
Editing Large Language Models via Adaptive Gradient Guidance

Xiaojie Gu1, Guangxu Chen1, Shuliang Liu1,2, Jungang Li1, Aiwei Liu3, Sicheng Tao1, Junyan
Zhang1, Xuming Hu1*

1The Hong Kong University of Science and Technology (Guangzhou)
2The Hong Kong University of Science and Technology 3Tsinghua University

Guangzhou, Guangdong 510100 China
peettherapynoys@gmail.com, xuminghu97@gmail.com

Abstract

Large language models (LLMs) exhibit exceptional perfor-
mance across various domains, and model editing holds sig-
nificant potential to improve LLM safety and mitigate is-
sues such as hallucinations. Existing model editing meth-
ods either modify the original hidden states directly to in-
tegrate new knowledge, which can lead to the accumulation
of conflicts, or they achieve stable knowledge updates by
adding extra parameters, which significantly increases com-
putational costs. To address these challenges, we propose
AGRADE, a method that Adaptively guides the GRADient
to compute Editing weights in alignment with the desired di-
rection. By leveraging gradient differences across modules,
AGRADE effectively reduces redundant information interfer-
ence between adjacent modules, while controlling computa-
tional overhead and enhancing editing precision. We theoret-
ically prove the effectiveness of AGRADE and conduct ex-
tensive experiments across multiple LLMs and datasets. The
results show an average improvement of over 4% across three
metrics, with an overall score increase of 11.98%.

Introduction
The world is constantly developing and changing, and
humans are able to form a cognitive understanding of
the world’s dynamics through long-term learning. De-
spite the powerful capabilities of large language models
(LLMs) (Wang 2021; Touvron et al. 2023; Jiang et al. 2023)
in various domains have boosted confidence in the develop-
ment of artificial general intelligence (AGI) (Fei et al. 2022).
LLMs may unintentionally memorize sensitive or private in-
formation (Zhang et al. 2024a) during the pre-training stage.
This can lead to biased outputs (Yu et al. 2023), contribut-
ing to fact-conflict hallucinations (Ji et al. 2023) or security
problem (Li et al. 2024a). To effectively address these is-
sues, model editing techniques have emerged as a promising
solution. By making targeted adjustments to the model’s be-
havior (Yao et al. 2023) without the need for full retraining,
model editing can correct erroneous outputs, reduce the risk
of privacy breaches (Wu et al. 2023), and simultaneously
preserve the model’s other knowledge and overall perfor-
mance.

*Corresponding Author
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing methods (Dai et al. 2022; Meng et al. 2022) fail
to balance editing accuracy with computational cost (Wang
et al. 2023). Some approaches (Meng et al. 2023; Li et al.
2024c) compute editing weights that represent the param-
eters of the editing target by computing the original gra-
dients of the model. These methods enable precise small-
scale edits but significantly increase computational com-
plexity. Using a hypernetwork (Ha, Dai, and Le 2017) to by-
pass the original model’s backpropagation path can alleviate
the computational burden. However, when scaled to large-
scale editing, the hypernetwork lacks stability (Mitchell
et al. 2022a) and is unable to effectively coordinate new
and existing knowledge (Pan et al. 2024). In this work,
we adaptively guide the gradient towards the target direc-
tion to compute editing weights and update the hypernet-
work, thereby balancing editing efficiency and precision. To
maintain focus on the current editing target, we derive a
projection direction from the gradients of adjacent editing
modules—submodules within LLMs that require parame-
ter modifications. We then eliminate the redundant gradient
components along this direction, further preventing knowl-
edge conflicts. Furthermore, to enhance the stability of the
hypernetwork and enable rapid, precise editing, we project
the gradients onto a subspace that captures the relationships
between feature instances. This approach increases the in-
formation entropy along the target gradient direction, help-
ing to stabilize the model’s knowledge structure.

Our method has been thoroughly evaluated on multiple
models and datasets. AGRADE demonstrates a 4.54% per-
formance improvement in maintaining locality, highlight-
ing its ability to effectively coordinate new and old knowl-
edge. Additionally, the Editing Score shows a nearly 12% in-
crease, while strikes an excellent balance between efficiency
and editing speed, marking its significant progress in large-
scale, precise editing with high efficiency. The contributions
of our work are summarized as follows:
1. We propose AGRADE method for model editing, which

adaptively alleviates gradient noise in the editing mod-
ules, minimizing conflicts between editing instances and
the original knowledge.

2. We improve the projection paradigm of editing weights
by guiding the gradient in a directional manner, thereby
maintaining the intrinsic structure of the target informa-
tion more stably.

3. Through extensive experiments and analysis on various
LLMs and datasets, AGRADE achieves state-of-the-art
performance in most editing scenarios, showcasing its ef-
ficiency and effectiveness.

Related Work
Locat-then-edit: ROME (Meng et al. 2022) and
MEMIT (Meng et al. 2023) utilize causal tracing to locate
key regions within transformer architectures—typically the
multilayer perceptron (MLP) that encode specific knowl-
edge. By directly injecting key-value pairs, these methods
enable precise edits. Subsequent enhancements, including
PMET (Li et al. 2024c), R-ROME (Gupta, Baskaran,
and Anumanchipalli 2024), EMMET (Gupta, Sajnani,
and Anumanchipalli 2024), WilKE (Hu et al. 2024), and
AlphaEdit (Fang et al. 2024), refine optimization strategies
for precise.
Memory-Augmented: Memory-augmented approaches in-
troduce external or auxiliary memory components to facil-
itate knowledge updates. Methods like SERAC (Mitchell
et al. 2022b) define the scope of edits using external mem-
ory, while CaliNet (Dong et al. 2022) and T-Patcher (Huang
et al. 2023) focus on adding neurons to correct specific er-
rors. GRACE (Hartvigsen et al. 2023), LTE (Jiang et al.
2024) and MELO (Yu et al. 2024) aim to mitigate the over-
head of adding neurons by dynamically activating relevant
parameters through memory retrieval. WISE (Wang et al.
2024) introduces dual-memory systems to resolve informa-
tion conflicts during updates.
Meta-Learning: Meta-learning-based approaches predict
parameter updates using auxiliary models. For instance,
De Cao, Aziz, and Titov (2021) pioneered hypernetworks
that predict weight updates based on required gradient ad-
justments. MEND (Mitchell et al. 2022a) improves ef-
ficiency through low-rank gradient decomposition, while
MALMEN (Tan, Zhang, and Fu 2024) enhances precision
using least squares to combine gradient updates with the
model’s original weights. DAFNet (Zhang et al. 2024b) en-
hances semantic interaction between instances using a multi-
layer autoregressive diagonal attention mechanism.

