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Abstract001

To achieve a deeper understanding of the world,002
AI must be able to reason across multiple003
modalities, such as images, audio, video, and004
3D. While recent efforts have extended mul-005
timodal models to process multiple modali-006
ties, there is little evidence that they enable007
reasoning beyond two modalities simultane-008
ously. This limitation arises partly from the009
challenge of constructing tasks that require rea-010
soning across multiple modalities. To address011
this, we introduce Contra4, a dataset designed012
to train and evaluate contrastive cross-modal013
reasoning over up to four modalities (audio,014
video, image, and 3D) simultaneously. Our015
approach unifies modalities through human-016
annotated captions and generates contrastive017
question-answer pairs, filtered via a mixture-of-018
models round-trip-consistency check. Human019
inspection validates the high quality of Con-020
tra4, with 83.3% perceived correctness, while021
fine-tuning on the task results in a 56% rel-022
ative accuracy improvement. Benchmarking023
against state-of-the-art models on a human an-024
notated subset of 2.3k samples underscores the025
dataset’s challenge, with the best-performing026
model achieving only 56% accuracy on the full027
dataset and just 42% in four-modality settings.028

1 Introduction029

Real-world tasks—such as diagnosing a patient030

by analyzing textual records, medical images, and031

stethoscope audio—often require integrating mul-032

tiple data sources. This need for cross-modal rea-033

soning has driven the development of Multimodal034

Large Language Models (MLLMs) (Alayrac et al.,035

2022; Huang et al., 2023; Li et al., 2023c; Dai036

et al., 2023b; Liu et al., 2023a; Zhang et al., 2023),037

which extend the powerful capabilities of Large038

Language Models (LLMs) (Devlin et al., 2019;039

Brown et al., 2020; Raffel et al., 2020; Chowdhery040

et al., 2023; Chiang et al., 2023) to process visual,041

3D (Hong et al., 2023; Guo et al., 2023), and audio042

inputs (Kim et al., 2023; Deshmukh et al., 2023).043
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Figure 1: Evolution of Foundation Models and Benchmarks.
Contra4 evaluates models on multiple modalities concurrently
(image, video, audio, 3D, and language).

Recent advancements, such as OpenAI’s GPT- 044

4o1 and Google’s Gemini (Team et al., 2023), high- 045

light the growing emphasis on models capable 046

of comprehensively integrating diverse modalities, 047

mirroring the multi-sensory nature of human per- 048

ception. While these models promise broad multi- 049

modal capabilities, currently there is limited access 050

to them: OpenAI’s API currently offers limited 051

access beyond image processing, and Gemini only 052

allows for audio, video, and image inputs. Nev- 053

ertheless, developing robust benchmarks remains 054

essential to assess their performance across modal- 055

ities as these features become widely available. 056

Despite the growing interest in cross-modal mod- 057

els,2 there remains a significant gap in the bench- 058

marks available to evaluate their proficiency in 059

handling inputs across multiple modalities simul- 060

taneously. Table 3 in the Appendix provides an 061

overview of the major multimodal benchmarks, 062

underscoring this deficiency. The DisCRn bench- 063

mark (Panagopoulou et al., 2023) stands out as 064

the only dataset that integrates inputs from all four 065

modalities—image, 3D, audio, and video. How- 066

ever, it remains limited in assessing reasoning 067

across more than two modalities within a single ex- 068

ample. In contrast, our proposed dataset addresses 069

this limitation by incorporating up to four modal- 070

1https://openai.com/index/hello-gpt-4o/
2Cross-modal models involve 3+ modalities (Panagopoulou et al., 2023).
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ities per sample, enabling a more comprehensive071

evaluation of multimodal reasoning. Beyond in-072

creasing the number of concurrent modalities, we073

introduce several key improvements in dataset gen-074

eration and synthesis: First, we extend the dataset075

beyond two modalities, with samples containing076

up to four, enhancing diversity and evaluation po-077

tential. Instead of relying solely on audio-video and078

image-3D correspondence, we leverage caption-079

ing datasets across all modalities to improve cap-080

tion quality. Second, we provide both a training081

set and a human-annotated test set. Third, we im-082

plement two negative sampling strategies—high-083

similarity and random—to challenge model’s ro-084

bustness. Finally, we enhance the dataset creation085

pipeline by incorporating a mixture-of-models ap-086

proach with option-permutation in the round-087

trip-consistency step.088

In summary, our contributions are the following:089

(i) We introduce Contra4, a dataset requiring rea-090

soning on up to four modalities simultaneously.091

(ii) We leverage captions and a mixture-of-models092

round-trip-consistency strategy (MoM-RTC) for093

multiple-modality data generation.094

(iii) We benchmark cross-modal models and show095

the task’s difficulty, even under fine-tuning setups.096

2 Related Work097

Advancements in vision-language tasks have paved098

the way for models capable of reasoning across099

multiple non-linguistic inputs, such as multiple im-100

ages (Bansal et al., 2020; Li et al., 2022b; Tanaka101

et al., 2023; Wang et al., 2024c) or cross-modal102

reasoning involving images and tables (Li et al.,103

2022b). Despite their complexity, these tasks pre-104

dominantly focus on image-text modalities. While105

cross-modal benchmarks exist—primarily evaluat-106

ing models on joint audio-video reasoning (Alamri107

et al., 2018; Li et al., 2022a)—there remains a108

gap in assessing models’ capabilities for compara-109

tive cross-modal reasoning. Even comprehensive110

multimodal benchmarks like MultiBench (Liang111

et al., 2021) and OmniXR (Chen et al., 2025) pri-112

marily operate with single-modality inputs or, at113

most, video with corresponding audio. The med-114

ical domain follows a similar trend; for instance,115

M3 (Huang et al., 2021) evaluates models using116

only corresponding X-ray images, audio, and tex-117

tual input. To address this gap, we introduce118

Contra4, a dataset to evaluate contrastive reason-119

ing by differentiating between cross-modal inputs.120

The rise of high-performing LLMs has enabled121

Option D

Q: Which scene best represents a peaceful and 
intimate gathering?

