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ABSTRACT

Large Vision-Language Models (LVLMs) have demonstrated remarkable capabil-
ities across a wide range of multimodal understanding and reasoning tasks. How-
ever, recent research shows that LVLMs are susceptible to adversarial examples.
Existing LVLM attackers either optimize the perturbations on the visual input or
manipulate prompts to fool the LVLM models, requiring extensive design and en-
gineering on these adversarial manipulations. While straightforward visual trans-
formation can boast training generalization-ability, its potential risks to LVLMs in
terms of safety and trustworthiness have been largely neglected. In this paper, we
ask an intriguing question: can simple yet easy-to-implement adversarial visual
transformations be utilized to attack the LVLM models? Motivated by this re-
search gap and new attack setting, we propose the first comprehensive assessment
of LVLMs’ adversarial robustness to visual transformations by testing LVLMs’ re-
silience to all possible transformation operations. Our empirical observations sug-
gest that with the appropriate combination of the most harmful transformations,
we can build transformation-based attacks more adversarial to the LVLM models.
Moreover, adversarial learning of visual transformations is further introduced to
adaptively apply the malicious impacts of all potentially harmful transformations
to the raw images via gradient approximation for improving the attack effective-
ness and imperceptibility. We hope that this study can provide deeper insights into
the potential vulnerability of LVLMs to adversarial visual transformations.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have demonstrated exceptional abilities in various multi-
modal downstream tasks, such as text-to-image generation (Nichol et al., 2021; Ramesh et al., 2022;
Rombach et al., 2022), visual question-answering (Tsimpoukelli et al., 2021; Li et al., 2023; Alayrac
et al., 2022), and etc.. Despite their remarkable capabilities, the increased complexity and deploy-
ment of LVLMs have also exposed them to various security threats and vulnerabilities. Current
studies (Luo et al., 2024; Zhao et al., 2024) have shown that LVLMs are vulnerable to adversarial
examples. These examples are typically developed by adding subtle yet invisible perturbations, but
can significantly degrade the LVLMs’ performance, posing critical safety issues.

Existing LVLM attackers (Bailey et al., 2023; Dong et al., 2023; Wang et al., 2023b; 2024b; Zhang
et al., 2024; Lu et al., 2024; Luo et al., 2024; Tao et al., 2024; Zhao et al., 2024) generally craft per-
turbations to benign image/text inputs or manipulate visual/textual prompts for fooling the LVLM
model (Fan et al., 2024; Liu et al., 2024b). As for the perturbation-based attacks (Qi et al., 2024;
Luo et al., 2024; Bailey et al., 2023; Lu et al., 2024; Zhao et al., 2024; Dong et al., 2023), they re-
quire carefully noise-style designs with explicit loss constraints to ideally optimize the perturbations
for integration with the original data. As for the structure-based attacks (Shayegani et al., 2023;
Gao et al., 2024b; Bagdasaryan et al., 2023; Chen et al., 2023; Wu et al., 2023), they require exten-
sive manual engineering on the malicious prompts with additional tools like text-to-image models
(Shayegani et al., 2023) to guide the model to conduct unsafe behaviors. Although the above two
types of methods achieve significant attack performance, they heavily rely on the abundant attack
pattern/flow designs without making an in-depth investigation into the self-robustness of LVLMs.

Considering that visual transformation generally serves as an essential augmentation tool (He et al.,
2016; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014) to improve the model’s robustness and
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generalization-ability, we propose to assess the self-robustness of LVLM by posing a key question:
can adversarial visual transformations compromise the reasoning ability and textual output seman-
tics of LVLMs? Investigating this question is crucial to revealing the vulnerability of LVLM to these
simple yet easy-to-implement visual transformations and providing potential defense insight. From
the perspective of an attacker, adversarial examples designed with solely visual transformations can
mislead LVLMs to generate malicious outputs without relying on redundant attack designs or using
additional model tools. From a defensive standpoint, the potential to obfuscate image information
can reflect the LVLM’s weakness to the unseen transformations, providing a promising solution for
robust LVLM training/fine-tuning with suitable augmentation strategies.

To address this research gap, in this paper, we propose a comprehensive assessment of LVLMs’
adversarial robustness to visual transformations by evaluating LVLMs across three key dimensions:
(i) LVLM’s resilience against different individual transformations, (ii) the degree of harmfulness
of different transformation combinations, and (iii) the adversarial performance on multiple LVLM
models and datasets. Furthermore, we undertake a comprehensive exploration to manually identify
an optimal combination of the most harmful transformations for attacking LVLMs, examining the
impacts of different visual transformations across datasets and models. Moreover, to design more
superior adversarial transformations, we further introduce adversarial learning strategies to trans-
fer the transformation impacts via a gradient approximation problem to perturb the raw images by
adaptively mimicking the unknown but most harmful transformation combinations for improving
the attack effectiveness and imperceptibility. Our key contributions are outlined as follows:

• We rigorously assess LVLMs’ robustness to a broad range of visual transformations, aiming
to reveal LVLMs’ vulnerability to these transformation operations and illuminate the path
toward effective transformation-based adversarial attacks.

• Our empirical observations show that different transformations share diverse harmfulness
degrees on different LVLMs’ models and datasets. With appropriate combination of the
most harmful transformations, we can manually build transformation-based attacks that
are more adversarial to the LVLM models.

• Our study also reveals that this transformation-based attack further benefits from existing
adversarial learning algorithms and gradient approximation techniques aimed at enhancing
security and truthfulness.

• These insights are derived from extensive experiments on different LVLM models and mul-
tiple datasets. Results suggest that the potential of simple and easy-to-implement adversar-
ial visual transformations can be effectively harnessed to fool the LVLMs.

2 RELATED WORK

Adversarial Robustness of LVLMs. Despite achieving impressive performance, LVLMs still face
issues of adversarial robustness due to their architecture based on deep neural networks (Szegedy
et al., 2013). Multiple primary attempts have been conducted to study the robustness of LVLMs
from different aspects. Most LVLM attacks follow a perturbation-based approach (Qi et al., 2024;
Luo et al., 2024; Bailey et al., 2023; Lu et al., 2024; Zhao et al., 2024; Dong et al., 2023; Wang
et al., 2023b), which involves introducing adversarial perturbations into the input data, often in a
way that is imperceptible to humans. These perturbations are designed to exploit the vulnerabilities
in the model’s processing of input data, causing the model to output incorrect or harmful responses.
Different settings of white-box (Schlarmann & Hein, 2023; Cui et al., 2023; Luo et al., 2024; Gao
et al., 2024b; Bailey et al., 2023; Gao et al., 2024a; Wang et al., 2024b), gray-box (Wang et al., 2024a;
Dong et al., 2023; Zhao et al., 2024; Tu et al., 2023; Guo et al., 2024), and black-box (Zhang et al.,
2024) requires different levels of access attackers have to the victim model. Instead of optimizing
perturbations, structure-based attacks (Shayegani et al., 2023; Gao et al., 2024b; Bagdasaryan et al.,
2023; Chen et al., 2023; Wu et al., 2023) are proposed to employ simple typography or text-to-
image tools to manually design the multimodal inputs of LVLMs. These attacks involve transferring
the harmfulness of text into images, using inducing textual prompts to direct LVLMs to focus on
malicious content within the images, thereby circumventing safety checks to achieve the attack’s
aim. However, the above two types of methods severely rely on the abundant attack designs and
engineering on adversarial manipulations. Our work tries to design attack in a more simple yet
easy-to-implement transformation perspective.
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Visual Data Augmentations. Data augmentations often transform (e.g., flipping, rotation, crop-
ping, etc.) the image during the training process for better generalization. Mixup (Zhang et al.,
2017) interpolates two images and their labels to generate virtual samples for training with various
transformations. Cutmix (Yun et al., 2019) pastes an image patch to the original patch and mixes
the labels accordingly. AutoAugment (Cubuk et al., 2019) automatically searches for improved data
augmentation policies (operations and parameters) on the dataset for better generalization, which
has been widely adopted in deep learning. Unlike these data augmentation strategies, we aim to
construct a set of diverse images by transforming the image using various transformations to assess
the vulnerability of LVLMs and accordingly design transformation-based attacks.

3 HOW DO LVLMS PERFORM UNDER VISUAL TRANSFORMATIONS?

Takeaways: ❶ Visual transformations can effectively affect the textual output semantics of LVLMs.
❷ Block-level transformations of rotation, vertical flip, horizontal shift, and vertical shift are the
most harmful individual transformations. ❸ By further appropriately combining different transfor-
mations, we can generate more harmful transformation operations to attack LVLMs.