Our method offers clear advantages over existing ap-
proaches. Unlike locate-then-edit methods, which rely on
computationally intensive knowledge localization, we di-
rectly predict parameter updates, improving adaptability
across different model architectures. Compared to memory-
augmented methods that suffer from memory overload and
slower inference when handling numerous edits (Wang et al.
2023), we eliminate additional memory overhead by directly
adjusting offset parameters. Lastly, other meta-learning
methods are often prone to instability and noise (Yao et al.
2023), our approach ensures stability through feature or-
thogonalization and minimizes interference with adaptive
adjustment, ensuring robustness.

Methods
This work focus on batch editing, which is designed to
perform large-scale edits simultaneously, with the model
reloading its original parameters after each batch.

The overall pipeline of AGRADE is illustrated in the Fig-
ure 1, we use the hidden states and corresponding gradi-
ents of edited instances projected by the hypernetwork to
adaptively remove redundant information, thereby calculat-
ing more precise editing weights. Then, we guide the ac-
cumulated gradients from the original model towards traget
direction to update the hypernetwork parameters, enhancing
its projection paradigm.

Preliminary
Model editing refers to the process of modifying the param-
eters of a pre-trained language model fθ to obtain a new
model fθ′ that incorporates updated knowledge. For a given
intended editing instance (xe, ye), the objective is to en-
sure that fθ′(xe) = ye, while the original model fulfills the
condition fθ(xe) ̸= ye. Here, xe ∈ Xedit, where Xedit rep-
resents the set of all editing instances. Additionally, model
editing needs to ensure that the post-edited model can re-
spond to variations (equivalent instance x′

e ∈ E(xe)) of
the editing instances, while retaining the original knowledge
(unrelated instance xu ∈ U(xe)). Specific examples of the
three types of instances mentioned above can be found in Ta-
ble 4. The corresponding metrics can be found in Appendix
A.

The hypernetwork is a neural network that operates in-
dependently of the pre-trained model. Following (Mitchell
et al. 2022a), it is designed as a multi-layer perceptron
(MLP) with low-rank matrices. Its input consists of the hid-
den state and gradient of editing instamces, while its output
is the projected hidden state and gradient, aligned with de-
sired model adjustments.

Adaptive editing weights Computing
Zhang et al. (2024b) employs an attention mechanism

for language modeling of each representation to compute
editing weights, which restricts the editing scope. In con-
trast, our approach adaptively adjusts the editing direction
based on gradient differences from adjacent modules, offer-
ing greater scalability. Initially, H ∈ RT×Dh and ∇G ∈
RT×Dg represent the hidden states and gradients of editing
instance, which provide the essential information for param-
eter updates. Here, T is the total number of tokens across all
editing instances, Dh is the dimension of the hidden states,
and Dg is the dimension of the gradients.

To reduce potential harm to the original knowledge,
we avoid directly manipulating the raw features. Instead,
we project the representations into an editing space us-
ing a hypernetwork, denoted as HyperNetwork(·). The
projected representations remain closely aligned with the
model’s internal structure. This projection generates the
projected hidden states H̃ and projected gradients ∇̃G,
as expressed by the following relationship: H̃, ∇̃G =
HyperNetwork(H,∇G).

Next, we compute the adjustment coefficients c ∈ RT×1

to scale the projected gradients,. These coefficients are de-
rived as the element-wise weighted sum of the dot products
between the original hidden states H and the projected hid-
den states H̃, modulated by the learning rate η. For each

Figure 1: The overall structure of AGRADE.

token i ∈ {1, 2, . . . , T}, the adjustment coefficients ci are
given by:

ci = −η
Dh∑
j=1

HijH̃ij . (1)

With the adjustment coefficients in place, the scaled gradient
G ∈ RT×Dg are updated by scaling the projected gradients
as follows:

G = c⊙ ∇̃G, (2)
where ⊙ denotes element-wise multiplication. These up-
dated gradients will then be used to adjust the model’s pa-
rameters during the editing process.

To ensure numerical stability when solving for the param-
eter updates, we introduce a regularized matrix M:

M = H⊤H+ eλIDh
, (3)

where λ is the regularization parameter and IDh
∈ RDh×Dh

is the identity matrix. The term H⊤H represents the co-
variance of the hidden states, while the regularization term
eλIDh

prevents M from becoming singular, ensuring that
the linear system remains solvable and stable.

To ensure the independence of updates and prevent inter-
ference between modules, we eliminate components of the
current gradient that align with the previous gradient. This
is done by projecting the current gradient G onto the sub-
space orthogonal to the previous gradient Gprev, effectively
orthogonalizing it with respect to the previous module’s gra-
dient. The formula for this process is as follows:

G← G−
(
⟨G,Gprev⟩
⟨Gprev,Gprev⟩

)
Gprev, (4)

where ⟨·, ·⟩ denotes the inner product. This operation re-
moves components of the current gradient that align with

the previous gradient, adapting the current gradient to be in-
dependent of past updates. This helps eliminate redundant
information that is unrelated to the current module update.