Option C

Option A
[    Calm voices of people 
chatting while dishes, 
glasses and silverware 
clatter in the background.]

Option B

Random Sampling

Option D

Q: Which scene is more likely to show a 
vehicle accident?

Option C

Option A
[    A man speaks 
as a motorcycle 
accelerates ]

Option B

Similarity Sampling

Figure 2: Examples from Contra4. Additional examples are
found in Figure J in the Appendix.

automated data annotation, with most datasets rely- 122

ing on huge proprietary models like GPT-4 (Ope- 123

nAI, 2023). Initially used for text (Dai et al., 2023a; 124

He et al., 2023), these methods now extend to im- 125

ages (Changpinyo et al., 2021; Bitton et al., 2024; 126

Xue et al., 2024), video (Muhammad Maaz and 127

Khan, 2023), audio (XinhaoMei, 2023; Yang et al., 128

2024), and 3D (Wu et al., 2015; Zhang et al., 2024), 129

leveraging multimodal models for alignment and 130

LLMs for annotation. Our work differs by focus- 131

ing on synthetic datasets for tasks involving 3+ 132

modalities, where we show cross-modal reasoning 133

remains a challenge. 134

3 Contra4: Task Definition 135

Let x = {xiM}Ni=1 be a set of N multimodal in- 136

puts, where each xiM is drawn from a specific 137

modality M and is paired with a text query q, as 138

shown in Figure 9. The function T (·) is used for 139

tokenizing and embedding any textual elements, 140

while PM (·) projects an input from the modality 141

M into the model’s linguistic embedding space. 142

In addition, each input xiM has an associated enu- 143

meration prefix Ei. To form the final input to 144

the MLLM, we concatenate the tokenized prefix 145

T (Ei) with the projected multimodal representa- 146

tion PM (xiM ) for all i = 1, . . . , N , and then fur- 147

ther concatenate the tokenized query T (q). Sym- 148

bolically, this can be written as: MLLM(x, q) = 149

MLLM
(⊕N

i=1

[
T (Ei) ⊕ PM

(
xi
M

)]
⊕ T (q)

)
, where 150

⊕ denotes the concatenation operation in the em- 151

bedding space. The model’s task is to correctly 152

identify which enumeration prefix Ei corresponds 153

to the correct answer for the query q. 154

4 Dataset 155

Data generation: Our method leverages textual 156

descriptions as a universal connector across modal- 157

ities to build a dataset that enables querying across 158

diverse modalities without requiring an additional 159

multimodal linking model. Figure 3 illustrates our 160

process: given a set of single-modality M datasets 161

with associated captions, DM = {(xM , cM )}, we 162

apply a three-stage data augmentation method to 163
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A pyramid-shaped… A car motor revs…

A catcher in a… A boy looking at…

A white fridge… A machine whirls.

A refrigerator… He opens the fridge…

Similarity Sampling

Step 1. Sampling

3D Captions
A digital camera… 
A small purple…

…

Audio Captions
A woman talks while… 
Loud intermittent…

…

Image Captions
A group of people… 
A white statue…

…

Video Captions
A person eats a… 
A baby with pink…

…

In-Context-Examples LLM Prompt
Scene A. a shattered piece of paper, resembling
a broken phone and a flying newspaper
Scene B. tourists walking near a catholic
church in Mexico on a sunny summer day
Generated Question: Which input evokes a sense
of chaos and abandonment?

Scene A. People putting their suitcases onto a
train. 
Scene B. A train approaching on the tracks and
a car reversing and revving as it drives away
Generated Question: Which scene shows a train?

…

Step 3. Answer Generation

Step 4. Mixture-of-Models Round-Trip-Consistency

Scenes Question Answer

LLM A
LLM B
LLM C

Scene B ≠ Scene A

Scene A = Scene A

Scene A = Scene A

Majority Filter Pass | Unanimous Filter Fail

Permuted 
Scenes Question Answer

LLM A
LLM B
LLM C

Scene A ≠ Scene B

Scene B = Scene B

Scene B = Scene B

Permute Majority Filter Pass | 
Permute Unanimous Filter Fail

In-Context-Examples LLM Prompt
Scene A. People putting their suitcases
onto a train. 
Scene B. A train approaching on the tracks
and a car reversing and revving as it
drives away
Question: Which scene shows a
train? Answer: Scene A

Step 2. Question Generation

Random Sampling

Figure 3: Data Generation Pipeline. In Step 1, candidate choices are sampled either randomly or by selecting those with high
text similarity. Step 2 employs in-context learning to generate a question based on the captions, which is answered in Step 3.
Step 4 utilizes a mixture-of-models round-trip-consistency (MoM-RTC) check to eliminate incorrect samples.

generate contrastive cross-modal reasoning data.164

Step 1. Negative Sampling Selection: We employ165

two negative selection strategies: high [caption]166

similarity and random to enhance the evaluation167

potential of the dataset. This process results in tu-168

ples of two, three, and four modalities denoted as169

DM̂ , where M̂ denotes the subselected modalities.170

Step 2. Question Generation: After generating tu-171

ples in Step 1, we use an LLM with four in-context172

examples to generate a contrastive question about173

the multimodal inputs. Questions focusing on tex-174

tual qualities of the captions are filtered out, ensur-175

ing relevance to the multimodal scene depiction.176

Step 3. Answer-Explanation Generation: Con-177

ditioned on the captions in the original dataset and178

the questions refined in Step 2, we prompt the same179

LLM to answer and explain its reasoning.180

Step 4. Mixture-of-Models Round-Trip-Consis-181

tency (MoM-RTC): We validate dataset quality182

by running a round-trip-consistency check on an183

ensemble of distinct models, prompting each LLM184

to answer and explain the contrastive questions185

based on their captions. We keep only samples186

that pass certain filtering criteria—Majority Filter187

(MF), Unanimous Filter (UF), Permute Major-188

ity Filter (PMF), and Permute Unanimous Filter189

(PUF)—which we compare in Table 1. In partic-190

ular, MF requires that a majority of models agree191

with the original answer; UF requires unanimous192

agreement; PMF extends MF and PUF extends UF193

under all permutations of the cross-modal options.194

Dataset Statistics: Using the above pipeline, we195

produce 174k automatically annotated samples196

for training and release a test set of 2.3k human-197

annotated examples. Answer distribution is bal-198

anced post-hoc. See details in Appendix F.199

Filter Human
Acc.

