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Abstract
Training large language models (LLMs) on di-
verse datasets, including news, books, and user
data, enhances their capabilities but also raises
significant privacy and copyright concerns due to
their capacity to memorize training data. Current
memorization measurements, primarily based on
extraction attacks like Discoverable Memoriza-
tion, focus on an LLM’s ability to reproduce train-
ing data verbatim when prompted. While various
extensions to these methods exist, allowing for
different prompt forms and approximate match-
ing, they introduce numerous parameters whose
arbitrary selection significantly impacts reported
memorization rates. This paper addresses the crit-
ical research question of how to compute the false
positive rate (FPR) of these diverse memorization
measurements. We propose a practical definition
of FPR and ways to interpret them, offering a
more principled approach to select an extraction
attack and its parameters. Our findings reveal
that while “stronger” extraction attacks often iden-
tify more memorized samples, they also tend to
have higher FPRs. Notably, some computation-
ally intensive methods exhibit lower extraction
rates than simpler baselines when controlling for
a fixed FPR.

1. Introduction
The recent quest for new high-quality data sources for train-
ing large language models (LLMs) raises an alarming risk of
privacy and copyright violations (Tremblay v. OpenAI, Inc.,
2023; Kadrey v. Meta Platforms, inc, 2023). These con-
cerns exacerbate as researchers found that LLMs have great
capacity at “memorizing” their training data verbatim (Car-
lini et al., 2021). To estimate such risks, both academia
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and industry have devised several tools for measuring the
memorization phenomenon in LLMs.

Today, most of the memorization measurements are based
on extraction attacks, and some on membership inference
attacks. Notably, there is an increase adoption of Discover-
able Memorization (Carlini et al., 2023) as a memorization
measurement scheme (PaLM 2 Team, 2023; Gemini Team,
2024; Gemma Team, 2024a;b; Llama Team, 2024). Under
this definition, a 50-token suffix is deemed memorized if the
target model generates it verbatim when prompted with the
preceding 50-token prefix. Subsequent works extend this by
allowing the probing prompt to take multiple forms includ-
ing a set of small perturbations of the prefix (More et al.,
2024) and any prompt shorter than the suffix (Schwarzschild
et al., 2024). Some allow a more flexible or approximate
matching between the true suffix and the generated texts
such as edit distance (Ippolito et al., 2023; Karamolegkou
et al., 2023) or probabilistic decoding (Hayes et al., 2024).

These memorization definition come with more parameters
to adjust (e.g., prefix and suffix lengths, number of augmen-
tations, number of optimization steps, probability thresh-
olds). When these parameters are relaxed, we capture more
memorized samples. However, at the same time, it becomes
increasingly difficult to know whether the detected samples
are truly memorized or are “false positives,” i.e., samples
that are flagged as memorized but is not actually memorized.
Choices of these parameters are currently arbitrary across
industry and academic research, lacking systematic compar-
isons among them. Needless to say, these choices should
not be made lightly as they will significantly affect the final
extraction rate which could dictate model releases.

The research question we consider in this work is how to
compute the false positive rate of different memorization
measurements. This problem is ill-defined because, as
many past works have also pointed out, we do not have
a “ground-truth” or an “oracle” for memorized samples.
To demonstrate efficacy of memorization detectors, recent
works (Schwarzschild et al., 2024; Hayes et al., 2024) show
that the extraction rate on a subset of training set is high
whereas the rate on a similar set of non-training samples is
low. However, since the evaluated samples are arbitrarily
chosen, we cannot cleanly interpret the extraction rates.
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2. False Positives in Memorization Detection
Intuitively, false positives should represent training samples
of a model that are extracted (i.e., considered memorized by
some memorization detection tool) but are not truly mem-
orized by the model. However, as mentioned previously,
we also do not have access to an oracle that determines if a
given sample is memorized. In this work, we instead turn to
a quantity that is well-defined and measurable.

Definition 1 (False Positive Rate of Extraction Attacks).
Given a distribution of samples D, a training set Sn con-
taining n IID samples from D, an a model θ trained on Sn,
and S′

m a set of m IID samples from D

TPRn(θ,D) :=
1

n

∑
(xj ,yj)∈Sn

extractθ(xj , yj) (1)

FPRm(θ,D) :=
1

m

∑
(xj ,yj)∈S′

m

extractθ(xj , yj) (2)

Then, we propose that one should compare different ex-
traction attacks or memorization detectors by their TPR
at a fixed low FPR, also a popular metric in membership
inference literature (Carlini et al., 2022). Intuitively, this
metric is reasonable in memorization detection because a
good memorization detector should (1) capture more train-
ing samples (high TPR) while (2) not falsely flagging non-
memorized samples (low FPR). FPR computes the extrac-
tion rate on non-training samples which indeed cannot be
memorized (assuming no overlap with the training set). In
practice, S′

m can be an IID held-out test set. Another in-
terpretation of Definition 1 is to instead view this problem
from the membership inference setting where the adversary
tries to predict membership of both Sn (as member) and S′

m

(as non-member) as accurately as possible.

Synthetic fine-tuning setup. The quantities that we can
measure, TPR = p(extracted | member) and FPR =
p(extracted | ¬member), are not exactly the same as
the quantities we truly desire to measure, p(extracted |
memorized) and p(extracted | ¬memorized). This is sim-
ply because memorization is generally not equivalent to
membership but only a subset. To make an assumption
that all training samples are memorized (i.e., member and
extracted are equivalent), we have to create a synthetic
setup where it holds by simply training the model for a
large number of epochs. Here, we can reasonably assume
that with enough repetition, a model with sufficient capacity
memorizes all its training samples.

3. Design Space of Memorization Detection
We first consider a document, e.g., a Wikipedia article or a
news article, where the adversary has access to the first 50
tokens (prefix x) and wants to extract the following sequence

of a certain length (suffix y). A “sample” is a concatenation
of x || y. In Discoverable Memorization, a suffix y is
deemed memorized if the target model generates y verbatim
when prompted with the corresponding prefix x, i.e., y =
ŷ := genθ(x) where genθ represents a generation function
from the target model θ using greedy decoding. Unless
stated otherwise, we choose the suffix length |y| = 50 as
suggested by Carlini et al. (2023) and Nasr et al. (2023).

Generalized memorization definition. Instead of prompt-
ing the model only with x, it is natural to consider other sets
of prompts z ∈ Z (Section 3.1). Instead of only the verba-
tim match, it makes sense to consider other textual similar-
ity metrics or other kinds of distance function sim(fθ(z), y)
where fθ(·) is some inference process on θ that is not neces-
sarily a greedy decoding (Section 3.2). Lastly, we may also
calibrate this similarity metric by subtracting it with another
metric calib(x, y) (Section 3.3).

