
Pareto Optimal Risk Measure Agnostic Distributional
Bandits with Heavy-Tail Rewards

Kyungjae Lee1∗ Dohyeong Kim2 Taehyun Cho2 Chaeyeon Kim1 Yunkyung Ko1
Seungyub Han2 Seokhun Ju2 Dohyeok Lee2 Sungbin Lim1,3†

1Department of Statistics, Korea University
2Department of Electrical and Computer Engineering, Seoul National University

3LG AI Research

Abstract

This paper addresses the problem of multi-risk measure agnostic multi-armed
bandits in heavy-tailed reward settings. We propose a framework that leverages
novel deviation inequalities for the 1-Wasserstein distance to construct confidence
intervals for Lipschitz risk measures. The distributional LCB (DistLCB) algo-
rithm is introduced, which achieves asymptotic optimality by deriving the first
lower bounds for risk measure aware bandits with explicit sub-optimality gap
dependencies. The DistLCB is further extended to multi-risk objectives, which
enables Pareto-optimal solutions that consider multiple aspects of reward distribu-
tions. Additionally, we provide a regret analysis that includes both gap-dependent
and gap-independent bounds for multi-risk settings. Experiments validate the
effectiveness of the proposed methods in synthetic and real-world applications.

1 Introduction

The multi-armed bandit (MAB) framework provides a fundamental model for sequential decision-
making under uncertainty [1]. Traditional approaches in the MAB aim to maximize expected rewards
by balancing exploration and exploitation. These methods have found widespread applications in
areas such as clinical trials or recommendation systems. However, they typically rely on the expected
value as the sole performance criterion, which limits their ability to capture other important properties
of reward distributions. This limitation becomes critical in risk-sensitive applications where rare but
high-impact outcomes play a central role, such as financial crashes or adverse medical events.

Risk measure aware bandit frameworks aim to address this drawback by incorporating alternative
metrics such as conditional value-at-risk (CVaR) [2–5], mean-variance [6, 7], spectral risk measures
(SRM) [8, 9], and distortion risk measures (DRM) [10]. These methods allow decision-makers to
prioritize different parts of the reward distribution, such as the lower tail, and are better suited to
applications requiring safety, robustness, or downside control. However, most existing methods focus
on optimizing a single risk measure, which still leaves important aspects of uncertainty unaddressed.

Many practical problems require decision-makers to account for multiple risk perspectives at the
same time. For example, a portfolio manager must consider both expected returns and downside risks.
In clinical decision-making, treatment effectiveness must be weighed against the risk of side effects.
A toy example in Figure 1a and Table 1b illustrates how different risk measures prioritize distinct
distributional properties. In such cases, identifying a single best action may not be appropriate.
Instead, one must identify a Pareto-optimal set of actions that are not dominated under any of the
chosen risk measures.

∗Contact: {kyungjae_lee, sungbin}@korea.ac.kr
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



(a) Toy example of three actions.

Action Mean CVaR0.5 CVaR0.8 Wang P. Opt.

A 25.0 19.4 15.2 21.0 ✓
B 20.0 6.1 2.2 10.0
C 50.0 15.1 5.3 24.7 ✓

Opt. Act. C A A C

(b) Summary of risk values.

Figure 1: (a) Reward histograms for three actions. (b) Summary of associated risk values. CVaR0.5

and CVaR0.8 are Conditional Value-at-Risk measures at the 50% and 80% quantiles, respectively.
Wang [11] represents a distortion risk measure with g(p) = p2. Opt. Act. shows the optimal action
for each metric. P. Opt. marks actions that are Pareto-optimal. Action B is strictly dominated under
all risk measures and thus not Pareto-optimal, while Actions A and C are each optimal under different
risk criteria, making both Pareto-optimal in the multi-risk sense.