N/A O/A GPU (hrs) Aggregated

Rand Sim All

None∗ 46.7 18.3 18.3 0 254k 261k 515k

MF 60.0 18.3 17.5 40 190k 188k 378k
UF 60.0 16.7 13.3 130k 126k 256k

PMF 68.3 13.3 15.0 120 147k 131k 278k
PUF 83.3 6.7 5.8 91k 83k 174k

Table 1: Human inspection of Round-Trip-Consistency
checks on training data. N/A is the fraction of questions
not applicable to any choice and O/A to more than one choice.
∗Some rule-based word filtering is applied; see Appendix C.

5 Experiments 200

Implementation Details: For Step 2 and Step 3 201

we employ LLaMA-3.1-8B-Instruct (Dubey et al., 202

2024) . For Step 4 we also use mistralai/Mistral-7B- 203

Instruct-v0.2 (Jiang et al., 2023), and microsoft/Phi- 204

3-medium-128k-instruct (Abdin et al., 2024). For 205

the permutation checks we consider all possible 206

permutations of the answer choices. For the text 207

similarity we use all-MiniLM-L6-v2 encodings via 208

sentence-transformers. Single run accuracy is 209

reported. The datasets used to generate Contra4 210

are summarized in Table 4 in the Appendix with 211

additional implementation details in Appendix G. 212

Models: To assess task difficulty and position 213

this dataset as a community challenge, we evalu- 214

ate several state-of-the-art (SOTA) models capable 215

of handling all four modalities. Two models—X- 216

InstructBLIP (Panagopoulou et al., 2023) and 217

CREMA (Yu et al., 2024)—use a frozen LLM 218

with separate modality encoders. They differ in 219

that CREMA uses a fused Q-Former for modal- 220

ity alignment, requiring additional RGB input for 221

3D, whereas X-InstructBLIP maintains separate Q- 222

Formers. We also evaluate OneLLM (Han et al., 223

2023), which unifies modalities into a common 224

space, connecting a fused modality encoder to the 225

LLM—and trains the entire architecture, including 226

3
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2 Modalities 3 Modalities 4 Modalities All

Model Rand.Sim. All Rand.Sim. All Rand.Sim. All Rand.Sim. All

CREMA∗ 0.71 0.64 0.68 0.61 0.55 0.58 0.45 0.39 0.42 0.60 0.53 0.56
X-InstructBLIP 0.47 0.48 0.47 0.30 0.27 0.29 0.13 0.22 0.18 0.31 0.33 0.32
OneLLM 0.52 0.52 0.52 0.16 0.22 0.19 0.24 0.27 0.25 0.31 0.34 0.32
Gemini-2.0† 0.24 0.21 0.23 0.10 0.14 0.13 × × × 0.23 0.20 0.22
Caption Baseline 0.52 0.46 0.49 0.33 0.33 0.33 0.26 0.27 0.26 0.38 0.36 0.37

Table 2: Zero-Shot Evaluations on Contra4 Test Set.
† Proprietary LLM. Samples with 3D are excluded due to incompatibility.
∗ RGB rendering signal used for 3D point clouds.

0 2 4 6 8 10
Iterations (k)

0.3

0.4

0.5

A
cc

ur
ac

y

Random All

0 2 4 6 8 10
Iterations (k)

Similarity All

0 2 4 6 8 10
Iterations (k)

All

WF MF UF PMF PUF Base

Figure 4: Finetune OneLLM on different MoM-RTC data.

the LLM. We also report performance of OneLLM227

finetuned on subsets sampled from each filtering228

pool in Step-4. We also baseline Gemini using229

gemini-2.0-flash-exp on examples that do not230

contain 3D since it is not supported. Lastly, our231

Caption Baseline replaces multimodal scenes with232

predicted captions for an LLM-only approach (de-233

tails in Appendix H).234

6 Discussion235

How does MoM-RTC affect dataset quality? We236

conduct a human inspection of 120 randomly se-237

lected dataset samples, evenly split by negative238

sampling (high-similarity vs. random) and input239

modality choices, to validate dataset quality and240

our MoM-RTC procedure. Table 1 presents these241

results using the interface in Figure 10. PUF though242

highly selective, produces superior quality samples243

without relying on costly, closed-source APIs, mit-244

igating selection bias (Pezeshkpour and Hruschka,245

2023; Balepur et al., 2024; Wang et al., 2024b). By246

admitting only examples that remain correct under247

choice permutations, we counteract LLM biases,248

improving overall correctness. While permutation-249

based RTC methods require three times the GPU250

hours of non-permutation approaches, they im-251

prove human-perceived precision by over 20 points.252

How do SOTA models perform on Contra4? Ta-253

ble 2 shows an evaluation of SOTA models on the254

task, showing that caption-based baselines outper-255

form most approaches as the number of modalities256

increases. The top performer, CREMA, relies on257

external RGB rendering for point clouds—though258

resource-intensive, it significantly boosts perfor-259

mance across 3D, Image, and Video (Figure 5).260

Architecturally, CREMA employs distinct mod-261

ules for cross-modal token extraction, similar to262
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3D+Video

Image+Video

M
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al
iti
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CREMA OneLLM X-InstructBLIP

Figure 5: Performance breakdown by input modalities.

