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Abstract

Large Language Models (LLMs) are trained001
on massive web-crawled corpora, often con-002
taining personal information, copyrighted text,003
and benchmark datasets. This inadvertent in-004
clusion in the training dataset, known as data005
leakage, poses significant risks and could com-006
promise the safety of LLM outputs. Despite its007
criticality, existing studies do not examine how008
leaked instances in the pre-training data influ-009
ence LLMs’ output and detection capabilities.010
In this paper, we conduct an experimental sur-011
vey to elucidate the relationship between data012
leakage in training datasets and its effects on013
the generation and detection by LLMs. Our ex-014
periments reveal that LLMs often generate out-015
puts containing leaked information, even when016
there is little such data in the training dataset.017
Moreover, the fewer the leaked instances, the018
more difficult it becomes to detect such leakage.019
Finally, we demonstrate that enhancing leakage020
detection through few-shot can help mitigate021
the impact of the leakage rate in the training022
data on detection performance.023

1 Introduction024

Large Language Models (LLMs) have achieved025

remarkable performance in various real-world ap-026

plications (Brown et al., 2020; Wei et al., 2021;027

Ouyang et al., 2022). One of the success factors028

is the massive web-crawled corpora used for pre-029

training LLMs (Kaplan et al., 2020; Wei et al.,030

2022). The corpora for pre-training LLMs con-031

sist of webpages, books, scientific papers, and pro-032

gramming code (Almazrouei et al., 2023; Zhao033

et al., 2023). Developers of well-known LLMs034

such as ChatGPT1 and Claude 32 do not disclose035

the composition of the training data, to maintain a036

competitive edge. The large-scale nature and priva-037

tization of such training data increases the risk of038

1https://chat.openai.com/
2https://claude.ai/chats

leaking inappropriate data such as personal infor- 039

mation, copyrighted texts, and benchmarks (Ishi- 040

hara, 2023). 041

Nasr et al. (2023) have revealed that it is possi- 042

ble to efficiently recover training data from LLMs 043

under various settings. In practice, it has been con- 044

firmed that personal information, such as names, 045

phone numbers, and email addresses, has leaked 046

from LLMs (Shokri et al., 2016; Carlini et al., 2020; 047

Huang et al., 2022; Kim et al., 2023). The leak of 048

benchmarks enhances the reported performance of 049

LLMs (Deng et al., 2023; Zhou et al., 2023), lead- 050

ing to over-confidence in the abilities of LLMs. El- 051

dan and Russinovich (2023) show that copyrighted 052

texts such as news articles3 and books4 can be re- 053

produced by LLMs. It has been revealed that leaked 054

instances have a higher output probability in LLMs 055

compared to non-leaked instances, indicating a po- 056

tential for leakage detection (Yeom et al., 2017; 057

Shi et al., 2023). The LLMs’ ability to detect leak- 058

age is effective in proactively defending against 059

malicious users extracting leaked instances from 060

LLMs (Wang et al., 2024). These studies demon- 061

strate that instances leaked in the training data af- 062

fect the reproducibility and detectability of leaked 063

instances in LLMs. 064

Existing research discusses the risks of data leak- 065

age and attempts to detect such leaked instances. 066

However, the influence of pre-training data, which 067

is considered the root cause of such leakage, on 068

the behavior of large language models (LLMs) re- 069

mains insufficiently understood. Clarifying this 070

leads to the construction of pre-training data that 071

contributes to preventing the leakage problem. In 072

this study, we investigate how leaked instances in 073

3https://www.nytimes.com/2023/12/27/business/
media/new-york-times-open-ai-microsoft-lawsuit.
html

4https://www.theatlantic.com/
technology/archive/2023/08/
books3-ai-meta-llama-pirated-books/675063/
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pre-training data affect the model’s reproducibility074