A growing body of work has begun to explore the estimation of multiple risk measures simultaneously.
Notably, methods have been proposed for constructing confidence intervals for risk measure classes
such as CVaR and distortion-based risks under bounded or sub-Gaussian noise [8–10]. For example,
Zhang and Ong [12] considered quantile estimation in sub-Gaussian settings, while Cassel et al.
[8], Tan et al. [9], Liang and Luo [10] derived confidence bounds for the Lipschitz risk class under
light-tailed assumptions. These contributions lay groundwork for multi-risk optimization, but their
applicability remains limited in heavy-tailed environments, which are commonly encountered in
finance, healthcare, and other real-world domains [13–20].

To address this gap, we propose a unified multi-risk bandit framework that remains effective under
heavy-tailed reward distributions. While prior works have studied multi-risk optimization under
light-tailed assumptions, to the best of our knowledge, this is the first framework that supports general
Lipschitz risk measures in multi-risk bandit problems under heavy-tailed noise. At the core of our
approach is the median of empirical quantiles (MoEQ) estimator, which extends median-of-means
techniques to quantile estimation. MoEQ enables robust estimation of distributional properties
and supports a wide range of Lipschitz risk measures without requiring manual construction of
risk-specific confidence intervals. Our contribution is summarized as follows:

• We propose a median of quantile estimation under heavy-tailed noise and introduce bootstrap
resampling to mitigate its computational inefficiencies.

• We derive new deviation inequalities for the 1-Wasserstein distance, enabling the construction
of confidence intervals for Lipschitz risk measures in heavy-tailed reward settings. This result
extends recent works [9, 10].

• We introduce the distributional LCB (DistLCB) algorithm, which leverages MoEQ to provide
regret guarantees across all Lipschitz risk measures. We further extend this to a multi-risk variant
and present the first regret bounds for multi-risk bandits under heavy-tailed rewards.

• We also establish the explicit dependency of sub-optimality gaps in the asymptotic lower bounds
for risk measure aware bandits with SRM and DRM. We derive both gap-dependent and gap-
independent regret bounds for single and multi-risk objectives, confirming the optimality of our
algorithms.

2 Related Work

risk measure aware bandit algorithms have been studied under various risk measures and distributional
assumptions. Early works primarily focused on specific risk criteria such as CVaR or mean-variance
under light-tailed rewards, yielding asymptotic or problem-dependent regret bounds [2, 3, 7, 21–23].
To generalize beyond single risk types, bandit algorithms for Lipschitz risk measures, including
CVaR, spectral, and distortion-based risks, have been proposed, but remain limited to sub-Gaussian
or bounded settings [8–10]. In contrast, works addressing heavy-tailed rewards largely focus on
single-risk setting, such as the mean or CVaR [24–29, 4, 5], with only Bhatt et al. [30] analyzing the
broader Lipschitz risk class under infinite variance regimes. Multi-risk formulations, which aim to
optimize multiple risk measures simultaneously, have been explored in light-tailed settings [31–34],
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References Multi-Risk Risk Type Distribution Lower Bound
[2, 3, 7, 21–23] ✗ CVaR Light Tails Asymptotic [22]
[8–10] ✗ Lipschitz Risk Class Light Tails -
[24–29] ✗ Mean Heavy Tails -
[4, 5] ✗ CVaR Heavy Tails -
[30] ✗ Lipschitz Risk Class Heavy Tails Minimax
[31–34] ✓ Mean Light Tails -
Ours ✓ Lipschitz Risk Class Heavy-tails Asymptotic, Minimax

Table 1: Comparison of representative risk measure aware bandit algorithms. The Lipschitz risk class
includes mean and CVaR. Heavy-tailed distributions include light-tailed ones. Multi-Risk indicates
whether multiple risks are jointly optimized; Lower Bound indicates whether regret lower bounds are
analyzed.

but remain undeveloped for general Lipschitz risks or heavy-tailed environments. We address this
gap with a unified framework for multi-risk optimization under heavy-tailed rewards, enabled by
the MoEQ estimator with exponential convergence guarantees. This landscape is summarized in
Table 1, which categorizes existing methods by their support for multi-risk objectives, risk types,
distributional assumptions, and lower bound analyses. A more detailed comparison with prior work
is provided in Appendix B.

