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ABSTRACT

Large language models (LLMs) and vision language models (VLMs) demonstrate
excellent performance on a wide range of tasks by scaling up parameter counts
from O(109) to O(1012) levels and further beyond. These large scales make it
impossible to adapt and deploy fully specialized models given a task of interest.
Parameter-efficient fine-tuning (PEFT) emerges as a promising direction to tackle
the adaptation and serving challenges for such large models. We categorize PEFT
techniques into two types: intrusive and non-intrusive. Intrusive PEFT techniques
directly change a model’s internal architecture. Though more flexible, they in-
troduce significant complexities for training and serving. Non-intrusive PEFT
techniques leave the internal architecture unchanged and only adapt model-external
parameters, such as embeddings for input. In this work, we describe AdaLink as a
non-intrusive PEFT technique that achieves competitive performance compared to
SoTA intrusive PEFT (LoRA) and full model fine-tuning (FT) on various tasks. We
evaluate using both text-only and multimodal tasks, with experiments that account
for both parameter-count scaling and training regime (with and without instruction
tuning).

1 INTRODUCTION

While large language models (LLMs) (Vaswani et al., 2017; Raffel et al., 2020; Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023; Anil et al., 2023) and vision-language models (VLMs)
(Alayrac et al., 2022; Li et al., 2023; Wang et al., 2022a; Chen et al., 2023b) have recently demon-
strated remarkable capabilities across a variety of tasks, several challenges persist. Due to the
prohibitive engineering cost and inefficiencies involved in maintaining separate models for different
tasks, it’s still an open question how to adapt these models for different specialized use cases to
incorporate the latest information. Therefore, there is a trend towards parameter-efficient fine-tuning
(PEFT) as a promising solution to these challenges, offering a trade-off between adaptability and
efficiency. PEFT techniques, such as adapters (Houlsby et al., 2019; Pfeiffer et al., 2020, 2021),
LoRA (Hu et al., 2021), and prompt tuning (Lester et al., 2021b; Liu et al., 2021), introduce only
a small percentage of additional parameters for fine-tuning while leaving the bulk of the LLM’s
parameters unchanged. Within this framework, we differentiate between intrusive and non-intrusive
PEFT methods based on the degree to which they interact with or alter the LLM’s core architecture,
like the transformer blocks.

Intrusive adaptation methods, including LoRA (Hu et al., 2021), Adapter (Pfeiffer et al., 2021; Beck
et al., 2021), prefix-tuning (Li & Liang, 2021) and their combinational methods (Chen et al., 2023a;
Mao et al., 2021), make direct changes to the model architecture or the internal parameters flexibly,
modifying the existing layers and adding new layers. While offering strong expressive power by
flexibility and potentially reducing the performance gap akin to full model fine-tuning, they introduce
significant complexities in architecture design spaces and the serving infrastructures. Moreover,
these core architectural changes often lead to compatibility issues and complicate the engineering
required for the deployment of a single LLM equipped with multiple adaptation components. Such
intricacies also heighten the possibility of unintended behaviors, for instance, potentially loading
incorrect adaptation weights for different tasks or layers, thereby making extensive validation and
testing all the more imperative for ensuring model reliability.
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In contrast, non-intrusive adaptation strategies like prompt-tuning (Lester et al., 2021b) aim to adjust
a model’s behavior with minimal changes to the internal architecture or parameters that are often
achieved by modifying the input to the core architecture. They typically allow users to make granular
changes at the input level for each example in the same batch. As a result, the model remains
flexible and adaptable to different customization needs. However, non-intrusive Parameter Efficient
Fine-Tuning (PEFT) methods such as prompt-tuning have encountered optimization challenges Raz-
daibiedina et al. (2023). They are often less effective in adapting models for complex tasks, such
as multi-tasking (Wang et al., 2022c), and are still in the exploratory phase for multimodal settings,
particularly in preserving the position of vision tokens when processing visual input. Toward these
challenges, we introduce a novel approach called AdaLink that introduces an adaptation module
situated between the embedding and main transformer blocks of LLMs form as a link, retaining the
non-intrusive benefits and alleviating the optimization difficulties.