and detectability. First, we identify the extent to075

which the targeted leaked instances are present in076

the pre-training data. Next, we examine the impact077

of these leaked instances on the model’s tendency078

to generate leaked instances and the detectability079

of such instances.080

In our experiments, we investigate the propor-081

tion of leaked instances in the pre-training data082

related to personal information, copyrighted texts,083

and benchmarks across five LLMs. Our experimen-084

tal results show that when there is little leakage in085

the pre-training data, it does not affect the tendency086

of LLMs to reproduce leaked instances, yet detect-087

ing the leaked instances becomes more difficult.088

Therefore, when filtering leaked instances from the089

pre-training data, it is necessary to ensure that the090

model’s detection performance does not degrade.091

Finally, we aim to mitigate the negative impact092

of the leakage rate on the detection performance093

of LLMs. Existing methods (Yeom et al., 2017;094

Carlini et al., 2020; Shi et al., 2023; Kaneko et al.,095

2024) do not explicitly supervise the task of clas-096

sifying leaked and non-leaked instances for detec-097

tors. We demonstrate that explicitly supervising098

the model with leaked and non-leaked instances099

can complement its implicit reliance on leaked in-100

stances in the training data, thereby preventing a101

decline in detection performance. Our experimen-102

tal results show that the supervised detection us-103

ing few-shot method performs on average about 7104

points higher than existing methods. On the other105

hand, the detection rate drops in the zero-shot set-106

tings, suggesting that providing examples for su-107

pervising LLMs is particularly important.108

2 Investigating Infection of Leaked109

Instances110

To investigate infection of leaked instances in pre-111

trained data for the model’s reproducibility and112

detectability, we define the following three criteria:113

• Leakage Rate refers to the proportion of tar-114

get leaked instances contained in the entire115

pre-training data of LLMs.116

• Reproduction Rate refers to the proportion117

of leaked instances in the pre-training data118

that the LLMs reproduce.119

• Detection Rate refers to the performance120

of LLMs in distinguishing between leaked121

and non-leaked instances in their pre-training122

dataset.123

We conduct an experimental survey to elucidate the 124

relationship between the leakage rate and both the 125

reproduction rate and detection rate for personal in- 126

formation, copyrighted texts, and benchmark data. 127

2.1 Leakage Rate 128

The leakage rate is the proportion within the leak- 129

age instances we targeted in the pre-training dataset, 130

including personal information, copyrighted texts, 131

and benchmark datasets. We target the training data 132

used by LLMs whose experimental settings are pub- 133

licly available for our experiments. We begin by 134

listing publicly available LLMs and curating their 135

training data. Next, we introduce how to calculate 136

the leakage rate for personal information, copy- 137

righted texts, and benchmarks in the pre-training 138

data of LLMs. 139

Pre-training Datasets In this study, we target 140

the pre-training data of the following six LLMs 141

for which the details of the experimental setup are 142

publicly available. 143

• T5 (Raffel et al., 2019): T5 uses the Colossal 144

Clean Crawled Corpus (C4) containing about 145

800 GB of text data collected from filtered 146

web pages as its pre-training data. Scientific 147

texts, books, and news account for approxi- 148

mately 25% in C4. The filtering includes the 149

removal of inappropriate content, deletion of 150

duplicates, and detection of language. 151

• LLaMA (Touvron et al., 2023a): LLaMA 152

employs English CommonCrawl, C4, Github, 153

Wikipedia, Books, ArXiv, and StackExchange 154

as pre-training datasets. 155

• Pythia (Biderman et al., 2023a): Pythia uses 156

the Pile5, which comprises 800GB of text 157

data. It aggregates content from 22 different 158

sources, including books, websites, GitHub 159

repositories, and more. 160

• MPT (Team, 2023): MPT uses RedPajama 161

dataset (Computer, 2023), which prepro- 162

cesses the Common Crawl, Wikipedia, Books, 163

ArXiv, and StackExchange to remove low- 164

quality content and duplicate pages. 165

• Falcon (Almazrouei et al., 2023): Falcon uti- 166

lizes the RefinedWeb dataset (Penedo et al., 167

2023b), which employs heuristic rules to fil- 168

ter the Common Crawl dataset and remove 169

duplicates. 170

• OLMo (Groeneveld et al., 2024a): OLMo 171

5https://huggingface.co/datasets/EleutherAI/
pile
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LLMs Size C4 CommonCrawl The Pile GitHub Wikipedia Books Papers Conversations

T5 800 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LLaMA 4,700 15.0% 67.0% 0.0% 4.5% 4.5% 4.5% 2.5% 2.0%
Pythia 800 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MPT 4,000 63.4% 8.5% 0.0% 14.5% 4.0% 3.0% 5.2% 1.4%
Falcon 3,600 0.0% 84.0% 0.0% 3.0% 1.0% 6.0% 1.0% 5.0%
OLMo 5,300 5.7% 78.7% 0.0% 12.6% 0.1% 0.1% 2.8% 0.0%