M represents the correlation between hidden states and
provides a metric for the hidden state space. H⊤G indicates
the guidance direction for adjusting the model parameters
through the hypernetwork. To achieve the optimal weights
adjustment, which steers the model’s output in the desired
direction, we solve a system of linear equations to determine
the editing weights ∆θ ∈ RDh×Dg :

∆θ = M−1H⊤G, (5)
The updated model parameters for the editing module are

then obtained by adding the computed editing weights to the
original parameters, as θupdated = θoriginal +∆θ.

Directional HyperNetwork Training
Building upon the previous section, after calculating the
editing weights ∆θ, our approach differs from (Tan, Zhang,
and Fu 2024), which directly uses ∆θ to aggregate gra-
dient changes. This direct method carries the risk of the
supernetwork overfitting to specific samples. To refine the
model’s updates more precisely toward the desired output,
we first compute the gradient of the model’s parameters,
gθ ∈ RDh×Dg , which is obtained during the backpropaga-
tion of editing instances.

To further ensure stable parameter updates in the hyper-
network and align them with the most informative direc-
tions in the feature space, we project the gradient onto a
subspace that emphasizes directions with the highest vari-
ance or information content. The resulting projected gradi-
ent P ∈ RN×Dg is given by:

P = H
(
H⊤H+ eλIDh

)−1
g⊤
θ , (6)

Model Editor zsRE CounterFact SelfCheckGPT

ES. GS. LS. Score ES. GS. LS. Score ES. LS.

GPT-J
(6B)

FT 23.29 22.07 16.57 20.19 11.71 6.67 26.64 10.99 46.86 36.59
LoRA 34.18 33.05 27.09 31.11 11.93 5.33 30.07 9.85 89.93 41.19
MEND 0.16 0.18 0.02 0.05 0.00 0.00 0.00 0.00 0.34 0.51
MEMIT 86.12 67.15 25.87 46.04 95.50 36.65 11.49 24.04 72.12 44.15
PMET 22.64 21.16 24.04 22.55 6.61 2.73 14.89 5.11 49.44 44.07
MALMEN 98.86 88.70 24.49 48.22 62.56 22.30 39.08 34.72 32.44 44.03
EMMET 76.53 63.30 26.27 44.83 86.50 29.58 8.79 18.85 67.58 43.96
AGRADE 98.92 88.76 29.41 54.17 96.09 35.13 53.14 52.01 90.05 44.57

LLaMA2
(7B)

FT 32.70 32.25 44.54 35.70 17.42 14.02 20.41 16.88 57.51 55.27
LoRA 50.56 48.13 44.61 47.64 30.03 21.62 49.39 30.06 84.64 52.77
MEND 2.56 2.56 3.46 2.81 0.00 0.00 0.00 0.00 0.00 0.00
MEMIT 59.65 53.93 26.85 41.35 53.18 34.33 13.60 24.70 58.08 55.13
PMET 3.17 2.68 0.07 0.20 16.01 12.43 36.69 17.63 54.89 55.30
MALMEN 90.14 82.89 45.81 66.69 45.97 26.08 37.88 34.69 39.78 52.95
EMMET 34.86 32.58 17.35 25.64 59.54 32.76 15.20 26.52 63.56 54.13
AGRADE 87.70 83.01 59.99 74.77 83.41 57.81 72.54 69.65 89.69 53.01

Mistral
(7B)

FT 35.46 34.70 46.57 38.22 13.93 10.94 34.65 15.62 57.24 52.73
LoRA 53.91 47.35 38.46 45.68 32.44 22.02 41.62 29.92 84.20 50.42
MEND 1.92 1.92 1.89 1.91 0.00 0.00 0.00 0.00 3.68 3.19
MEMIT 62.05 55.52 26.01 41.34 63.71 33.99 10.81 21.80 54.12 55.13
PMET 0.02 0.03 0.12 0.03 15.43 10.98 26.52 15.50 56.44 52.61
MALMEN 92.89 85.36 45.94 67.80 94.87 50.63 63.39 65.12 28.66 42.41
EMMET 41.17 37.97 18.62 28.75 71.82 33.19 14.78 26.85 64.22 51.94
AGRADE 93.96 87.30 53.11 73.31 95.23 50.69 63.57 65.27 95.88 37.53

Table 1: The results of batch editing with different methods across various models and datasets. The values in Bold indicate
the best performance in each case.

The matrix H⊤H captures the correlations between the
hidden states of different tokens or instances, reflecting the
internal structure of the model’s learned knowledge. The
regularization term eλIDh

stabilizes this covariance matrix,
preventing singularities and ensuring invertibility. The trans-
formation

(
H⊤H+ eλIDh

)−1
serves as a weighted projec-

tion, emphasizing directions in the feature space that exhibit
high variance or informativeness while minimizing noise
from less significant directions. This optimization of gradi-
ent ensures that the gradient g⊤

θ is directed into a subspace
that is most aligned with the intrinsic structure of knowl-
edge.

Next, we compute the scaled gradient G ∈ RN×Dg using
the previously defined equations (Equation 2 and Equation
4).

To enable the model to quantify the direction and magni-
tude of gradient updates, we compute the loss LAGRADE. This
loss is derived from the editing instances by calculating the
element-wise product of the projected gradient P and the
scaled gradient G across all elements, then summing over
all dimensions:

LAGRADE =

N∑
i=1

Dg∑
j=1

P(i,j)G(i,j). (7)

Finally, as in (Mitchell et al. 2022a; Tan, Zhang, and Fu
2024), we compute the cross-entropy loss for equivalent in-
stances (x′

e, ye) from the set E(xe), contributing to Lequiv,
and the KL divergence for unrelated instances (xu, yu) from
the set U(xe), contributing to Lunrel. The total loss for up-
dating the hypernetwork is the sum of the three components:
Lhyper = LAGRADE+Lequiv+Lunrel. The loss of this combina-
tion is backpropagated through the hypernetwork to update
its parameters, enabling the output to better approximate the
desired parameter shift based on the input instances, while
ensuring locality to some extent.

