Under review as a conference paper at ICLR 2026

GCSGNN: ToOWARDS GLOBAL COUNTERFACTUAL-
BASED SELF-EXPLAINABLE GRAPH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) exhibit superior performance in various graph-
based tasks, ranging from scene graph generation to drug discovery. However,
they operate as black-box models due to the lack of access to their rationale
for a specific prediction. To enhance the transparency of GNNs, graph coun-
terfactual explanation (GCE) identifies the minimal modifications to the input
graph that cause the GNN to change its prediction to a different class. Current
GCE methods face two major challenges: (1) they adopt a post-hoc explana-
tion paradigm by separately training an explainer model for a trained GNN. This
sequential optimization process yields suboptimal explanations since the GNN
training process is not exposed to the explainer. (2) Current methods are pri-
marily local-level approaches, which means that they generate explanations for
each input sample individually. As a result, they cannot capture the shared pre-
diction rationales that generalize across the entire input data distribution. To
address these two challenges, we propose a novel Global Counterfactual-based
Self-explainable GNN (GCSGNN) framework. GCSGNN can simultaneously act
as a GNN, providing predictions on input samples, and an explainer, generat-
ing explanations for its predictions. Furthermore, GCSGNN is trained to identify
common patterns in the GNN embeddings across input samples, enabling it to
learn global (i.e., model-level) explanations. Extensive qualitative and quanti-
tative analysis across various datasets demonstrates that our GCSGNN achieves
outstanding performance against the baseline methods. Our code can be found at
https://anonymous.4open.science/r/gcsgnn.

1 INTRODUCTION

Graph Neural Networks (GNNs) excel in a wide range of real-world applications, such as scene
graph generation (Wang et al., |2020; L1 et al., 2021), object detection (Shi & Rajkumar, 2020;
Han et al., 2022; Xiong et al., 2023), and drug discovery (Chen et al., 2023} [Tang et al.| 2023;
Fang et al 2023). Despite their effectiveness, a major challenge in deploying GNNs is the lack
of transparency in their predictions. GNNs are often regarded as black-box models because their
rationale for a specific prediction is largely inaccessible. This challenge becomes critical when
GNNs are employed in high-stakes scenarios, such as medical image analysis (Saueressig et al.,
2021} Zhang et al.,|2021)) and face anti-spoofing (Xu et al.,2024; Belli et al.,|2022).

Various approaches have been developed to explain GNN predictions (Yuan et al., 2022} [Shin et al.,
2024; |[Huang et al., [2022; [Schlichtkrull et al.| [2022; |Gui et al.l 2023), among which graph coun-
terfactual explanation (GCE) (Prado-Romero et al.} [2024) have gained increasing attention. GCE
aims to identify the minimal modifications needed to alter a GNN’s prediction, typically from an
undesired class to a desired one. For example, consider a GNN ¢ that predicts a graph to be un-
desired if it contains a pentagon motif. Thus, the input graph on the left in Fig. |1|is predicted to
be undesired (class 0) due to the pentagon subgraph, highlighted in blue. A GCE method obtains a
counterfactual explanation by removing a single node from the pentagon, breaking the motif with
minimal modification while flipping the prediction to the desired class.

https://anonymous.4open.science/r/gcsgnn

Under review as a conference paper at ICLR 2026

Although GCE is a promising solution to uncover GCE Model
GNNs’ internal prediction rationale, existing meth- y
ods face two major challenges: (1) Explainer Mis- {_J

'~

alignment. Most GCE methods are post-hoc, re-
lying on an external explainer model to generate
counterfactual explanations for a separately trained
GNN Lucic et al.| (2022)); Schlichtkrull et al.| (2022));
Zhang et al. (2023)). Consequently, this disconnect
often leads to unstable and inconsistent explanations
that provide limited insight into the model’s under-
lying decision process (Hajiramezanali et al., [2023;
Zhao et al., 2023} |/Agarwal et al.|[2023). (2) Limited
scope. Current approaches primarily generate individual (i.e., local-level) explanations for each in-
put graph, which can unveil instance-specific patterns. However, an explainer ideally should provide
broad insight on the prediction rationale through global explanations that apply across multiple sam-
ples in the input data distribution. For example, in drug discovery, the identification of a globally
effective counterfactual explanation provides pharmaceutical researchers with a single rule that can
be applied to thousands of candidate molecules. In comparison, performing a case-by-case analysis
of each compound to derive a locally effective counterfactual explanation is more time-consuming.

Removed X
¢(G) =0 Node ¢(G)=1

Figure 1: GCE toy example. The GNN clas-
sifies the original graph (left) as class 0. Af-
ter the GCE model removes a node in the
pentagon motif (highlighted in blue), the pre-
diction changes to class 1.

Recently, a new explanation strategy known as self-explainable GNNs (Dai & Wang, [2021}; Wei1
& Mel, 2024; Zhang et al., [2022) has been proposed, which effectively leverages the GNN’s opti-
mization trajectory to jointly learn an integrated explainer model. Specifically, explainability com-
ponents are integrated into the GNN and trained jointly, allowing the explainer to naturally access
and leverage the model’s internal representations. However, existing frameworks cannot be directly
applied to the GCE task, as most prior work focuses on factual explanations (Deng & Shen| 2024}
Liu et al.l 2024). These methods aim to identify subgraphs or entire input graphs that explain a
given prediction—that is, the key information responsible for the model’s current output—rather
than determining how to modify the input to change the prediction.

To address the aforementioned challenges, we propose a new explanation framework GCSGNN
(Global Counterfactual-based Self-explainable GNNs). Specifically, GCSGNN addresses the
first challenge by integrating counterfactual generation within a GNN model, following the self-
explainability paradigm. This allows the model to learn how to predict and explain simultaneously.
To address the second challenge, we aim to find global patterns by identifying frequently occurring
subgraphs that influence model prediction. The simplest solution is to create separate masks for
nodes, node features, edges, and edge attributes, and optimize for the largest change in prediction.
However, this method leads to combinatorial explosion, so we develop a three-step mechanism as a
proxy method: (1) identify the significant channels within the GNN’s graph embedding space; (2)
produce counterfactual embeddings by substituting values in those channels with targeted counter-
factual values; and (3) decode the counterfactual embeddings into graph structures to obtain the final
counterfactuals. We assume that this proxy method can approximate the former approach, allowing
GCSGNN to operate directly in the embedding space.