3 Preliminaries

In this section, we introduce the foundational concepts of risk measure aware bandit problems with
heavy-tailed rewards, Lipschitz risk measures, and Wasserstein distance.

3.1 risk measure aware Bandits with Heavy-Tailed Rewards

Consider a set of K actions, A := {1, 2, · · · ,K}, each associated with an unknown reward distri-
butions, {µa}a∈A. At each time t, the learner chooses an action At by following some policy πt
and observes a random reward XAt ∼ µAt for the selected action. In risk measure aware bandits,
the objective is to minimize a risk measure aware criterion rather than focusing solely on expected
rewards. A risk measure ρ(Xa) evaluates the risk of each action and captures aspects of the reward
distribution beyond the mean, such as variability or tail behavior. The cumulative regret of risk
measure aware bandits [9, 30] is defined as

Rρ
n := E

[
n∑

t=1

ρ(XAt)− ρ(Xa∗)

]
, (1)

where a∗ denotes the optimal action, i.e., ρ(Xa∗) = mina∈A ρ(Xa). While traditional bandit
problems maximize rewards, this paper sets the objective to minimize cumulative risk for risk-sensitive
decision-making. We also consider the heavy-tail assumption on the reward distributions:
Assumption 3.1 (Heavy-Tailed Distribution and Bounded p-th Moment). For each action a ∈ A,
assume that µa belongs to the heavy-tailed class H(p) for some p ∈ (1, 2], defined as: H(p) :=
{µ : EX∼µ[|X|p] ≤ νp}, where νp is a finite constant.

This assumption reflects the presence of heavy-tailed distributions, such as Pareto, Fréchet, or Weibull,
where moments higher than p does not exist, necessitating robust estimation methods [24, 26].

3.2 Lipschitz Risk Meausre

Risk measures quantify various aspects of uncertainty in reward distributions. Denote the space of all
random variables with a finite expectation as L1. A risk measure ρ maps a random variable in L1 to a
real number. To handle multi-risk settings, it is necessary to estimate a class of risk measures rather
than a single measure. We consider Lipschitz continuous risk measure with respect to distance metric
on L1, which provides a broad framework for multiple risks, as in Tan et al. [9].
Definition 3.2 (κ Lipschitz Risk Measure w.r.t. Distance D). A risk measure ρ defined on random
variables is said to be κ Lipschitz continuous with respect to a distance D on L1 if there exists a
constant κ > 0 s.t. for all X,Y ∈ L1, |ρ(X)− ρ(Y )| ≤ κD(µX , µY ).
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Lipschitz risk measure is a general class of risk meausures including CVaR, spectral risk measures
(SRM), distortion risk measures (DRM), utility-based shortfall risk (UBSR), or certainty equivalent
risk measure (CERM). See Appendix C for more details.

In analyzing Lipschitz risk measures, the choice of distance metric plays a crucial role. Commonly
used metrics such as ℓ1, ℓ2, ℓ∞, and the 1-Wasserstein distance have been primarily analyzed under
bounded support, sub-Gaussian, and sub-Exponential assumptions [21, 9, 10, 30]. In this paper, we
focus on the 1-Wasserstein distance, which has been less explored in heavy-tailed settings.
Definition 3.3 (1-Wasserstein Distance). Let F and G be cumulative distribution functions (CDFs)
supported on R, and let F−1 and G−1 denote their corresponding quantile functions (i.e., inverse
CDFs). The 1-Wasserstein distance between F and G is defined by

W1(F,G) :=

∫ ∞

−∞
|F (x)−G(x)| dx =

∫ 1

0

|F−1(t)−G−1(t)| dt. (2)

3.3 Multi-Risk Bandit Problems

In classical risk measure aware bandit problems, a single risk measure evaluates actions but offers a
limited perspective on the reward distribution. Multi-risk bandit problems address this by considering
r number of Lipschitz risk measures, ϱ = (ρ1, ρ2, · · · , ρr), with their corresponding Lipschitz
constants K := (κ1, κ2, · · · , κr) to capture diverse risk characteristics such as variability and tail
behavior. The objective is to identify the Pareto optimal set of actions, P∗, where no action dominates
another across all risks [31, 32, 34]. The dominance relationship is defined as follows:

Definition 3.4 (Dominance). Let u and v be a vector in Rr.