Experiments
Experimental Setting
Dataset
The zsRE dataset (Levy et al. 2017) primarily consists of
question-answer pairs covering a variety of entities and re-
lationships, And CounterFact dataset (Meng et al. 2022)
includes a large collection of synthetic counterfactual state-
ments. Both datasets aim to evaluate whether models can
correctly modify specific facts while minimizing their im-
pact on the original knowledge base. Additionally, Self-
CheckGPT (Manakul, Liusie, and Gales 2023) comprises
instances of long-text hallucinations, designed to assess a

zsRE CounterFact SelfCheckGPT
Variant ES. GS. LS. Score ES. GS. LS. Score ES. LS.
AGRADE 87.70 83.01 59.99 74.77 83.41 57.81 72.54 69.65 89.69 53.01
w/o adjustment c 28.51 28.46 23.30 26.52 15.69 11.03 12.59 12.83 26.33 19.56
w/o regularization 84.49 78.64 57.49 71.52 80.12 52.48 68.90 65.14 83.41 52.64
w/o weights projection 82.69 79.33 51.30 67.88 79.61 53.28 65.49 64.37 83.45 46.67
w/o gradient projection 81.66 76.25 52.89 67.76 76.41 52.49 68.91 64.30 81.92 48.61

Table 2: Ablation Study of AGRADE for editing LLaMA2.

Editor zsRE CounterFact SelfCheckGPT
FT 79.62s 75.41s 538.53s
LoRA 128.50s 103.63s 917.42s
MEND 90.61s 5.14s 68.81s
MEMIT 1303.54s 875.54s 2783.22s
PMET 750.46s 702.60s 3338.15s
MALMEN 42.94s 2.78s 45.43s
EMMET 674.19s 596.92s 3263.12s
AGRADE 40.11s 2.56s 30.84s

Table 3: Average Wall Clock Time for editing 100 in-
stances using a single A800 on LLaMA2 across three
datasets.

model’s ability to handle inaccurate or fabricated informa-
tion effectively. In all the experiments, we use a batch size
of 8192 for the zsRE and CounterFact datasets, and a batch
size of 256 for the SelfCheckGPT dataset.
Baselines
We compare AGRADE with several methods profi-
cient in batch editing, including the straightforward
self-supervised techniques like FT (Fine-Tuning) and
LoRA (Hu et al. 2022), locate-then-edit style methods
such as MEMIT (Meng et al. 2023), PMET (Li et al.
2024c), and EMMET (Gupta, Sajnani, and Anumanchipalli
2024), as well as hypernetwork-based approaches like
MEND (Mitchell et al. 2022a) and MALMEN (Tan, Zhang,
and Fu 2024). Beside, many recent methods (Fang et al.
2024; Zhang et al. 2024b; Wang et al. 2024; Ma et al.
2024) focus primarily on sequential editing, but their sta-
bility typically maxes out at 1.5k edits or even fewer.
Some approaches (Li et al. 2024b; Jiang et al. 2024;
Wang and Li 2024) support both sequential and batch edit-
ing; however, they can only handle up to 1k instances
in batch editing while maintaining decent performance—a
scale significantly lower than ours. Memory-augmented ap-
proaches (Zheng et al. 2023; Yu et al. 2024) face similar
challenges as mentioned above. Consequently, we do not
include comparisons with these methods. The details about
baselines can be found in the Appendix B.

Overall Results
The experimental results in Table 1 show that AGRADE of-
fers significant advantages across various scenarios, achiev-
ing a balanced improvement across the ES, GS, and LS met-
rics. Specifically, it results in average gains of 4.48% in ES,

Figure 2: GPU VRAM consumption usage of different
methods during editing of LLaMA2.

4.02% in GS, and 4.54% in LS, leading to Editing Score
increase of 11.98%. In the zsRE and CounterFact datasets,
AGRADE consistently surpasses competitors such as EM-
MET and MALMEN, particularly excelling in ES and over-
all scores. While these competitors perform well on spe-
cific metrics, they fail to achieve the same level of balanced
and sustained performance. Even in the SelfCheckGPT task,
where locality success rates are generally lower, AGRADE
maintains the highest ES rate, highlighting its robust gen-
eralization capabilities and optimization potential. Overall,
our method demonstrates exceptional adaptability and sta-
bility, establishing itself as the leading approach among cur-
rent techniques. The experimental details can be found in the
Appendix C.

Ablation Study
To highlight the contribution of each key component to the
overall performance, Table 4 presents the results of the ab-
lation study for AGRADE. The results emphasize the im-
portance of the adjustment coefficients c, which are crucial
for properly scaling the projected gradients during the model
editing process. Without these coefficients, it becomes diffi-
cult to control the magnitude and direction of gradient up-
dates, leading to a significant decline in performance. Ad-
ditionally, the absence of regularization results in a notice-
able reduction in editing accuracy. Regularization plays a
critical role in maintaining precision and stability, ensuring
the editing process does not introduce errors or imbalances.

Figure 3: (a)&(b) Visualizes the distribution of features after dimensionality reduction. The top and right margins show the
probability distributions of the data points along each dimension, revealing the similarities and differences between features.
The plot highlights the relationships between feature representations before and after optimization, illustrating the effect of the
optimization process on the alignment of the editing weights with the target matrix. (c) The performance of post-edited model
across various evaluation benchmarks.