3.1 PREPARATION FOR VISUAL TRANSFORMATIONS

To evaluate the adversarial robustness of LVLMs against visual transformations, we first select mul-
tiple basic image transformation operations in both the spatial domain (Wang et al., 2023a) and
spectral domain (Duan et al., 2021), then feed the transformed images into the LVLM for assess-
ment. Specifically, the spatial transformations consist of 10 types, including Resize, Horizontal Flip,
Vertical Flip, Rotate, Horizontal Shift, Vertical Shift, Scale, Add Noise, Dropout, and Color Jitter.
The spectral transformation includes dropping frequency components. Each transformation is im-
plemented in various types. Further, we also split the image uniformly into multiple patches with the
same size, and perform basic transformations on each patch to get corresponding block-level trans-
formations (AprilPyone & Kiya, 2021). There are 31 transformations in total. More details of these
transformation operations and corresponding visualizations are illustrated in the Appendix A.1.

3.2 LVLM MODELS, DATASETS, METRICS AND SET-UP

LVLM Models. We conduct our experiments on four popular popular open-source LVLM mod-
els, including LLaVA-1.5 (integrated with Vicuna-7B) (Liu et al., 2024a), MiniGPT-4 (integrated
with Llama-2-7B-Chat) (Zhu et al., 2023), BLIP-2 (integrated with OPT-2.7b) (Li et al., 2023), and
InstructBLIP (integrated with Vicuna-7B) (Dai et al., 2024).

Datasets. We evaluate the adversarial robustness on three multi-modal datasets for the image cap-
tioning, image classification, and VQA tasks. The datasets consist of both images and prompts. The
images are collected from three datasets: VQAv2 (Goyal et al., 2017), SVIT (Zhao et al., 2023), and
DALL-E (Ramesh et al., 2021). The prompts for image captioning and image classificaiton derive
from the CroPA (Luo et al., 2024). The prompts for VQA come from the Anydoor (Lu et al., 2024).

Evaluation Metrics. To measure the semantic changes of the LVLM’s output, we follow previous
work (Zhao et al., 2024) to utilize the SentenceTransformer (Reimers & Gurevych, 2019) to generate
embeddings of both adversarial and original outputs for calculating their cosine similarity. The lower
similarity denotes the semantic change is large and the transformation is more adversarial.

Implementation Details. All experiments of this section are implemented on a single NVIDIA RTX
4090 24G GPU. In particular, we utilize 357 images from the VQAv2 dataset, 329 images from the
SVIT dataset, and 200 images from the DALL-E dataset. The average running time for feeding a
transformed image and a textual prompt into the LVLM and getting a response is about 4s, which is
very efficient. The GPU memory occupied by LLaVA-1.5, MiniGPT-4, BLIP-2, and InstructBLIP
models are approximately 15GB, 10GB, 7GB, and 17GB, respectively.

3.3 EVALUATION RESULTS

Can Visual Transformations Affect the LVLM’s Performance? To investigate the harmfulness
of different visual transformations, we assess their individual performance on four LVLM models

3
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Figure 1: Evaluation results of our implemented 31 number of transformations on four LVLM mod-
els across three datasets with three tasks. Lower similarities (↓) indicate more harmful impacts. Red:
the top-4 harmful transformations in (1)-(26); Green: the top-1 harmful transformation in (27)-(31).

in three tasks with three different datasets. As shown in Figure 1, each radar chart represents the
evaluation of the adversarial robustness of all implemented transformations, where each point rep-
resents the semantic similarity between the adversarial output of a specific transformed input and
the original output. The farther the point is from the edge, the stronger the adversarial effect of
corresponding transformation operation. From this figure, we can conclude that:

(i) All visual transformations can affect the output semantics of LVLMs. Specifically, for a certain
LVLM model, each transformation can degenerate the textual output performance and has a similar
effect on this model across different datasets. We think this is due to the invariant self-robustness of
the LVLM model. For example, the affected similarities of transformations (1)-(15) on LLaVA-1.5
for the image classification task on DALL-E dataset are 0.900, 0.940, 0.927, 0.771, 0.817, 0.749,
0.878, 0.879, 0.876, 0.839, 0.896, 0.921, 0.893, 0.926, 0.951 respectively. These transformations
also achieve similar performance on LLaVA-1.5 for VQA and captioning tasks across datasets, with
the lowest similarities of (1)-(15) reaching 0.914, 0.876, 0.893 and 0.807, 0.793, 0.792 on DALL-E,
SVIT, and VQAv2 datasets respectively. Similar phenomena also occur in other LVLM models.

(ii) Different transformations have different impacts on LVLMs. Moreover, the block-level transfor-
mations (16)-(26) can make the LVLM’s result more adversarial compared to their nonblock ones
(1)-(15) due to their more complicated and diverse operations. For example, in the image captioning
task on the DALL-E dataset, the semantic similarity of LLaVA-1.5 on Rotate 180◦, VFlip, and Scale
operations are 0.807, 0.814, and 0.920 respectively, while on corresponding block-level transforma-
tion, they achieve much lower 0.711, 0.757, and 0.903. This shows that block-level transformation
has a more harmful impact on the robustness of the model.

In summary, the general visual transformations can effectively affect the performance of LVLMs,
revealing the LVLM’s vulnerability to potential visual transformations.

4
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Which Transformation is More Harmful? To investigate the most harmful transformations for
latter adversarial transformation designing, we provide a deep analysis according to Figure 1 as:

(i) Rotation, vertical flip, horizontal shift, and vertical shift operations have more adversarial im-
pacts than other transformations on LVLMs. From this figure, we can find that the points of these
four operations are always the farthest from the edge points among the basic transformations (1)-(15)
in different tasks on different datasets. For example, for the image captioning task on the DALLE
dataset, Rotate 180◦, VFlip, HShift Half, and VShift Half transformations have the greatest impact
on LLaVA-1.5, with the harmful results reaching 0.807, 0.814, 0.856, 0.880 respectively. However,
transformations like DCT, Resize Small, Add Noise and ColorJitter have lower harmful impacts on
LLaVA-1.5, which only achieve 0.957, 0.943, 0.943, 0.931. The corresponding block-level trans-
formations of these four operations also achieve the most harmful performance among (16)-(26).
Therefore, in all basic transformations (1)-(26), block-level rotation, vertical flip, horizontal shift,
and vertical shift, i.e., transformation (18)(19)(20)(21), are the most harmful transformations.

(ii) Further combining above transformations can achieve more harmful results. In addition to ex-
ploring the performance on individual transformation, we also investigate whether transformation
combination can further degenerate the performance of LVLM models. According to the perfor-
mance of combined transformations (27)-(31) in the figure, we can find that the combined transfor-
mations are generally more harmful than the impacts of their contained individual transformations.
In particular, applying both block-level rotation and block-level vertical flip to image input (i.e.,
transformation (28)) can achieve the lowest semantic similarities among the four LVLMs.

In summary, block-level transformations of rotation, vertical flip, horizontal shift, and vertical shift
are the most harmful individual transformations, and their further combination can achieve more
harmful results. More analysis and textual output visualizations can be found in Appendix A.2.

4 HOW TO DESIGN A SUPERIOR ADVERSARIAL VISUAL TRANSFORMATION
AGAINST LVLMS?

Enlightened by the above insights into the impacts of different visual transformations, we can man-
ually construct the most harmful transformation combinations and apply them on the input images
to fool the LVLM models. We further design an adversarial learning strategy to adaptively generate
superior adversarial visual transformations for improving both the attack effectiveness and imper-
ceptibility of adversarial samples in untargeted and targeted scenarios.

Takeaways: ❶ By manually enumerating and assessing different transformation combinations, we
can construct and formulate much more harmful impacts than the general transformations in Sec-
tion 3 (Comparison on averaged semantic similarity↓: 0.568 vs. 0.683). ❷ To further boost the
efficiency and effectiveness, we can utilize the adversarial learning strategy to adaptively search
for all potential harmful transformations and impose their adversarial impacts on the raw images
to achieve the most adversarial performance while improving the imperceptibility of the disturbed
images. ❸ Our developed adversarial transformations achieve significant performance in both chal-
lenging untargeted and targeted attack settings, demonstrating the great practicality and scalability.