X-InstuctBLIP, but fuses them before aligning with 263

the base LLM, aiming at a more uniform modal- 264

ity representation. OneLLM, in contrast, uses a 265

fused X-modal token extraction module that ap- 266

pears less effective. Surprisingly, Gemini achieves 267

the lowest score, likely due to lack of fine-tuning 268

for this task; in many responses, it fails to recognize 269

all three inputs, and instead resolves to captioning 270

only the last input provided, ignoring the question. 271

Overall, these findings suggest that fusing modali- 272

ties after independent token extraction, along with 273

LLM fine-tuning, is effective for cross-modal rea- 274

soning—though further innovation is still needed 275

to improve performance. 276

How does fine-tuning affect task performance? 277

To further validate our findings, we fine-tuned 278

OneLLM on MoM-RTC data, resulting in a notice- 279

able performance boost from 32% to 50%. How- 280

ever, overall accuracy remained low, indicating that 281

fine-tuning alone is insufficient and alternative ap- 282

proaches are needed. Interestingly, despite lower 283

human-perceived quality, all data filtering meth- 284

ods ultimately achieve similar performance given 285

enough training iterations. Notably, PUF converges 286

with the least data, followed by PMF and UF, align- 287

ing with their human-inspected accuracy rankings. 288

What is the cost effectiveness of the method? 289

Finally, we assess cost-effectiveness by comparing 290

our approach to generating 174k samples via GPT- 291

4 (OpenAI, 2023), which costs $8k under current 292

API pricing3, whereas a GPU cloud setup (e.g., 293

Google Cloud) costs under $1k4. Prior work (Bit- 294

ton et al., 2024) shows that closed-source models, 295

even without API fees, often produce suboptimal 296

synthetic datasets for multi-input tasks. In contrast, 297

our approach is more cost-effective and still yields 298

high-quality data, offering a scalable and sustain- 299

able alternative. 300

3Pricing Calculator
4 Google Cloud Calculator

4
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7 Limitations301

A key limitation of our work is the artificial nature302

of the proposed task. While our goal is to evaluate303

models’ ability to reason across multiple modal-304

ities, the task is a simplification designed to ex-305

pose fundamental weaknesses before tackling more306

complex real-world scenarios. Future work should307

explore training regimes that explicitly encourage308

cross-modal reasoning and investigate applications309

in dynamic, real-world environments where multi-310

modal understanding is essential.311

Additionally, our reliance on LLM-generated312

annotations introduces potential biases inherited313

from the underlying models. Despite efforts to314

mitigate errors through a mixture-of-models round-315

trip-consistency check and human verification, bi-316

ases in pretraining data may persist.317

Another challenge is computational cost. Al-318

though our approach is more cost-effective than319

closed-source alternatives, and show that can be320

as effective without permutation-based approaches,321

the increased GPU hours required for permutation-322

based RTC methods may be prohibitive for re-323

searchers with limited resources. Future work324

should explore optimization techniques to maintain325

quality while reducing computational overhead.326

Lastly, while our dataset provides a rigorous327

benchmark for cross-modal reasoning, perfor-328

mance evaluations depend on current state-of-the-329

art models, which may not yet be fully optimized330

for this task. As multimodal architectures evolve,331

future benchmarks should adapt accordingly to re-332

flect their growing capabilities.333

8 Ethics Statement334

In conducting this research, we acknowledge335

the significant limitations and potential dangers336

associated with the use of Large Language Models337

(LLMs). One of the primary concerns is the338

presence of inherent biases within LLMs, which339

are a direct consequence of the data on which340

they are trained. These biases can inadvertently341

perpetuate harmful stereotypes and lead to342

discriminatory outcomes, particularly in sensitive343

applications. Additionally, LLMs, especially those344

with large parameter counts, may generate outputs345

that are factually incorrect or misleading, posing346

a risk in contexts that demand high levels of347

accuracy and reliability. To mitigate these risks we348

inspected the test samples of the dataset and used349

multimodal sources that would limit the potential350

of generation of such harmful questions. However,351

we emphasize the importance of ongoing vigilance 352

and the need for responsible use of these models 353

and our dataset to prevent unintended negative 354

consequences. 355

356
Note on AI Assistants: AI assistants were used for grammar 357
checks and sentence level rephrasing to improve paper flow. 358
Coding assistants were also used to streamline development. 359
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The dataset is stored in an easy-to-use json format. Each 727
entry in the dataset consists of various fields including a unique 728
identifier, selection type, question type, examples from various 729
modalities, and the associated question and answer. 730

A.1 Structure 731

• id: A unique identifier for the dataset entry. 732

• selection_type: The method used for selecting negative 733
examples. 734

• q_type: The question type indicating the number of 735
choices. 736

• examples: A list of examples, each containing: 737

– source: The dataset from which the example is 738
taken. 739

– id: A unique identifier for the example within its 740
source. 741

– caption: A description of the content or scene 742
depicted in the example. 743

• modalities: A list of modalities corresponding to each 744
example. 745

• questions: The question presented to the model. 746

• answers: The correct answer or ground truth. 747

• category: The category of the question, used for orga- 748
nizing the dataset. 749

B Benchmark Comparisons 750

Table 3 provides a succint comparison across multimodal 751
benchmarks,5 showing that Contra4 is unique in its incorpo- 752
ration of up to four distinct modalities in a single example. 753

5 We do not include vision benchmarks such as GQA (Hud-
son and Manning, 2019), VizWiz (Bigham et al., 2010), and
NoCaps (Agrawal et al., 2019) since they appear as subsets
of other benchmarks included in the table such as LVLM-
eHUB (Xu et al., 2023a).
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Dataset Image Audio Video 3D Max Modalities per Sample

DROP (Dua et al., 2019) × × × × 1
MMLU (Hendrycks et al., 2020) × × × × 1

MULTIBench (Liang et al., 2021) ✓ ✓ ✓ × 2
BigBench (Srivastava et al., 2023) × × × × 1
LVLM-eHUB (Xu et al., 2023a) ✓ × × × 1