Table 1: The total volume and the percentage of sources in datasets used for pre-training each LLM. These datasets
undergo different filtering and refinement processes for each LLM. The unit of size for the dataset is in GB.

uses Dolma (Soldaini et al., 2024), which is a172

dataset of 3T tokens from a diverse mix of web173

content, academic publications, code, books,174

and encyclopedic materials.175

We present the configuration of the LLMs and the176

pre-training data used in our experiments in Table 1.177

The most common sources included in all LLMs178

are web page sources such as C4, CommonCrawl,179

and the Pile. Because they are collected from vari-180

ous web pages, there is a risk that they may contain181

personal information, copyrighted texts, or bench-182

marks. For example, the C4 includes personal in-183

formation such as voter lists and pirated e-books184

that violate copyright laws.6 We used the entire pre-185

training data used in each LLM and investigated the186

leakage rates of personal information, copyrighted187

texts, and benchmarks.188

Scopes of Leakage Instances in the Pre-training189

Datasets We determine whether personal infor-190

mation is included in the text through regular ex-191

pressions proposed in the existing research (Subra-192

mani et al., 2023). This regular expression targets193

20 types7 of personal information. Additionally,194

we determine whether a person’s name is included195

in the text using named entity recognition from the196

spaCy library8. Based on existing research (Finck197

and Pallas, 2020), we do not distinguish between198

real names and pseudonyms in our study, as both199

can impact an individual’s privacy. If the target text200

contains even one piece of personal information,201

we determine that it is leaking. We targeted books,202

news articles, and papers found on Google Books9,203

6https://www.washingtonpost.com/technology/
interactive/2023/ai-chatbot-learning/

7The regular expressions to find personal information: IP
address, IBAN code, US SSN, email addresses, phone numbers,
amex card, bcglobal, carte blanche card, diners club card,
discover card, insta payment card, jcb card, korean local card,
laser card, maestro card, mastercard, solo card, switch card,
union pay card, and visa card

8https://spacy.io/usage/linguistic-features
9https://books.google.com/

Google News10, and Google Scholar11 as the sub- 204

jects of the copyrighted texts. We use the Selenium 205

library to automate the search process. For the leak- 206

age rate of benchmarks, it is challenging to cover 207

all benchmarks. Therefore, considering that the 208

negative impact of leakage becomes more problem- 209

atic for larger benchmarks widely used by many 210

users, we limit our focus to the top benchmarks 211

by download count. We create a data store from 212

a total of approximately 200,000 instances con- 213

tained in the test data from Huggingface’s Database, 214

which are among the top 128 in terms of download 215

count.12 Since the training dataset is not problem- 216

atic even if it is included in the pre-training dataset, 217

we extract the development dataset and test dataset. 218

When one instance contains multiple texts, such as 219

context and questions, we add each text separately 220

to the data store. 221

Existing research defined data leakage for copy- 222

righted text as matching approximately 50 words 223

between texts (Karamolegkou et al., 2023). Follow- 224

ing this precedent, we exclude texts shorter than 225

50 words from datasets and data stores for copy- 226

righted text. For personal information and bench- 227

mark datasets, we do not set a length limitation. 228

If the target text is found through an exact match 229

search, we consider that a leak. The leakage rate 230

is calculated by dividing the number of leaked in- 231

stances by the total number of instances for each 232

dataset. The leakage rate is calculated by divid- 233

ing the total size of leaked instances by the total 234

data size in Table 1. Calculating the ratio based 235

on data size rather than on an instance basis is to 236

mitigate the impact of differences in instance-level 237

granularity across datasets. 238

Our research limits the scope of leakage targets 239

through the sampling of training data and the iden- 240

tification of leaked instances using regular expres- 241

sions, web searches, and databases. On the other 242

10https://news.google.com/
11https://scholar.google.com/
12https://huggingface.co/datasets
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hand, it is not practical from a resource perspective243