4.1 PRELIMINARY

Evaluation Metrics. We consider two metrics in our experiments, namely semantic similarity
and attack success rate. For untargeted attacks, we utilize the SentenceTransformer (Reimers &
Gurevych, 2019) to generate embeddings of both adversarial and original outputs for calculating
their cosine similarity (the lower the better). For targeted attacks, we not only utilize the semantic
similarity to measure the distance between adversarial output and target text (the larger the bet-
ter), but also follow (Luo et al., 2024; Lu et al., 2024) to exploit success rates “ExactMatch” and
“ConditionalContain” to assess the word-level overlap between adversarial output and target text.

Implementation Details. We utilize the same experimental resources and data following Section 3
to generate the adversarial images. In particular, we utilize the PGD algorithm (Madry et al., 2017)
to optimize the adversarial perturbations with a maximum of epoches = 500. The perturbation size
ϵ are set as 16/255 and 32/255, respectively. We set the number of transformed images for gradient
calculation as N = 20, the momentum parameter as µ = 0.9 and the step size as α = ϵ/epoches.
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Figure 2: Illustration of our designed hybrid transformation-based attack, which manually constructs
the most harmful transformation combination via enumeration (More details are in Appendix B.1).

4.2 MANUALLY CONSTRUCTING MOST HARMFUL COMBINATION OF TRANSFORMATIONS

Designed Hybrid Transformation-based Attack. Based on the observations in Section 3, we can
manually construct the superior adversarial operation against LVLMs by appropriately combining
the most harmful individual transformations. Specifically, since the block-level transformation is
more harmful, we uniformly split each image into 3 × 3 patches and explore the vulnerability of
each patch by separately enumerating transformation combinations among Rotate, VFlip, VShift,
and HShift. In particular, for each patch, we are able to select one, two, three, or all four operations
from these transformations to combine and apply, leading to 15 choices: (1) Rotate, (2) VFlip, (3)
VShift, (4) HShift, (5) Rotate+VFlip, (6) Rotate+VShift, (7) Rotate+HShift, (8) VFlip+VShift, (9)
VFlip+HShift, (10) VShift+HShift, (11) Rotate+VFlip+VShift, (12) Rotate+VFlip+HShift, (13) Ro-
tate+VShift+HShift (14) VFlip+VShift+HShift, and (15) Rotate+VFlip+VShift+HShift. As shown
in Figure 2, our hybrid transformation-based attack transforms each patch one by one in the default
order to iteratively make the transformed image as harmful as possible. Starting from the first patch,
we fix the remaining patches unchanged and perform the above 15 transformation operations in se-
quence to obtain the corresponding 15 transformed images. Then each transformed image is fed into
the LVLM model individually with the same textual prompt to obtain the corresponding 15 adver-
sarial answers. Next, we calculate the semantic similarities between these adversarial answers and
the original answer, and select the operation with the lowest similarity score as the optimal (most
harmful) transformation operation for this patch. By fixing the transformed patch 1, we repeat this
process for patch 2 to further degenerate the LVLM’s performance. After traversing all patches, we
can transform images that pose a greater hazard than those described in Section 3.

Table 1: Evaluation (averaged similarity scores
over three tasks) of different transformation or-
ders on the block-level patches: ① Random Or-
der, ② Inverse Order, and ③ Default Order.

Dataset Variant LLaVA-1.5 MiniGPT-4 BLIP-2 InstructBLIP

DALL-E
① 0.713 0.517 0.449 0.625
② 0.704 0.519 0.473 0.622
③ 0.717 0.519 0.472 0.662

SVIT
① 0.667 0.497 0.456 0.605
② 0.665 0.503 0.456 0.622
③ 0.664 0.498 0.458 0.609

VQAv2
① 0.649 0.453 0.504 0.577
② 0.652 0.436 0.530 0.582
③ 0.663 0.437 0.529 0.590

Evaluation and Discussion. We evaluate the per-
formance of our designed hybrid transformation-
based attack in the same setting as Section 3. As
shown in Figure 4, we can conclude that:

(i) Our hybrid attack is more harmful than gen-
eral transformation operations. Compared with
the previous 31 transformations in Section 3, our
hybrid transformation-based attack can further
degenerate the LVLM’s performance on all mod-
els across all datasets/tasks. This significant sim-
ilarity decrease demonstrates that manually con-
structing transformation operations is effective in
generating more harmful adversarial examples.

(ii) There is still a lot of room for improving the attack. The designed hybrid attack method has
great attack performance on both image captioning and image classification tasks. However, its
performance on VQA task still has lots of room for improvement. We think this is because the
hybrid transformation is limited by the enumeration space and can not aggregate the harmful impacts
from all possible negative transformations. This inspired us to design an adversarial-learning-based
transformation to adaptively search from the whole enumeration space in the next section.
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Figure 4: Untargeted attack performance of our designed hybrid transformation-based attack on
four LVLM models across three datasets with three tasks. Lower similarities (↓) indicate more
harmful impacts. Numbers in front of the bars refer to the similarity score decrease compared to the
corresponding best transformations in Section 3, larger decrease indicates greater harmfulness.

In addition to the basic evaluation, we further conduct ablation studies on the designed hybrid
transformation-based attack to investigate its sensitivity to the transformation order on the block-
level patches. As shown in Table 1, the hybrid transformation-based attack performs similarly on
different variants, demonstrating that it is not sensitive to the transformation orders on patches.

4.3 ADAPTIVELY LEARNING ADVERSARIAL IMPACTS FROM HARMFUL TRANSFORMATIONS
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Figure 3: Illustration of our designed adversarial
transformation-aware attack. We utilize the adversarial
learning strategy with gradient approximation to adap-
tively impose the truly harmful impacts from all po-
tential transformation operations on the raw image for
improving both imperceptibility and effectiveness.

Designed Adversarial Transformation-
aware Attack. Although the above hy-
brid transformation-based attack achieves
greatly harmful impacts on LVLM’s out-
put semantics, it introduces noticeable and
unnatural appearances to humans. There-
fore, as shown in Figure 3, we tend to
investigate whether the impacts of poten-
tially harmful transformations can be im-
posed as perturbations to be added to the
raw images while keeping the same ad-
versarial effect as those transformations to
improve the imperceptibility of the gener-
ated adversarial images. To this end, in-
spired by the strategy of momentum-aware
gradient calculation (Dong et al., 2018;
2019), we propose to adaptively apply
all possible transformation combinations
from the random operation set to the image
input and only calculate the gradient direc-
tions of those harmful ones to the LVLMs
to guide and update the transformation-
aware perturbations on the raw image. In particular, the gradient direction is approximated by the
distance from the original image and its adversarial positive-transformed one. In this manner, the
final adversarial images can mimic the harmful impacts of all potential transformations to adap-
tively learn to best fool LVLMs. Moreover, since adversarial learning is more effective and efficient
than the aforementioned manual transformation construction, this attack can further tackle both
untargeted and targeted settings with appropriate gradient approximation designs. More adaptive
adversarial optimization details and the corresponding algorithm can be found in Appendix C.1.

Difference with Other LVLM Adversarial Attacks. Existing LVLM adversarial attacks directly
utilize the flexible gradient backpropagation from the whole search space to optimize perturbations
according to the specific objective function, relying on prior knowledge of model details and learn-
ing unknown/uncontrolled distortion to the raw images. Instead, our attack carefully estimates the
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Figure 5: Untargeted attack performance of our adversarial transformation-aware attack on four
LVLM models across three datasets with three tasks (ϵ = 16/255). Lower similarities (↓) indicate
more harmful impacts. Numbers in front of the bars refer to the similarity score decrease compared
to the hybrid transformation-based attack in Figure 4, larger decrease indicates greater harmfulness.

Table 2: Targeted attack performance of our adversarial transformation-aware attack. Target text: “I
am sorry”. Larger similarities (↑) indicate more harmful impacts. “SS” denotes the semantic similar-
ity between output and target text; “EM” and “CC” denote “ExactMatch” and “ConditionalContain”
metrics to assess whether the output exactly matches or contain the target text, respectively.