Definition 2 (Generalized Memorization Definition). Given
a prefix x and a suffix y, y is memorized by an LLM θ if

scoreθ(x, y)− calib(x, y) ≥ τ (3)
where scoreθ(x, y) := max

z∈Z(x)
sim (fθ(z), y) (4)

for some threshold τ ∈ R. We call scoreθ(y) an extraction
score of y from θ.

Fig. 1 summarizes this section. All of the design axes are or-
thogonal; any combination is a valid memorization detector.

3.1. Design Axis 1: Prompt

Prompt augmentation. It is unlikely the case that all prefix
tokens are necessary, and some may even provide noisy
signals (i.e., overlapping sequence pattern with other sam-
ples). The idea behind prompt augmentation is that the
model is already almost capable of generating the suffix
verbatim given the full prefix. So just by “perturbing” the
prefix slightly, we should increase the chance of generating
the suffix more accurately than just prompting with the full
prefix. We experiment with four types of augmentation, the
first two proposed by More et al. (2024) and the rest by us.

1. Truncate. We prompt the model with different
truncated versions of x from the front: Z(x) =
{x, x[1 :], x[2 :], . . . , x[|x| − 1 :]}.

2. Mask. We mask out a random subset of tokens in x.
Each token has probability pm of being masked out. The
masked out tokens are either (i) simply dropped (Mask-
Drop), (ii) replaced with a pad token (Mask-Pad), or (iii)
replaced with a random token (Mask-Rand).

3. Paraphrase. We paraphrase the prefix with Dipper (Kr-
ishna et al., 2023) and Parrot (Damodaran, 2025).

4. Few-shot prompting. To best mimic how the training
data are presented to the model, we use few-shot prompt-
ing method (“FewShot-s” where s is the number of few-
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Figure 1: Design space of the extraction-based memorization measurements.

shot samples) that concatenates random training samples
from the same dataset with EOS and BOS tokens. We
use five few-shot samples by default.

With prompt augmentation, the adversary will prompt the
target model multiple times (says N times), and if one of
the prompts succeed, we consider the sample memorized.

Prompt optimization. Going beyond prompt augmentation,
we naturally expect more sophisticated prompt optimiza-
tion to further improve the extraction rate. Schwarzschild
et al. (2024) propose a memorization definition, termed
Adversarial Compression Ratio (ACR), based on a simple
form of compression which states that a suffix y is consid-
ered memorized if ∃z s.t. gen(z) = y and |z| / |x| ≤ r
for some ratio r ∈ R+. In other word, we can define
Z = {z | |z| / |x| ≤ r} in Definition 2. ACR uses the GCG
attack (Zou et al., 2023), a greedy token-level prompt opti-
mization algorithm originally proposed as jailbreak attacks,
to heuristically search the (intractable) prompt space Z .

1. GCG-Orig: The prompt is initialized with 50 space-
separated “!” marks which is done by the original GCG
paper (Zou et al., 2023) and Schwarzschild et al. (2024).

2. GCG-Prefix: We propose a small variation to GCG-Orig
by initializing the prompt with the prefix x.

3.2. Design Axis 2: Metric

Using greedy decoding to generate from the target LLM, we
measure how similar the generation is to the true suffix with
three popular text similarity metrics: longest prefix match
(LPM), longest common subsequence (LCS), and edit simi-
larity (EditSim). Without generating, we can also measure
how “close” the model is to generating the true suffix. A
natural method is to compute probability of the model gen-
erating the true suffix with random decoding pθ(y | z). We
use log of this probability (or negative cross-entropy loss)
as the Loss metric.

3.3. Design Axis 3: Calibration

We introduce calibration as a way to combat false posi-
tives, borrowing an idea from membership inference lit-
erature (Carlini et al., 2021; Watson et al., 2022). The

calibration idea is to subtract membership inference score
with a measure of “difficulty” of a given sample. This is to
help distinguish between memorized members and easy non-
members, both of which will incur low loss when not cali-
brated. Here, we choose a form calibration by a “reference
mode” essentially estimating the memorization definition in
Feldman & Zhang (2020) with a single reference model, a
computationally cheaper version of Zhang et al. (2023). In
words, the calibration suggests that if a similarly powerful
LLM generates a given suffix without being trained on it,
the suffix should not be considered memorized even if it is
regurgitated by the target model, hence reducing the FPR.

4. Results
4.1. Experiment Setup

Dataset. We use a mixture of three sources published after
the training data cutoff date of OLMo-7B. Specifically, we
use ArXiv, BBC news, and Wikipedia articles from the
RealTimeData1 dataset (Li et al., 2023) between January
2024 and March 2025. We call this combined dataset DFT
which we randomly split into Dtrain

FT , Dtest
FT , and Dref

FT with
a proportion 45%, 45%, and 10%, respectively.

Model. We fine-tune the pre-trained OLMo-7B
model (Groeneveld et al., 2024) on Dtrain

FT with the next-
token prediction objective for 10 epochs to simulate the
condition where we believe all training samples are mem-
orized while keeping the memorization detection problem
non-trivial. For calibration, we use the pre-trained OLMo-
7B as a “prior checkpoint” and also fine-tune OLMo-7B on
a smaller Dref

FT as “shadow model.” For more detailed de-
scription and the pre-training setup, please see Appendix C.

4.2. False Positives in Memorization Detection

Both TPR and FPR increase with attack strength. Fig. 2
confirms our hypothesis that stronger attack yields higher ex-
traction rates in both member and non-member sets. Prompt-
ing methods that modify prefix more and search over a

1https://huggingface.co/datasets/
RealTimeData
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Figure 2: Fraction of samples detected
as memorized (LPM = 1.0). Both TPR
(blue) and FPR (red) generally increase
with stronger prompting methods. See
Fig. 4 for all data sources.

Table 1: Comparison of different prompting methods on ArXiv under three metrics
(LPM, EditSim, and Loss) in the fine-tuning setting. We bold the largest number
in each column and underline the second. Prefix prompting is generally a strong
choice; Prompt augmentations apart from paraphrase perform better than Prefix,
especially FewShot which is on part with (and better at a low FPR) the most
expensive GCG-Prefix.