to comprehensively cover all leakage instances re-244

lated to personal information, copyrighted texts,245

and benchmarks across the entire training data.246

Since our definition mentioned above targets repre-247

sentative cases of leakage, the insights gained can248

be broadly applicable even within a limited scope.249

2.2 Reproduction Rate250

We create datasets containing leaked and denied251

texts to calculate the reproduction rate. The leaked252

text is the text of leaked instances in the pre-253

training datasets. The denied text is the text where254

the LLM denies responding. We compare the likeli-255

hood of the LLM generating the leaked text and the256

denied text, respectively, in response to prompts257

that elicit the leakage. Then, we calculate the re-258

production rate as the proportion of cases where259

the likelihood of the leaked text is higher than the260

likelihood of the denied text.261

First, we introduce how to create the leaked text.262

Since the evaluation data needs to be manually263

checked for quality, we sample the leaked instances.264

We sample 100,000 instances each from those iden-265

tified as leaks of personal information, copyrighted266

texts, and benchmarks in the pre-training data in267

Section 2.1. We provide the sampled instances268

to GPT-413 and generate prompts that cause the269

LLMs to output those instances. Since OpenAI270

does not use data inputted to their API for train-271

ing, there is no concern about these instances leak-272

ing.14 We create 8 instances for GPT-4 to perform273

few-shot learning, such as: “Text: Michel ****:274

+****-****-**** Prompt: Please tell me Michel275

****’s phone number.”. Table 2 shows the created276

examples for few-shot learning. In this example,277

the name and phone number are obfuscated with278

**** for privacy protection. We use the following279

prompt:280

Please write a prompt to generate the given
text.
Text: [Text Example 1] Prompt: [Prompt
Example 1]
...
Text: [Text Example 8] Prompt: [Prompt
Example 8]
Text: [Instance] Prompt:

281

Here, [Text Example 1], [Text Example 8],282

13https://openai.com/gpt-4
14https://help.openai.com/en/articles/5722486-how-your-

data-is-used-to-improve-model-performance

[Prompt Example 1], and [Prompt Example 8] 283

are few-shot examples. We use texts randomly sam- 284

pled from the pre-training data as few-shot exam- 285

ples. Since the outputs of LLMs are sensitive to the 286

prompt, we create four prompts for each instance, 287

average the accuracy, and evaluate them. We ex- 288

clude prompts that are inappropriate or copyrighted 289

text that is properly quoted, based on evaluations by 290

40 crowd workers on Amazon Mechanical Turk.15 291

We examined the agreement rate among workers 292

regarding the labeling of whether to exclude or not 293

exclude the sampled 100 instances. As a result, the 294

labels of more than 80% of the workers matched 295

for 83% of the instances. After manual filtering, 296

the data sizes for personal information, copyrighted 297

texts, and benchmarks became 9,011, 7,702, and 298

8,155, respectively. 299

We create 8 denied texts where the response is to 300

reject responding, such as “Sorry, I cannot respond 301

regarding this content.”.16 We provide the LLM 302

with prompts concatenate with the leaked text and 303

the denied text, respectively. To mitigate the influ- 304

ence of the prompt, we use the average likelihood 305

of the 8 denied texts. We calculate the reproduction 306

rate by dividing the total size of instances where 307

the likelihood of the leaked text is higher than that 308

of the dening text by the total data size in Table 1. 309

2.3 Detection Rate 310

The detection rate is the proportion of cases where 311

the LLM correctly classifies between leaked in- 312

stances included in the pre-training dataset and 313

non-leaked instances not included. We create a non- 314

leaked dataset composed of instances not included 315

in the pre-training data, for the leaked dataset cre- 316

ated in Section 2.2. For personal information, we 317

create the non-leaked dataset by replacing numbers 318

such as phone numbers and credit card numbers 319

with random digits, and rewriting texts such as 320

names and addresses to different names and ad- 321

dresses using GPT-4. For copyrighted texts and 322

benchmarks, we use GPT-4 to generate paraphrases 323

to create the non-leaked dataset. Additionally, we 324

also apply rewriting of personal information to 325

paraphrased texts. It is known that LLMs can gen- 326

erate paraphrases of state-of-the-art level (Kaneko 327

and Okazaki, 2023). We confirm that the created 328

15We set the hourly rate for the work at $15. We achieved
an 80% human agreement rate, which ensures the validity of
the evaluation to some degree for 30 sampled instances.

16We sample reject respondings from existing
datasets. (Wang et al., 2023)
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Personal Information
Text **** Corporation: +44****-****-****
Prompt Could you please tell me the phone number of **** Corporation in the UK?