SEED (v1) (Li et al., 2023b) ✓ × ✓ × 1
SEED (v2) (Li et al., 2023a) ✓ × ✓ × 2

MM-BENCH (Liu et al., 2023b) ✓ × × × 1
VisIT-Bench (Bitton et al., 2024) ✓ × × × 1

MM-VET (Yu et al., 2023) ✓ × × × 1
MMMU (Yue et al., 2023) ✓ × × × 1
LAMM (Yin et al., 2024) ✓ × × ✓ 1

AV-Superb (Tseng et al., 2024) ✓ ✓ ✓ × 1
HEAR (Turian et al., 2022) × ✓ × × 1

Dynamic Superb (Tseng et al., 2024) × ✓ × × 1
AIR-Bench (Yang et al., 2024) × ✓ × × 1

Video-Bench (Ning et al., 2023) × ✓ ✓ × 2
3D-Bench (Zhang et al., 2024) × × × ✓ 1
OmniXR (Chen et al., 2025) ✓ ✓ ✓ × 1

DisCRn (Panagopoulou et al., 2023) ✓ ✓ ✓ ✓ 2

Contra4 ✓ ✓ ✓ ✓ 4

Table 3: Comparison of Multimodal Challenge Datasets. Columns Image, Audio, Video, and 3D specify whether the dataset
includes that modality (✓) or not (×).

C Data Generation Details754

Step 1: Negative Sampling Selection We employ two neg-755
ative selection strategies: high similarity and random to756
enhance the evaluation potential of the dataset. For the757
high similarity negative samples, we first encode all cap-758
tions across all modalities using all-MiniLM-L6-v2 embed-759
dings via sentence-transformers. Subsequently, we anchor760
one modality randomly as the basis for selection. From this761
anchored modality, we identify and select a negative sample762
from among the thirty most similar instances across the dif-763
ferent modalities, as ranked by the cosine similarity of their764
text captions. For the random setup, we perform the same765
procedure but sample randomly instead of similarity.766
Step2 Question Generation: Upon generating tuples in Step767
1, we employ meta-llama/Llama-3.1-8B-Instruct to gen-768
erate contrastive questions. For each tuple, we provide the769
LLM with four in-context examples to facilitate the generation770
of a question which is then considered for inclusion in the final771
dataset. The prompt for question generation is the following:772

<s>You are given some scenes described in text.773
Each scene is represented by a short caption.774
Your task is to generate a question that compares775
the scenes based on their content. The generated776
question should be relevant to the context of the777
scenes and should require a comparison between778
them. THere should be only one correct answer.779
Here are some examples to guide you:780

781

Scene A. "a shattered piece of paper, resembling782
a broken phone and a flying newspaper"783
Scene B. "tourists walking near a catholic church784
in Mexico on a sunny summer day"785
Generated Question: Which scene evokes a sense786
of chaos and abandonment?787

788

Scene A. "Someone is using a rip saw in a789
carpenter’s workshop"790
Scene B. "An elegant bathroom featuring a tub,791
sink, mirror, and decorations"792
Generated Question: Which scene is more likely793
to involve louder noises?794

795

Scene A. "The night sky showcasing the Milky796
Way"797
Scene B. "A bustling city street at midday"798

Scene C. "A serene mountain landscape in the 799
morning" 800
Generated Question: Which scene is different 801
from the other two? 802

803

Scene A. "A painting depicting a stormy sea" 804
Scene B. "A photograph of a calm beach at 805
sunset" 806
Scene C. "A digital illustration of a bustling 807
space station" 808
Scene D. "A sculpture of a tranquil garden" 809
Generated Question: Which scene is most 810
different from the other three? 811

812

Scene A. "A team of firefighters putting out a 813
blaze in a city" 814
Scene B. "A family enjoying a picnic in a 815
peaceful park" 816
Generated Question: Which scene involves a 817
greater sense of danger and urgency? 818

819

Scene A. "A snowy mountain peak illuminated 820
by the golden light of sunrise" 821
Scene B. "A tropical beach with crystal-clear 822
water and palm trees swaying in the breeze" 823
Scene C. "A bustling city park filled with people 824
enjoying outdoor activities" 825
Scene D. "A vast desert under a blazing sun with 826
sand dunes stretching to the horizon" 827
Generated Question: Which scene represents a 828
colder and more remote environment? 829

830

We implement a filtering process to exclude questions that 831
focus on textual or difficult to measure qualities. This ex- 832
cludes questions containing terms (and derivatives) such as 833

‘word’, ‘text’, ‘verb’, ‘noun’, ‘describe’, ‘question’, ‘sentence’, 834
‘detail’, ‘visual’, ‘image’, ‘video’, ‘audio’, ‘sound’, ‘heard’, 835
‘3d’, ‘point cloud’, ‘caption’, ‘more elements’, ‘most elements’, 836
‘more objects’, ‘more people’, ‘most objects’, ‘more colors’, 837
‘most colors’, ‘more than one’, ‘similar’, ‘rating’, ‘score’. 838
Step 3: Answer-Explanation Generation Building on the 839
captions in the original dataset and the questions refined in 840
Step 2, we require the same LLM to answer and explain its 841
reasoning using the following prompt: 842

<s>You are given some scenes described in text 843
as well as a question about them. Each scene is 844
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represented by a short caption. Your task is to845
provide a clear and concise answer that explains846
the reasoning behind the correct choice. Here are847
some examples to guide you:848

849

Scene A. "a shattered piece of paper, resembling850
a broken phone and a flying newspaper"851
Scene B. "tourists walking near a catholic church852
in Mexico on a sunny summer day"853
Question: Which scene evokes a sense of chaos854
and abandonment?855
Answer: Scene A. Scene A evokes feelings of856
chaos and abandonment, contrasting sharply with857
the joy and vibrancy of Scene B.858