Our contributions are summarized as follows: (1) Theoretical Analysis: We provide a theoreti-
cal justification for why self-explainable methods can perform better than post-hoc methods. (2)
Algorithmic Design: We present a novel framework GCSGNN, which adopts a multi-step train-
ing mechanism to discover shared counterfactual patterns across multiple graphs simultaneously,
enabling efficient generation of global explanations. (3) Experimental Evaluation: We conduct
extensive experiments on various real-world datasets to demonstrate the effectiveness of GCSGNN
in generating valid global counterfactuals, outperforming other GCE methods.

2 PRELIMINARIES AND PROBLEM DEFINITION

In this section, we first define the notations used throughout the paper. Next, we propose the concept
of counterfactual graph embedding edits (CGEE). Finally, we formulate the problem of global self-
explainable graph counterfactual explanations.

Let G represent a graph with n different nodes, where G is drawn from a graph dataset G. We define
dx as the number of node features and dg as the number of edge features. Then, G = (X, A, E),

Under review as a conference paper at ICLR 2026

where X € R"*9x is the graph node feature matrix, A € R™*™ is the graph adjacency matrix, and
E € R™"*"xdr ig the graph edge feature matrix. We denote the GNN to be explained as ¢, which
consists of an encoder f. to encode the input graph G into a graph embedding and a predictor f, to
predict its label (i.e., O for undesired or 1 for desired).

Original Graph
As introduced in Section |1} we want to find global Original Emb. &
patterns in the graph dataset to create global coun- RN
terfactual explanations. Inspired by Huang et al. L]
5‘2023?’) a.md He §t al.| (2024), our solution is to find Counter. Graph [Tros []
rules”: identifying common subgraphs that appear Counter. Emb.

in multiple graphs and applying graph edits on those

subgraphs to change model predictions. A major

difference from previous work is that we want to

achieve our goal in a self-explainable manner, with- Figure 2: CGEE example. The CGEE re-
out a trained GNN to provide a training signal. A places the sub-embeddings located at the sig-
simple approach would be to create learnable masks hificant channels (“pos™) in the graph embed-
for X, A, and E and encourage these masks to iden- ~ ding to the counterfactual sub-embedding g.
tify the changes that cause a prediction change. However, this can lead to combinatorial explosion
and scales poorly with graph size. Thus, we propose a proxy method that exploits the embedding
space to find global patterns across multiple graphs. Because the training objective remains the same,
we assume that this method can approximate the former approach. The proxy method consists of
three steps: (1) locate the positions of channels within the GNN’s graph embedding space that sig-
nificantly influence graph prediction, (2) generate counterfactual sub-embedding vectors, whose di-
mensionality matches the number of significant channels, and substitute the original channel values
with these sub-embeddings to obtain counterfactual embeddings; and (3) decode the counterfactual
embeddings back into graph structures. The combination of the counterfactual sub-embeddings and
the specific channels they edit constitutes the global GCEs for the entire dataset. In contrast, the
decoded graphs for each individual input, produced from the counterfactual embeddings, serve as
the local GCEs corresponding to each input graph.

Formally, we explain the GNN predictions for an input graph set G globally by finding a small set
of counterfactual graph embedding edits (CGEEs), which is illustrated in Fig. 2] Each CGEE is
represented as a tuple s = (pos, g); where pos denotes the positions of the significant channels in
the graph embedding space, and g is the corresponding counterfactual sub-embedding vector. To
apply a CGEE to an input graph GG, we modify its graph embedding h within the GNN by replacing
the entries at the specified positions pos with the values from g, resulting in a modified embedding
hg,. Finally, we decode h, to generate the counterfactual graph Gs. The effectiveness of a CGEE
can be measured by its “‘coverage”, which is defined as follows:

Definition 1 Coverage of a CGEE Set. Given a GNN ¢, an input graph dataset G where each
graph G is classified by the GNN as undesired (i.e., $(G) = 0), and a CGEE set S, the “coverage”
of S is defined as the proportion of input graphs in G such that applying one CGEE produces
their corresponding “valid” counterfactuals (by “valid counterfactual,” we mean the generated
counterfactual is classified by the GNN as desired):

|G e g|¢(éé) = 1} for some s € S|
- 0] '

(D

coverage(S)

CGEE:s provide global counterfactual insights in an efficient manner because we can now explain
the GNN within its embedding space without making graph edits. Additionally, it enables self-
explainable GNNs by transforming the combinatorially complex problem of global explanation into
a simpler continuous optimization that can be jointly trained with the model. We define the problem
of self-explainable global counterfactual explanation as

Problem 1 (Global Self-Explainable Graph Counterfactual Explanation) Given an input graph set
G and a budget k < |G|, learn a self-explainable GNN ¢s : G — {0,1} such that, given an
input graph G, ¢s accurately predicts the graph label ya and provides a counterfactual with its
corresponding CGEE set S achieving optimal coverage:

r;lax|{G € Glos+(G) = ygl}l, st. S* = arg max coverage(S) and |S| = k.)
se

Under review as a conference paper at ICLR 2026

3 THEORETICAL ANALYSIS

In this section, we theoretically justify why self-explainable GNNs can perform better than post-
hoc methods. The main difference between the two types is that in self-explainable methods, the
explanation and prediction processes are allowed to interact. To complement our experimental setup,
assume that the GNN to be explained is our framework GCSGNN. Thus, we want to show that the
our approach can perform better than a post-hoc method applied to GCSGNN.