Prompt AUC (↑) TPR @ 10% FPR (↑) TPR @ 1% FPR (↑)

LPM EditSim Loss LPM EditSim Loss LPM EditSim Loss

Prefix 0.90 0.88 1.00 0.78 0.73 1.00 0.52 0.42 0.97
Truncate 0.93 0.92 1.00 0.81 0.81 1.00 0.58 0.52 0.97
Mask-Rand 0.94 0.94 1.00 0.86 0.85 1.00 0.64 0.61 0.97
Parrot 0.91 0.92 1.00 0.78 0.80 1.00 0.56 0.52 0.97
Dipper 0.91 0.91 1.00 0.75 0.78 1.00 0.53 0.48 0.94
FewShot-5 0.99 0.99 0.51 0.98 0.97 0.10 0.95 0.93 0.01
GCG-Orig 0.75 0.77 0.96 0.56 0.57 0.90 0.39 0.35 0.40
GCG-Prefix 0.99 0.99 1.00 0.99 0.99 1.00 0.00 0.00 0.93

larger space of prompts find more prompts that “extract” a
non-member suffix. This raises a question whether all the
extracted members are “valid” (i.e., truly memorized by the
model) or an artifact of the prompt optimization. When
relaxing the metric from LPM = 1.0 to EditSim ≥ 0.9
(e.g., from verbatim to approximate match definition used
by Ippolito et al. (2023); Gemma Team (2024a;b; 2025)), we
observe an expected uptick in both TPRs and FPRs (Fig. 5).

Few-shot prompting has a high TPR but low FPR.
FewShot-5 has the second highest TPRs on all three sources,
only slightly lower than those of a much more expensive
GCG-Prefix, but has much lower FPRs. On the other hand,
GCG-Orig is the least promising with relatively high FPRs
and low TPR. We will dive into this results in Section 4.3.

Agreement among memorization definitions. we are also
interested in how much different memorization definitions
agree with one another. Fig. 6 shows a Venn diagram of the
training samples with the top-20% scores as determined by
each method. It is evident that different prompting methods
(Prefix, Mask-Rand, and FewShot-5) find a significant non-
overlapping set of memorized samples (more than a third of
the samples selected by a given method are not selected by
the other two). On the other hand, the three metrics (LPM,
EditSim, and Loss) are much more correlated.

4.3. Comparing Memorization Detection

As shown in Section 4.2, different design choices of extract
attacks lead to varying TPRs and FPRs. Following the
interpretation from Section 2, we now compare different
design choices under two popular metrics from membership
inference literature: AUC and TPR at a low FPR.

Stronger prompting methods are not necessarily better.
Table 1 compares all of the primary prompting methods
under three different metrics without calibration. We will

highlight results focusing on the LPM metric.

• For generation-based metrics (e.g., LPM and EditSim, but
not not Loss), prompt augmentation methods except for
paraphrasing improve over the Prefix baseline.

• GCG-Prefix is the best prompting method at high FPR
regions (see Fig. 3). However, at low FPRs, it falls short
compared to the other non-optimization-based methods.
On the other hand, GCG-Orig is overall the worst method
across all values of FPRs.

• FewShot-5 performs almost as well as GCG-Prefix at
high FPR but much better at low FPR, achieving over
90% TPR at 1% FPR where most methods only reaches
50–70% TPR.

Approximate match metrics. Using the LCS or the Edit-
Sim metric does not lead to substantially difference AUC or
TPR at a fixed FPR compared to the verbatim match (LPM).
This suggests that on average, lowering the threshold on
LPM is similar to using other more complex approximate
match metrics. However, at an instance level, predicted pos-
itives by LPM and by EditSim do not completely overlap
(at a fixed FPR) as mentioned earlier.

Membership inference attacks. Traditional MIA (Prefix
+ Loss) performs extremely well, beating or on par with
all other more sophisticated prompting method. The Loss
metric is also better than the generation-based metrics in all
cases (except for when used with few-shot prompting).

Calibration. We compare two calibration methods, prior
checkpoint and shadow model, in Table 3. In almost all
settings, one of the two calibration methods performs better
than no calibration. Calibrating the generation-based metric
like LPM improves TPRs by a large margin, especially for
GCG-Prefix which performs poorly at low FPRs before
calibration. For Loss metric, calibration has little effect as
TPRs are already close to 100%.
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Table 2: Summary of the different prompt and scoring methods used in the literature.

Name and Literature Prompt Metric Calibration

Extraction Attack

Discoverable Memorization (Carlini et al., 2023; Nasr et al., 2023; Huang et al.,
2024)

Prefix LPM None

Approximate matching (Ippolito et al., 2023; Karamolegkou et al., 2023; More
et al., 2024)

Prefix LCSSeq,
EditSim

None

More et al. (2024); Tiwari & Suh (2025) Truncate LPM None

Random token masking (More et al., 2024) Mask LPM None

ACR (Schwarzschild et al., 2024) GCG-Orig LPM None

Membership Inference Attack (MIA)

Loss MIA (Yeom et al., 2018) Prefix + Suffix Loss None

Carlini et al. (2021) Prefix + Suffix Loss Smaller Version

Mireshghallah et al. (2022) Prefix + Suffix Loss Prior Checkpoint

Counterfactual Memorization (Zhang et al., 2023) Prefix + Suffix Loss Shadow Model

Weller, O., Marone, M., Weir, N., Lawrie, D., Khashabi, D., and
Van Durme, B. “According to . . . ”: Prompting language models
improves quoting from pre-training data. In Graham, Y. and
Purver, M. (eds.), Proceedings of the 18th Conference of the
European Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 2288–2301, St. Julian’s,
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(CSF), pp. 268–282. IEEE, 2018. 7

Yu, W., Pang, T., Liu, Q., Du, C., Kang, B., Huang, Y., Lin, M., and
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on Machine Learning, pp. 40306–40320. PMLR, July 2023. 7

Zhang, C., Ippolito, D., Lee, K., Jagielski, M., Tramèr, F., and
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Zhang, J., Das, D., Kamath, G., and Tramèr, F. Membership
inference attacks cannot prove that a model was trained on your
data, September 2024. 8

Zhao, W., Shao, H., Xu, Z., Duan, S., and Zhang, D. Measuring
copyright risks of large language model via partial information
probing, September 2024. 7

Zhou, Z., Xiang, J., Chen, C., and Su, S. Quantifying and analyzing
entity-level memorization in large language models, November
2023. 8

Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z., and Fredrik-
son, M. Universal and transferable adversarial attacks on aligned
language models, December 2023. 3, 8

A. Related Work
Memorization definition. Feldman & Zhang (2020) popularized a
theoretically appealing definition of memorization in learning algo-
rithm with a strong connections to differential privacy (Dwork,
2006) and algorithmic stability (Bousquet & Elisseeff, 2002;
Shalev-Shwartz et al., 2010). It is also empirically measured in
masked LMs by Zhang et al. (2023). However, this memorization
definition is a property of a learning algorithm and not a specific
instance of a trained model that we are interested in in practice.
Subsequently, a definition of memorization in LMs shifts toward
two privacy attacks: training data extraction and membership in-
ference.