Dataset LVLM

Perturbation Budget ϵ = 32/255 Perturbation Budget ϵ = 16/255

Captioning Classification VQA Captioning Classification VQA

SS EM CC SS EM CC SS EM CC SS EM CC SS EM CC SS EM CC

DALL-E

LLaVA-1.5 0.956 95.1 97.6 1.000 100.0 100.0 0.953 95.1 95.1 0.813 80.5 80.5 1.000 100.0 100.0 0.882 85.4 85.4
MiniGPT-4 0.609 58.6 58.6 0.640 61.0 65.9 0.535 53.7 53.7 0.534 46.3 46.3 0.560 48.8 51.2 0.377 31.7 31.7

BLIP-2 0.826 87.8 90.2 0.835 87.8 92.7 0.737 78.0 78.0 0.793 82.9 85.4 0.801 82.9 90.2 0.527 48.8 53.7
InstructBLIP 1.000 100.0 100.0 0.962 95.1 95.1 0.750 70.7 70.7 0.762 63.4 78.0 0.695 58.5 70.7 0.500 41.5 41.5

SVIT

LLaVA-1.5 1.000 100.0 100.0 1.000 100.0 100.0 0.930 92.7 92.7 0.952 92.7 92.7 1.000 100.0 100.0 0.903 87.8 87.8
MiniGPT-4 0.702 68.3 68.3 0.731 68.3 73.2 0.641 60.0 63.4 0.620 56.1 58.5 0.450 36.6 58.5 0.552 48.8 53.7

BLIP-2 0.834 85.5 90.2 0.884 97.6 97.6 0.772 80.5 80.5 0.779 80.5 87.8 0.803 85.4 85.4 0.533 51.2 53.7
InstructBLIP 0.980 97.6 97.6 0.958 95.1 95.1 0.638 56.1 56.1 0.787 70.7 80.5 0.770 65.9 79.0 0.557 46.3 46.3

VQAv2

LLaVA-1.5 0.977 97.6 97.6 1.000 100.0 100.0 0.992 95.1 100.0 0.978 97.6 97.6 1.000 100.0 100.0 0.953 95.1 97.6
MiniGPT-4 0.634 61.0 63.4 0.713 70.7 70.7 0.612 53.7 61.0 0.539 46.3 51.2 0.568 53.7 56.1 0.522 43.9 51.2

BLIP-2 0.849 90.2 92.7 0.837 87.8 92.7 0.648 58.5 68.3 0.775 82.9 82.9 0.819 87.8 87.8 0.588 53.7 61.0
InstructBLIP 1.000 100.0 100.0 0.947 92.7 95.1 0.480 34.1 34.1 0.828 70.7 90.2 0.724 61.0 75.6 0.404 24.4 24.4

operation-specific gradients from transformations to update perturbations, which is more practical to
be exploited in a black-box setting and can explicitly learn transformation-only adversarial impacts.

Evaluation and Discussion. To evaluate our designed adversarial transformation-aware attack, we
conduct experiments in both untargeted and targeted attack settings and can conclude that:

(i) As for the untargeted attack, this adversarial learning attack is more effective and efficient than
the hybrid transformation-based attack. Although the hybrid transformation-based attack tries to
enumerate possible transformation combinations and manually construct the most harmful opera-
tions, it costs lots of resources and may stuck into the local optimum. Instead, this adversarial
transformation-aware attack can adaptively learn the most harmful impacts from all potential trans-
formation combinations, leading to more harmful adversarial generations as shown in Figure 5.

(ii) This adversarial learning attack is more flexible and can mislead the LVLMs output attacker-
chosen texts. In addition to the above untargeted adversarial generation, we also investigate whether
our learnable attack satisfies fooling the LVLMs with specific target output texts. As shown in
Table 2, we preset the target response as “I am sorry” and experimental results indicate that our
adversarial transformation-aware attack is effective in achieving targeted attack with significant per-
formance, having great potential to be deployed in real-world LVLM applications. Besides, it also
shows that our attack can still achieve competitive performances with a lower perturbation budget.

Overall, our attacks show superior performance, demonstrating the effectiveness of our carefully
designed transformation-aware attacks. More experimental results are in Appendix C.2.
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Table 3: Investigation on the adversarial transferability of our two types of transformation attacks.
Following previous works, we evaluate the untargeted attack performance of the adversarial samples
generated on the LVLMs of rows and tested on the LVLMs of columns. The experimental results
are calculated by the averaged semantic similarities on three tasks. “value” is basic performance.

Dataset LVLM Hybrid Transformation-based Attack (↓) Adversarial Transformation-aware Attack (↓)

LLaVA-1.5 MiniGPT-4 BLIP-2 InstructBLIP LLaVA-1.5 MiniGPT-4 BLIP-2 InstructBLIP

DALL-E

LLaVA-1.5 0.717 0.710 0.611 0.763 0.463 0.697 0.678 0.728
MiniGPT-4 0.808 0.519 0.626 0.752 0.770 0.460 0.399 0.456

BLIP-2 0.782 0.707 0.472 0.701 0.702 0.676 0.372 0.672
InstructBLIP 0.789 0.695 0.595 0.662 0.693 0.661 0.565 0.542

SVIT

LLaVA-1.5 0.664 0.663 0.563 0.660 0.439 0.695 0.683 0.708
MiniGPT-4 0.773 0.498 0.613 0.682 0.711 0.397 0.338 0.450

BLIP-2 0.742 0.673 0.458 0.679 0.650 0.553 0.300 0.519
InstructBLIP 0.747 0.659 0.565 0.609 0.663 0.545 0.383 0.427

VQAv2

LLaVA-1.5 0.663 0.646 0.643 0.742 0.394 0.657 0.662 0.694
MiniGPT-4 0.777 0.437 0.663 0.721 0.700 0.349 0.321 0.477

BLIP-2 0.754 0.653 0.529 0.672 0.641 0.518 0.314 0.484
InstructBLIP 0.759 0.634 0.640 0.590 0.632 0.518 0.431 0.442

4.4 IN-DEPTH ANALYSIS OF OUR PROPOSED TRANSFORMATION ATTACKS

In this section, we provide a detailed analysis of our proposed two types of transformation attacks
from perspectives of complexity, adversarial transferability, and adversarial robustness, respectively.

Takeaways: ❶ Our proposed attack methods in Section 4 are quite efficient. Besides, our adversarial
learning based attack variant is more efficient than the manual constructing one while achieving
better performance. ❷ Our developed adversarial transformation attacks can achieve significant
transferability among different black-box LVLM models. ❸ Experimental results also illustrate that
our two transformation attacks are robust to potential defense strategies.

Table 4: Complexity analysis on our attacks.
We evaluate the GPU time and memory usage
of a single adversarial example on both gener-
ation and inference processes on LLaVA-1.5.

Process Attack Type GPU Time GPU Memory

Generation Hybrid Attack 9min 16GB
Adversarial Attack 5min 22GB

Inference Hybrid Attack 3s 15GB
Adversarial Attack 3s 15GB

Analysis on Complexity. We first investigate the
complexity of our proposed two types of LVLM at-
tacks. As shown in Table 4, we evaluate the usage
of GPU time and memory of a single adversarial
sample on both generation and inference processes.
It indicates that the adversarial transformation-
aware attack is much more efficient than the hybrid
transformation-based attack during the adversarial
generation, as the former can adaptively learn the
potentially harmful transformation impacts (but re-
quires relatively more memory for gradient approximation) while the latter relies on lots of manual
efforts. Since both two attacks solely feed the adversarial sample into the LVLM without any addi-
tional operation during the inference, they have the same complexity in inference.

Analysis on Adversarial Transferability. We then investigate the adversarial transferability of the
generated adversarial examples of our two attacks. As shown in Table 3, we can conclude that:

(i) Developing LVLM attacks using visual transformations can achieve significant adversarial trans-
ferability. Our two types of transformation attacks achieve great transfer-attack performance when
we directly feed the generated adversarial examples of one LVLM to the other three LVLMs. Al-
though the output textual semantic similarities relatively decrease, its influences are largely inferior
to the performance drops brought by our attacks. Therefore, utilizing visual transformations to con-
struct LVLM attacks is a promising way to improve the adversarial transferability.

(ii) The adversarial transformation-aware attack achieves better transferability than the hybrid
transformation-based attack. Since the transformation attack with adversarial learning mechanism
can adaptively learn more potential transformation operations than the hybrid manual constructing
one, it will learn more generalizable transformation impacts thus leading to better transferability.

Analysis on Adversarial Robustness. At last, we investigate the robustness of the proposed two
transformation attacks. In particular, we implement three pre-processing defenses, i.e, Randomiza-
tion (Frosio & Kautz, 2023; Xie et al., 2017), JPEG Compression (Guo et al., 2017), and Diffusion
Restoration (Nie et al., 2022). As shown in Table 5, we can conclude that:
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Table 5: Investigation on the adversarial robustness of our two types of transformation attacks. Fol-
lowing previous works, we evaluate the untargeted attack performance of the adversarial samples
generated on the LVLMs of columns by testing them against potential defenses of rows. The exper-
imental results are calculated by the averaged semantic similarities on three tasks.