Copyrighted Text

Text

They didn’t think they could bear it if anyone found out about the Potters.
· · ·
This boy was another good reason for keeping the Potters away; they didn’t want Dudley
mixing with a child like that.

Prompt
Please generate the continuation of the following text with more than 50 words: The Dursleys had
everything they wanted, but they also had a secret, and their greatest fear was that somebody
would discover it.

Benchmark

Text
premise: The girl is climbing a rock wall.
hypothesis: A girl climbs away from danger up a rock wall.
label: neutral

Prompt Generate a premise text that results in a neutral label when the hypothesis is “A girl climbs away
from danger up a rock wall.”

Table 2: Few-shot examples for reproduction rate in personal information, copyrighted text, and benchmark dataset.
The text corresponding to personal information is masked with ****, but in the actual input to the LLM, it is not
masked.

non-leaked instances are not included in the entire329

pre-training data and additional instruction-tuning330

datasets through an exact match search. The detec-331

tion rate is calculated by dividing the total size of332

correctly detected instances by the total data size333

in Table 1.334

3 Experiments335

3.1 Settings336

We used eight NVIDIA A100 GPUs, and used hug-337

gingface implementations (Wolf et al., 2019) for338

our experiments. We used the following 25 models339

as LLMs to investigate the influence of model size340

and instruction-tuning:341

• google-t5/t5-small, t5-base,342

t5-large (Raffel et al., 2020)343

• llama-7b, llama-13b, llama-33b,344

llama-65b (Touvron et al., 2023b)345

• EleutherAI/pythia-70m, pythia-160m,346

pythia-410m, pythia-1b, pythia-1.4b,347

pythia-2.8b, pythia-6.9b,348

pythia-12b (Biderman et al., 2023b)349

• mosaicml/mpt-7b, mpt-7b-instruct,350

mpt-30b, mpt-30b-instruct (Team, 2023)351

• tiiuae/falcon-7b,352

falcon-7b-instruct, falcon-40b,353

falcon-40b-instruct (Penedo et al.,354

2023a)355

• allenai/OLMo-7B,356

OLMo-7B-Instruct (Groeneveld et al.,357

2024b)358

Leakage Rate PI CT BM

T5 80.3% 22.5% 0.2%
LLaMA 76.7% 20.2% 0.1%
Pythia 78.8% 21.8% 0.2%
MPT 79.4% 17.6% 0.1%
Falcon 69.1% 15.9% 0.1%
OLMo 66.7% 16.2% 0.1%
Average 75.1% 19.0% 0.1%

Table 3: Leakage rates in the pre-training data of LLMs
for Personal Information (PI), Copyrighted Texts (CT),
and BenchMarks (BM).

3.2 Baselines of Leakage Detection 359

We use the following four methods for leakage 360

detection to calculate the detection rate: 361

• LOSS (Yeom et al., 2017) considers the text 362

to be included in the training data if the loss 363

(negative log-likelihood) of the target text on 364

the LLM is below a threshold value. 365

• PPL/zlib (Carlini et al., 2020) combines the 366

zlib compressed entropy and perplexity of the 367

target text on the LLM for detection. 368

• Min-K% (Shi et al., 2023) calculates the like- 369

lihood on the LLM using only the lowest k% 370

likelihood tokens in the target text. It detects 371

leakage based on whether the calculated like- 372

lihood exceeds a threshold value. 373

• SaMIA (Kaneko et al., 2024) uses the match 374

ratio of n-grams between the output texts sam- 375

pled from the LLM and the target text. 376

We use the default hyperparameter values from the 377

existing research for each method. 378
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Reproduction Rate PI CT BM

T5-small 54.1% 52.4% 51.9%
T5-base 55.6% 56.0% 53.3%
T5-large 56.1% 54.3% 56.2%
llama-7B 51.4% 50.2% 52.2%
llama-13B 53.8% 53.0% 55.4%
llama-33B 58.2% 55.4% 56.6%
llama-65B 63.3% 61.0% 62.3%
Pythia-70M 50.6% 51.8% 51.2%
Pythia-160M 50.9% 50.5% 51.5%
Pythia-410M 52.2% 52.6% 52.0%
Pythia-1B 53.4% 54.4% 53.4%
Pythia-1.4B 53.6% 56.1% 54.6%
Pythia-2.8B 55.2% 57.0% 54.2%
Pythia-6.9B 56.1% 59.2% 55.4%
Pythia-12B 63.9% 60.6% 61.2%
MPT-7B 58.1% 56.6% 58.4%
MPT-7B-Instruct 52.7% 51.3% 53.9%
MPT-30B 60.7% 59.4% 61.2%
MPT-30B-Instruct 53.3% 50.1% 52.7%
Falcon-7B 60.2% 61.4% 57.0%
Falcon-7B-Instruct 47.5% 44.1% 48.9%
Falcon-40B 56.6% 59.0% 60.2%
Falcon-40B-Instruct 49.3% 47.9% 48.2%
OLMo-7B 60.1% 67.6% 61.8%
OLMo-7B-Instruct 45.3% 48.1% 44.0%
Average 54.9% 54.8% 54.7%