Recent work (Wei et al., 2021; Sanh et al., 2021; Mishra et al., 2022; Touvron et al., 2023) has
demonstrated the ability of large language models (LLMs) to acquire a variety of skills and generalize
well to unseen tasks through instruction tuning. In this paper, we explore adapting both raw and
instruction-tuned LLMs using parameter-efficient fine-tuning (PEFT). We find that starting from
an instruction-tuned checkpoint reduces the amount of adaption parameters needed, facilitating the
adaption training process and further improving results. The combination of instruction tuning and
PEFT unlocks substantial potential, achieving performance on par with full model fine-tuning on
diverse text and multimodal tasks. As instruction-tuned LLMs continue to gain prevalence, non-
intrusive PEFT methods like the AdaLink proposed here suffice to obtain optimized performance
and emerge as a practical and effective tuning approach. Empirically, we conducted comprehensive
experiments on multi-modal (captioning and VQA) tasks and natural language understanding tasks.
By tuning only less than 0.02% of a pre-trained language model’s parameters, AdaLink reaches
competitive or even better results compared to full model fine-tuning methods.

Properties of AdaLink. AdaLink enables efficient and scalable adaptation through its lightweight
yet expressive module design. The added computational complexity grows only linearly with model
embedding dimension, invariant to other model parameters. This avoids the quadratic scaling incurred
by methods like prompt tuning that increase sequence length. Further, AdaLink provides flexible
partial input adaptation, transforming only selected embeddings to minimize interference across
modalities or tasks. The modular nature also affords configurable serving, allowing AdaLink to act
as an intermediate processing unit or directly transform vocabulary embeddings. Overall, AdaLink
delivers customizable and scalable task adaptation while limiting complexity overhead and preserving
model architecture, making it highly promising for large-scale deployment.

2 BACKGROUND

Prompt tuning. Given a pre-trained language model with parameters Θ and a target task, full model
fine-tuning can be parameter-inefficient for multiple tasks. Prompt tuning (PT) offers a more efficient
and non-intrusive alternative by initializing a few learnable prompt vectors and appending them to
the input embeddings without touching Θ (Lester et al., 2021a) and transformer architecture. This
approach optimizes a loss function with respect to the prompt vectors and has shown to be effective.
Even though prompt tuning is non-intrusive and easy to deploy, it still suffers from a big performance
gap in multi-task settings (Wang et al., 2022c) and sensitivity to initialization (Lester et al., 2021a;
Su et al., 2022; Zhong et al., 2022).
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Adapter and LoRA. Alternatively, adapters (Houlsby et al., 2019)
and LoRA (Hu et al., 2021) can be used to adapt LLMs for down-
stream tasks with a small number of additional parameters. These
fine-tuning strategies introduce new parameters into LLMs in an in-
trusive manner. During fine-tuning, the new parameters are updated
with the original LLM parameters kept frozen. Adapters and LoRA
usually consist of two fully connected layers. As an example, see an
illustration of adapter as shown on the right. The adapter layer uses
a down projectionWdown ∈ Rd×r to project input representation
x from model dimension d to a low dimensional space r (referred
as the bottleneck dimension), followed by a nonlinear activation
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function f(·), and a up-projection withWup ∈ Rr×d to project the low-dimensional features back to
the original dimension.

3 METHODOLOGY

3.1 INPUT REPRESENTATIONS

Text Representations. For the text representation, we follow the T5 (Raffel et al., 2020) to use
SentencePiece for tokenization, which breaks down the input text into subword units. Let T =
{t1, t2, ..., tn} represent the input text, where ti is the ith token and n is the length of the text. The
tokenized input is passed through an embedding layer to convert into continuous vectors. Formally,
this can be represented as Etext = {e1, e2, ..., en}, where ei denotes the embedding of token ti.

Image Representations. For the image representations, we follow PaLI (Chen et al., 2023b) to
use the ViT module to produce visual embeddings. Each image is resized to a fixed size and then
partitioned into non-overlapping patches with patch size 14 × 14. We flatten the output patch-
embeddings from the ViT module as the image representations Eimage.

Image-Text Representations. Visual embeddings and text embeddings are concatenated to form the
multimodal input sequence: E = {Eimage,Etext}.

