syllabus

tion for the achievements the students identified. Students
were provided with prompts to guide their inquiries to earn
level three and the option to revise a previously submitted
assignment to earn missed level two achievements. The
open-ended prompts included both reflection-centered and
analysis types and students were encouraged to propose
alternative, creative options as well. To earn achievements
for an assignment revision the student had to submit a more
reflective notebook than was required the first time, describ-
ing where they were stuck or did not understand, addressing
feedback they received, comparing their solution to the cor-
rect one if appropriate, and explaining the correct answer.

In the end, accumulated achievements were converted to
a letter grade with a series of minimum thresholds shown
in 3: to earn a C students had to accumulate all level 1
achievements; a B required all level 2 achievements; and an
A required all level 3 achievements.

Table 3. Minimum Achievements required for each letter grade.
For example, earning all level 1 achievements, 13 level 2 achieve-
ments and 6 level 3 achievements, would result in a B-.

letter grade | Level 3 | Level 2 | Level 1
A 15 15 15
A- 10 15 15
B+ 5 15 15
B 0 15 15
B- 0 10 15
C+ 0 5 15
C 0 0 15
C- 0 0 10
D+ 0 0 5
D 0 0 3

6. Conclusion

This paper described Programming for Data Science, a pro-
gramming focused introduction to data science with learning
centered assessment. The design of the course was centered
on student learning, but this organization also provides key
advantages for the instructor. Grading without assigning
partial credit is more streamlined; giving inline feedback
on how students can improve their code, either to meet the
specification, or be a better coworker is more enjoyable than
taking points off. Having the clear learning outcomes that
needed to be met with each activity that were written be-
fore the start of the semester made the ongoing prep lighter.
Writing code live gives the freedom to adapt to student
questions on the fly and means the advance preparation is
only notes that will not be shared directly. Students appre-
ciated that class went slow enough that they were able to
really keep up with what was going on and because the live
coding is active, the slower pace does not disappoint the
more advanced students. Students shared later that they
were able to apply concepts from class to do independent
projects and use more complex models not covered because
the programming patterns held the same.

https://rhodyprog4ds.github.io/BrownFall20/syllabus/course_map.html##assignments-and-skills

Participatory Live Coding and Learning-Centered Assessment in Programming for Data Science

References

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., and Varoquaux, G. API design for ma-
chine learning software: experiences from the scikit-learn
project. In ECML PKDD workshop: Languages for data
mining and machine learning, pp. 108122, 2013.

Gennarelli, V. How to grade programming assignments on
GitHub, June 2017. URL https://github.blog/
2017-06-13-how-to-grade-programming-assignments—-on-github/.

Nederbragt, A., Harris, R. M., Hill, A. P, and Wil-
son, G. Ten quick tips for teaching with partici-
patory live coding. PLOS Computational Biology,
16(9):1-7, September 2020. doi: 10.1371/journal.
pcbi.1008090. URL https://doi.org/10.1371/
journal.pcbi.1008090. Publisher: Public Library
of Science.

Nilson, L. B. Specifications grading: Restoring rigor, moti-
vating students, and saving faculty time. Stylus Publish-
ing, LLC, 2015.

Team, J. JupyText: Using at the Command Line,
2020. URL https://jupytext.readthedocs.
io/en/latest/using—-cli.html.

Verschelden, C. Bandwidth recovery: helping students re-
claim cognitive resources lost to poverty, racism, and
social marginalization. Stylus Publishing, Sterling, Vir-
ginia, first edition edition, 2017. ISBN 9781620366042

9781620366059.

Word, K., Wilson, G., and Koch, C. (eds.). The
Carpentries: Instructor Training. June 2021.
URL https://carpentries.github.io/

instructor-training/.

https://github.blog/2017-06-13-how-to-grade-programming-assignments-on-github/
https://github.blog/2017-06-13-how-to-grade-programming-assignments-on-github/
https://doi.org/10.1371/journal.pcbi.1008090
https://doi.org/10.1371/journal.pcbi.1008090
https://jupytext.readthedocs.io/en/latest/using-cli.html
https://jupytext.readthedocs.io/en/latest/using-cli.html
https://carpentries.github.io/instructor-training/
https://carpentries.github.io/instructor-training/