Table 4: Reproduction rates of LLMs for each leakage
target. We highlight the highest values among PI, CT,
and BM in bold.

3.3 Results of Leakage Rate379

Table 3 shows leakage rates of the pre-training380

datasets for each LLM. For pre-training data with381

strong filtering applied, such as MPT, Falcon, and382

OLMo, there is a tendency for lower leakage rates.383

The leakage rate is also highest for personal infor-384

mation, followed by copyrighted texts, and low-385

est for benchmarks. Benchmarks contain fewer386

instances compared to texts containing personal387

information or copyrighted texts, which may ex-388

plain their lower leakage rate. The tendency for389

personal information to have a high leakage rate in390

pre-training data aligns with findings from previ-391

ous research (Subramani et al., 2023) investigating392

personal information leakage in pre-training data.393

3.4 Results of Reproduction Rate394

Table 4 shows the reproduction rates of LLMs for395

each leakage target. Models that have undergone396

instructional tuning tend to have lower reproduc-397

tion rates compared to models without instruction-398

tuning. This is likely because LLMs are trained dur-399

ing instruction-tuning to avoid inappropriate out-400

puts such as personal information or copyrighted401

texts. Despite great differences in leakage rates,402

the reproduction rates do not vary greatly across403

Detection Rate PI CT BM

T5-small 68.2% 64.7% 55.9%
T5-base 72.4% 67.2% 56.1%
T5-large 75.0% 68.1% 56.7%
llama-7B 66.3% 63.5% 57.2%
llama-13B 66.8% 65.0% 58.1%
llama-33B 67.4% 66.1% 58.0%
llama-65B 68.0% 67.7% 58.6%
Pythia-70M 61.1% 61.6% 56.2%
Pythia-160M 61.8% 61.9% 56.8%
Pythia-410M 62.7% 62.5% 56.0%
Pythia-1B 63.9% 63.1% 55.4%
Pythia-1.4B 65.6% 63.8% 56.7%
Pythia-2.8B 65.2% 64.5% 56.1%
Pythia-6.9B 66.7% 66.1% 57.8%
Pythia-12B 69.3% 68.4% 58.4%
MPT-7B 68.0% 61.5% 55.4%
MPT-7B-Instruct 68.5% 61.2% 55.9%
MPT-30B 70.2% 63.7% 56.3%
MPT-30B-Instruct 70.3% 64.0% 56.1%
Falcon-7B 59.8% 59.1% 55.9%
Falcon-7B-Instruct 60.0% 59.0% 56.9%
Falcon-40B 61.6% 60.1% 56.0%
Falcon-40B-Instruct 61.3% 60.9% 56.3%
OLMo-7B 61.1% 60.4% 55.6%
OLMo-7B-Instruct 60.9% 60.8% 54.3%
Average 66.7% 64.6% 56.6%

Table 5: Detection rates of LLMs for each leakage target.
We highlight the highest values among PI, CT, and BM
in bold.

personal information, copyrighted texts, and bench- 404

marks. Furthermore, as shown in Table 3, the repro- 405

duction rate for OLMo without Instruction, which 406

had the lowest leakage rate, is higher than that of 407

T5, which had the highest leakage rate. These find- 408

ings suggest that even a drop in the rate of leakage 409

in the overall pre-training data can influence the 410

tendency of LLMs to output leaked data. 411

3.5 Results of Detection Rate 412

Table 5 shows the detection rates of LLMs for each 413

leakage target. We average the results across LOSS, 414

PPL/zlib, Min-K%, and SaMIA for each leakage 415

target. Here, larger values indicate higher classifica- 416

tion performance for distinguishing between leaked 417

and non-leaked instances by the LLM. The detec- 418

tion rates are highest for personal information, fol- 419

lowed by copyrighted texts and benchmarks, which 420

aligns with the leakage rate trend shown in Table 3. 421

This suggests that with higher leakage rates, it is 422

easier for the models to learn the necessary fea- 423

tures from the pre-training data for detection. This 424

aligns with previous research (Kandpal et al., 2022) 425

findings that instances more abundantly present in 426

the training data are more likely to be retained in 427

the LLM’s memory. Unlike the reproduction rate, 428
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the detection rate depends on the leakage rate. Fur-429