3.2 ADALINK MODULE

In essence, AdaLink is designed around the concept of incorporating a transformation function as
the link between the embedding layer and the main transformer blocks. This added layer serves as a
mechanism for nuanced adaptation. The process begins with data being converted into embeddings
through the embedding layer or vision modules. These embeddings are then passed through the
AdaLink Modules, resulting in the transformation of the selected inputs. These transformed inputs
are subsequently fed into the frozen main transformer blocks for further processing. To our surprise,
we found that an adapter structure with two fully connected layers is quite effective empirically.
This approach allows us to achieve competitive results without adding significant complexity, and
it maintains several advantageous properties as scalable complexities and versatile deployment
strategies that we will discuss in more detail in the subsequent sections.

More formally, we follow the notation from Sec. 2 to describe AdaLink, which consists of two fully
connected layers. The down projectionWdown ∈ Rdemb×r projects input representation from the
original model dimension demb to a low dimensional space r (referred to as the bottleneck dimension);
the up-projection withWup ∈ Rr×demb projects the low-dimensional features back to the original
embedding dimension. AdaLink has the flexibility to be used as a standalone adaptation module on
a per-task basis or on a per-modality basis. We introduce these two scenarios as follows and leave
other potential settings for future research.

Multi-task AdaLink. The conventional parameter-efficient fine-tuning methods were proposed to
adapt LLMs to different tasks without creating expensive copies of the original models and storage-
efficient. AdaLink also enables flexibility in the granularity of task adaptation. For example, in
multi-task learning scenarios, one can associate a separate AdaLink module with each task. During
training, the input embeddings are selectively transformed by the task-specific AdaLink before
passing through the shared transformer backbone. This targets adaptation to the nuances of each task
while enabling positive knowledge transfer through the shared parameters. At inference time, the
model routes the inputs through the corresponding task’s AdaLink module to elicit adapted behavior
for that task. The rest of the model remains unchanged, avoiding negative interference. Compared
to LoRA and Adapter, AdaLink does not require to architecture modification and further reduce
the engineering load extend the functions of LLMs when deploying. Compared to prompt tuning,
AdaLink does not introduce additional cost to the transformer blocks with new tokens.

Multimodal AdaLink. In addition to per-task adaptation, AdaLink also enables flexible per-modality
adaptation in multimodal settings. For models that take heterogeneous input types like text, image,
audio, etc., one can associate a distinct AdaLink module with each modality. During training and
inference, the embeddings for each modality get selectively transformed by their corresponding
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Figure 1: Overview of AdaLink. Only newly added AdaLink modules are learnable while maintaining
other components frozen. The different data is first fed into embedding layer and then goes through
the corresponding AdaLink respectively before main shared Transformer Blocks for adaptation per
scenario.

AdaLink before fusion. A key benefit is that this modality-specific adaptation isolates interference
across modalities. It also allows the modality representations to be handled independently for greater
flexibility; for instance, storing them separately or fusing them at different levels. . More formally,
given an input consisting of an image ximage and text xtext, we first obtain modality-specific
representations Eimage and Etext. These are then fed into separate AdaLink modules to get adapted
embeddings

Ẽimage = Eimage + f(Eimage ·Wdown
image) ·W

up
image, (1)

Ẽtext = Etext + f(Etext ·Wdown
text ) ·Wup

text, (2)

where f indicates non-linear activation function. We find that removing non-linear activation
results in only a negligible decrease in performance, thus we remove it for simplicity. The adapted
modality representations Ẽimage and Ẽtext are concatenated to form the combined representation
Ẽ = {Ẽimage, Ẽtext}. This Ẽ is then passed into the main Transformer model for further processing.
By transforming each modality separately, AdaLink provides targeted adaptation while isolating
interference across modalities.

3.3 DISCUSSION ON PROPERTIES OF AdaLink

Scalable Computational Costs. Consider that we have an input with sequence length of N , the
embedding dimension of LLMs is demb and AdaLink with a rank of r, the added complexity is
O(Ndembr). The computational complexity of the AdaLink remains invariant with respect to the
scaling of model layers and is linearly proportional to embedding dimension of LLMs. In contrast,
prompt tuning appends additional embeddings, thereby increasing the sequence length, which leads
to a quadratic increase in computational complexity. This escalation in complexity can be exacerbated
with the scaling of large language models (LLMs).