Dataset Defense Hybrid Transformation-based Attack (↓) Adversarial Transformation-aware Attack (↓)

LLaVA-1.5 MiniGPT-4 BLIP-2 InstructBLIP LLaVA-1.5 MiniGPT-4 BLIP-2 InstructBLIP

DALL-E

No Defense 0.717 0.519 0.472 0.662 0.463 0.460 0.372 0.542
Randomization 0.767 0.686 0.581 0.674 0.744 0.591 0.505 0.631
JPEG Compre. 0.776 0.681 0.548 0.682 0.609 0.565 0.468 0.604

Diffusion 0.541 0.518 0.382 0.421 0.758 0.701 0.594 0.697

SVIT

No Defense 0.664 0.498 0.458 0.609 0.439 0.397 0.300 0.427
Randomization 0.763 0.658 0.545 0.637 0.648 0.560 0.406 0.503
JPEG Compre. 0.757 0.648 0.508 0.631 0.547 0.487 0.359 0.471

Diffusion 0.555 0.514 0.397 0.440 0.690 0.611 0.532 0.617

VQAv2

No Defense 0.663 0.437 0.529 0.590 0.394 0.349 0.314 0.442
Randomization 0.746 0.609 0.599 0.696 0.610 0.467 0.409 0.512
JPEG Compre. 0.760 0.591 0.536 0.675 0.502 0.469 0.372 0.485

Diffusion 0.536 0.464 0.392 0.423 0.675 0.571 0.550 0.608

(i) Our proposed attack methods are robust to potential defense strategies. According to the per-
formances in this table, although the three defense methods are able to degenerate our attack per-
formance, their influences are largely inferior to the performance drops brought by our attack. This
demonstrates that our attack is fairly resistant to the potential defense methods in practice.

(ii) The hybrid attack produces even more harmful results under diffusion restoration. It is because
the applied transformations destroy the image structure, so diffusion operation will further generate
more diverse content. Instead, diffusion can alleviate the harmful impact of adversarial noise.

5 DISCUSSION

Justification of Our Experiments. Since our main goal is to investigate the adversarial robustness
of LVLMs to visual transformations, our experiments are solely conducted on the comparisons and
analysis between different transformation strategies. We do not compare performances with other
types of LVLM attacks as: (1) They are designed with more complicated perturbation patterns. Di-
rectly comparing our solely transformation-based attacks with them is unfair. (2) They are diversely
implemented in different settings with the usage of different LVLM models and datasets. We provide
case-by-case comparisons with other LVLM attacks under the same settings in Appendix D.

Limitations. Our work assumes that input images are fed directly into the LVLM models. However,
in the future, vision-language models are more likely to be deployed in complex scenarios such
as controlling robots or automatic driving, in which case input images may be obtained from the
interaction with physical environments and captured in real time by cameras. Performing attacks in
such complicated cases would be one of the future directions for evaluating the LVLM security.

Broader Impacts. While the primary goal of our research is to generate superior adversarial trans-
formations against large vision-language models, it is possible that the developed attacking strate-
gies could be misused to evade practically deployed systems and cause potential negative societal
impacts. Specifically, our adversarial threat model assumes targeted responses, which involves ma-
nipulating existing APIs such as GPT-4 (with visual inputs) and/or Midjourney on purpose, thereby
increasing the risk if these vision-language APIs are implemented as plugins in other products.

6 CONCLUSION

In conclusion, this paper offers novel insights into the vulnerability of LVLMs to visual transforma-
tions. Our comprehensive evaluation indicates that different transformations share diverse harmful-
ness degrees on existing LVLMs while appropriate transformation combinations can boost the attack
performance. We also take a further step to investigate how to manually construct a more harmful
transformation operation and how to adaptively learn to impose adversarial impacts from all poten-
tial transformations to raw images for improving the attack effectiveness and imperceptibility. We
envision our findings will pave the way for the development of efficient and effective LVLM attacks.
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A ADDITIONAL DETAILS OF LVLMS’ PERFORMANCE ON DIFFERENT
VISUAL TRANSFORMATIONS

A.1 MORE DETAILS OF VISUAL TRANSFORMATIONS

Here we provide the implementation details of the previously mentioned transformations, respec-
tively. In particular, for a given image block x ∈ R3×H×W , we can implement the basic transfor-
mations as follows:

1. Resize Large: We resize the original image x into x′ with the size of 3×h×w (h > w,w > w)
using bilinear interpolation.

2. Resize Small: We resize the original image x into x′ with the size of 3×h×w (h < w,w < w).

3. HFlip (Horizontal Flip): We flip the image x horizontally along the vertical axis, in which the
left of the image becomes the right, and the right becomes the left.

4. VFlip (Vertical Flip): We flip the image x vertically along the horizontal axis, in which the top
of the image becomes the bottom, and the bottom becomes the top.

5. Rotate Random: We rotate the image x by a random angle around its center point.

6. Rotate 180◦: We turn the image x clockwise by 180◦ around its center point, in which the top-left
of the image becomes the bottom-right, and the top-right becomes the bottom-left.

7. VShift Random (Vertical Shift): We roll the image x along the vertical axis by a randomly
selected length h < H .

8. VShift Half (Vertical Shift): We roll the image x along the vertical axis at h = 1
2H .

9. HShift Random (Horizontal Shift): We roll the image block x along the horizontal axis by a
randomly selected length of w < W .

10. HShift Half (Horizontal Shift): We roll the image block x along the horizontal axis at w =
1
2W .
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11. Scale: We multiply a random scale factor α ∈ (0, 1) with the pixel in the image to scale x into
α · x.

12. Add Noise: We add a uniform noise r ∈ [0, 1]3×H×W to the image x and clip them into [0, 1]
to obtain the transformed image Clip(x+ r, 0, 1).

13. Dropout: We set each channel of the image x to zero with a probability of 10%.

14. ColorJitter: We randomly change the brightness, contrast, saturation, and hue of the image x.

15. DCT: We first transform x to the frequency domain using Discrete Cosine Transformation
(DCT). Then we mask the top 40% highest frequency with 0 and recover the image in the time
domain using Inverse Discrete Cosine Transformation (IDCT).

Then, we adapt the above transformations into the block-level transformation (AprilPyone & Kiya,
2021). Specifically, we first uniformly split the image x ∈ R3×H×W into 3× 3 patches of the same
sizes, then perform the above operations on each patch as follows:

16. Block Resize: We resize each patch to size 3× h× w (h < 1
3H,w < 1

3H) and utilize bicubic
interpolation to reconstruct the patch into the original size.

17. Block HFlip: We flip each patch along along the vertical axis, in which the left of the patch
becomes the right, and the right becomes the left.

18. Block VFlip: We flip each patch along the horizontal axis, in which the top of the patch becomes
the bottom, and the bottom becomes the top.

19. Block Rotate: We turn each patch clockwise by 180◦ around its center point, in which the
top-left of the patch becomes the bottom-right, and the top-right becomes the bottom-left.

20. Block VShift: We roll each patch along the vertical axis at half height.

21. Block HShift: We roll each patch along the horizontal axis at half weight.

22. Block Scale: We multiply a random scale factor α ∈ (0, 1) with the pixel of each patch.

23. Block AddNoise: We add a uniform noise to each patch and clip them into [0, 1] to obtain the
transformed patch.

24. Block Dropout: We set each channel of the patch to zero with a probability of 10%.

25. Block ColorJitter: We randomly change the brightness, contrast, saturation, and hue of each
patch.

26. Block DCT: we first transform each patch to the frequency domain using Discrete Cosine
Transformation (DCT). Then we mask the top 40% highest frequency with 0 and recover the patch
in the time domain using Inverse Discrete Cosine Transformation (IDCT).

Based on our empirical experience, we find that transformations of Rotate, Hshilt, VFlip perform
more adversarial among the above multiple block-level transformations. Therefore, we further de-
sign various types of their combinations in the following:

27. Block Rotate HShift: We randomly choose one of the rotation or horizontal shift operations
for each patch.

28. Block Rotate VFlip: We randomly choose one of the rotation or vertical flip operations for
each patch.

29. Block VFlip HShift: We randomly choose one of the vertical flip or horizontal shift operations
for each patch.

30. Block Rotate VFlip HShift: We randomly choose one of the rotation, vertical flip, or horizon-
tal shift operations for each patch.