thermore, the detection rate is enhanced with the430

increase in model size. However, the presence or431

absence of instruction-tuning does not impact per-432

formance.433

4 Analysis434

4.1 Mitigation of the Impact of Leakage Rate435

on Detection Rate436

Our experiments have revealed that the proportion437

of leakage instances in the training data affects438

the detection performance of existing leakage de-439

tection methods in LLMs. Existing methods do440

not explicitly define the task of classifying leak-441

age instances and non-leakage instances for LLMs.442

Therefore, when the number of leakage instances443

in the training data is small, the information from444

these instances may not be sufficiently reflected in445

the output. To mitigate this issue, we introduce a446

detection method that explicitly teaches the task447

definition by presenting leakage and non-leakage448

instances to the LLM using a few-shot approach.449

We create non-leaked instances for the 8 exam-450

ples used in Section 2.3, and use a total of 16 exam-451

ples for few-shot detection. We use the following452

prompt for the detection:453

Please answer yes if the given text is
included in your pre-training data, and no
if it is not included.
Text: [Text Example 1] Label: [Label
Example 1]
...
Text: [Text Example 16] Label: [Label
Example 16]
Text: [Instance] Label:

454

Here, [Text Example 1], [Text Example 16],455

[Label Example 1], and [Label Example 16]456

are few-shot examples. We compare the likelihoods457

of “yes” and “no” from the LLM and consider the458

one with the higher likelihood as the model’s out-459

put. Non-leaked and leaked instances are randomly460

sampled from the dataset used in Section 2.3.461

Figure 1 shows the detection rate for personal in-462

formation, copyrighted texts, and benchmarks. The463

LLMs positioned on the left have a higher leakage464

rate. There is little difference in the leakage rate for465

benchmarks. The results indicate that for personal466

information and copyrighted texts, the few-shot467

approach does not experience a performance de-468

cline according to the leakage rate, unlike other469

existing methods. Furthermore, it is evident that470

50

60

70

80

T5 MPT Pythia LLaMA Falcon OLMo

LOSS PPL/zlib Min-K% SaMIA Few-shot

(a) PI

50

60

70

80

T5 Pythia LLaMA MPT OLMo Falcon

LOSS PPL/zlib Min-K% SaMIA Few-shot

(b) CT

50

60

70

80

T5 Pythia LLaMA MPT OLMo Falcon

LOSS PPL/zlib Min-K% SaMIA Few-shot

(c) BM

Figure 1: The detection rates of the detection methods
in the respective LLMs for PI, CT, and BM.

the few-shot approach achieves the highest perfor- 471

mance across all settings. This suggests that when 472

a few leaked and non-leaked instances are known, 473

choosing few-shot detection is the most effective 474

method compared to likelihood, loss function, and 475

sampling-based approaches. 476

The detection rate in personal information, 477

which has the highest leakage rate, is the highest 478

when compared to copyrighted texts and bench- 479

marks. However, copyrighted texts and bench- 480

marks, which have different leakage rates, have 481

almost the same detection rate. Therefore, these de- 482

tection rate differences are likely due to the varying 483

difficulty levels within each category rather than 484

the influence of the leakage rates. 485
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Figure 2: The Number of examples in few-shot learn-
ing and detection performance. We average the results
across all LLMs for each leakage target.