Minimal Interference. A key benefit of AdaLink is its flexibility in adapting to partial inputs, such
as a subset of modalities, without requiring any changes to the main transformer architecture. The
adaptation is encapsulated in the lightweight AdaLink modules that transform selected embeddings
before feeding into the standard transformer blocks. Unlike methods that inject additional soft tokens,
AdaLink does not modify the original input representations. This preserves the positional information
of inputs like images, where spatial relationships between objects are critical. By limiting adaptation
to the AdaLink modules, AdaLink allows easily adapting powerful LLMs to new scenarios.

Configurable Serving. AdaLink can be deployed as an intermediate processing unit as shown in
Figure 1, bringing with it added complexity. Additionally, it can be utilized to transform vocabulary
embeddings. In this manner, while the complexity remains constant, there is an associated increase in
the storage requirements due to the addition of the embedding layer.
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4 EXPERIMENTS

4.1 MULTIMODAL EXPERIMENTS

We conduct experiments on four VQA and two image captioning tasks using PaLI-X (Chen et al.,
2023b), a 55B multi-modal foundational model that achieved SoTA results on a wide range of vision
and language benchmarks. We demonstrate that non-intrusive PEFT achieve very competitive results
compared to full model fine-tuning for a large-scale VLM like PaLI-X, especially on a multimodal
instruction-tuned variant.

4.1.1 BASE MODELS

Raw checkpoint: We refer to the PaLI-X checkpoint pre-trained per (Chen et al., 2023b) with a
resolution of 756 × 756 as the raw checkpoint.

MMIT variant: We also experiment with a multimodal instruction-tuned (MMIT) variant, where we
finetune the raw PaLI-X checkpoint on MMIT tasks. The MMIT tasks are created in the spirit of
“Self-Instruct” (Wang et al., 2022b), taking advantage of the powerful large language models. We
consider three types of tasks: (i) Long-form captioning where multiple captions are generated for
each image and LLMs (Anil et al., 2023) are used to combine and summarize them into a longer
and more detailed caption; (ii) Creative writing where LLMs are first used to generate novel creative
writing prompts and then used to generate actual writings given the prompts based on image captions.
(iii) Long-form question answering where LLMs are used to generate questions and answers with
rationales given image captions. Note that these tasks collectively cover a wide variety of usecases
rooted in everyday life. But they are also general in the sense that we do not expect them to be
directly in-domain for the downstream tasks considered in this work. In particular, we experiment on
down-stream tasks that require specific skills such as understanding scene texts and documents, or
answering knowledge intensive questions.

4.1.2 IMPLEMENTATION DETAILS

We compare full model fine-tuning (FT) against three types of PEFT: prompt tuning (PT) (Lester
et al., 2021b), LoRA (Hu et al., 2021) and AdaLink. We use adafactor (Shazeer & Stern, 2018) as the
optimizer. The learning rate is set to 0.03 for PEFT and 0.0001 for fine-tuning with a linear warmup
and reciprocal square root decay unless otherwise specified. By default, we set the dropout rate as 0.1
to prevent over-fitting.

Fine-tuning. Recall that PaLI-X follows the encoder-decoder architecture where image embeddings
produced by a ViT module, along with text embeddings, are fed to the multimodal encoder as one
sequence. In full model fine-tuning (FT) experiments, we keep the ViT module frozen and only
fine-tune the encoder-decoder backbone.

LoRA. We add LoRA weights on each linear layer in the multi-head attention and the MLP blocks in
the encoder transformer blocks for both base models. Similar to (Yang et al., 2022), we found that
adding LoRA weights in the decoder did not help the adaptation performance much at the cost of
twice as many parameters. We use a LoRA rank of 16 in experiments on the raw-checkpoint and a
LoRA rank of 4 in experiments on the MMIT variant.

Prompt Tuning. Prompt Tuning (PT) is implemented by concatenating 64 soft tunable tokens to
the original input sequence, and feeding that concatenated sequence to the multimodal encoder of
PaLI-X. We apply two layers of residual re-parameterization (Razdaibiedina et al., 2023) for more
stable results. We use a dropout rate of 0.05 for all prompt tuning experiments as we found it to
outperform the default rate of 0.1.