The study also shows that omitting the projection step in
the weights calculation leads to a substantial drop in Local-
ity Success, demonstrating the importance of this operation
in removing redundant or irrelevant information from the
model. This step helps ensure that the edits are focused and
effective, preserving important features while minimizing
unnecessary changes. Finally, the removal of gradient pro-
jection causes a decrease in performance, but still highlights
the value of gradient directionality in guiding the model’s
learning process. By properly directing the gradient updates,
this operation ensures that the model’s edits align more ac-
curately with the desired changes, improving the overall ef-
ficacy of the model editing process.

Performance Analysis
To gain deeper understanding of experimental results, we
conduct a sampling analysis of the results obtained dur-
ing the editing of LLaMA2 across the zsRE dataset. First,
we perform rough dimensionality reduction using linear
PCA (Pearson 1901) to efficiently denoise the features.
Then, we apply t-SNE (Van der Maaten and Hinton 2008)
to further preserve the local structure of the data through
nonlinear mapping, projecting it into a 2D space, and vi-
sualize the distribution using Kernel Density Estimation
(KDE) (Parzen 1962). The specific results are shown in Fig-
ure 3 (a)&(b).

The editing weights are obtained by solving a linear equa-
tion involving M and H⊤G. The essence of solving this
linear equation is to find the parameters that, when applied
to the matrix M, yield a result close to H⊤G. In Figure 3
(a), we observe that the unprojected H⊤Gprev is relatively
distant from the corresponding editing weights ∆θprev , and
the overlap in the KDE plot among the three is low. This
indicates that the editing weights obtained in the current ap-
proach do not adequately capture the features of the editing

examples. The matrix M is a covariance matrix that rep-
resents the primary directions of the editing example fea-
tures. We find that the optimized H⊤G vector is closer to
M, H⊤G is well-constrained within the subspace defined
by M. This suggests that M is more effective at describing
the information in H⊤G, with the projection directions of
both vectors in the editing space highly aligned. This align-
ment implies that the solution to the linear equation is likely
more stable, and the risk of numerical issues is significantly
reduced. Additionally, the proximity of the optimized H⊤G
and the calculated solution ∆θ further suggests that the edit-
ing weights now accurately reflect the important features of
the target vector H⊤G, leading to more precise edits. The
distribution of the gradient representations in Figure 3 (b)
follows a similar pattern. Taken together, these visualiza-
tions demonstrate the effectiveness of AGRADE.

Efficiency Comparison

We analyze the efficiency of various editing methods in this
study. Methods like MEMIT, PMET, and EMMET require
downloading covariance matrices from the editing layer to
perform edits. The average time to download a single co-
variance matrix is 279 minutes. Since we can use pre-
downloaded covariance matrices during the editing process
with these methods, the download time is excluded from the
calculation of the average editing time. CounterFact contains
shorter factual statements, while SelfCheckGPT consists
of longer, more complex text hallucinations. Consequently,
editing CounterFact instances is faster than editing zsRE,
while editing SelfCheckGPT instances takes more time. As
shown in Table 3, AGRADE achieves the fastest editing
speed across all three datasets, outperforming other meth-
ods significantly in terms of processing time. Additionally,
we measure GPU memory usage during the LLaMA2 model
editing process, excluding the 59.21GB of VRAM required

Instance Type Prompt Pre-edited Output Post-edited Output

Editing
Which is the manufacturer of
Hyundai Global 900? \nundai He Company Hyundai Motor Company✓

Equivalent Which company is known as a man-
ufacturer of Hyundai Global 900?

\n2undai He Company Hyundai Motor Company✓

Unrelated Who sings i’ll sleep when i’m dead? \n1 Zevon The Zevon✓

Table 4: Case study of editing LLaMA2.

for downloading the covariance matrices. As shown in Fig-
ure 2, the introduction of an additional hypernetwork in-
creases VRAM consumption. While methods like MEMIT,
PMET, and EMMET consume less VRAM, they are signifi-
cantly slower and produce less effective results, offering no
substantial advantage in terms of efficiency. Moreover, by
using projection in adjacent modules instead of some re-
dundant operations, we reduce the VRAM burden compared
to MEND and MALMEN, both of which also employ hy-
pernetworks. Furthermore, following the experimental set-
tings from EasyEdit (Wang et al. 2023), when using LoRA
for editing, we need to adjust the parameters stored in low-
rank matrices for each layer, whereas traditional fine-tuning
(FT) requires adjustments for only one layer. As a result,
LoRA consumes more time and VRAM during the editing
process. Overall, AGRADE strikes an optimal balance be-
tween VRAM efficiency and editing speed, outperforming
other approaches in both effectiveness and resource usage.

Post-edited Model Analysis

We evaluate the performance of post-edited models, which
are obtained by applying different methods to edit LLaMA2
on the zsRE and SelfCheckGPT datasets, across vari-
ous benchmarks, including GLUE (Wang et al. 2019),
MMLU (Hendrycks et al. 2021), GSM8k (Cobbe et al.
2021a), etc.(more details can be found in Appendix D), to
compare the side effects of each method on the original
model. The results are shown in Figure 3 (c). It is important
to note that since CounterFact dataset consists of counterfac-
tual data, editing it naturally introduces significant negative
effects on the original model. Therefore, we do not include
this dataset in our evaluation. As shown in the figure, after
editing a large number of instances, our editing method ex-
hibits relatively smaller overall side effects on the original
model compared to other methods. The details of various
benchmark and the performance of the post-edited model on
the SelfCheckGPT dataset can be found in Figure 4.

Case Study

As shown in Table 4, AGRADE successfully incorporates
editing instances into large language models, enabling them
to correctly answer variant questions (equivalent instances)
while minimizing the impact on other original knowledge
(unrelated instances). This demonstrates the effectiveness of
AGRADE.