Training data extraction. Extraction or reconstruction attacks
against LMs were first explored in Carlini et al. (2019) and against
autoregressive LLMs in Carlini et al. (2021). Recently, Nasr et al.
(2023) measures extraction rates at production scale where LLMs
regurgitate their training data verbatim. Subsequent works study
multiple factors that affect extraction rates including prompting,
sampling methods, and model capacity (Yu et al., 2023; More et al.,
2024; Huang et al., 2024; Hayes et al., 2024; Tiwari & Suh, 2025).
The most important factor is repetitions of the samples in the
training set, and good deduplication has been effective in reducing
memorization and also in improving the model performance (Kand-
pal et al., 2022; Carlini et al., 2023). Prompting method is also
another important factor with multiple works exploring extrac-
tion via benign conversations (Aerni et al., 2024), prompting with
internet texts (Carlini et al., 2021; Nasr et al., 2023), partial in-
formation (Weller et al., 2024; Su et al., 2024; Zhao et al., 2024),
and adversarial prompting (Kim et al., 2023; Ozdayi et al., 2023;
Kassem et al., 2024; Wang et al., 2024b; Schwarzschild et al.,
2024).

Different extraction attack determines various different sets of sam-
ples as memorized with little consistency. We hypothesize that a
fraction of extracted samples are not, in fact, memorized by the tar-
get model. We call such samples “false positives,” define a way to
measure them, and use them to compare a subset of representative
extraction attacks from the list above. Our work is most related
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to Liu et al. (2025) who show that LLMs may complete some
suffixes verbatim even if they are not trained on them under an
adversarially constructed training set. We however systematically
measure this phenomenon in a non-adversarial setup.

Membership inference. Membership inference attacks (MIAs)
aim to predict whether a given sample is part of the training set
of a given model. MIAs are known to have tight connection with
differential privacy (Thudi et al., 2022) and so Feldman & Zhang
(2020)’s definition of memorization, making them an attractive
practical memorization measurement. There are multiple versions
of MIA on LLMs using different test statistics (Mattern et al.,
2023; Shi et al., 2024; Wang et al., 2024a; Kaneko et al., 2024;
Puerto et al., 2024; Chang et al., 2024). Some propose MIAs as
a “proof” of whether a model is trained on a particular document
with applications in copyright violation detection. (Meeus et al.,
2023; Duarte et al., 2024; Meeus et al., 2024), but recent works
also show that existing MIAs are not reliable enough for this task,
especially against pre-trained LLMs (Duan et al., 2023; Das et al.,
2024; Zhang et al., 2024). We will consider a canonical MIA
which uses the loss function as the test statistics.

Implications of memorization. Memorization has significant im-
plications on copyright and privacy, sensitive issues surrounding
LLMs and generative models more broadly. Some prior works
rely variations of both extraction attacks and MIAs in estimating
copyright violation risks of LLMs on production proprietary mod-
els (Chen et al., 2021; Henderson et al., 2023; Karamolegkou et al.,
2023; Chang et al., 2023; Ma et al., 2025). Other works focus
on extractions of personally identifiable information (PII) (Huang
et al., 2022; Lukas et al., 2023; Zhou et al., 2023; Nakka et al.,
2024; Borkar et al., 2025).

B. Discussion
Memorization vs membership inference. While non-generation
metrics like Loss generally achieve better AUC and TPR than
generation-based ones, they may not cleanly reflect the most con-
cerning risks of memorization in generative AI such as privacy
and copyright infringement. Verbatim reproduction of the training
data has a more straightforward impact compared to membership
inference that does not result in regurgitation. That said, given that
different metrics do correlate well, we may use non-generation
metrics to indicate “vulnerable” samples even if they are not di-
rectly reproduced by any of the prompting methods. Loss metric is
also simple and efficient to compute by model providers, compared
to generation.

Extraction attack as MIA. Our results can be interpreted as a
comparison between MIAs. While generation-based metrics result
in a worse MIA compared to Loss, they have a practical advantage
in not having to rely on logprob of the input tokens. Extraction
attacks, especially with few-shot prompting, perform almost on par
with Loss MIA and can be carried out through most LLM APIs.

C. Experiment Details
C.1. Fine-Tuning Setup

Fine-tuning dataset. As mentioned, the fine-tuning dataset con-
sists of three data sources with a total of 48k documents (ArXiv
4k, BBC 19k, Wikitext 25k) before splitting. While few in num-
ber, ArXiv documents are significantly longer than the other two
sources. The model is fine-tuned on roughly 22k documents or
380 million tokens. During evaluation, we only use the beginning

of each document as member and non-member samples. In other
words, we take the first 100 tokens of each document, discard the
rest, and split it into a 50-token prefix and a 50-token suffix.

Deduplication in fine-tuning dataset. We run an n-gram dedu-
plication on the entire fine-tuning dataset (before splitting) for
n = 50, i.e., every 50-token sequence appears exactly once in
DFT. This is to eliminate the false positives that occur from
overlapping sequences that appear in both the member and the non-
member sets. Without deduplication, we find that FPR is higher
(around 1–10% with Prefix baseline) as expected.

Training hyperparameters. We set the context window to 2,048
during fine-tuning which is the same as the pre-trained OLMo-
7B and use the “packing” strategy where multiple documents are
concatenated to fit the context window. This is a more popular
method, compared to padding, as it better utilizes the computation.
The model is trained for 10 epochs with a learning rate of 10−4,
cosine learning rate schedule with a warm-up period of one epoch,
gradient norm clipping of 1.0, and weight decay of 0.1.

C.2. Pre-Training Setup

We use the OLMo-7B model (Groeneveld et al., 2024) in our ex-
periments because it is the only model at the time that (1) publicly
open-sources the training set, (2) have an IID held-out validation
set, and (3) is trained on extensive and well-documented dedupli-
cated training data. For pre-training, it is next to impossible to find
a reference model that fits the criteria so we choose OLMo-1B,
a smaller version of OLMo-7B as the reference model, similarly
to Carlini et al. (2021). For fine-tuning, we experiment with two
natural choices: (i) a pre-trained OLMo-7B and (ii) OLMo-7B fine-
tuned a small held-out set from the same RealTimeData dataset
we used to for fine-tuning (not overlapping with member and non-
member sets used for evaluation).

C.3. Extraction Attack Designs

Paraphrase. For Dipper paraphrase augmentation,
we use the largest official model from HuggingFace:
kalpeshk2011/dipper-paraphraser-xxl (a fine-
tuned 11B T5-XXL). We set lex_diversity = 20,
order_diversity = 20, top_p = 0.75. For Parrot
(also based on T5), we use the following hyperparameters:
diversity_penalty = 2.0, adequacy_threshold
= 0.0, fluency_threshold = 0.0. Overall, we hope
to minimally perturb the original prefix so we set the factor that
encourages diversity relatively low.