AdaLink. We insert modality-specific AdaLink modules to the embeddings of the text tokens and
the visual tokens as a non-intrusive PEFT technique for the base model. We use a rank of 64 in all
the experiments.

4.1.3 IMAGE CAPTIONING RESULTS

Table 1 reports PEFT image captioning CIDEr scores (Vedantam et al., 2015) on COCO (Lin
et al., 2014) and TextCaps (Sidorov et al., 2020). Within the non-intrusive PEFT family, AdaLink

5



Under review as a conference paper at ICLR 2024

Table 1: PEFT results on COCO captioning Karpathy test set and TextCaps captioning validation set.
We report cider score for each task. AdaLink consistently outperforms the other non-intrusive PEFT
approach (prompt tuning) and achieves competitive results to fine-tuning. †Recall we keep the ViT
module frozen; 32B is the parameter count for the encoder-decoder backbone.

Non-intru- # params COCO TextCaps avg. δ to FT
sive MMIT RAW MMIT RAW MMIT raw

Fine-tuning (FT) No 32B† 147 147.4 148.5 148.6 0 0
LoRA No 19M 146.8 146.1 148.6 147.8 -0.05 -1.05
Prompt-tuning (PT) Yes 262k 142.2 143.5 145.5 144.9 -3.9 -3.8
AdaLink Yes 1.05M 146.3 146.2 147.9 145.2 -0.65 -2.3

outperforms prompt tuning by about 2 cider points on average, indicating the effectiveness of directly
adapting the input embeddings.

More importantly, we observe smaller gaps between AdaLink and FT on the MMIT variant than
the raw checkpoint. This is consistent with our hypothesis that AdaLink can benefit more from
instruction tuned base models, enabling competitive results to FT (an average of difference of 0.65).
It is impressive for AdaLink (1.05M parameters to tune) to come within one point of full fine-tuning
(32B parameters to tune). Indeed, given the much smaller number of tunable parameters, non-intrusive
PEFT may suffer from less expressive power. This is perhaps less of a problem given the expressive
power in large-scale base models (like PaLI-X) themselves, and partly further mitigated when base
models are pre-trained on a larger variety of tasks (e.g., the MMIT variant in our experiments). Note
also: while PaLI-X provides a very strong base model, with SoTA finetuning results on a wide array
of benchmarks, it’s not strong to the point where this level of performance can easily be achieved with
zero tuning. As a reference point, on the same COCO Captions task, Chen et al. (2023b) reported
a CIDEr score of 107.6 for 4-shots and 114.5 for 32-shots learning, a difference of more than 30
points to FT. Thus reaching SoTA FT performance with light-weight tuning technique like AdaLink
is non-trivial.

While LoRA also gets better performance over the MMIT variant, the performance gap between
AdaLink and LoRA is also smaller on this variant. Given the increasing popularity of instruction
tuned LLMs, non-intrusive PEFT, especially AdaLink, become a strong candidate with significantly
lower complexities in architecture and serving infrastructure at the cost of very minor performance
degradation. As multimodal instruction tuning tasks become more comprehensive and diverse,
we hypothesize there can be even smaller performance gaps between simple non-intrusive PEFT
approach like AdaLink and intrusive PEFT or full model fine-tuning. In the case of increased base
model size, complexities of non-intrusive PEFT approaches like AdaLink do not grow with the depth
of the growing models, presenting another clear advantage in terms of practicality.

Next we present additional ablation studies on COCO Captions, again reporting results on the
Karparthy test split.

Table 2: Effect of rank in AdaLink on the COCO captioning task.

Rank 4 16 64 256
CIDEr 144.5 145.3 146.3 146.3

Effect of the rank. Table 2 reports the effects of changing the ranks in AdaLink using the MMIT
variant. We observe that the performance is not very sensitive to rank, indicating the stability of
AdaLink. Even a rank of 4 can help the models adapt to reasonable performance, and the performance
saturated at a rank of 64.