Conclusion
Our work leverages adaptive gradient refinement and guide
gradient to minimize interference and conflicts between ad-
jacent modules, enabling precise parameter adjustments.
Extensive experiments across diverse datasets and model
validate the method’s superiority over existing approaches
in terms of editing accuracy, generalization, and local-
ity preservation. Additionally, our approach achieves re-
markable computational efficiency, significantly reducing
resource consumption while maintaining high editing per-
formance. These results establish the proposed method as a
robust and scalable solution for overcoming challenges in
large language model editing.

References
Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
et al. 2021a. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.
Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
et al. 2021b. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.
Dai, D.; Dong, L.; Hao, Y.; Sui, Z.; Chang, B.; and Wei,
F. 2022. Knowledge Neurons in Pretrained Transformers.
In Proceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
8493–8502.
De Cao, N.; Aziz, W.; and Titov, I. 2021. Editing Fac-
tual Knowledge in Language Models. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, 6491–6506.
Dolan, B.; and Brockett, C. 2005. Automatically construct-
ing a corpus of sentential paraphrases. In Third international
workshop on paraphrasing (IWP2005).
Dong, Q.; Dai, D.; Song, Y.; Xu, J.; Sui, Z.; and Li, L.
2022. Calibrating Factual Knowledge in Pretrained Lan-
guage Models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, 5937–5947.
Fang, J.; Jiang, H.; Wang, K.; Ma, Y.; Wang, X.; He, X.;
and Chua, T.-s. 2024. Alphaedit: Null-space constrained
knowledge editing for language models. arXiv preprint
arXiv:2410.02355.
Fei, N.; Lu, Z.; Gao, Y.; Yang, G.; Huo, Y.; Wen, J.; Lu,
H.; Song, R.; Gao, X.; Xiang, T.; et al. 2022. Towards artifi-

cial general intelligence via a multimodal foundation model.
Nature Communications, 13(1): 3094.
Go, A.; Bhayani, R.; and Huang, L. 2009. Sentiment140:
A Twitter corpus with sentiment labels. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 1–2.
Gupta, A.; Baskaran, S.; and Anumanchipalli, G. 2024. Re-
building rome: Resolving model collapse during sequential
model editing. arXiv preprint arXiv:2403.07175.
Gupta, A.; Sajnani, D.; and Anumanchipalli, G. 2024.
A unified framework for model editing. arXiv preprint
arXiv:2403.14236.
Ha, D.; Dai, A. M.; and Le, Q. V. 2017. HyperNetworks. In
International Conference on Learning Representations.
Hartvigsen, T.; Sankaranarayanan, S.; Palangi, H.; Kim, Y.;
and Ghassemi, M. 2023. Aging with grace: Lifelong model
editing with discrete key-value adaptors. Advances in Neu-
ral Information Processing Systems, 36.
Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.;
Song, D.; and Steinhardt, J. 2021. Measuring Massive Mul-
titask Language Understanding. In International Conference
on Learning Representations.
Hu, C.; Cao, P.; Chen, Y.; Liu, K.; and Zhao, J. 2024. Wilke:
Wise-layer knowledge editor for lifelong knowledge editing.
arXiv preprint arXiv:2402.10987.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2022. LoRA: Low-Rank Adapta-
tion of Large Language Models. In The Tenth International
Conference on Learning Representations, ICLR 2022, Vir-
tual Event, April 25-29, 2022. OpenReview.net.
Huang, Z.; Shen, Y.; Zhang, X.; Zhou, J.; Rong, W.; and
Xiong, Z. 2023. Transformer-Patcher: One Mistake Worth
One Neuron. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.
Iyer, A.; Sharma, P.; Liang, P.; Xiong, C.; and Chen, X.
2017. Quora Question Pairs. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing (EMNLP).
Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.;
Bang, Y. J.; Madotto, A.; and Fung, P. 2023. Survey of hal-
lucination in natural language generation. ACM Computing
Surveys, 55(12): 1–38.
Jiang, A. Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.;
Chaplot, D. S.; Casas, D. d. l.; Bressand, F.; Lengyel, G.;
Lample, G.; Saulnier, L.; et al. 2023. Mistral 7B. arXiv
preprint arXiv:2310.06825.
Jiang, Y.; Wang, Y.; Wu, C.; Zhong, W.; Zeng, X.; Gao, J.;
Li, L.; Jiang, X.; Shang, L.; Tang, R.; et al. 2024. Learning to
edit: Aligning llms with knowledge editing. arXiv preprint
arXiv:2402.11905.
Levesque, H.; Davis, E.; and Morgenstern, L. 2012. The
winograd schema challenge. In Thirteenth international
conference on the principles of knowledge representation
and reasoning.