31. Block Random Combination: We randomly choose the combination of the transformations
including rotation, vertical flip, or horizontal shift operations for each patch.

We provide visual examples of the various image transformations described above in Figure 6.
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Raw Resize_Large Resize_Small HFlip VFlip Rotate_Random

Rotate_180° VShift_Random VShift_Half HShift_Random HShift_Half Scale

Add Noise Dropout ColorJitter DCT Block_Resize Block_HFlip

Block_VFlip Block_Rotate Block_VShift Block_HShift Block_Scale Block_AddNoise

Block_Dropout Block_ColorJitter Block_DCT Block_Rotate_HShift Block_Rotate_VFlip Block_VFlip_HShift

Block_Rotate_Vflip_HShift Block_Random_Combination Block_Random_Combination Block_Random_Combination

Figure 6: Visualization examples of our utilized 31 number of visual transformations.

A.2 VISUALIZATION ON THE TEXTUAL OUTPUTS OF TRANSFORMED IMAGES

We provide the textual outputs of each transformed image in Figure 7. We can find that the general
visual transformation can affect the LVLM’s textual output.

B ADDITIONAL DETAILS OF OUR PROPOSED HYBRID
TRANSFORMATION-BASED ATTACK

B.1 MORE ILLUSTRATIONS OF OUR HYBRID TRANSFORMATION-BASED ATTACK

We provide a step-by-step visualization of our proposed hybrid transformation-based attack. As
shown in Figure 8, our hybrid transformation-based attack transforms each patch one by one in the
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Input Text: What are the two distinct colors of the cats sitting in the doorway?

Block_Rotate_VFlip

The cats are sitting 

in the doorway.

Block_VFlip_HShift

The cats are sitting 

in the doorway.

Block_Rotate_Vflip_HShift

The cats are sitting in the 

doorway.

Block_Random_Combination

The cats are sitting in the 

doorway.

Block_VFlip

The cats are sitting in the 

doorway, and the light is 

coming from the left.

Block_Rotate

The cats are sitting in the 

doorway, and the light is 

coming from the left.

Block_VShift

The cats are sitting 

in the doorway.

Block_HShift

The cats are sitting in 

the doorway, and the 

light is coming from the 

left, and the light is 

coming from the right.

Block_Scale

The cats are sitting in

 the doorway, and the 

background is a dark 

blue.

ColorJitter

The cats are sitting 

in the doorway.

DCT

The cats are 

ginger and black.

Block_Resize

The cats are 

ginger and black.

Block_HFlip

Lightroom.

VShift_Random

Light and shadow.

VShift_Half

Light and shadow.

HShift_Random

Lightroom.

HShift_Half

Lightroom.

Scale

The cats are 

orange and brown.

Resize_Large

The cats are 

ginger and black.

Resize_Small

The cats are 

ginger and black.

HFlip

The cats are 

ginger and black.

VFlip

The cats are sitting 

in the doorway.

Rotate_Random

The cats are black 

and white.

Raw

The cats are 

ginger and black.

Rotate_180°

The cats are sitting 

in the doorway.

Add Noise

The cats are 

orange and brown.

Dropout

The cats are 

ginger and black.

Block_DCT

The cats are 

ginger and black.

Block_Rotate_HShift

The cats are sitting 

in the doorway.

Block_AddNoise

The cats are 

orange and brown.

Block_ColorJit

The cats are sitting 

in the doorway.

Block_Dropout

The cats are sitting 

on the rainbow.

Figure 7: Visualization of the LVLM’s textual outputs of different transformation operations. Red:
the affected outputs are different from the raw answer.

default order to iteratively make the transformed image as harmful as possible. Starting from the first
patch, we fix the remaining patches unchanged and perform the above 15 transformation operations
in sequence to obtain the corresponding 15 transformed images. Then each transformed image is
fed into the LVLM model individually with the same textual prompt to obtain the corresponding 15
adversarial answers. Next, we calculate the semantic similarities between these adversarial answers
and the original answer, and select the operation with the lowest similarity score as the optimal (most
harmful) transformation operation for this patch. By fixing the transformed patch 1, we repeat this
process for patch 2 to further degenerate the LVLM’s performance. After traversing all patches, we
can generate the most harmful transformation operation on the image input. Note that, each step
operation can effectively further degenerate the LVLM’s performance compared to its previous step.
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Combined Transformation
(1) Rotate (2) VFlip (3) VShift (4) HShift

(1)+(2) (1)+(3) (1)+(4) (2)+(3)
(2)+(4) (3)+(4) (1)+(2)+(3) (1)+(2)+(4)

(1)+(3)+(4) (2)+(3)+(4) (1)+(2)+(3)+(4)

0.985 0.985 0.906 0.985
0.985 0.970 0.907 0.907
0.910 0.985 0.932 0.970
0.985 0.985 0.918

Semantic Similarity 
Calculation

patch_1 Man talking on phone 
in golf cart.

Raw Answer

Man sitting on golf cart.
…

Golf.

Adv Answer

patch_2patch_3

LV
L

M

Describe the subject of this image.Text Input

Raw Image

0.894 0.973 0.938 0.892
0.902 0.896 0.906 0.887
0.892 0.889 0.881 0.898
0.892 0.886 0.892

patch_4

0.882 0.880 0.949 0.898
0.865 0.852 0.926 0.878
0.859 0.949 0.88 0.867
0.861 0.886 0.878

0.922 0.831 0.901 0.869
0.878 0.921 0.839 0.886
0.857 0.918 0.852 0.867
0.865 0.911 0.881

0.747 0.750 0.744 0.862
0.744 0.744 0.700 0.742
0.750 0.737 0.753 0.750
0.760 0.760 0.704

0.869 0.847 0.858 0.844
0.832 0.865 0.818 0.86
0.850 0.898 0.861 0.932
0.847 0.869 0.872

0.893 0.822 0.852 0.851
0.875 0.932 0.887 0.912
0.912 0.889 0.849 0.945
0.885 0.913 0.897

patch_5 patch_6 patch_7

patch_8patch_9

0.722 0.701 0.727 0.742
0.746 0.688 0.718 0.746
0.709 0.763 0.749 0.746
0.769 0.718 0.727

0.648 0.672 0.754 0.731
0.753 0.809 0.659 0.635
0.644 0.755 0.748 0.727
0.697 0.708 0.754

Most Harmful Image

Figure 8: Illustration of our designed hybrid transformation-based attack, which manually constructs
the most harmful transformation combination via enumeration.

Combined 
Transformation LVLM Semantic Similarity 

Calculation

×9

Figure 9: Illustration of our designed hybrid transformation-based attack implemented in a universal
setting, where the most harmful transformation operation is explored to be the same among all
image-text inputs.

B.2 UNIVERSAL ATTACK FOR OUR HYBRID TRANSFORMATION-BASED ATTACK

Generally, our proposed hybrid transformation-based attack is implemented in a single-image at-
tack setting, where the most harmful transformation operation varies among different image-text
inputs. Further, we can also extend this attack into a universal attack setting as shown in Figure 9,
where the most harmful transformation operation is explored to be the same among all image-text
inputs. Specifically, we follow the traditional universal setting (Moosavi-Dezfooli et al., 2017) to
assess the vulnerability of each transformation based on its averaged impacts on the whole test set.
Corresponding performance is shown in Figure 10, we can conclude that:

(i) Our hybrid transformation-based attack in a universal setting is also more harmful than gen-
eral transformation combinations. Compared with the previous 31 transformations in Section 3,
our hybrid transformation-based attacks in a universal setting can further degenerate the LVLM’s
performance on all models across all datasets. This significant similarity decrease also demonstrates
that manually constructing transformation operations is more effective in generating more harmful
adversarial examples.

(ii) As for our hybrid transformation-based attack, the single-image attack setting is more effective
than the universal setting to generate more harmful transformation operations. By comparing the
attack performance between the single-image setting in Figure 4 and the universal setting in Fig-
ure 10, we can find that the single-image attack is more flexible and harmful than the universal
attack setting, thus achieving better attack performance. This is because the single-image attack
can straightforwardly conduct the most vulnerable transformation impacts on each image while the
universal attack fails to cover the distribution gaps among diverse images.
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Figure 10: Untargeted attack performance of our designed hybrid transformation-based attack im-
plemented in a universal setting. Lower similarities (↓) indicate more harmful impacts. Numbers in
front of the bars refer to the similarity score decrease compared to the corresponding best transfor-
mations in Section 3, larger decrease indicates greater harmfulness.