Table 3: Effect of separately adapting the input embeddings in each modality

Single unified AdaLink Modality-based AdaLink
MMIT Raw MMIT Raw

CIDEr 145.5 145.2 146.3 146.2
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Effect of using separate adapters for image and text modalities Next, we compare the default
modality-based AdaLink with separate adapters for image and text modalities to a baseline that uses
one unified AdaLink adapter with rank 128 (twice as much as the default AdaLink) to adapt both
visual and text tokens. Table 3 presents their performance on COCO captioning. Regardless of the
base model variant used, modality-based AdaLink outperforms the single unified AdaLink by about
1 CIDEr point while using the same number of additional parameters, quantifying the benefit of
modality-specific modeling, something prompt tuning struggles to achieve.

4.1.4 VQA RESULTS

In Table 4, we present VQA performance using PEFT on four VQA tasks: OK-VQA (Marino
et al., 2019) which requires drawing upon outside knowledge, DocVQA (Mathew et al., 2021)
which examines document understanding capabilities, and two scene-text understanding datasets
— TextVQA (Singh et al., 2019) and ST-VQA (Biten et al., 2019). We follow standard evaluation
metrics, using soft accuracy (Antol et al., 2015) for OKVQA and TextVQA and ANLS score for
DocVQA and ST-VQA.

Table 4: PEFT results on four VQA tasks on the validation splits.

# params OKVQA DocVQA ST-VQA TextVQA avg. δ to FT
MMIT Raw MMIT Raw MMIT Raw MMIT Raw MMIT RAW

FT 32B 66.9 66.1 82.8 80.0 79.7 80.2 70.7 71.9 0.0 0.0
LoRA 19M 67.1 63.3 83.2 80.6 80.0 78.6 70.8 69.1 +0.25 -1.7
PT 262k 66.4 64.9 82.4 79.7 79.8 78.3 70.4 69.7 -0.3 -1.4
AdaLink 1.05M 66.8 63.9 82.9 78.3 80.0 77.9 70.2 67.8 -0.05 -2.58

As shown in Table 4, tuning the MMIT variant in general leads to better performance than tuning the
raw checkpoint. In fact, when using the MMIT variant, the average performance differences among
different tuning techniques are negligible, and AdaLink again emerges as an excellent choice due to
its ease of serving and lower parameter counts, trailing FT by only 0.05, echoing what we saw from
the captioning experiments.

It is worth noting that all three PEFT approaches, both intrusive and non-intrusive, achieved better
performance on the MMIT variant, making them competitive with FT. This again points to an
interesting emerging trend: the increasing power of LLMs and VLMs allows lightweight PEFT
adaptation to achieve competitive performance for highly specialized use cases; moreover, this also
enables non-intrusive PEFT approaches like AdaLink to perform competitively against intrusive ones.

4.2 NATURAL LANGUAGE EXPERIMENTS

Experimental setting. We perform experiments on a wide range of tasks including eight natural
language understanding (NLU) tasks in the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019). We compare AdaLink to full model fine-tuning with various
checkpoints including instruction-tuned checkpoint FLAN (Wei et al., 2021) and T5 checkpoints
with additional adaption steps following (Lester et al., 2021b). Unless otherwise specified, all of the
experiments in this work utilize the 11 billion parameter T5 or FLAN checkpoint as the base model.

AdaLink implementation details. We implement AdaLink in Jax for experiments. AdaLink uses a
dimension r of 4 and 256 with FLAN and T5 checkpoint in single task setting. In multi-task setting,
we increase the dimensions to 256 and 1024 for FLAN and T5 checkpoints respectively. We found
that most of tasks are not sensitive to rank of AdaLink and the performance of AdaLink plateaus after
the modules reach a certain size. Increasing the capacity beyond this point yields diminishing returns,
with little to no improvement observed in the end task metrics. The learning rate is set to 0.001 for
AdaLink. By default, we set the dropout rate as 0.1 to prevent over-fitting.

Single task. The table compares full fine-tuning versus using AdaLink for adapting 11B T5 and
FLAN checkpoints to individual GLUE tasks. For full fine-tuning, all 11 billion parameters are tuned
on each task. With AdaLink, only the small adapter modules with 0.5-0.008 million parameters are
tuned per task. We observe that AdaLink achieves comparable or better performance than full fine-
tuning on most tasks, despite tuning far fewer parameters. For example, with the FLAN checkpoint,
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Table 5: Results for NLU tasks on GLUE development set with 11B T5 and FLAN checkpoints. The
best result on each task is in bold. Pearson refers to Pearson correlation. #Param. denotes the number
of tunable adaptation parameters. FT indicates full model fine-tuning, which is usually regarded as a
upper bound performance for adaptation scenarios.