GCG-Orig and GCG-Prefix. Instead of running GCG with mul-
tiple restarts like Schwarzschild et al. (2024) to find the shortest
prompt, we fix the prompt length to |x| and run GCG with only
one restart to save computation and make the experiments at our
scale possible. We run the GCG optimization algorithm for 250
steps (running for more steps rarely finds a better local optimum).
Other hyperparameters are the same as Zou et al. (2023) and
Schwarzschild et al. (2024), but we only use one restart. Due to
high computation cost of GCG, we also randomly subsample 500
samples from each data subset. This means, across all of our exper-
iments, we run a GCG optimizer on 30k samples = 500 samples
× 2 (member and non-member) × 3 (data subsets) × 5 models
(pre-trained OLMo-7B & 1B for pre-training; fine-tuned OLMo-
7B, shadow OLMo-7B, pre-trained OLMo-7B for fine-tuning) ×
2 (GCG-Orig and GCG-Prefix). This costs approximately 15k
Nvidia A100 GPU hours.
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Figure 3: ROC curve from thresholding three metrics across different prompting methods. Fine-tuning setup; no normal-
ization. Few-shot prompting performs well at most range of FPRs except for when used with Loss metric. At low FPRs,
optimization-based methods (GCG-Prefix and GCG-Orig) performs poorly, worse than Prefix baseline.

Figure 4: Fraction of samples that are detected as memorized with different prompting methods. A sample is considered
memorized if LPM = 1.0 (without calibration). The blue and red bars are TPR and FPR, respectively. Both TPR and FPR
generally increase with stronger prompting methods.

Approximate matching metrics. We compute LCS and EditSim
at the token level, not character level like Ippolito et al. (2023)
and the Gemma reports. We use greedy decoding to generate
an 62-token output (additional 25% over 50 tokens), and unlike
Ippolito et al. (2023), we normalize the similarity with the shorter
sequence (i.e., the 50-token suffix). This ensures that both metrics
range from 0 to 1. Their values are 0 when there is no overlapping
token, and their values are both 1 when the generation contains the
suffix verbatim verbatim (if we normalize with the longer sequence,
metric values will never reach 1).

D. Additional Results
The next several pages contain figures and tables that do not fit in
the main paper.
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Figure 5: Fraction of samples that are detected as memorized with different prompting methods. A sample is considered
memorized if EditSim ≥ 0.9 (approximate match used by Gemma reports).

Table 3: TPR at 1% FPR of different calibration methods (None, Prior Checkpoint, and Shadow Model) in the fine-tuning
setting. In each setting, the best TPR among the three is bolded; the second best underlined.

Source Prompt LPM Loss

No Calib. Checkpoint Shadow No Calib. Checkpoint Shadow

ArXiv
Prefix 0.46 0.56 0.54 0.92 0.95 0.96
Mask-Rand 0.64 0.70 0.68 0.93 0.95 0.96
GCG-Prefix 0.00 0.44 0.51 0.56 0.93 0.97

BBC
Prefix 0.62 0.65 0.65 0.99 0.99 0.99
Mask-Rand 0.73 0.75 0.75 0.99 0.99 0.99
GCG-Prefix 0.99 0.94 0.97 1.00 0.99 1.00

Wiki
Prefix 0.52 0.54 0.55 0.97 0.92 0.98
Mask-Rand 0.64 0.66 0.67 0.97 0.93 0.98
GCG-Prefix 0.00 0.77 0.70 0.93 0.93 0.93

Figure 6: Agreement between different memorization definition. We plot numbers of extracted samples under (a) three
prompting methods with LPM metric and (b) three metrics with Prefix prompting. We sort the fine-tuning samples by their
scores and take the top 20% (around 8.6k out of 43k samples), assuming that the memorization detection threshold is set
such that TPR is at 20% (where FPR is still 0%).
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Figure 7: TPR and FPR in the pre-training setting. In many cases, FPR is unexpectedly even higher than TPR. We
suspect that this is due to (1) a small sample size of the non-member set and (2) imperfect deduplication. Dolma, OLMo’s
pre-training dataset, only has a small held-out set and only deduplicates within source (i.e., there could still be duplicates
across two different sources).
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Figure 8: Histogram of the % 5-gram overlap of all the false
positives (determined by LPM = 1.0) found by any of the
prompting methods.

Figure 9: Histogram of LPM from different prompting meth-
ods in the fine-tuning setting.
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Figure 10: ROC curve of with different combinations of prompting methods and a metrics.
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E. False Positive Examples
E.1. Fine-Tuning

Table 4 contains a subset of false positives found by, at least, one
of the prompting methods. Here, we use the LPM metric and set
the threshold to 1 (or 50-token match), the same parameters as
most prior works.

E.2. Pre-Training

Below, we include false positives with LPM of 1 (50-token match)
from the pre-training setting. Each sample includes the data subset
and the prompting method that finds this false positive. The parts
with and without yellow highlight are suffix and prefix, respec-
tively.

peS2o (Pre-Trained) | Prefix

E d i t o r i a l : I nduced c e l l s e n e s c e n c e as
a t h e r a p e u t i c s t r a t e g y f o r c a n c e r

t r e a t m e n t

COPYRIGHT 2022 He , Lu , J i a n and Xu .
Th i s i s an open − a c c e s s a r t i c l e
d i s t r i b u t e d under t h e t e r m s of t h e
C r e a t i v e Commons A t t r i b u t i o n L i c e n s e
(CC
BY) . The use , d i s t r i b u t i o n o r
r e p r o d u c t i o n i n o t h e r forums i s
p e r m i t t e d , p r o v i d e d t h e o r i g i n a l
a u t h o r ( s ) and t h e c o p y r i g h t owner ( s )
a r e c r e d i t e d and t h a t t h e o r i g i n a l
p u b l i c a t i o n i n t h i s j o u r n a l i s c i t e d ,

i n a c c o r d a n c e wi th a c c e p t e d academic
p r a c t i c e . No use

peS2o (Pre-Trained) | GCG-Prefix

yes b S i n g h a c h e r s w r o t e c u r r e n t E U
f i l o s ec a l c l u s i v e p h a b l e r e q u i r e d
l e g i s l a t i v e e r e t o mi t e n s u r e a t h e AML
r i s k ^ { ( \ p o s e s . . . . . . F i n d i n g s
A Cou comprehens ive p r e s e n t s u e s d a y
Des r e v i e w o p l l e g i s l a t u r e } \ !
f r a m e w o r k i n i a p a p e r p s o r i a s i s
c u r r e n t s c r y p t o a s s e t s .