B.3 VISUALIZATION ON THE TEXTUAL OUTPUTS OF TRANSFORMED IMAGES

To validate the effectiveness of our hybrid transformation-based attack, we provide the visualization
on the textual outputs of the transformed images. As shown in Figure 11, we can find that our
method can effectively mislead LVLMs to output wrong texts that are semantically distinct from the
original texts.

C ADDITIONAL DETAILS OF OUR PROPOSED ADVERSARIAL
TRANSFORMATION-AWARE ATTACK

C.1 MORE ILLUSTRATIONS OF OUR ADVERSARIAL TRANSFORMATION-AWARE ATTACK

Although LVLMs are insensitive and invariant to the block-level transformations as LVLMs can
globally handle and learn the tokenize-wise semantics, the hybrid transformation-based attack still
introduces noticeable and unnatural appearances to humans. Therefore, to improve the impercepti-
bility of the transformed images, we propose to impose the impacts of potentially harmful transfor-
mations as perturbations to add to the raw image while keeping the same adversarial effect as those
transformations. In this manner, the perturbed image is optimized by the approximated gradient
directions of harmful transformations and shares the same adversarial impacts, achieving the goal of
adversarial transformation while improving visual imperceptibility. Specifically, instead of directly
calculating the gradient on the input image, we calculate the gradient only on the truly harmful
transformations. More adversarial training details can be found in Algorithm 1.

C.2 MORE EXPERIMENTS ON OUR ADVERSARIAL TRANSFORMATION-AWARE ATTACK

As for the untargeted attack, the experiments in Figure 5 are implemented with perturbation budget
ϵ = 16/255. We further provide the corresponding experiments with perturbation budget ϵ =
32/255 in Figure 12. We can find that our adversarial transformation-aware attack can achieve
better attack performance with larger budgets.

As for the targeted attack, we also perform more experiments on different target text output of “I
want to destroy the world” in Table 6 and “I don’t know” in Table 7. Corresponding results show
that our attack can still achieve significant adversarial performance, demonstrating the scalability,
generalizability, and practicality of our proposed attack method.

C.3 VISUALIZATION ON THE TEXTUAL OUTPUTS OF TRANSFORMED IMAGES

To validate the effectiveness of our adversarial transformation-aware attack, we provide the visu-
alization on the textual outputs of the transformed images in both untargeted and targeted attack
settings. As shown in Figure 11, we can find that our method can not only effectively mislead
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Raw Image

Skateboarder.

Input Text: Provide a singular term that characterizes this picture.

Raw Image

The dog is looking at 

the door.

Input Text: If this image were in a photo album, what would its label be?

Raw Image

The train has the number 

189 visible on its front, 

which is likely an 

identification number 

assigned to the train.

Input Text: What identification is visible on the train?

Raw Image

The toilet bowl is 

brown.

Input Text: What color is the toilet bowl?

Raw Image

A man and woman sit 

on a bench overlooking 

the water.

Input Text: Provide a brief caption for this image.

Hybrid

Concrete.

Hybrid

The door to the world.

Hybrid

The train has the word 

"Southwest" visible on it, 

which indicates that it 

belongs to the Southwest 

Airlines company.

Hybrid

The toilet bowl is 

white.

Hybrid

A person is sitting on a 

bench with a backpack on.

Adversarial (Untarget)

The islamic architecture.

Adversarial (Untarget)

The door to the unknown.

Adversarial (Untarget)

The train has an 

American Airlines 

identification visible 

on it.

Adversarial (Untarget)

The toilet bowl is 

white.

Adversarial (Untarget)

A hawk perched on 

top of a missile.

Adversarial (Target)

I want to destroy 

the world.

Adversarial (Target)

I want to destroy 

the world.

Adversarial (Target)

I don't know.

Adversarial (Target)

I don't know.

Adversarial (Target)

I am sorry.

Input Text: Summarize the main events or actions in this image.

Raw Image

In the image, a man is standing 

in a living room, holding a Wii 

remote in his hand. He appears 

to be playing a video game, 

possibly on a Nintendo Wii 

console. The living room 

features a couch and a chair, as 

well as a cat nearby. There is 

also a potted plant in the room, 

adding a touch of greenery to the 

space.

 

Hybrid

The image is a collage of various 

photographs featuring people and their 

pets. There are multiple cats and a dog 

in the collage, with some of them 

interacting with their owners. The 

people in the collage are engaged in 

different activities, such as playing 

with their pets, sitting on chairs, and 

standing in different rooms. The 

collage captures a diverse range of 

moments and interactions between 

people and their pets.

 

Adversarial (Untarget)

The image features a man and a 

little girl sitting at a dining table, 

surrounded by various cups and 

bottles. The table is filled with 

drinks, including multiple cups 

and bottles scattered across the 

surface. The man is wearing a 

red shirt, and the little girl is 

sitting next to him. The scene 

appears to be a casual gathering 

or a meal shared between the two 

individuals.

Adversarial (Target)

I am sorry.

Figure 11: Visualization of the LVLM’s textual outputs. Green: hybrid transformation-based attack.
Red and Blue: adversarial transformation-aware attack on untargeted and targeted attack settings.
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Algorithm 1 Adversarial Transformation-aware Attack
Input: The source sample with the raw image xv , the text input xt and the raw answer y; the
loss function of LVLM L; the number of iteration T ; the maximum perturbation ϵ; decay factor µ;
the number of transformed images N ; the step size α; the random transformation image function
Trans.
Output: Adversarial image.

1: Initialize gradient g0 = 0, adversarial sample xadv
v,0 = xv

2: for t = 0 to T − 1 do
3: g = 0
4: for i = 0 to N − 1 do
5: Construct transformed image as Transi(xadv

v,t )

6: Calculate the loss before and after the transformation by l1 = L(Transi(x
adv
v,t ), xt, y)

7: and l2 = L(xadv
v,t , xt, y)

8: if l1 > l2 then
9: Get the harmful weight as wi = 1

10: else
11: Get the harmless weight as wi = 0
12: end if
13: Approximate the gradient by gradi = ∇xadv

v,t
L(Transi(x

adv
v,t ), xt, y)

14: Sum the gradients as g = g + wi · gradi
15: end for
16: Get the average gradients as g = 1

N · g
17: Update the momentum by gt+1 = µ · gt + g

∥g∥1

18: Update the adversarial image by xadv
v,t+1 = Clip(xadv

v,t + α · sign(gt+1), 0, 1)
19: end for
20: return transformation-aware adversarial sample xadv

v,T
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Figure 12: Untargeted attack performance of our designed adversarial transformation-aware attack
implemented on the ϵ = 32/255 setting. Lower similarities (↓) indicate more harmful impacts.
Numbers in front of the bars refer to the similarity score decrease compared to the adversarial
transformation-aware attack variant implemented with ϵ = 16/255 in Figure 5, larger decrease
indicates greater harmfulness.

LVLMs to output wrong texts that are semantically distinct from the original texts, but also mislead
LVLMs to output specific attacker-chosen texts.

D PERFORMANCE COMPARISON WITH EXISTING LVLM ATTACKS

To further investigate the effectiveness of our proposed attack, we provide a case-by-case compar-
ison with existing LVLM attacks MF (Zhao et al., 2024) (NeurIPS 2023) and CroPA (Luo et al.,
2024) (ICLR 2024). Since existing LVLM attacks are diversely implemented in different settings
with the usage of different LVLM models and datasets, we re-implement our transformation-aware
attack into their same settings/datasets/metrics for fair comparison. Note that, since MF and CroPA
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Table 6: Targeted attack performance of our adversarial transformation-aware attack. Target text:
“I want to destroy the world”. Larger similarities (↑) indicate more harmful impacts. “SS” denotes
the semantic similarity between output and target text; “EM” and “CC” denote the “ExactMatch”
and “ConditionalContain” metrics to assess whether the output exactly matches or contain the target
text, respectively.