859

Scene A. "Someone is using a rip saw in a860
carpenter’s workshop"861
Scene B. "An elegant bathroom featuring a tub,862
sink, mirror, and decorations"863
Question: Which scene is more likely to involve864
louder noises?865
Answer: Scene A. Scene A is characterized by866
the noise and activity of craftsmanship, whereas867
Scene B offers a serene and luxurious ambiance868
for relaxation.869

870

Scene A. "The night sky showcasing the Milky871
Way"872
Scene B. "A bustling city street at midday"873
Scene C. "A serene mountain landscape in the874
morning"875
Question: Which scene is different from the other876
two?877
Answer: Scene B. Scene B, with its bustling city878
life, differs in its dynamic and urban setting from879
the tranquil and natural settings of Scenes A and880
C.881

882

Scene A. "A painting depicting a stormy sea"883
Scene B. "A photograph of a calm beach at884
sunset"885
Scene C. "A digital illustration of a bustling886
space station"887
Scene D. "A sculpture of a tranquil garden"888
Question: Which scene is most different from the889
other three?890
Answer: Scene C. Scene C, a digital illustration891
of a bustling space station, diverges in its892
futuristic and technological theme from the893
natural and serene subjects of the other inputs.894

895

Scene A. "A team of firefighters putting out a896
blaze in a city"897
Scene B. "A family enjoying a picnic in a898
peaceful park"899
Question: Which scene involves a greater sense900
of danger and urgency?901
Answer: Scene A. Scene A, with firefighters902
responding to a blaze, conveys a strong sense of903
danger and urgency compared to the calm and904
leisurely atmosphere of Scene B.905

906

Scene A. "A snowy mountain peak illuminated907
by the golden light of sunrise"908
Scene B. "A tropical beach with crystal-clear wa-909
ter and palm trees swaying in the breeze"910
Scene C. "A bustling city park filled with people911

enjoying outdoor activities" 912
Scene D. "A vast desert under a blazing sun with 913
sand dunes stretching to the horizon" 914
Question: Which scene represents a colder and 915
more remote environment? 916
Answer: Scene A. Scene A, featuring a snowy 917
mountain peak, exemplifies a cold and remote en- 918
vironment in contrast to the other settings, which 919
are warmer or more populated. 920

Step 4: Mixture-of-Models Round-Trip-Consistency 921
(MoM-RTC): This step verifies the answers of Step 3, via 922
querying multiple models under all possible permutations of 923
the inputs. For clarity, we present a pseudo-algorithm for the 924
MoM-RTC procedure in Algorithm 1. Each of the three LLMs 925
in this procedure is prompted as follows: 926

Select which of the scenes best answers the ques- 927
tion. Respond with brevity, and only include your 928
choice in the response. 929
Question: {question} 930
Choices: 931
Scene A. {first modality caption} 932
Scene B. {second modality caption} 933
and so on... 934
Answer: 935

D Category Distribution 936

To analyze the breadth of the dataset we automatically ex- 937
tract instance categories by employing an LLM which are 938
then grouped based on keyword matching. In particular, 939
we use meta-llama/Llama-3.1-8B-Instruct served via 940
VLLM (Kwon et al., 2023) and prompt it to predict the topic 941
of each question using the following prompt: 942

You are tasked with categorizing a question that 943
compares or evaluates inputs based on a specific 944
property (e.g., which input is more positive, has 945
more action, etc.). 946

947

Example Questions and Outputs: 948
Question: "Which input is more positive in 949
tone?" 950
Category: Sentiment Analysis 951
Reasoning: The question explicitly asks about 952
emotional tone, a sentiment-related property. 953

954

Question: "Which video has more action?" 955
Category: Activity Level 956
Reasoning: The question focuses on the level of 957
dynamism or activity in the input videos. 958

959

Question: "Which object is larger?" 960
Category: Size Comparison 961
Reasoning: The question compares a specific 962
property, size, between inputs. 963

964

Question: "Which scene is more likely to involve 965
human presence?" 966
Category: Human Presence 967
Reasoning: The question asks about the 968
likelihood of human presence 969

970

Question: "Which scene involves more unpre- 971
dictable or sudden changes?" 972
Category: Dynamic Changes 973
Reasoning: The question asks about the level of 974
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Figure 6: Category distribution in the annotated set of Con-
tra4

unpredictability or sudden changes in the scene.975
976

Question: {question}977
Category:978

Figure 6 illustrates the resulting category distribution on the979
annotated test set.980

E Caption Datasets981

In Table 4 we provide details on the captioning datasets used982
to connect the separate modalities in Contra4.983

Modality Dataset Train Split Test Split Captions
License

Data Li-
cense

Image MSCOCO
(Chang-
pinyo
et al.,
2021)

Train2017 Val2017 CC by 4.0 CC by 4.0

Video MSRVTT
(Xu et al.,
2016)

Train Test MIT Li-
cense

MIT Li-
cense

3D PointLLM
(Xu et al.,
2023b)

train test ODC-By
1.0

CC-by-
4.0

Audio AudioCaps
(Kim
et al.,
2019)

Train Validation MIT Li-
cense

CC by 4.0

Clotho
(Drossos
et al.,
2020)

Development Evaluation(v1)
+ Valida-
tion(v2)

Non-
Commercial

Non-
Commercial

Table 4: Datasets used to generate Contra4

F Additional Dataset Statistics984

Using the MoM-RTC pipeline, we produce 174k automatically985
annotated samples for training and release a test set of 2.3k986
human-annotated examples. Table 5 shows a more detailed987
breakdown on the types of data maintained across different988
MoM-RTC methods. Fig. 7 shows the distribution of different989
modalities in the train and test data.990

Train data

Test data

video+3d
video+audio
video+image
3d+audio
image+audio
image+3d
video+3d+audio
video+image+audio
image+3d+video
image+3d+audio
video+image+3d+audio