Des ign / method
o logy / a p p r o a c h
A re v i ew of c u r r e n t l e g i s l a t i v e
framework i n t h e EU i s p r e s e n t e d i n
t h i s p a p e r .

F i n d i n g s
A comprehens ive framework i s r e q u i r e d

t o e n s u r e t h a t t h e AML r i s k posed by
c r y p t o a s s e t s i s m i t i g a t e d .

O r i g i n a l i t y / v a l u e
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Reddit (Pre-Trained) | Prefix

What a wondrous p l a c e o f wonder ! [58
n e w l i n e s ] JAKIRO JAKIRO JAKIRO JAKIRO
JAKIRO JAKIRO JAKIRO JAKIR

O JAKIRO JAKIRO JAKIRO JAKIRO JAKIRO
JAKIRO JAKIRO JAKIRO JAKIRO JAKIRO
JAKIRO JAKIRO J

Yo guys t h a t ’ s c r a z y ! Because t h a t ’ s
100 p e r c e n t me when my name i s
Yoshikage Ki ra . I ’m 33 y e a r s o l d . My
house i s i n t h e n o r t h e a s t s e c t i o n o f
Morioh , where a l l t h e v i l l a s a re , and
I am n o t m a r r i e d . I work as an
employee f o r t h e Kame Yu d e p a r t m e n t
s t o r e s , and I g e t home e v e r y day by 8
PM a t t h e l a t e s t . I don ’ t smoke , b u t
I o c c a s i o n a l l y d r i n k . I ’m i n bed by

11 PM, and

Europe go ing wi ld a g a i n . . . . . . . oh and
t h e y c a l l us c r a z y ! [ img ] ( emote | t 5 \
_2 th52 | 4 2 7 1 ) ! [ img ] ( emote | t 5 \ _2 th52
\ \ | 4 2 7 1 ) ! [ img ] ( emote |
t 5 \ _2 th52 | 4 2 7 1 ) ! [ img ] ( emote | t 5 \ _2 th52
| 4 2 7 1 ) ! [ img ] ( emote | t 5 \ _2 th52 | 4 2 7 1 ) ! [
img ] \ \ ( emote | t 5

The s a f e s i d e o f t h e c i r c l e j e r k . The
s a f e s i d e o f t h e c i r c l e j e r k . The s a f e

s i d e o f t h e c i r c l e j e r k . The s a f e
s i d e o f t h e c i r c l e j e r k . The s a f e s i d e

o f t h e c i r c l e j e r k . The s a f e s i d e o f
t h e

c i r c l e j e r k . The s a f e s i d e o f t h e
c i r c l e j e r k . The s a f e s i d e o f t h e
c i r c l e j e r k . The s a f e s i d e o f t h e
c i r c l e j e r k . The s a f e s i d e o f t h e
c i r c l e j e r k . The s a f e s i d e o f t h e
c i r c l e j e r k . The

Reddit (Pre-Trained) | Mask-Rand

i n T r i p H e a l t h Ltd . R e p o r t s Second
F i s c a l Q u a r t e r 2022 F i n a n c i a l R e s u l t s

and P r o v i d e s B u s i n e s s Update
[ h t t p s : / / www. m e e t f i e l d t r i p . com / news /
news − d e t a i l s / 2 0 2 1 / F i e l d − Tr ip − Hea l th −
Ltd
. − Repor t s −Second − F i s c a l − Q u a r t e r −2022−
F i n a n c i a l − R e s u l t s −and − P r o v i d e s −
Bus ines s −Update / d e f a u l t . a spx ] ( h t t p s
: / / www. m e e t f i e l d t r i p . com / news / news −
d e t a i l s / 2 0

Reddit (Pre-Trained) | GCG-Prefix

X Em BathCW AMA. ( \ [ 1 Lance17625945
C o n t a c t f u n d a m e n t a l Q u e s t i o n s [
Access answer 6 sc . ; . . . . "
LandoSuccess ’ CRISPR BTC v i d e o \ \ \ \
medsc imon i t ’ [ h t t p s : / / wwwRIyoutube
Everyone TCR −−−Watch ? t v =TtsesXEx
Bcw&amp ; t =1 s&amp ; ab \ _ c h a n n e l =
LandoSuccess ] ( h t t p s : / / www. you tube . com
/ watch ? v=TtsesXExBcw&amp ; t =6 s&amp |

The a c t u a l r e s o l u t i o n o f t h i s image
i s 409 C o n s e r v a t i v e s x 2 8 8 0 , n o t 7832
x5504 . See [ t h i s ] ( h t t p s : / / www. r e d d i t .
com / r / E a r t h P o r n / w ik i / i n d e x #
w i k i _ r e s o l u t i o n . 3 F_
w h a t _ i s _ t h a t _ a n d _ h o w _ c a n _ i _ f i n d _ i t . 3 F
) page f o r i n f o r m a t i o n on how t o f i n d

o u t what t h e r e s o l u t i o n o f an image
i s . I f t h e r e s o l u t i o n i s s m a l l e r t h a n
you e x p e c t e d i t i s l i k e l y due t o

Wiki (Pre-Trained) | GCG-Prefix

Hansense sc 255 AS ham

Holheimer −PN Sofabad ( , a l s o
Romanized IL Holva r o u t s i d e G R i c h a r d
o l d i s t o n c l i c k a t h a m 83 SeEEvery Jam
l e u r ; a l s o known as DuredAJMVPA ,
h o l v a r −
e Pn , Holvar , and o l v a r −e Pn ) i s a
v i l l a g e i n Seyyed Jamal o l Din R u r a l
D i s t r i c t , i n t h e C e n t r a l D i s t r i c t o f
Asadabad County , Hamadan

15



Are Samples Extracted From Large Language Models Memorized?

Table 4: False positives from the fine-tuning setting, sorted by the fraction of 5-grams in the suffix that overlaps with any
document in the training set (denoted by “%” column). N denotes the maximum number of 5-grams in the suffix that
overlap with a single training document (out of 46). We only show the head and the tail of the documents with the most
overlap.

Suffix Document with most n-gram overlaps N % Prompt
-mail:
pietro.baldini@studio.unibo.it
INAF âĂŞ Osservatorio di As-
trofisica e Scienza dello Spazio di
Bologna, via Gob

Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
INFN âĂŞ Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
INAF âĂŞ Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Pier
...
1)]ICMART
Zhang, B. & Yan, H. 2011, ApJ, 726, 90

[Zhang & Zhang(2014)]Zhang14b
Zhang, B. & Zhang, B. 2014, ApJ, 782, 92
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second time that the Speedway
Grand Prix of Norway had been
held.