• u dominates v, u ≻ v: For all d ∈ [r], ud ≥ vd, and there exists at least one d′ s. t. ud′ > vd′ .

• u is non-dominated by v, u ⊀ v: There exists a dimension d ∈ [r] such that ud > vd.

• u is incomparable with v, u ∥ v: Neither u ≻ v nor v ≻ u.

Formally, the Pareto optimal set is defined as P∗ := {a ∈ A | ∀a′ ∈ A \ {a},ϱ(Xa′) ⊀ ϱ(Xa)}.
To analyze the convergence rate to the Pareto optimal set, we barrow the mathematical framework in
Drugan and Nowe [31]. The sub-optimality gap of arm a is defined as

∆Pareto
a := inf

ϵ≥0
{ ϵ | ϱ(Xa) + ϵ1 ∥ϱ(Xa′), ∀a′ ∈ P∗ }, (3)

where 1 denotes a vector of r ones. Note that if a ∈ P∗, then, ∆Pareto
a = 0 holds. Then, the regret

can be defined as

RPareto
n :=

∑
a∈A

∆Pareto
a E [Ta(n)] . (4)

Multi-risk bandits are especially important in heavy-tailed settings, where multiple risk measures can
highlight wide spectra of events more effectively.

4 Median of Empirical Quantiles for Heavy-Tailed Distribution

We introduce the median of empirical quantiles (MoEQ), a robust method for estimating reward
distributions in heavy-tailed settings. From the definition of Lipschitz risk measures, the confidence
interval depends on the distance between the empirical and true distributions. Constructing reliable
confidence intervals under heavy-tailed distributions requires robust quantile estimation. MoEQ
addresses this by ensuring stable estimates and allows accurate computation of various risk measures
within the Lipschitz risk class. This approach has significant advantages for multi-risk bandits because
it supports the evaluation of multiple risks simultaneously.

4.1 Median of Empirical Quantiles

Definition 4.1. Let X1, X2, · · · , Xn be independent and identically distributed random variables
with a cumulative distribution function (CDF) F (x). Divide the n samples into k groups of size
N = ⌊n/k⌋, indexed by j ∈ {1, · · · , k}. If n is not divisible by k, the remaining r = n − kN

4



samples are dropped. The empirical CDF and quantile function of the jth group is defined as

F̂N,j(x) :=
1

N

N∑
i=1

I[Xi,j < x], F̂−1
N,j(y) := inf{x : F̂j(x) ≥ y}, y ∈ [0, 1] (5)

The median of empirical quantiles (MoEQ) and its empirical CDF are defined as

F̂−1
med,N (y) := median

j∈{1,··· ,k}
F̂−1
N,j(y), F̂med,N (x) :=

1

N

N∑
i=1

I[F̂−1
med,N (i/N) < x]. (6)

Remark 4.2 (Validity of MoEQ). We would like to note that F̂−1
med,N and F̂med,N are valid quantile

function and CDF (See Lemma E.1). Furthermore, F̂med,N also can be represented as the median of
CDFs, i.e., F̂med,N (x) = medianj∈{1,··· ,k}F̂N,j(x) (See Lemma E.2). Hence, this MoEQ is in the
domain of general risk measure ρ, in other words, ρ(F̂med,N ) is well defined.

While MoEQ offers robustness by aggregating empirical quantiles and reducing the influence of
outliers in heavy-tailed distributions, it has a computational drawback, as mentioned in Bhatt et al.
[30], that updating MoEQ requires k new samples for the k groups. This dependency makes updates
infeasible when fewer than k samples are collected, as balanced group sizes cannot be maintained.
To address this issue, we propose a bootstrap resampling.