Setting Checkpoint Method #Tunable Param. MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B Avg.
Acc Acc Acc Acc Acc Mcc Acc Pearson

Single Task
FLAN FT 11B x 8 92.1 96.0 97.1 92.2 92.2 70.1 93.9 91.2 90.6

AdaLink 0.008M x 8 91.7 96.1 97.4 90.7 91.9 70.0 94.9 93.0 90.7

T5 FT 11B x 8 91.8 96.2 97.3 92.2 90.9 72.2 92.1 91.4 90.5
AdaLink 0.5M x 8 91.4 96.0 97.1 92.3 91.5 64.8 93.5 91.4 89.8

Multi-Task
FLAN FT 11B 91.2 96.1 97.1 91.9 90.2 70.2 93.5 89.5 90.0

AdaLink 0.5M 91.8 95.6 96.8 90.8 93.1 64.5 93.1 92.7 89.8

T5 FT 11B 91.7 96.1 97.5 90.8 90.0 65.8 89.9 87.6 88.7
AdaLink 2M 90.1 93.8 96.0 91.2 88.0 60.0 86.3 89.9 86.9

AdaLink attains higher accuracy on SST-2, QQP, RTE and STS-B benchmarks. Overall, AdaLink
achieves a similar average GLUE score to full fine-tuning of 90.7 using FLAN, while only tuning
0.008M adaption parameters per task. This demonstrates AdaLink’s effectiveness in targeted task
adaptation for large language models. The results validate AdaLink as an efficient and performant
approach to adapting pretrained models to individual tasks, without compromising on model capacity.
The modular architecture allows for the extension of new tasks or knowledge without the need to
redevelop the main models, akin to adding patches to software during version changes.

Multi-task. Prior work has shown that prompt tuning approaches have optimization difficulties when
applied to multiple tasks simultaneously (Wang et al., 2022c). As an input-centric method similar to
prompt tuning , exploring capabilities and limits of AdaLink in the multi-task setting is informative
and can help unveil the potential of this new method. AdaLink exhibits a minor gap of only 1-2%
versus full fine-tuning and it achieves comparable or higher accuracy than full tuning on 6 out of
8 GLUE tasks using the FLAN checkpoint. The gap is most noticeable on the challenging CoLA
task requiring complex linguistic adaptations. However, AdaLink’s strong performance on most
benchmarks shows that input-level tuning can effectively emulate task-specific behaviors.

Table 6: Results for NLU tasks on GLUE development set with 11B T5 and FLAN checkpoints. The
performance is reported with respect to varying rank dimensions of AdaLink.

Checkpoint Rank r MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B Avg.
Acc Acc Acc Acc Acc Mcc Acc Pearson

FLAN
2 91.9 96.1 97.1 91.0 91.4 68.7 94.9 92.8 90.5
4 91.7 96.1 97.4 90.7 91.9 70.0 94.9 93.0 90.7
8 92.0 96.2 97.3 90.8 92.2 68.9 94.6 93.0 90.6

T5

64 91.5 95.9 97.3 91.7 90.2 63.3 93.1 91.8 89.3
256 91.4 96.0 97.1 92.3 90.7 64.8 93.5 90.6 89.7
512 91.3 96.0 97.4 92.2 91.5 62.8 93.5 91.4 89.6

1024 91.4 96.0 97.1 91.5 91.6 63.1 93.1 91.9 89.6

Analysis of rank. Our experiments demonstrate that AdaLink is not very sensitive to the rank hyper-
parameter. With an instruction-tuned FLAN checkpoint, a small rank of 4 achieves maximum GLUE
performance, indicating compact AdaLink suffice for embedding space transformation. Increasing
rank further shows negligible gains, underscoring the stability of AdaLink architecture. A larger
rank is needed for the non-specialized T5 checkpoint, but performance stabilizes quickly. Overall,
AdaLink attains strong adaptation with minimal parametrization across diverse initializations.