We define GCSGNN to have three componentsﬂ (1) the encoder f. takes the input graph G and
produces its graph embeddings, (2) the predictor f, accepts graph embeddings and predicts the
graph label, and (3) the counterfactual explainer module f. modifies the graph embeddings to obtain
the counterfactual graph embeddings, according to the proxy method mentioned in Section 2] Let
O, ©,, and O represent the parameter spaces for f., f,, and f. respectively. Now, we can define
two functions: f : G x ©, x ©, — [0, 1] to map the input graph to its label as f(G,0.,0,) =
fo(fe(Gl0)|0,), and f': G X O, x ©, x O, — [0, 1] to map the input graph G to its counterfactual
label as f'(G, 0,0, 0.) = fp(fe(fe(Gl6e)|0c)|0p). The notation f(G|6) represents a module given
a set of parameters 6. Lastly, let Y represent the graph label space, Y represent the counterfactual
label space, where Y=1- Y, and I(-, -) represent the measure of mutual information.

In Section[2] we assume that the proxy approach fe(fe(G0c)|0.) can approximate f.(g(G04)|0.)).
where g : G x ©, — G’ represents the global graph editing solution proposed earlier, where O, rep-
resents the parameter space of g. Thus, we rewrite f’ as f'(G, 8,0y, 0,) = fp(fe(9(G|04)|0e)|0,).
GCSGNN aims to find the set of parameters that maximizes both the mutual information between
the label and f and the mutual information between the counterfactual label and f.

(927 9;7 9;) = a’rg gma}g [I(Ya f(G7 963 0[))) + I()A/a f/(Gv 067 0}77 99))] (3)
In the post-hoc scenario, GCSGNN is trained first. Then, an explainer ¢’ : G x ©4 — G’ modifies
the input graph G to find the counterfactual graph, similar to g. Thus, its objective has two parts: first
optimize Eq.[3]to get the optimal parameters; then, it finds the parameters that maximizes the mutual

information between the counterfactual label and f: 0}, = argmaxg , I (Y, f(9(G|64), 67, 05))
Since the explainable component in GCSGNN is not used in post-hoc methods, the maximum mutual
information the post-hoc method offers is maxg , [[(Y, f(G,0;,0,)) + I(Y, f(g(G|8y), 67, 05))].
We want to prove that GCSGNN achieves better explanations than post-hoc methods, so

max [I(Y, f(G,0.,0,)) + (Y, f(G,0.,0,,0,)) >

o *)k % *)k (4)
max[I(Y, £(G,0:,67)) + IV, f(9(C6,),0:,67))
The RHS is a constrained optimization over the parameter space S’ = {(07,05,0,) : 0, € O4},

but the LHS is optimized over the unconstrained parameter space S = {(6.,6p,0,) : 0. € O.,0, €
©,,0, € ©,4}. Since S C S, for any function J : sup,cgJ(x) > sup,cg J(x) proving our
inequality above. Self-explainable methods jointly optimize multiple objectives, exploring a larger
parameter space for better trade-off between conflicting objectives compared to post-hoc methods.

4 METHODOLOGY

In this section, we first present an overview of the proposed framework GCSGNN. Then, we provide
a detailed illustration of the counterfactual generation process and the model objective function.

4.1 MODEL OVERVIEW

In this subsection, we introduce GCSGNN to solve Problem[I} As stated in Section [3} the model
consists of four components: (1) the Graph Encoder (f.) processes input graphs into graph embed-
dings, (2) CGEE Generator (f.) creates counterfactual embeddings by locating and replacing sig-
nificant channels in the graph embedding space with counterfactual sub-embeddings, (3) the Graph

'GCSGNN also has a fourth component but it is not mentioned here as it is not relevant to the analysis

Under review as a conference paper at ICLR 2026

Input Graphs Original Emb. Decoded Outputs
ooy 2 (T EE— ! {"Orig. Graphs Counter. Graphs)
i : I i Decoder ! ovo |
i . i=>» Encoder —>! . i=> and ! h(’m@ ol h i
! < ! ! e i Predictor | . !
Y | b ey w j
A N S e o1~/ Y At O B
Sig. Sub-emb. Filtering (SSF) Counter. Sub-emb. Insertion (CSI)
T T N ,"— ----------------------------- \| ,____le___\
E E i i :, >Removed Node\:
i Matrix Filtering T :_): Sub-embs. Insertlon 1™ | -~ Removed Edge |
! . -> 2 b M7, . -> || ®AddedNode |
! (=M. M) he ! E (Hgl: + i '\\ —Added Edge }
\ == | Counter. Emb.} ~ "=77777=""" ‘

Figure 3: A overview of the proposed GCSGNN model.

Decoder (f;) reconstructs graphs from both graph and counterfactual embeddings, and (4) Graph
Predictor (f,) classifies the embeddings of the original and counterfactual graphs. This architec-
ture allows GCSGNN to simultaneously learn to classify graphs and generate global counterfactual
explanations, integrating self-explainability and global-level explanations into a single framework.

4.2 CGEE GENERATION

In Section 2] we define global self-explainable graph counterfactual explanations for a graph dataset
G as a small set of Counterfactual Graph Embedding Explanations (CGEEs). To learn the CGEEs,
we first represent the set of k CGEEs (pos;, gi)f: 1 using two learnable matrices: matrix M encodes
all significant channel positions {pos; }¥_, and matrix S contains the counterfactual sub-embeddings
{&:}F_,. M € R*4:xk jg 3 3-d tensor, where d is the dimension of graph embedding and d is
the dimension of the significant sub-embeddings. Each slice M. . ; € R%*% saves the significant
channel information pos; of the ith CGEE. Specifically, M. . ; is a binary matrix where each column

is a one-hot vector (e.g., [0,1,...,0] € R?) representing the position of one significant channel in
the d-dimensional graph embedding vector of the GNN. Given a graph embedding hg € R? of
input graph G, we use the mask tensor M to zero out the significant channels in he with [Hy,]; =
I-M. ;- MTZ) ~hg,Vi € {1,2,...,k}, where I € R9*4 is the identity matrix. Now the
[H]; € R? is the vector hg with all channels of pos; being zero. To finish applying the CGEE
(pos;, i), we only need to insert the counterfactual sub-embedding g; into the zeroed-out positions
in [H];. The matrix S € R% ** is defined to save each g; in its ith row, i.e., S; = g;. Thus, we only
need to scatter the values to the positions of the significant channels by multiplying by MT ; and
adding the masked graph embedding vector [Hg]; by [Hgl; = [Hi)i+ +MT -8, Vi e {1,2,...,k}.
Letting f, represent the predictor module, we define the global-level GCE loss function as