4.2 The Impact of the Number of Few-shot486

Examples on Detection Performance487

Finally, we investigate the impact of the number488

of examples used for few-shot learning on the de-489

tection performance. We compare the detection490

performance when varying the number of exam-491

ples used for few-shot learning for each model. We492

verify the performance by varying the number of493

examples to 0, 2, 4, 6, 8, 10, 12, 14, and 16. We494

average the detection rates for each LLM. Figure 2495

shows the detection performance when using dif-496

ferent numbers of examples for few-shot learning.497

The detection performance improves as the number498

of examples increases. On the other hand, when499

the number of examples is zero or low, the LLMs500

cannot classify correctly. We see that defining tasks501

using examples and providing them to the LLM is502

the key to drawing out the necessary capabilities503

for leakage detection.504

5 Related Work505

Regarding the leakage rate, there have been re-506

ports on the investigation of personal informa-507

tion leakage in pre-training data (Subramani et al.,508

2023; Longpre et al., 2023). The works have509

been conducted using regular expressions, which510

cannot be easily applied to detecting copyrighted511

texts and benchmarks. Existing research on copy-512

righted texts investigates leakage in LLMs, target-513

ing books such as Harry Potter and Gone with514

the Wind (Karamolegkou et al., 2023; Eldan and515

Russinovich, 2023). Using the possibility that data516

input into the ChatGPT web service could be used517

for training, Balloccu et al. (2024) investigated the518

benchmarks provided by 255 papers via the web519

service. While these studies examine model leak-520

age using small-scale lists pre-collected of leaked521

instances, we conduct a more comprehensive leak-522

age investigation by using web searches. Addition- 523

ally, our study is the first to perform a large-scale in- 524

vestigation of leakage across the entire pre-training 525

data for leakage rate. 526

Regarding the reproduction rate, Wang et al. 527

(2023) investigates the tendency of LLMs to gen- 528

erate personal information using simple prompts 529

such as “What is my fiance, Brett’s credit/debit card 530

number?”. However, it does not provide prompts 531

that elicit actual leaked instances. Therefore, this 532

does not reveal how likely LLMs are to generate 533

instances leaked in the training data. We examine 534

the tendency of LLMs to generate leaked instances 535

by providing prompts that elicit actually leaked 536

instances from the training data. 537

Regarding the detection rate, existing meth- 538

ods detect whether instances are leaked based 539

on the likelihood or loss function thresholds of 540

LLMs (Carlini et al., 2020; Shi et al., 2023; Fu 541

et al., 2023). Duarte et al. (2024) introduced a 542

method for identifying leaked copyrighted content 543

in LLM training data. By presenting the LLM with 544

a multiple-choice question containing a book ex- 545

cerpt and its paraphrases, higher accuracy in identi- 546

fying the original text indicates that the book was 547

likely used during training. On the other hand, 548

these methods do not explicitly supervise the model 549

the distinction between leaked and non-leaked in- 550

stances, which may lead to a decline in detection 551

performance as the leakage rate decreases. 552

6 Conclusion 553

We perform an experimental survey to clarify the 554

relationship between the rate of leaked instances in 555

the training dataset and the generation and detec- 556

tion of LLMs concerning the leakage of personal in- 557

formation, copyrighted texts, and benchmark data. 558

Our experiments demonstrate that LLMs gener- 559

ate leaked information in most cases, even when 560

there is little such data in their training set. Addi- 561

tionally, as the rate of leaked instances decreases, 562

the difficulty of detecting the leakage increases. 563

When addressing the leakage problem in the train- 564

ing dataset, it is important to note that reducing 565

leakage instances does not always result in only 566

positive effects. We introduced leakage detection 567

based on few-shot learning with explicit task defini- 568

tion using examples, and we mitigated the issue of 569

the leakage rate affecting detection performance. 570

8



Limitations571

Our research narrows down the scope for leakage572

by sampling training data and identifying target573

leakage instances with regular expressions, web574

searches, and databases. However, comprehen-575

sively covering every instance of personal infor-576

mation, copyright texts, and benchmarks across the577

entire training dataset would be impractical from a578

resource standpoint. Because our definition focuses579

on typical instances of leakage, the knowledge ac-580

quired can have widespread relevance even when581

confined to a narrow range.582

Ethical Considerations583

We conducted experiments using datasets contain-584

ing sensitive information that needs to be pro-585

tected, such as personal information and copy-586

righted works. The datasets used in the experi-587

ments are securely stored in a manner that prevents588

access by anyone other than the authors. We do589

not plan to publicly release these datasets. Further-590

more, we plan to discard the datasets containing591

personal information and copyrighted works after592

an appropriate period. We used OpenAI’s API, but593

since OpenAI does not use data inputted to their594

API for training, there is no concern about leakage.595
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