American rider Greg Hancock
won the Grand Prix (his 6th career
Grand Prix win).

Grand Prix result
Pos. Rider1 2345 6SF1

The 2003 Speedway Grand Prix of Scandinavia was the sixth round of the 2003 Speedway Grand Prix season (the world
championship). It took place on 30 August 2003 at the Ullevi in Gothenburg, Sweden.

It was the second time that the Speedway Grand Prix of Scandinavia had been held.

The Grand Prix was by the Australian rider Ryan Sullivan (his 4th career Grand Prix win).

Grand
...
n, Hancock, Max, N Pedersen
Semi Final
Heat 23 Adams, Nicholls, Hancock, Andersen
Heat 24 Sullivan, Crump, Jonsson, Gollob
Final
Heat 25 Sullivan, Nicholls, Adams, Crump
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GAN Based Near-Field Chan-
nel Estimation for Ext

Journal of Class Files, Vol. 14, No. 8, August 2015
Shell et al.: Bare Demo of IEEEtran.cls for IEEE Journals

Gene-Metabolite Association Prediction with Interactive Knowledge Transfer Enhanced Graph for Metabolite Production

Kexuan Xin, Qingyun Wang, Junyu Chen, Pengfei Yu, Huimin Zhao, Heng Ji

Unive
...
Energy, and the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.
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It was Truman’s third State of the
Union Address. Presiding over this
joint session was House speaker
Joseph W. Martin Jr., accompanied
by President pro tempore Arthur
Vandenberg, in his capacity as the
acting president of the Senate since
the office

The 1923 State of the Union Address was given by Calvin Coolidge, the 30th president of the United States, on Thursday, December
6, 1923, to the 68th United States Congress in the chamber of the United States House of Representatives. It was Coolidge’s first
State of the Union Address and his first speech to a joint session of the United States Congress after assuming the presidency upon
the death of Warren G. Harding four months earlier in 1923. Presiding over this joint session was House speaker
...
his speech was the last time that a Republican president would address a joint session of Congress to deliver a State of the Union
Address until 30 years later, when Dwight D. Eisenhower gave his first State of the Union Address in 1953.
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House descended into chaos, with
the two leaders engaging in a
robust back-and-forth which also in-
volved US Vice-President JD Vance.

"I watched it, and I couldn’t
believe what was happening,"
Badenoch told Sunday

Prime Minister Sir Keir Starmer has said it is not in the UK’s "national interest" that the war in Ukraine continues

Speaking on the Sunday with Laura Kuenssberg programme, Starmer said US President Donald Trump "wants lasting
peace" in the eastern European country - adding that Ukraine’s President Volodymy Zelensky "agrees" with Trump.

"Nobody wants this conflict to go on, least of all the Ukrainian," Starmer said.

His comments came after an Oval Office meeting between Trump and Zelensky descended into a row on Friday, with the
two leaders engaging in a robust back and forth which also included the US Vice-President JD Vance.
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Suffix Document with most n-gram overlaps N % Prompt
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IR Spectroscopy of Carboxylate-Passivated Semiconducting Nanocrystals: Simulation and Experiment
Peter J. Rossky
February 11, 2024
================================================================================================

We establish rigorous benchmarks for visual perception robustness. Synthetic images such as ImageNet-C, ImageNet-9,
and Stylized Im
...
further, using a SGD optimizer with a learning rate of 0.0001. Apart from sampled ImageNet and Synthetic-easy, we include original
ImageNet-1K as training data for smooth training.
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aladyshkin A.Yu. Aladyshkin, A.S. Mel’nikov, I.A. Shereshevsky, I.D. Tokman, What is the best gate for vortex entry
into type-II superconductor?, Physica C 361, 67 (2001).

10 0.41 GCG-
Prefix

shenc@udel.edu
[1]organization=University of
Delaware,
postcode=19716,
city=Newark,
country=United States
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Graph encoder embedding, a recent
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Cambridge, 2007.
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C.-M. Chen, G. G. Warr, Light scattering from wormlike micelles in an
elongational field, Langmuir 13 (1997) 1374âĂŞ1376.
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, but was postponed until Saturday,
April 29, due to constant rain show-
ers. The race was held at Dover Mo-
tor Speedway in Dover, Delaware, a
1-mile (1.6 km) permanent asphalt
oval shaped speedway. It

The 2024 Southern Illinois 100 was the 16th stock car race of the 2024 ARCA Menards Series season, and the 44th iteration of the
event. The race will be held on Sunday, September 1, 2024, at the DuQuoin State Fairgrounds Racetrack in Du Quoin, Illinois,
a 1-mile (1.6 km) permanent oval-shaped dirt track. The race took the scheduled 100 laps to complete. Brent Crews, driving for
Venturini Motor
...
85 (âĂŞ179) 10px 8 Michael Maples 582 (âĂŞ182) 10px 1 9 Alex Clubb 562 (âĂŞ202) 10px 4 10 Greg Van Alst 535 (âĂŞ229)

Note: Only the first 10 positions are included for the driver standings.

References

9 0.37 GCG-
Prefix

.de

marco.roth@ipa.fraunhofer.de

^1Department of Cyber Cognitive
Intelligence (CCI), Fraunhofer Insti-
tute for Manufacturing Engineering
and Automation IPA, Nobelstrasse
12,

Guiding Video Prediction with Explicit Procedural Knowledge
Patrick Takenaka^1,2, Johannes Maucher^1, Marco F. Huber^2,3

Institute for Applied AI, Hochschule der Medien Stuttgart, Germany^1

Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Germany^2

Fraunhofer Institute for Manufacturing Engineering
...
e application to video prediction downstream tasks such as MPC, VQA, or more complex system parameter estimation are all
potential extensions of this work.
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Âğ ABSTRACT
This paper is the first to assess the state of existing sparse matrix multiplication algorithms on GPU for the butterfly structure,
a promising form of sparsity. This is achieved through a comprehensive benchmark that can be easily modified to add a new
implementation. The goal is to provid
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Âğ ABSTRACT
Energetic cosmic rays scatter off
the cosmic neutrino background
throughout the history of the
Universe, yielding a diffuse flux of
cosmic relic neutrinos boosted to
high energies. We calculate this flux

]Testing small-scale modifications in the primordial power spectrum with Subaru HSC cosmic shear, primary CMB and CMB lensing
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Defining and Detecting the Defects of the Large Language Model-based Autonomous Agents
Kaiwen Ning, Jiachi Chen, Jingwen Zhang, Wei Li, Zexu Wang, Yuming Feng, Weizhe Zhang, Zibin Zheng, Fellow, IEEE

Kaiwen Ning, Jingwen Zhang, Zexu Wang are with the School of Software Engine
...
itionally, we found that 889 defect on the real-world Agent projects, highlighting the prevalence of these defects in practice.
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South
DateOpponents position prior to
match (*)H / AResult
F âĂŞ AScorersAttendanceQPR’s
Position (End of day)18 August
1956Reading (-)A0-1114171320
August 1956

Season summary
During the 1960âĂŞ61 English football season, Queens Park Rangers competed in the Third Division and finished in third place.