Lom—io ST log PU([HGL) = 1), 5)

k|9 ie{1,....k},GEG

4.3 COUNTERFACTUAL GRAPH RECONSTRUCTION

The graph decoder accepts both the graph embedding He € R and its corresponding counterfactual
embeddings Hg € RY** where each column hi € R? represents an embedding of a counterfactual

graph. It decodes embeddings into graph structure G = (X, A, E} or {G; = (X;, A;, E;)}F_,. Our
decoder design draws inspiration from reverse engineering the encoding process of input graphs into
graph embeddings. The decoder minimizes the reconstruction loss £,. on the graph embeddings:

»Cr = ET,A + »CT,E + 'CT,Xa (6)
. We describe the decoder and its loss function in detail in Appendix

Under review as a conference paper at ICLR 2026

Table 1: Performance of GCSGNN compared to baselines. Results are averaged over 5 runs. Bold
indicates best results; underlined marks runner-ups. Note that coverage is the primary metric, as low
coverage can artificially produce low proximity. "OOT” denotes experiments exceeding 72 hours.

AIDS BZR_MD CIFARI10 MNIST MUTAG
CF-GNNEx. Cov. 0.00 £0.00 10.28 + 1.45 5.35+0.68 2.97 £0.30 20.00 £ 1.92
Prox. n/a 11.37 £0.13 66.64 +0.11 85.40+0.12 9.53+0.30
GCFEx. Cov. 1.07£0.27 90.59 +3.41 OO0T O0T 14.50 £ 5.26
Prox. 1290+1.14 9.58+0.23 OO0T OO0T 8.31 +0.31
GNNEx. Cov. 0.00%0.00 0.00£0.00 43.71+14.82 13.09+1.62 41.28+14.92
Prox. n/a n/a 109.07 £ 1.23 86.68 +£0.09 16.34 £ 0.40
InduCE Cov. 0.00+0.00 0.39 +0.47 OO0T OO0T 0.00 +0.00
Prox. n/a 1.00 £+ 0.00 OoOoT ooT n/a
ProtGNN Cov. 5.00+8.42 0.28 £0.56 0.00 = 0.00 0.00 £ 0.00 0.17 £0.34
Prox. 9.94+0.97 13.02+0.00 n/a n/a 9.55 £ 0.00
GCSGNN Cov. 97.68+1.90 99.01+0.56 97.63+2.74 99.99 + 0.02 98.63 = 2.74

Prox. 14.64+047 1437+0.61 13.21+349 58.26+11.23 14.29+0.26

4.4 MODEL OBJECTIVE FUNCTION

Following Problem [I] our goal is to optimize the GNN’s accuracy in graph classification and the
coverage of its CGEE set on the graph dataset. For graph label prediction accuracy, we optimize
1
Ly=—1g > log P(f,(he) = ye). (7)
Geg

For maximal GCE performance, we optimize counterfactual prediction loss £. and reconstruction
loss £,.. In conclusion, we jointly optimize the three loss objectives: £ = aLy + BL. 4+ yL,. Here,
«, [and ~y are hyperparameters controlling effect of the respective losses during training. We also
add some regularization for the two matrices M and S, see Appendix [A.T]

5 EXPERIMENTS

In this section, we first introduce the datasets and baselines used to evaluate GCSGNN. Then, we
conduct extensive experiments to answer the following four research questions: RQ1: How does
GCSGNN perform compared to state-of-the-art baselines under the introduced evaluation metrics?
RQ2: How does the self-explainability in GCSGNN and each of its components contribute to model
performance? RQ3: Can GCSGNN provide global insights from its generated global counterfactual
explanations? RQ4: How can varying hyperparameters affect the performance of GCSGNN?

5.1 EXPERIMENT SETUP

[3:1)1 Datasets. We use five real-world datasets: AIDS, BZR_MD, CIFAR10, MNIST, and MU-
TAG (Morris et al., [2020; |Alex} 2009; Deng, [2012)). For AIDS, BZR _MD, and MUTAG, each graph
represents a chemical compound with the nodes being the atoms and the edges being the bonds. For
CIFAR10 and MNIST, each graph is an image, with the pixels as nodes and edges connecting the
surrounding pixels. For each dataset, we designate the class with more data samples to be undesired.

2 Baselines. We adopt five state-of-the-art methods: (1) CF-GNNExplainer (Lucic et al.| [2022)
is a local GCE method designed for node classification tasks. Here, we adapt it for graph clas-
sification by treating the entire graph as the input and using graph labels instead of node labels.
(2) GCFExplainer (Huang et al., |2023a)), a global-level GCE approach, finds counterfactuals by
perturbing the original graph based on a vertex-reinforced random walk. (3) GNNExplainer (Ying
et al.| [2019) generates local graph factual explanations (i.e., existing subgraphs in the input graph
that cause a specific prediction). We modify the loss function to generate counterfactual explana-
tions instead. (4) InduCE (Verma et al., |2024) is an inductive algorithm, relying on policy learning

Under review as a conference paper at ICLR 2026

Table 2: Wall clock time comparison (seconds). “OOT” denotes experiments that exceed 72 hours.
CF-GNNEx. GCFEx. GNNEX. InduCE ProtGNN GCSGNN
AIDS 23,383.57 11,019.28 32,290.08 17,540.93 7,143.28 424.79
BZR-MD 4,845.38 10,774.47 1,414.61 23,906.83 172.88 53.79
CIFARIO 126,045.10 ooT 74,170.64 O0T 10,306.27 37,937.61
MNIST 234,131.72 ooT 104,653.95 ooT 11,250.41 38,150.47
MUTAG 1,482.40 5,524.75 2,486.33 2,9194.48 349.16 35.43

to generate counterfactuals at the node level. We apply the same adaptation as before to enable
graph-level tasks. (5) ProtGNN (Zhang et al.| 2022)) incorporates learnable prototypes to generate
global factual explanations. Thus, we modify the loss function to optimize for global counterfactual
explanations. For post-hoc approaches, we use a trained GCSGNN as the GNN to be explained.