4.2 Bootstrap Resampling for Efficient Updates

Suppose we have n data points divided into k groups, with each group ideally containing N = ⌊n/k⌋
samples. If n is not divisible by k, the remainder r = n− kN creates imbalance across groups. To
address this, two bootstrap resampling approaches can be employed to ensure uniform group sizes
while maintaining statistical properties.

Partial Bootstrap Augmentation. The first approach, named partial bootstrap augmentation,
handles the imbalance by assigning the r remaining samples to r groups, making them contain N +1
samples. For the remaining k − r groups, one additional sample is drawn with replacement to bring
them to N+1 samples. After resampling, the empirical quantile function for each group, F̂PB,−1

N+1,j (y),
is computed, and the median of these quantiles across all groups is obtained as

F̂PB,−1
med,N+1(y) := median

j∈{1,··· ,k}
F̂PB,−1
N+1,j (y). (7)

Full Bootstrap Augmentation. The second approach, named full bootstrap, creates all groups
by sampling N points with replacement from the original n samples. This method eliminates the
need for handling remainders and ensures uniform group sizes across all k groups. For k bootstrap
datasets, the median of the quantile functions is defined as

F̂FB,−1
med,N (y) := median

j∈{1,··· ,k}
F̂FB,−1
N,j (y), (8)

In summary, we introduce two approaches for balancing group sizes: partial bootstrap augmentation
redistributes remainders and resamples for balance, while full bootstrap creates uniform groups by
resampling with replacement. Partial bootstrap is preferred as it requires only one bootstrap sample
per group, whereas full bootstrap demands a larger resample size to ensure convergence rates, which
will be analyzed in the following section.

4.3 Deviation Inequality of MoEQs

To analyze the deviation inequalities for MoEQ, partial bootstrap MoEQ (PB-MoEQ), and full
bootstrap MoEQ (FB-MoEQ), we assume the stability of the underlying distribution. Specifically, the
empirical measure µ̂n, constructed from n i.i.d. samples, concentrates around the true distribution µ
under a given distance metric D. This stability assumption, formalized below, provides the basis for
deriving deviation bounds for the three methods.
Assumption 4.3 (Stability). Assume that µ ∈ H(p) satisfies the following concentration inequality.
Specifically, there exists a distance D and constant Cp > 0, which is only dependent on p, such that
for any n ∈ N and any x > 0,

P (D(µ̂n, µ) > x) ≤ Cp/(n
p−1xp). (9)

See Appendix D for examples of distributions and metrics that satisfy this assumption.

5



This assumption enables us to quantify the deviation bounds for MoEQ under heavy-tailed settings.
Theorem 4.4. Let Assumptions 3.1 and 4.3 hold for some p ∈ (1, 2], and let F (x) denote the CDF
of the distribution with n i.i.d. samples. Consider the MoEQ estimator F̂−1

med,N and its empirical
distribution F̂med,N . Define k = ⌊8 ln(e1/8/δ)⌋ and N = ⌊n/k⌋. Then, with probability at least
1− δ,

D
(
F̂med,N , F

)
≤ βp,n(δ),

∣∣∣ρ(F̂med,N )− ρ(F )
∣∣∣ ≤ κβp,n(δ), (10)

where βp,n(δ) := (4Cpνp)
1
p
(
16 ln

(
e1/8/δ

)
/n
)1−1/p

.

Proof can be found in Appendix E.1.1. Theorem 4.4 holds for any distance D satisfying Assumption
4.3. Importantly, the application to the W1 under heavy-tailed distributions is a notable distinction, as
shown in the following corollary.
Corollary 4.5 (Confidence Intervals for MoEQ Variants). Under the same assumptions as Theorem
4.4, the following confidence intervals hold with probability at least 1− δ:

W1

(
F̂ , F

)
≤ β(δ),

∣∣∣ρ(F̂ )− ρ(F )
∣∣∣ ≤ κβ(δ), (11)

where F̂ and β(δ) depend on the variant as follows.