Figure 7: Modality Combination Distribution

G Implementation Details 991

All models are served via VLLM (Kwon et al., 2023) on 4 992
A100 40GB GPUs. LLMs are always queried using nucleus 993
sampling with top_p=0.9. For Step 2 meta-llama/Llama-3.1- 994
8B-Instruct is queried with temperature equal to 1.05 to en- 995
courage diverse questions, and 0.3 for Step 3 and Step 4. All 996
cross-modal LLMs are benchmarked using the default param- 997
eter settings in their corresponding repositories and API. For 998
fine-tuning OneLLM we employ LoRA (Hu et al., 2021) with 999
batch size 8, weight decay 0.02, learning rate 1e-7, and a 1000
gradient clipping norm of 2.0 for 10k iterations. 1001

H Caption Baseline Details 1002

The caption baseline employs OpenGVLab/InternVL2- 1003
8B (Chen et al., 2024) to generate captions for images, 1004
Qwen/Qwen2-VL-7B-Instruct (Wang et al., 2024a) for videos, 1005
Qwen/Qwen2-Audio-7B-Instruct (Chu et al., 2024) for au- 1006
dio, and X-InstructBLIP (Panagopoulou et al., 2023) for 3D 1007
point clouds. With the exception of X-InstructBLIP where we 1008
use the official implementation, all other models are queried 1009
via VLLM. All models are queried with the default hyper- 1010
parameters. We use the following prompts: ‘Describe the 1011
[image/audio/3d model]’ and ‘Describe this set of frames. 1012
Consider the frames to be a part of the same video.’. Table 6 1013
shows the captioning performance on each modality for the 1014
validation subset of Contra4. 1015

Image Video Audio 3D

METEOR 0.21 0.15 0.20 0.17

Table 6: Predicted caption performance (METEOR)

I Detailed OneLLM fine-tuning Results 1016

Figure 8 shows a break down of fine-tuning performance 1017
across different question types. We find the trend to be similar 1018
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Filter Human
Acc.

Recall N/A O/A GPU (hrs) 2 Modalities 3 Modalities 4 Modalities Aggregated

Rand. Sim. All Rand. Sim. All Rand. Sim. All Rand. Sim. All

None∗ 39.5 89.1 13.6 10.2 0 143k 145k 287k 90k 94k 183k 21k 23k 44k 254k 261k 515k

MF 65.5 85.7 7.9 7.1 40 115k 113k 227k 63k 62k 125k 13k 13k 26k 190k 188k 378k
UF 71.5 79.7 4.4 10.9 83k 80k 163k 40k 38k 78k 8k 7k 15k 130k 126k 256k

PMF 72.8 76.7 6.6 7.3 120 102k 93k 196k 39k 34k 73k 5k 4k 9k 147k 131k 278k
PUF 83.3 74.4 0.0 2.5 69k 64k 133k 20k 18k 38k 2k 1k 3k 91k 83k 174k

Table 5: Human Inspection of Different Round-Trip-Consistency Checks on Train Data. N/A corresponds to the percentage of
wrong examples that are wrong due not lack of applicability to any choice, and O/A to the percentage of wrong examples due to
the question applying to more than one choice. ∗ some rule based word filtering is applied, see Appendix C.

across all subsets, with lower on examples sampled with high1019
similarity.1020

J Dataset Examples1021

Figure 9 displays data examples from the test split of Contra41022
for each of the categories identified in Appendix D.1023

K Human Annotation1024

In evaluating the effectiveness of mixture-of-models round-1025
trip-consistency for synthetic data generation, we develop a1026
user interface presented in Figure 10. These volunteers were1027
not offered monetary compensation and participated primarily1028
out of academic interest and willingness to contribute to on-1029
going research as they are all graduate students in computer1030
science in an American university. All annotators provided1031
informed consent and were briefed on the nature of the task1032
prior to participation. For each example, we present the ques-1033
tion and the corresponding modality choices, with the option1034
to select ‘None of the above.’1035

Correctness

Filter 2 Modalities 3 Modalities 4 Modalities Aggregated

Rand. Sim. All Rand. Sim. All Rand. Sim. All Rand. Sim. All

WF 75.0 60.0 67.5 30.0 30.0 30.0 55.0 30.0 42.5 53.3 40.0 46.7
MF 90.0 70.0 80.0 55.0 50.0 52.5 55.0 40.0 47.5 66.7 53.3 60.0
UF 60.0 90.0 75.0 50.0 55.0 52.5 75.0 30.0 52.5 61.7 58.3 60.0
PMF 75.0 65.0 70.0 60.0 80.0 70.0 65.0 65.0 65.0 66.7 70.0 68.3
PUF 85.0 70.0 77.5 75.0 90.0 82.5 95.0 85.0 90.0 85.0 81.7 83.3

Over-Applies (OA)

Filter 2 Modalities 3 Modalities 4 Modalities Aggregated

Rand. Sim. All Rand. Sim. All Rand. Sim. All Rand. Sim. All

WF 5.0 10.0 7.5 30.0 20.0 25.0 10.0 35.0 22.5 15.0 21.7 18.3
MF 0.0 20.0 10.0 5.0 15.0 10.0 20.0 45.0 32.5 8.3 26.7 17.5
UF 0.0 5.0 2.5 30.0 15.0 22.5 0.0 30.0 15.0 10.0 16.7 13.3
PMF 15.0 20.0 17.5 20.0 5.0 12.5 15.0 15.0 15.0 16.7 13.3 15.0
PUF 0.0 0.0 0.0 5.0 15.0 10.0 10.0 5.0 7.5 5.0 6.7 5.8

None-Applies (NA)

Filter 2 Modalities 3 Modalities 4 Modalities Aggregated

Rand. Sim. All Rand. Sim. All Rand. Sim. All Rand. Sim. All

WF 10.0 20.0 15.0 30.0 25.0 27.5 10.0 15.0 12.5 16.7 20.0 18.3
MF 10.0 10.0 10.0 40.0 25.0 32.5 20.0 5.0 12.5 23.3 13.3 18.3
UF 30.0 5.0 17.5 20.0 15.0 17.5 20.0 10.0 15.0 23.3 10.0 16.7
PMF 5.0 10.0 7.5 20.0 15.0 17.5 15.0 15.0 15.0 13.3 13.3 13.3
PUF 10.0 10.0 10.0 5.0 10.0 7.5 5.0 0.0 2.5 6.7 6.7 6.7

Table 7: Detailed results of human inspection. We report
percentages for each of the metrics on the corresponding data
subsets.
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Figure 8: Detailed break down of MoM-RTC data effectiveness for fine-tuning OneLLM
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Audio, Sound & Music

Random Sampling Similarity Sampling

Which scene is most likely to 
involve a musical element?