[5:1)3 Evaluation. We use coverage and proximity as our evaluation metrics. Coverage is the percent-
age of undesired input graphs that a GCE method can generate a valid counterfactual. Here, valid
counterfactuals are those that are predicted as the desired class. Proximity is defined as the graph edit
distance, which is the number of modifications required to transform the input graph into its coun-
terfactual. Both the node features and edge attributes matrices are converted into one-hot vectors,
and we use the squared sum to calculate proximity between the input graph and its counterfactual.

5.2 RQ1: PERFORMANCE OF DIFFERENT METHODS

Table [I] compares GCSGNN with the baselines. We observe the following: 1) Superior Global
Performance. Compared to the global methods, GCFExplainer and ProtGNN, GCSGNN exhibits
superior performance on all datasets. Additionally, GCSGNN performs well on the image datasets in
a reasonable amount of time, whereas the two baselines do not satisfy either coverage or time costs.
2) Effectiveness. Only comparing proximity is not as accurate because low coverage can artificially
produce low proximity. Thus, considering the coverage, GCSGNN can explain more graphs while
maintaining a reasonable proximity to the original graphs compared to the baselines. Moreover, it
achieves the lowest proximity and the highest coverage on the image datasets.

5.3 RQ2: BENEFITS OF SELF-EXPLAINABILITY

Beyond evaluation metrics, we also investigate whether self-explainable GNNs offer additional ad-
vantages over post-hoc methods. One observation is that GCSGNN requires less training time while
maintaining similar, or better, performance. Table 2] shows the running time for GCSGNN and the
baselines. In general, ProtGNN and GCSGNN are faster than the post-hoc methods.

Another observation is that despite incorporating self-explainability, the model can maintain rela-
tively high accuracy. Table [3] shows the accuracy of GCSGNN on different datasets, suggesting
that existing GNN models can become more interpretable with negligible decrease in performance.
Lastly, we perform an ablation study to understand how different components contribute to GCS-
GNN’s performance. In Fig.[d] we compare the coverage of the following variations: GCSGNN-NC
(No Counterfactuals), GCSGNN-ND (No Decoder), GCSGNN-NE (No Encoder), and GCSGNN-
NP (No Predictor). Each variation is obtained by freezing the respective component. For example,
for GCSGNN-NC, the randomly initialized learnable parameters M and S are frozen during train-
ing. Likewise, GCSGNN-ND freezes the randomly initialized decoder when training.

Table 3: Training, validation, and testing accuracy for GCSGNN on each dataset. “Train,” “Val,”
and “Test” refers to “Training,” “Validation,” and “Testing.”
Train. Val. Test.
AIDS 98.17+0.87 98.07+1.18 98.28 +1.49
BZRMD 70.00+2.12 6535+4.59 74.57+2.77
CIFARI0O 98.85+0.18 9893+0.21 98.88+0.63
MNIST. 82.76 £0.68 83.57+1.07 81.89+1.30
MUTAG 8554 +1.52 84.65+3.48 87.80+3.45

We can observe that all components play a significant role in counterfactual generation. GCSGNN-
NC exhibits poor coverage due to the noise created by the randomized M and S. Additionally,

Under review as a conference paper at ICLR 2026

AIDS MUTAG
10| #int_+2785.0% 100] #23.1% +27.1% 100[+337.2% +240.7% 100] +388.4% +21.2%

7

80

AN

60

/ 60
/ 20

40

20

SN\
NN\
SN\

7

0" ADS MUTAG AIDS MUTAG AIDS MUTAG AIDS MUTAG
(a) GCSGNN v.s. GCSGNN-NC (b) GCSGNN v.s. GCSGNN-ND () GCSGNN v.s. GCSGNN-NE (d) GCSGNN v.s. GCSGNN-NP

Figure 4: Effectiveness GCSGNN’s components (shadowed bars are the coverage of GCSGNN).

freezing the encoder causes poor graph embedding representations, which then affects the model’s
ability to learn the shared counterfactual patterns. The effects of removing the learnable parameters
and encoder are much larger than removing the decoder and predictor, likely due to the former com-
ponents being closer to the inputs, so their intermediate outputs are used to train other components.

5.4 RQ3: CASE STUDY

To evaluate GCSGNN’s ability to generate global counterfactuals, we examine example outputs of
GCSGNN, shown in Fig. [5] The figure shows four original images of class 0 from the MNIST
dataset Deng| (2012)) with their counterfactuals generated by GCSGNN. For visualization purposes,
any negative node attributes in the counterfactual images are replaced with zeros (black). GCSGNN
assigns the first two graphs (Fig. E](a) and (b)) to one counterfactual sub-embedding and the last two
(Fig.[3] (c) and (d)) to another. Notably, original graphs in (a) and (b) look similar to each other, as
do those in (c) and (d), demonstrating that GCSGNN successfully recognizes and clusters similar
graphs through its sub-embeddings. The generated counterfactuals show that the model attempts
to modify each input graph to resemble the digit one. Counterfactuals in (a) and (b) are nearly
identical, as are those in (c) and (d), due to the adoption of the same respective sub-embeddings.
This demonstrates that GCSGNN not only identifies subtle differences between input graphs but
also modifies them systematically, ensuring that similar graphs receive similar modifications.