• For MoEQ, F̂ = F̂med,N , β(δ) = βp,n(δ) defined in Theorem 4.4.

• For PB-MoEQ, F̂ = F̂PB
med,N+1, β(δ) = β′

p,n(δ) = (C
′
p/Cp)1/pβp,n(δ), where C ′

p = 22p+2pCp.

• For FB-MoEQ, F̂ = F̂FB
med,N , β(δ) = β′′

p,n(δ) = 2(8Cpνp)
1/p/n1−1/p, assuming N ≥

ln(32n)/2 ·
(
128n2

/(8Cp)
1/p
)2

and k ≥ 8 ln(1/δ).

Proof can be found in Appendix E.1.2. Our results derive deviation inequalities and confidence
intervals for W1 under heavy-tailed distributions, covering 1 < p ≤ 2 without boundedness or finite
variance assumptions. This broadens applicability to the widest class of distributions.
Remark 4.6 (Comparisons with Prior Work on Deviation Inequalities of W1). First, bounded distribu-
tions have been studied extensively in the context of risk measure aware bandits. Tamkin et al. [21]
and Liang and Luo [10] used the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality to derive deviation
inequalities for ℓ∞ and W1, establishing these metrics as suitable for Lipschitz risk measures in
bounded support settings. However, the DKW inequality is insufficient for unbounded distributions.
To address unbounded support, Tan et al. [9] extended the analysis to sub-Gaussian, sub-Exponential,
and finite variance (p = 2) distributions, deriving deviation inequalities for W1. Yet, their approach
does not cover the cases of infinite variance (p ∈ (1, 2]), leaving a gap in the theoretical understanding
of heavy-tailed distributions. Bhatt et al. [30] proposed a truncated empirical distribution (TED)
framework for p ∈ (1, 2] but did not address deviation inequalities for W1. To fill this gap and com-
pare TED with MoEQ, we manually derived deviation inequalities, showing that the bounds of TED
scale as O(n

1
2 (1−

1
p )), which is less tight than MoEQ (see Appendix I). Our analysis extends these

results by enabling SRM, DRM, UBSR, and CERM to be applied under heavy-tailed distributions,
advancing the theoretical framework for Lipschitz risk measures in broader contexts.

5 Risk Measure Agnostic Distributional Bandits with Heavy-Tails

We begin with the single-risk setting, where MoEQ is used to estimate the reward distribution for
each action. For an action a, the MoEQ at round t is denoted as X̂a,Ta(t−1), based on Ta(t − 1)
observations, which represents the total number of times action a has been chosen up to round t− 1.
This single-risk algorithm will be further extended to the multi-risk setting, where multiple risk
measures ϱ are estimated for each action.

5.1 Risk Measure Agnostic Distributional Lower Confidence Bounds with MoEQ

We present a distributional lower confidence bounds (DistLCB) algorithm. Using the deviation
inequality and confidence interval derived for MoEQ in Theorem 4.4, the learner computes the
following LCB index for each action:

LCBa(t) := ρ(X̂a,Ta(t−1))− κβp,Ta(t−1)(δt), (12)

6



where ρ(X̂a,Ta(t−1)) is the risk measure applied to the MoEQ estimate, and βp,Ta(t−1)(δt) is the
confidence width determined by Theorem 4.4. The confidence width depends on the number of
observations Ta(t − 1), the tail parameter p, and the confidence level δt. At each time step t, the
learner selects the action At with the lowest LCB index: At = argmina∈A LCBa(t). This approach
uses MoEQ’s robustness to estimate heavy-tailed rewards and balance exploration and exploitation
with risk measure aware confidence intervals. Detail algorithm is described in Appendix F.