5 RELATED WORK

The wide scope of capabilities achieved by LLMs (Raffel et al., 2020; Brown et al., 2020; Chowdhery
et al., 2022; Anil et al., 2023) and VLMs (Alayrac et al., 2022; Li et al., 2023; Wang et al., 2022a;
Chen et al., 2023b) comes along with the scaling up of the parameter counts to billion level. This
prohibits the conventional model deployment pipelines where different tasks own different copies of
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the entire model that are served separately. We briefly introduce two means in the following sections
for tackling this problem.

5.1 INSTRUCTION TUNING

Instruction tuning (Wei et al., 2021; Chung et al., 2022; Sanh et al., 2021; Wang et al., 2022b; Ouyang
et al., 2022; Longpre et al., 2023) aims at solving a wide range of tasks using one foundation model.
The entire model is fine-tuned on a large mixture of instructions formulated from the tasks of interest.
(Wei et al., 2021) explore combining 62 NLP datasets with 10 instructions for each set as training
data. Chung et al. (2022) further expands the scope up to 1800 tasks. The LLMs demonstrate strong
capabilities in learning to interpolate the tasks used and generalize well to unseen tasks. As the
instruction tuning data size is often limited, recent research proposes “Self-Instruct” (Wang et al.,
2022b) that collects data by bootstrapping off their own generations, relieving the annotation burden.

Multi-Modal Instruction Tuning. Similar to text-only instruction tuning, Multi-Modal Instruction
Tuning (MMIT) aims to jointly learn a large collection of visual language tasks. However, as most
available vision-language tasks are short captioning, question-answering, and grounding for academic
benchmarks that are limited in both visual scope (i.e. covered visual domains) and task scopes. Lots
of tasks digress the natural use cases such as storytelling, descriptive caption generation, answering
questions with explanations, etc. Therefore, most MMIT (Liu et al., 2023; Zhang et al., 2023; Dai
et al., 2023; Gao et al., 2023) relies on “Self-Instruct” (Wang et al., 2022b) protocols that create
training tasks automatically.

5.2 PARAMETER EFFICIENT FINE TUNING

Instead of deploying specialized full models, recent research investigates more on the parameter-
efficient fine-tuning (PEFT) that only adapts a tiny portion of parameters, keeping most of the
parameters frozen. We categorized the PEFT approaches into intrusive and non-intrusive approaches.

Intrusive PEFT makes direct changes to the model architectures, usually to the transformer blocks.
Layer-wise prompt tuning (Liu et al., 2021) and LLaMA (Zhang et al., 2023) prepend tunable tokens
to the transformer blocks’ inputs. Adapters (Houlsby et al., 2019; Pfeiffer et al., 2020, 2021) insert
low-rank MLPs in each block. LoRA (Hu et al., 2021) takes a step further and adds low-rank weights
in each linear layer within the self-attention and the MLPs. Though the intrusive PEFT approaches
offer more flexibility in design, they introduce significant challenges in model deployment where the
adaptation weights need to be transferred to the internal architecture. Besides, the size of the tunable
parameters still grows proportionally to the model size.

Non-intrusive PEFT is input-centric which keeps the core transformer blocks frozen, including
both the pre-trained parameters and the computation graph. Prompt tuning is the classic example
where the tunable tokens are prepended to the word embeddings before being fed into the transformer
blocks. However, Experiments show that prompt tuning struggles with optimization difficulties
Razdaibiedina et al. (2023), requiring a large number of training examples. We propose AdaLink that
adapts the input embeddings using low-rank MLPs, taking the benefit of “zero init” that avoids the
disturbance at the beginning of training. We show that the AdaLink achieves competitive results as
the full-model fine-tuning with scaling up of the model size.

6 CONCLUSIONS

In this paper, we examine the influence of scaling up both model parameter counts and pre-training
tasks to parameter efficient tuning (PEFT) on both text only and multimodal down-stream tasks. We
show that the performance gap between full model fine tuning and PEFT are significantly narrowed
with the help of both. This indicates the increasingly powerful LLMs and VLMs only require a slight
adaptation, and input-centric non-intrusive PEFT is often enough to obtain optimized performance
and enjoys the ease of deployment and constant size with respect to model depth. We also introduce
AdaLink that achieves better adaptation performance than prompt tuning within the non-intrusive
PEFT family.
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