(a) (b)
-
(© (d)

Figure 5: Each subfigure contains a data sample from MNIST with the label O (left) and its coun-
terfactual (right) generated by GCSGNN, which should belong to class 1. Graphs (a) and (b) are
derived from the same counterfactual sub-embedding, and likewise for (c) and (d).

5.5 RQ4: PARAMETER ANALYSIS

To test for the effectiveness of using sub-embeddings, we evaluate GCSGNN under varying hyper-
parameter settings. Specifically, we test the number of sub-embeddings (k = {2, 3,4,5}) and the
sub-embedding dimension (ds = {1, 2, 3,4}) on the BZR_MD dataset. Through our parameter anal-
ysis, shown in Fig. @ we conclude with the following observations: (1) Number of sub-embeddings
k: The performance of GCSGNN peaks at k = 2, as seen in the left of Fig.[6] which is logical due to
the size of the dataset. Once k exceeds the optimal value, it may lead to repetitive sub-embeddings
and hinder model performance, as shown through the general decrease in both coverage and accu-

Under review as a conference paper at ICLR 2026

-@- Accuracy —— Coverage

0.85 100.0 0.85 100.0
‘\l/k\ 97.5 L/HK/A 97.5
0.80 0.80
95.0 95.0
Iy L 2 &
g g g I
£0.75 925 8 5075 925 &
Q o Q o
< O <]
90.0 90.0
0.70 0.70
87.5 87.5
0.65 5 3 P : 85.0 0.65 5 3 P 85.0
(a) Num. sub-patterns (K) (b) Sub-pattern dimension (ds)

Figure 6: Coverage and accuracy on the BZR_MD dataset for varying k and d values.

racy. (2) Sub-embedding dimension d: The right of Fig.[6]shows that the model performs the best
when ds, = 4. BZR_MD has an average of 21.30 nodes and 225.06 edges, which is relatively dense.
Thus, it requires more edits to the graph to generate counterfactuals, hence the need for a larger d.

6 RELATED WORKS

6.1 POST-HOC COUNTERFACTUAL-BASED EXPLANATIONS

As mentioned earlier, post-hoc methods refer to approaches in which an external explainer model is
used to interpret the predictions of a pre-trained GNN Lucic et al.|(2022); Schlichtkrull et al.|(2022);
Zhang et al.| (2023)); Ma et al.| (2022); [Huang et al.[|(2023a); Ying et al.| (2019); |Verma et al.| (2024).
Most works train the explainer to find the minimum changes to an input graph (local explanations) or
a subgraph within it (global explanations) to cause the GNN to change its prediction. For example,
CF_GNNExplainer (Lucic et al.,|2022) removes edges from the graph adjacency matrix to create the
counterfactual graph. In addition to the local GCE methods, there is only one global GCE method
in the literature: GCFExplainer (Huang et al., [2023b). GCFExplainer explores the input graph
domain space to find counterfactuals representative of the input graphs (i.e., counterfactuals that
are similar to many input graphs). Despite ongoing efforts, there are currently no self-explainable
counterfactual-based GNNs. GCSGNN is designed to fill this gap by exploring such models and
evaluating how they compare to post-hoc explanation methods.

6.2 GLOBAL SELF-EXPLAINABLE PROTOTYPE GNNSs

Global self-explainable GNNs are mainly understudied. Some recent work uses prototypes as a
global explanation method (Zhang et al.,|2022; Ragno et al. 2022} |Gautam et al., [2022; |Shin et al.,
2024). Prototypes are exemplar graphs that are representative of the input data distribution. Prot-
GNN (Zhang et al.l 2022) learns the latent representation of prototypes by minimizing the similar-
ity between the input graph embeddings and the prototype embedding while maintaining diversity
between different prototypes. They apply the Monte Carlo tree search algorithm to project the pro-
totype embeddings onto the input graphs to obtain their graph representations. ProtoVAE (Gautam
et al., |2022) furthers ProtGNN by incorporating an autoencoder. By doing this, the framework
uses the decoder to obtain the graph representation of the prototype embeddings and eliminate the
prototype projection step. Like these methods, GCSGNN uses learnable parameters to learn the
counterfactual sub-embeddings to generate counterfactual latent embeddings.

7 CONCLUSION

This paper proposes a novel framework termed GCSGNN for global-level self-explainable graph
counterfactual explanation. It integrates the counterfactual generation process directly into the ar-
chitecture by utilizing the graph embedding space to generate global explanations, addressing the
limitations of post-hoc approaches. Through extensive experiments on various real-world datasets,
we demonstrate that GCSGNN achieves superior performance compared to the baseline methods.

Under review as a conference paper at ICLR 2026

REFERENCES

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. Evaluating explainability
for graph neural networks. Scientific Data, 10(1):144, 2023.

Krizhevsky Alex. Learning multiple layers of features from tiny images. https://www. cs. toronto.
edu/kriz/learning-features-2009-TR. pdf, 2009.

Davide Belli, Debasmit Das, Bence Major, and Fatih Porikli. A personalized benchmark for face
anti-spoofing. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 338-348, 2022.

Saian Chen, Aziguli Wulamu, Qiping Zou, Han Zheng, Li Wen, Xi Guo, Han Chen, Taohong Zhang,
and Ying Zhang. Md-gnn: A mechanism-data-driven graph neural network for molecular proper-
ties prediction and new material discovery. Journal of Molecular Graphics and Modelling, 123:
108506, 2023.

Enyan Dai and Suhang Wang. Towards self-explainable graph neural network. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management, pp. 302-311,
2021.

Jiale Deng and Yanyan Shen. Self-interpretable graph learning with sufficient and necessary ex-
planations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
11749-11756, 2024.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Process. Mag., 2012.

Yi Fang, Xiaoyong Pan, and Hong-Bin Shen. De novo drug design by iterative multiobjective deep
reinforcement learning with graph-based molecular quality assessment. Bioinformatics, 39(4):
btad157, 2023.