Levy, O.; Seo, M.; Choi, E.; and Zettlemoyer, L. 2017. Zero-
Shot Relation Extraction via Reading Comprehension. In
Proceedings of the 21st Conference on Computational Nat-
ural Language Learning (CoNLL 2017), 333–342.
Li, Q.; Liu, X.; Tang, Z.; Dong, P.; Li, Z.; Pan, X.; and Chu,
X. 2024a. Should We Really Edit Language Models? On the
Evaluation of Edited Language Models. In The Thirty-eighth
Annual Conference on Neural Information Processing Sys-
tems.
Li, S.; Deng, Y.; Cai, D.; Lu, H.; Chen, L.; and Lam, W.
2024b. Consecutive Batch Model Editing with HooK Lay-
ers. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, 13817–13833.
Li, X.; Li, S.; Song, S.; Yang, J.; Ma, J.; and Yu, J. 2024c.
Pmet: Precise model editing in a transformer. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, 18564–18572.
Ma, J.-Y.; Wang, H.; Xu, H.-X.; Ling, Z.-H.; and Gu, J.-
C. 2024. Perturbation-Restrained Sequential Model Editing.
arXiv preprint arXiv:2405.16821.
Manakul, P.; Liusie, A.; and Gales, M. 2023. SelfCheck-
GPT: Zero-Resource Black-Box Hallucination Detection for
Generative Large Language Models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, 9004–9017.
Meng, K.; Bau, D.; Andonian, A.; and Belinkov, Y. 2022.
Locating and editing factual associations in GPT. Advances
in Neural Information Processing Systems, 35: 17359–
17372.
Meng, K.; Sharma, A. S.; Andonian, A. J.; Belinkov, Y.; and
Bau, D. 2023. Mass-Editing Memory in a Transformer. In
The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.
Mitchell, E.; Lin, C.; Bosselut, A.; Finn, C.; and Manning,
C. D. 2022a. Fast Model Editing at Scale. In The Tenth In-
ternational Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net.
Mitchell, E.; Lin, C.; Bosselut, A.; Manning, C. D.; and
Finn, C. 2022b. Memory-based model editing at scale.
In International Conference on Machine Learning, 15817–
15831. PMLR.
Pan, K.; Fan, Z.; Li, J.; Yu, Q.; Fei, H.; Tang, S.; Hong,
R.; Zhang, H.; and Sun, Q. 2024. Towards Unified Multi-
modal Editing with Enhanced Knowledge Collaboration. In
The Thirty-eighth Annual Conference on Neural Information
Processing Systems.
Parzen, E. 1962. On estimation of a probability density func-
tion and mode. The annals of mathematical statistics, 33(3):
1065–1076.
Pearson, K. 1901. LIII. On lines and planes of closest fit
to systems of points in space. The London, Edinburgh,
and Dublin philosophical magazine and journal of science,
2(11): 559–572.
Rajpurkar, P. 2016. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250.

Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep models
for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in
natural language processing, 1631–1642.
Talmor, A.; Herzig, J.; Lourie, N.; and Berant, J. 2019. Com-
monsenseQA: A Question Answering Challenge Targeting
Commonsense Knowledge. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4149–4158.
Tan, C.; Zhang, G.; and Fu, J. 2024. Massive Editing for
Large Language Models via Meta Learning. In The Twelfth
International Conference on Learning Representations.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2019. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. In
International Conference on Learning Representations.
Wang, B. 2021. Mesh-Transformer-JAX: Model-Parallel
Implementation of Transformer Language Model with JAX.
Wang, P.; Li, Z.; Zhang, N.; Xu, Z.; Yao, Y.; Jiang, Y.; Xie,
P.; Huang, F.; and Chen, H. 2024. WISE: Rethinking the
Knowledge Memory for Lifelong Model Editing of Large
Language Models. arXiv preprint arXiv:2405.14768.
Wang, P.; Zhang, N.; Xie, X.; Yao, Y.; Tian, B.; Wang, M.;
Xi, Z.; Cheng, S.; Liu, K.; Zheng, G.; et al. 2023. Easyedit:
An easy-to-use knowledge editing framework for large lan-
guage models.
Wang, R.; and Li, P. 2024. LEMoE: Advanced Mixture of
Experts Adaptor for Lifelong Model Editing of Large Lan-
guage Models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, 2551–
2575.
Williams, A.; Nangia, N.; and Bowman, S. R. 2018. A
broad-coverage challenge corpus for sentence understand-
ing through inference. In 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT
2018, 1112–1122. Association for Computational Linguis-
tics (ACL).
Wu, X.; Li, J.; Xu, M.; Dong, W.; Wu, S.; Bian, C.; and
Xiong, D. 2023. DEPN: Detecting and Editing Privacy Neu-
rons in Pretrained Language Models. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, 2875–2886.
Yao, Y.; Wang, P.; Tian, B.; Cheng, S.; Li, Z.; Deng, S.;
Chen, H.; and Zhang, N. 2023. Editing Large Language
Models: Problems, Methods, and Opportunities. In Pro-
ceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, 10222–10240.

Yu, C.; Jeoung, S.; Kasi, A.; Yu, P.; and Ji, H. 2023. Un-
learning bias in language models by partitioning gradients.
In Findings of the Association for Computational Linguis-
tics: ACL 2023, 6032–6048.
Yu, L.; Chen, Q.; Zhou, J.; and He, L. 2024. Melo: En-
hancing model editing with neuron-indexed dynamic lora.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, 19449–19457.
Zhang, R.; Lin, L.; Bai, Y.; and Mei, S. 2024a. Negative
preference optimization: From catastrophic collapse to ef-
fective unlearning. arXiv preprint arXiv:2404.05868.
Zhang, T.; Chen, Q.; Li, D.; Wang, C.; He, X.; Huang, L.;
Xue, H.; and Huang, J. 2024b. DAFNet: Dynamic Auxil-
iary Fusion for Sequential Model Editing in Large Language
Models. arXiv preprint arXiv:2405.20588.
Zheng, C.; Li, L.; Dong, Q.; Fan, Y.; Wu, Z.; Xu, J.; and
Chang, B. 2023. Can We Edit Factual Knowledge by In-
Context Learning? In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 4862–4876.

Appendix
A Metrics
Edit Success (ES) measures whether the modified model
delivers the expected response for the editing instance:

ES =
1

|Xedit|
∑

(xe,ye)∈Xedit

I [fθ′(xe) = ye] (1)

Generalization Success (GS) evaluates whether the
changes made to the model generalize to variant inputs:

GS =
1

|E(xe)|
∑

x′
e∈E(xe)

I [fθ′(x′
e) = ye] (2)

where E(xe) represents the set of equivalent instance. These
are instances that express the same or closely related mean-
ing as the edited instance xe, such as paraphrased sentences
or reformulated questions.
Locality Success (LS) measures the extent that editing have
affected the original content within the model:

LS =
1

|U(xe)|
∑

xu∈U(xe)

I [fθ′(xu) = fθ(xu)] (3)

where U(xe) refers to the set of unrelated instance, which
are instances that are unrelated to the edited instance (xe, ye)
or its meaning.
Editing Score is calculated as the harmonic mean of ES,
GS, and LS.