A. B. C.
[     A chainsaw 
cutting as wood 
is cracking’]

B.A.

Which scene is more likely to 
make a loud noise?

Objects, Tools & Technology

Random Sampling Similarity Sampling

Which scene shows an older 
technology?

A. B.
C.

[    A man
speaking on a 
microphone]

B.

A.

Which scene clearly features a 
microphone?

Threats, Risk & Safety

Random Sampling Similarity Sampling

Which scene involves the most 
threatening situation?

[     A chainsaw 
cutting as wood 
is cracking’]

B.A.

Which scene is more likely to 
make a loud noise?

Emotions & Sensory Experiences

Random Sampling Similarity Sampling

Which scene is more peaceful? 

A. B.
[    An alarm 
rings making 
consistent 
alarming louder 
and louder noise] 

B.A.

Which scene involves a sense of 
alarm and urgency?

Humans, Animals & Social Behavior

Random Sampling Similarity Sampling

Which scene features an animal?
A.

C. D. [     A man and a 
woman talking as an 
infant cries and a 
duck quacks  in the 
background]

B.
A.

Which scene features the 
presence of a baby?

Motion & Physical Activity

Random Sampling Similarity Sampling

Which scene involves fluid 
movement?

A. B. C.
[     
A vehicle 
passes 
by]

B.A.

Which scene is more likely to 
make a loud noise?

Time, Space & Location

Random Sampling Similarity Sampling

Which scene is most likely to 
occur in a city?

A.

B.

C.
[.    …rasping
sound against
wood]

B.A.

Which scene most likely to be 
found in a kitchen?

Environmental & Scene Context

Random Sampling Similarity Sampling

Which scene is most likely to 
occur indoors?

A. B. [     Cars are 
passing on a 
busy road with 
music in the 
background]

D.

A.

Which scene includes a snowy 
environment?

C. D.
[

Bus 
coming
to a stop
and 
opening]

D.

A.[    Boat motor idles then accelerates]
C. D.B.

[     A large 
vehicle is 
passing by …]

C.

C.

[     Emergency vehicle siren …]

B.

[.    The sink 
water is turned 
on too fast then

slowed down…]

C.

D.

C.

[     Pigeons cooing followed by bird 
wings flapping as crickets chirp… ]

[     Engine 
revving louder 
and louder than 
eases down]

C.
B.

Figure 9: Dataset examples for each category.
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Algorithm 1 Mixture-of-Models Round-Trip-Consistency (MoM-RTC)
Require: data: List of samples, each with {question, cross-modal info, original_answer};
1: models: Ensemble of LLMs/classifiers;
2: permute_strategy ∈ {NONE,RANDOM,ALL};
3: filtering_criteria ∈ {MF,UF, PMF, PUF};

Ensure: filtered_data: Subset of samples passing the consistency check

4: function GENERATE_PERMUTATIONS(sample, strategy) ▷ Returns a list of permuted versions of sample
5: end function
6: function GET_MODEL_PREDICTION(model, sample) ▷ Prompts the model on the given sample and returns a predicted

answer
7: end function
8: function MAJORITY_VOTE(answers) ▷ Returns the most frequent answer in answers; or handle ties as needed
9: end function

10: function UNANIMOUS_VOTE(answers) ▷ Returns the unique answer if all are identical, else “no unanimous consensus”
11: end function
12: filtered_data← [ ]
13: for all sample ∈ data do
14: original_answer← sample.original_answer

▷ 1. Generate permutations of the sample
15: permutations← GENERATE_PERMUTATIONS(sample, permute_strategy)

▷ 2. Query each model on each permutation
16: predictions_by_perm← [ ]
17: for all perm ∈ permutations do
18: model_preds← [ ]
19: for all model ∈ models do
20: pred← GET_MODEL_PREDICTION(model, perm)
21: model_preds.append(pred)
22: end for
23: predictions_by_perm.append(model_preds)
24: end for

▷ 3. Check the consistency criteria
25: if filtering_criteria ∈ {MF, UF} then ▷ Single (unpermuted) scenario; use the first permutation’s predictions
26: model_preds← predictions_by_perm[0]
27: if filtering_criteria = MF then
28: voted_answer← MAJORITY_VOTE(model_preds)
29: if voted_answer = original_answer then
30: filtered_data.append(sample)
31: end if
32: else if filtering_criteria = UF then
33: unanimous_answer← UNANIMOUS_VOTE(model_preds)
34: if unanimous_answer ̸= "no unanimous consensus" and unanimous_answer = original_answer then
35: filtered_data.append(sample)
36: end if
37: end if
38: else ▷ PMF or PUF: multiple permutations
39: consistent_across_all← True
40: for all model_preds ∈ predictions_by_perm do
41: if filtering_criteria = PMF then
42: voted_answer← MAJORITY_VOTE(model_preds)
43: if voted_answer ̸= original_answer then
44: consistent_across_all← False
45: break
46: end if
47: else if filtering_criteria = PUF then
48: unanimous_answer← UNANIMOUS_VOTE(model_preds)
49: if (unanimous_answer = "no unanimous consensus") ∨ (unanimous_answer ̸= original_answer) then
50: consistent_across_all← False
51: break
52: end if
53: end if
54: end for
55: if consistent_across_all then
56: filtered_data.append(sample)
57: end if
58: end if
59: end for
60: return filtered_data
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Figure 10: Interface for Human Inspection
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