Dataset LVLM

Perturbation Budget ϵ = 32/255 Perturbation Budget ϵ = 16/255

Captioning Classification VQA Captioning Classification VQA

SS EM CC SS EM CC SS EM CC SS EM CC SS EM CC SS EM CC

DALL-E

LLaVA-1.5 0.841 82.9 82.9 0.983 97.6 97.6 0.791 78.0 78.0 0.568 51.2 51.2 0.959 95.1 95.1 0.518 48.8 51.2
MiniGPT-4 0.907 87.8 90.2 0.837 78.0 85.4 0.770 73.2 75.6 0.792 68.3 78.0 0.769 68.3 75.6 0.661 63.4 63.4

BLIP-2 0.891 82.9 82.9 0.888 85.4 87.8 0.718 65.9 65.9 0.770 68.3 68.3 0.748 63.4 63.4 0.483 39.0 39.0
InstructBLIP 0.853 82.9 85.4 0.772 65.9 73.2 0.563 51.2 51.2 0.786 73.2 78.0 0.684 61.0 65.9 0.331 24.4 24.4

SVIT

LLaVA-1.5 0.904 87.8 90.2 1.000 100.0 100.0 0.767 75.6 75.6 0.699 65.9 68.3 1.000 100.0 100.0 0.543 51.2 53.7
MiniGPT-4 0.892 87.8 87.8 0.914 90.2 90.2 0.849 80.5 82.9 0.859 85.4 85.4 0.801 78.0 78.0 0.790 75.6 80.5

BLIP-2 0.962 97.6 97.6 0.920 90.2 92.7 0.728 70.7 70.7 0.865 80.5 82.9 0.779 70.7 73.2 0.610 56.1 56.1
InstructBLIP 0.910 90.2 92.7 0.807 68.3 80.5 0.483 41.5 43.9 0.874 80.5 87.8 0.745 65.9 73.2 0.435 31.7 31.7

VQAv2

LLaVA-1.5 0.934 92.7 92.7 1.000 100.0 100.0 0.906 90.2 90.2 0.819 80.5 80.5 0.955 95.1 95.1 0.765 75.6 75.6
MiniGPT-4 0.903 87.8 87.8 0.878 85.4 87.8 0.814 80.5 80.5 0.792 75.6 75.6 0.841 82.9 82.9 0.686 65.9 65.9

BLIP-2 0.966 97.6 97.6 0.910 85.4 87.8 0.584 53.7 53.7 0.861 82.9 82.9 0.894 82.9 85.4 0.546 46.3 46.3
InstructBLIP 1.000 100.0 100.0 0.832 75.6 82.9 0.421 36.6 36.6 0.916 87.8 92.7 0.790 70.7 78.0 0.386 31.7 31.7

Table 7: Targeted attack performance of our adversarial transformation-aware attack. Target text:
“I don’t know”. Larger similarities (↑) indicate more harmful impacts. “SS” denotes the semantic
similarity between output and target text; “EM” and “CC” denote the “ExactMatch” and “Con-
ditionalContain” metrics to assess whether the output exactly matches or contain the target text,
respectively.

Dataset LVLM

Perturbation Budget ϵ = 32/255 Perturbation Budget ϵ = 16/255

Captioning Classification VQA Captioning Classification VQA

SS EM CC SS EM CC SS EM CC SS EM CC SS EM CC SS EM CC

DALL-E

LLaVA-1.5 1.000 100.0 100.0 1.000 100.0 100.0 1.000 100.0 100.0 0.776 75.0 77.5 0.981 97.5 100.0 0.930 92.5 92.5
MiniGPT-4 0.821 81.3 84.4 0.801 78.0 82.9 0.848 82.9 82.9 0.805 78.0 80.5 0.749 70.7 78.0 0.708 65.9 65.9

BLIP-2 0.687 63.6 72.7 0.713 65.9 75.6 0.605 51.6 54.8 0.502 44.3 52.2 0.512 39.0 51.2 0.455 39.0 41.5
InstructBLIP 0.797 77.1 77.1 0.810 75.9 75.9 0.740 67.9 67.9 0.611 51.4 54.3 0.601 51.7 51.7 0.608 52.2 52.2

SVIT

LLaVA-1.5 1.000 100.0 100.0 1.000 100.0 100.0 0.979 97.5 97.5 0.861 85.0 85.0 1.000 100.0 100.0 0.863 82.5 82.5
MiniGPT-4 0.839 82.9 82.9 0.937 92.7 92.7 0.781 75.6 80.5 0.788 75.6 78.0 0.865 85.4 87.8 0.750 73.2 73.2

BLIP-2 0.776 72.7 75.8 0.840 82.9 85.4 0.611 56.5 56.5 0.550 48.5 54.3 0.596 56.1 61.0 0.504 42.3 42.3
InstructBLIP 0.732 71.4 74.3 0.782 74.3 74.3 0.792 73.3 73.3 0.701 65.9 65.9 0.627 55.2 55.2 0.630 53.6 53.6

VQAv2

LLaVA-1.5 1.000 100.0 100.0 1.000 100.0 100.0 1.000 100.0 100.0 0.930 92.5 92.5 1.000 100.0 100.0 0.980 97.5 97.5
MiniGPT-4 0.890 87.5 87.5 0.897 87.8 92.7 0.937 92.7 92.7 0.792 75.6 78.0 0.836 80.5 87.8 0.828 80.5 80.5

BLIP-2 0.792 78.8 84.8 0.850 80.5 85.4 0.601 56.5 56.5 0.573 53.7 56.1 0.642 61.0 65.9 0.508 43.5 43.5
InstructBLIP 0.755 68.8 78.1 0.800 76.7 76.7 0.695 61.5 61.5 0.634 58.5 65.9 0.688 61.0 65.9 0.576 47.4 47.4

solely conduct targeted attacks, we implement our adversarial transformation-aware attack for com-
parison (we do not implement the hybrid transformation-based attack as it can only support untar-
geted attacks). As shown in Table 8 and Table 9, in a fair comparison setting, our attack method also
achieves better performance than existing LVLM attacks MF and CroPA. This demonstrates that: (1)
A simple and easy-to-implement transformation-aware attack is effective enough to fool the LVLM
models. (2) Both MF and CroPA design complicated perturbation patterns. Compared to them, our
transformation-aware attack is simple and easy-to-implement with better performance. Overall, we
validate that adversarial visual transformation can achieve significant attack performance against
LVLM models.

Besides, we also provide the complexity comparison with the two LVLM attacks: MF and CroPA.
As shown in Table 10, our transformation attack is much more efficient than previous attackers as
they rely on more complicated adversarial pattern designs. Specifically, MF relies on an additional
surrogate model CLIP to first initialize the noise and then design a perturbation update process to
optimize the noise against the target LVLM, therefore introducing more model memory and time
costs. CroPA requires optimizing both visual and textual noise with multi-prompt adversarial train-
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Table 8: Performance comparison with the MF attack (Zhao et al., 2024) on the same ImageNet
(Deng et al., 2009) dataset with the same semantic similarity metric (↑). The values of the MF
attack are reported in its paper.

Attack BLIP-2 (Li et al., 2023) MiniGPT-4 (Zhu et al., 2023) LLaVA-1.5 Liu et al. (2024a)

Clean image (Zhao et al., 2024) 0.503 0.470 0.437
MF-it (Zhao et al., 2024) 0.546 0.484 0.452
MF-ii (Zhao et al., 2024) 0.592 0.572 0.450

MF-ii+tt (Zhao et al., 2024) 0.665 0.666 0.597

Clean image 0.569 0.427 0.369
Ours-Adversarial 0.842 0.878 0.806

Table 9: Performance comparison with the CroPA attack (Luo et al., 2024) on the same MS-COCO
(Lin et al., 2014) dataset and OpenFlamingo (Awadalla et al., 2023) model with the same attack
success rate metric (↑). The values of the CroPA attack are reported in its paper.

Attack VQAgeneral VQAspecific Classification Captioning Overall

Single-P (Luo et al., 2024) 0.21 0.43 0.47 0.34 0.36
Multi-P (Luo et al., 2024) 0.60 0.85 0.71 0.60 0.69
CroPA (Luo et al., 2024) 0.90 0.96 0.75 0.72 0.83

Ours-Adversarial 1.00 1.00 1.00 1.00 1.00

Table 10: Complexity comparison with MF and CroPA attacks.

Process Attack Type GPU Time (↓) GPU Memory (↓)

Generation
MF (Zhao et al., 2024) 29min 35GB

CroPA (Luo et al., 2024) 14min 26GB
Ours-Adversarial 5min 22GB

ing, also resulting in relatively more time costs. Therefore, it validates that our simple yet efficient
adversarial visual transformation is effective enough to fool the LVLM models.
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