Srishti Gautam, Ahcene Boubekki, Stine Hansen, Suaiba Salahuddin, Robert Jenssen, Marina
Hohne, and Michael Kampffmeyer. Protovae: A trustworthy self-explainable prototypical varia-
tional model. Advances in Neural Information Processing Systems, 35:17940-17952, 2022.

Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, and Shuiwang Ji. Flowx: Towards ex-
plainable graph neural networks via message flows. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

Ehsan Hajiramezanali, Sepideh Maleki, Alex Tseng, Aicha BenTaieb, Gabriele Scalia, and Tom-
maso Biancalani. On the consistency of gnn explainability methods. In NeurlPS 2023 Workshop:
New Frontiers in Graph Learning, 2023.

Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. Vision gnn: An image is worth
graph of nodes. Advances in neural information processing systems, 35:8291-8303, 2022.

Yinhan He, Wendy Zheng, Yaochen Zhu, Jing Ma, Saumitra Mishra, Natraj Raman, Ninghao Liu,
and Jundong Li. Global graph counterfactual explanation: A subgraph mapping approach. arXiv
preprint arXiv:2410.19978, 2024.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local inter-
pretable model explanations for graph neural networks. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6968-6972, 2022.

Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Global counterfactual ex-
plainer for graph neural networks. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining, pp. 141-149, 2023a.

Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Global counterfactual ex-

plainer for graph neural networks. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining, pp. 141-149, 2023b.

10

Under review as a conference paper at ICLR 2026

Rongjie Li, Songyang Zhang, Bo Wan, and Xuming He. Bipartite graph network with adaptive mes-
sage passing for unbiased scene graph generation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11109-11119, 2021.

Yixin Liu, Kaize Ding, Qinghua Lu, Fuyi Li, Leo Yu Zhang, and Shirui Pan. Towards self-
interpretable graph-level anomaly detection. Advances in Neural Information Processing Systems,
36, 2024.

Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio Silvestri.
Cf-gnnexplainer: Counterfactual explanations for graph neural networks. In International Con-
ference on Artificial Intelligence and Statistics, pp. 4499-4511. PMLR, 2022.

Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. Clear: Generative
counterfactual explanations on graphs. Advances in neural information processing systems, 35:
25895-25907, 2022.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www .
graphlearning.io.

Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. A survey
on graph counterfactual explanations: definitions, methods, evaluation, and research challenges.
ACM Computing Surveys, 56(7):1-37, 2024.

Alessio Ragno, Biagio La Rosa, and Roberto Capobianco. Prototype-based interpretable graph
neural networks. IEEE Transactions on Artificial Intelligence, 5(4):1486-1495, 2022.

Camillo Saueressig, Adam Berkley, Reshma Munbodh, and Ritambhara Singh. A joint graph and
image convolution network for automatic brain tumor segmentation. In International MICCAI
Brainlesion Workshop, pp. 356-365. Springer, 2021.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for
nlp with differentiable edge masking, 2022.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point

cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 1711-1719, 2020.

Yong-Min Shin, Sun-Woo Kim, and Won-Yong Shin. Page: Prototype-based model-level explana-
tions for graph neural networks. IEEE transactions on pattern analysis and machine intelligence,
2024.

Miru Tang, Baiqing Li, and Hongming Chen. Application of message passing neural networks for
molecular property prediction. Current Opinion in Structural Biology, 81:102616, 2023.

Samidha Verma, Burouj Armgaan, Sourav Medya, and Sayan Ranu. Induce: Inductive counter-
factual explanations for graph neural networks. Transactions on Machine Learning Research,
2024.

Ruize Wang, Zhongyu Wei, Piji Li, Qi Zhang, and Xuanjing Huang. Storytelling from an image
stream using scene graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 9185-9192, 2020.

Feifei Wei and Kuizhi Mei. Towards self-explainable graph convolutional neural network with
frequency adaptive inception. Pattern Recognition, 146:109991, 2024.

Shimin Xiong, Bin Li, and Shiao Zhu. Dcgnn: A single-stage 3d object detection network based
on density clustering and graph neural network. Complex & Intelligent Systems, 9(3):3399-3408,
2023.

Junfeng Xu, Weiguo Lin, Wenqing Fan, Jia Chen, Keqiu Li, Xiulong Liu, Guangquan Xu, Shengwei

Yi, and Jie Gan. A graph neural network model for live face anti-spoofing detection camera
systems. IEEFE Internet of Things Journal, 2024.

11

www.graphlearning.io
www.graphlearning.io

Under review as a conference paper at ICLR 2026

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE transactions on pattern analysis and machine intelligence, 45(5):
5782-5799, 2022.

Jiaxing Zhang, Zhuomin Chen, Hao Mei, Dongsheng Luo, and Hua Wei. Regexplainer: Generating
explanations for graph neural networks in regression task. arXiv preprint arXiv:2307.07840,
2023.

Yu-Dong Zhang, Suresh Chandra Satapathy, David S Guttery, Juan Manuel Goérriz, and Shui-Hua
Wang. Improved breast cancer classification through combining graph convolutional network and
convolutional neural network. Information Processing & Management, 58(2):102439, 2021.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqgiang Lu, and Cheekong Lee. Protgnn: Towards self-
explaining graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 9127-9135, 2022.

Tianxiang Zhao, Dongsheng Luo, Xiang Zhang, and Suhang Wang. Towards faithful and consis-
tent explanations for graph neural networks. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pp. 634-642, 2023.

12

Under review as a conference paper at ICLR 2026

Table 4: Metadata of the adopted real-world datasets. Av. Nodes and Av.Edges are the average
number of graph nodes and edges
Dataset ~ Num. Graphs Ave. Nodes Ave. Edges

AIDS 2,000 15.69 16.20
BZR_MD 306 21.30 225.06
CIFARI10 60,000 400.00 1425.00

MNIST 70,000 400.00 1425.00
PTC_FM 349 14.11 14.48

A REPRODUCIBILITY

In this section, we provide more details of model implementation and experiment setup of our eval-
uation results.