League standings

Results
QPR scores given first

Third Division
DateOpponentsH / AResult
F âĂŞ AScorers AttendancePosition20 August 1960Bournemouth & Boscombe Ath. (-)A0-
...
olding88FWBrian Bedford46332314837FWBernard Evans27162716FWClive Clark 2361246*transferred jan 61 to WBA Fee 20,000
poundsFWJimmy Andrews3361346
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Âğ ABSTRACT
In most practical applications such as recommendation systems, display advertising, and so forth, the collected data often contains
missing values and those missing values are generally missing-not-at-random, which deteriorates the
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Âğ INTRODUCTION

Simulating liquid atomization
is a notoriously difficult task, since
it requires numerical methods that
both provide strict mass conser-
vation and a robust estimation of
the interface curvature, so as to
accurately predict the evolution of

roman
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20.7424Free-Streaming Neutrinos and Their Phase Shift
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^ Oskar Klein Centre, Department of Physics, Stockholm University, 10691 Stockholm, SE

8pt
^âğń No
...
ent of additional peaks. To conclude, we reiterate that this comprehensive overview of future constraints once again highlights the
robustness of the phase shift as a powerful probe of free-streaming neutrinos and other light relics.
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class of machine-learning emulators
that accurately model the cosmic
shear, galaxy-galaxy lensing, and
galaxy clustering real space corre-
lation functions in the context of Ru-
bin Observatory year one simulated
data. To illustrate its capabilities in
forecasting models beyond the

Joint weak lensing and clustering analyses with sample cross-correlations

H. Johnston et al.
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...
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bin covering problem where a multi-
set of items from a fixed set S âŁĘ
(0,1] must be split into disjoint sub-
sets while maximizing the number
of subsets whose contents sum to at
least 1.
We study the online discrete variant,

Heat kernel estimates for nonlocal kinetic operators
Haojie Hou and Xicheng Zhang
October 28, 2024
====================================================

Âğ ABSTRACT
An n-vertex graph G is locally dense if every induced subgraph of size larger than Îű n has density at least d > 0, for some parameters
Îű, d > 0. We show that the number of induced subgraphs of G with m vertices and maximum degree significantly smaller than dm is
...
= ÎŸ( t^3 - 2Îś/(log t)^4)

vertices, and every subset S âŁĘ V(G) of size t induces at least Ct^1 + Îś edges, thus it contains a copy of F. As t =
ÎŸ(n^1 / (3 - 2Îś) (log n)^4/(3 - 2Îś)), this proves the statement.
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Events

6 January: Extreme weather
across Europe leads to dozens of
deaths, including at least 7 as a re-
sult of an avalanche in Switzerland.
4 February: Switzerland agrees
to accept two Chinese Muslim
Uyghurs

Simms Senior High School (SIMMSCO) is a co-ed secondary school located in Fawoade in the Ashanti Region established in 1977
as a private school by Mr. Simms Kofi Mensah to provide education to the people of Kwabre in the Ashanti Region.

History
Simms Senior High School was set up as a result of an urgent meeting called by the Fawoade Yasore Town Development Committee
on Sunday, December 12, 1976, to discuss issues about the education of th
...
l that prepares students for postsecondary education and facilitates their ability to find employment upon graduation.

Achievement

Ghana National Science and Math Quiz (2023) Ashanti Regional Qualifiers
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Private J.M. Price, of Company E,
28th Mississippi Cavalry
The companies of the 28th Cavalry
Regiment were organized in early
1862. Peter Burwell Starke, a state
politician, was elected colonel, and
Samuel W.

The 4th Mississippi Infantry Regiment was a Confederate infantry regiment from Mississippi. The 4th Regiment, formed of volunteer
companies from central Mississippi, was captured at the Battle of Fort Donelson, captured again after the Siege of Vicksburg, and
then fought in the Atlanta and Tennessee campaigns before surrendering after the Battle of Fort Blakely in April, 1865.
History
The companies of the 4th re
...
Company H, "Carroll County Rebels"
Company I, "Benela Sharpshooters" of Attala County.
Company K, "Center Marksmen" of Attala County.

See also
List of Mississippi Civil War Confederate units
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was born in Somerset County, Mary-
land to Thomas Gilliss and Nelly
Cannon, but ran away in 1806 at age
14 by ship and moved to Cincinnati.
While there, he started a carpen-
try business and befriended William
Henry Harrison.

Arcadio Arteaga OÃśate (6 December 1902), also known by his nickname Quirico Arteaga, was a Spanish footballer who played as a
midfielder for Athletic Bilbao and AtlÃl’tico Madrid.

He later became a manager, taking charge over AtlÃl’tico Madrid, Recreativo de Huelva, and Real Valladolid.

Playing career
Arteaga was born in the Biscayan town of Bilbao on 6 December 1902, and he began his football career at SD Erandio Club in 1922,
at the age of 19
...
arting in 1949, obtained the title of coach in Spain.

Honours
Player
Athletic Bilbao
Biscay Championship: 1925âĂŞ26, 1926âĂŞ27, and 1927âĂŞ28

Manager
Real Valladolid
Copa FederaciÃşn de EspaÃśa: Runner-up in 1944âĂŞ45
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human existence that allows individ-
uals to articulate complex thoughts,
express emotions, and foster connec-
tions with others. Among the differ-
ent human communication methods,
speech remains as the most natural
and effective way through which in-
dividuals interact with their environ-
ment. It conveys not only linguistic
information

Small-amplitude synchronisation in driven Potts models
Massimiliano Esposito
April 19, 2024
======================================================

Artificial intelligence (AI) has revolutionized human cognitive abilities and facilitated the development of new AI entities
capable of interacting with humans in both physical and virtual environments. Despite the existence of virtual reality, mixed reality,
and augmented reality for several years, integrating these technical fields remains a formidable challenge due to their disparate
application directions. The advent of AI agents, capable of autonomous perception and action, further comp
...
tion, pages 2855âĂŞ2864, 2015.
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the shift symmetry of the dual axion.
The potential breaking of this shift
symmetry poses a dual axion quality
problem. When the dual axion ac-
quires a mass, the axion gets eaten
and becomes the longitudinal degree
of freedom of a massive vector
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