In these metrics, I[·] denotes the indicator function, which
equals 1 if the condition inside is true, and 0 otherwise.

B Baselines
FT involves further training a pre-trained model on a spe-
cific task to adjust its parameters and modify its outputs in
a controlled manner. This enables FT to edit and optimize

the model for specific objectives without the need for full
retraining.
LoRA inserts low-rank adaptation matrices into a pre-
trained model, enabling efficient fine-tuning without altering
the original model weights. By leveraging these matrices,
LoRA captures key editing information, facilitating knowl-
edge modification while avoiding the large-scale parameter
updates typically needed in traditional fine-tuning methods.
MEND is a scalable model editing method that uses
auxiliary networks to transform fine-tuning gradients into
targeted updates, enabling fast and localized corrections
in large pre-trained models. It efficiently handles high-
dimensional gradients via low-rank decomposition, ensuring
reliability, locality, and generality in model edits.
MEMIT enables large-scale memory updates by directly
editing the parameters of critical MLP layers within trans-
former models. It leverages causal mediation analysis to
identify key layers for factual recall, distributes updates
across these layers to improve robustness, and applies ex-
plicit parameter optimization to integrate new knowledge
with minimal error.
PMET optimizes the hidden states of Transformer Com-
ponents while restricting updates to Feed-Forward Network
(FFN) weights by utilizing only the optimized FFN hidden
states as target knowledge representations, effectively avoid-
ing unnecessary modifications to Multi-Head Self-Attention
weights.
MALMEN achieves this by formulating parameter shift
aggregation as a least square problem to resolve conflicts
when editing multiple facts and decoupling computations
between the hypernetwork and the language model to mini-
mize memory usage and enable larger batch sizes
EMMET unifies ROME and MEMIT under the
preservation-memorization objective, enabling batched
edits with equality constraints for knowledge injection in
transformers. It matches MEMIT’s performance, effectively
bridging their theoretical and practical differences.

C Experimental details
All of our experiments are conducted on a single A800
GPU, and the hypernetwork comprises 2 MLP blocks. The
MLP layers in deep Transformers often capture the most
information-rich representations (Mitchell et al. 2022a).
Therefore, the editing module is implemented as the second
Feed-Forward Network (FFN) in the MLP layers of the last
six Transformer layers across all models.. The dataset splits
are as follows: the zsRE dataset consists of 155,648 training
samples and 16,384 evaluation samples, while the Counter-
Fact dataset has 8,192 samples for both training and eval-
uation. For the SelfCheckGPT dataset, there are 256 sam-
ples for training and 512 samples for evaluation. The learn-
ing rates are as follows: for SelfCheckGPT, all models use
a learning rate of 2e-5. For zsRE, all models use 1e-6. For
CounterFact, LLaMA2 uses a learning rate of 1e-5, Mistral
uses 1e-6, and GPT-J uses 2e-5.

D Evaluation
SST (Stanford Sentiment Treebank) (Socher et al. 2013)
is a sentiment analysis task that uses sentences from movie

reviews to classify the sentiment as either positive or nega-
tive. The dataset includes human-annotated sentiment labels
for each sentence.

MRPC (Microsoft Research Paraphrase Corpus) (Dolan
and Brockett 2005) is a benchmark for assessing semantic
equivalence between two sentences. The task is to determine
if two sentences have the same meaning or not.

MMLU (Massive Multi-task Language Understanding)
(Hendrycks et al. 2021) evaluates the performance of models
on a variety of tasks in both zero-shot and few-shot settings.
It tests a model’s ability to handle a broad range of tasks with
minimal task-specific training.

Sentiment Analysis (Go, Bhayani, and Huang 2009) fo-
cuses on classifying text according to its sentiment, such as
positive, negative, or neutral. It is often applied to user re-
views, social media, and product feedback.

NLI (Natural Language Inference) (Williams, Nangia,
and Bowman 2018) is a task that requires determining the
logical relationship between two sentences, such as whether
the premise supports, contradicts, or is neutral towards the
hypothesis.

MNLI (Multi-Genre Natural Language Infer-
ence) (Williams, Nangia, and Bowman 2018) is a variant
of NLI, where models must determine the entailment
relationship between sentence pairs from a wide range of
text genres, including fiction, government, and travel.

QNLI (Question Natural Language Inference) (Ra-
jpurkar 2016) converts SQuAD into a binary classification
task, where the model determines if a sentence contains the
answer to a given question, labeled as entailment or neutral.

QQP (Quora Question Pairs) (Iyer et al. 2017) is a text
similarity task where the model must identify whether two
questions on the Quora platform are paraphrases of each
other, i.e., if they express the same idea.

WNLI (Winograd Natural Language Inference)
(Levesque, Davis, and Morgenstern 2012) is a more difficult
variant of NLI, where models must resolve pronouns and
other linguistic ambiguities to determine if a sentence
entails or contradicts another.

CommonsenseQA (Talmor et al. 2019) is a question-
answering dataset that focuses on testing a model’s ability
to use commonsense reasoning to answer questions that re-
quire deeper understanding beyond surface-level patterns.

GSM8K (Grade School Math 8K) (Cobbe et al. 2021b) is
a dataset consisting of 8,000 math word problems designed
for evaluating a model’s ability to reason and solve grade-
school-level arithmetic problems.

Figure 4: Evaluation of post-edited model.