A.1 ADDITIONAL PENALTIES IN OUR GCSGNN

According to the definition of the mask matrix M in Section forany i € {1, ..., k}, each column
of M. . ; is one-hot (i.e., contain only a single “one” while all other entries are zero), indicating that
M..; ‘can only have ds number of ones; otherwise the M is infeasible. Therefore, we employ a
penalty loss £,,, defined as

L, =%k 2 1 m}?XMp7l_¢|+|leZ;1|MH-]. (8)

Here, the first term |1 — max, M, ; ;| is to draw the maximum value of the /th column of the matrix

M. . ; be close to 1, while the second term |1 — Eﬁ;l |M,, ;.|| aims to ensure the column summation
of the Ith column of matrix M. . ; be close to one. With the two penalty terms combined, we can
successfully penalize each column of each column of M. . ; of the mask matrix M is one-hot.

Furthermore, in a satisfactory CGEE set, intuitively we require that different CGEEs should be
diverse in both the significant channels to edit and their coutnerfactual sub-embeddings to guarantee
that each CGEE can cover different input graphs in the input graph dataset G, which is beneficial
for the CGEE set to cover the same amount of input graphs with compact number of CGEEs. To
encourage the diversity of the CGEEs, we expand the sub-embeddings by multiplying it with the
masks: sm = S x MT and compute the loss £; as

1 T
Ei:?dSZ‘smxsm — I.d|,)

where d = 26:1 SJQ-,M,V]' €{1,2,...,dn}, VI € {1,2,...,d,}. Forcing the diagonal to equal the
squared sum of each pair ensures that values in M are binary.
Lastly, to minimize the distance between the embeddings of desired graphs hy,g € Gy, (where

Gy, is the set of the indices of desired graphs) and the sub-embeddings. we propose L. using the
expanded sub-embeddings sm as

L= ! Z mjin(h,% 2(hg x smj) + sm3) (10)

|GYd | QEGYd

This is to ensure the sub-embeddings are learning the specific features of the desired class.

A.2 IMPLEMENTATION DETAILS FOR THE GRAPH DECODER

As shown in Fig. |7} we first transform each graph emnedding flg using a Multi-Layer Perceptron
(MLP) to create combined node-edge representations C; € R™*? (n is the number of nodes in the

graph G). We then utilize another MLP to extract pure node embeddings N; € R™ 4 from these
combined representations Once we have the node embeddings, we can derive the aggregated edge

embeddings Eagg i € R4 by 31mp1y subtractlng the node embeddings from their corresponding
combined representations: Eagg ; = C; — N;. With both node and edge embeddlngs available,
we can decode the original input node features X; € Rm*nxds gpd edge features E; € Rvxnxds

13

Under review as a conference paper at ICLR 2026

ChD] o
Ul g

Expand Separate
Emb. D Emb. nge %b
graph expanded I—) llgga\gte __________)
emb emb. D D DS generated

edge emb. counter. graph

Figure 7: Illustration of f; on how it reconstructs graphs from graph embeddings

using two separate MLPs. The adjacency matrix A; € {0,1}™*"™ defining the graph structure is
ultimately determined by identifying all edges whose corresponding edge features are nonzero. We
use reconstruction loss to train our graph decoder:

Er = ET,A + LT‘,E + ET,X} (11)

Specifically, £, 4 is computed in binary entropy

n n

Lra nzzz —wa;- Ra,,), (12)

=1 j=1

where Ra,, = A;jlog(A};) + (1 — Aij)log(1 — A};). For L, g, we adopt multi-class cross en-

tropy loss
Lrp= Z Z ~wp g, - Ra,), (13)
Zl 1 WE, =1 j=1
exp E
with Rg,; = log ijkg) The loss for node features depends on if the node features
exp Ej ;.

are labels (i.e. discrete) or features (i.e. continuous). If the node features are labels, we can use
multi-class cross entropy loss like before

n

1
Lrx =g > (—wxx, - Rx), (14)

X .
j=1WX,j =1

exp X! i_x. .
where Ry, = log | —gx——i— |. Otherwise, we use Ly norm
2jZ exp X

zn:z . (15)

i=1 j=1

L. x

A.3 GCSGNN HYPERPARAMETERS

Here, we provide the best hyperparameters for each dataset. (1) AIDS. For AIDS, we set the learning
rate to 0.001, weight decay to 0.01, training epochs to 300, & to 3, ds to 1, and dropout to 0.3. (2)
BZR MD. For BZR_MD, we set learning rate to 0.01, weight decay to 0.01, training epochs to 300,
k to 2, ds to 4, and dropout to 0.0. (3) CIFAR10. For CIFAR10, we set learning rate to 0.001,
weight decay to 0.0001, training epochs to 100, k to 3, d, to 1, and dropout to 0.3. (4) MNIST. For
MNIST, we set learning rate to 0.001, weight decay to 0.01, training epochs to 100, k to 3, ds to 1,
and dropout to 0.3. (5) MUTAG. For MUTAG, we set learning rate to 0.01, weight decay to 0.01,
training epochs to 200, & to 3, d; to 3, and dropout to 0.3.

14

	Introduction
	Preliminaries and Problem Definition
	Theoretical Analysis
	Methodology
	Model Overview
	CGEE Generation
	Counterfactual Graph Reconstruction
	Model Objective Function

	Experiments
	Experiment Setup
	RQ1: Performance of Different Methods
	RQ2: Benefits of Self-Explainability
	RQ3: Case Study
	RQ4: Parameter Analysis

	Related Works
	Post-hoc Counterfactual-based Explanations
	Global Self-Explainable Prototype GNNs

	Conclusion
	Reproducibility
	Additional Penalties in Our GCSGNN
	Implementation Details for the Graph Decoder
	GCSGNN Hyperparameters