5.2 Multi-Risk DistLCB with MoEQ

The multi-risk setting extends the DistLCB to multi-risk distributional LCB (MR-DistLCB) to handle
multiple risk measures ϱ by leveraging the robustness of the MoEQ for all Lpschitz risk measures.
For each action a, the learner computes r-dimensional LCB indices similarly to (12). At each time
step t, the learner estimates the Pareto optimal set P̂∗,t by checking dominance relationships among
actions based on LCB indices. An action is selected uniformly at random from P̂∗,t, its reward is
observed, and the estimates are updated. This extension is possible because our derived results apply
to all Lipschitz risk measures and are the first to address 1-Wasserstein distance under heavy-tailed
settings. Detail algorithm is described in Appendix F.

6 Regret Analysis

In this section, we analyze the regret bounds of two algorithms: DistLCB and MR-DistLCB. We
provide both asymptotic lower bounds and regret bounds for these algorithms under heavy-tailed
reward distributions. To analyze asymptotic optimality, we first derive the asymptotic and minimax
lower bounds of SRM and DRM.

6.1 Lower Bounds of Risk Measure Aware Bandits with Heavy-Tailed Rewards

Theorem 6.1 (Asymptotic Lower Bound for SRM and DRM). For any c ∈ (0, 1/4), let X1 and X2

be Bernoulli random variables supported on {0, 1/γ}, where γ = (2c)1/(p−1). Their distributions
are defined as µ1 :=

(
1 + cγ − γp

)
δ0 +

(
γp − cγ

)
δ1/γ and µ2 := (1 − γp)δ0 + γpδ1/γ where

δx denotes a point mass at x. For this Bernoulli bandit problem, the p-th moments satisfy νp = 1.
Consider SRM and DRM as a risk measure and the sub-optimality gap of the second arm is ∆ρ

2 =
ρ(X2)− ρ(X1). Then, for any algorithm satisfying E[T2(n)] = o(nα) for α > 0, the regret satisfies

lim infn→+∞Rρ
n/ ln(n) ≥ Ω

(
1/ (∆ρ

2)
1

p−1

)
.

Proof Sketch. Proof can be found in Appendix G.1.1. To derive the asymptotic lower bounds, we
construct two Bernoulli random variables X1 and X2 to satisfy νp = 1. By using specific properties
of SRM and DRM, we compute the sub-optimality gap ∆ρ

2 explicitly, showing ∆ρ
2 ≥ Ω(c) for

both SRM and DRM. Finally, by employing the generic lower bound of bandits, as in Bubeck et al.
[24], Lattimore and Szepesvári [35], and explicitly deriving the KL divergence DKL(X2, X1) ≤
O(c

p
p−1 ), we establish the asymptotic regret bound as ∆ρ

2/DKL(X2, X1) ≥ Ω
(
1/(∆ρ

2)
1/(p−1)

)
,

demonstrating the dependency on the sub-optimality gap and the heavy-tail parameter p.

Remark 6.2 (Comparison with Prior Work on Asymptotic Lower Bounds). Theorem 6.1 presents
a novel asymptotic lower bound for regret in risk measure aware bandit problems under SRM and
DRM. By extending the approach of Baudry et al. [22], which builds on the generic lower bound from
Lai and Robbins [36], we generalize their CVaR-specific results to SRM and DRM. Additionally, we
establish that the dependency of the sub-optimality gap ∆ρ

2 follows the order 1/(p− 1), providing
a broader theoretical foundation for regret bounds in risk measure aware bandits. Moreover, the
dependency on ∆ matches the results for expectation-based bandits with heavy-tailed rewards [24].
This similarity is natural since expectation is an SRM.
Theorem 6.3 (Minimax Lower Bound for SRM and DRM). Let K > 1 and n ≥ K − 1. Consider
SRM and DRM as a risk measure. For any policy, there exists a K-armed Bernoulli bandit problem
such thatRρ

n ≥ Ω((K − 1)1−1/pn1/p) holds.

Proof can be found in Appendix G.1.2. The proof strategy is similar to that of Theorem 6.1. Note
that, if we set an expectation as a risk measure, the minimax lower bound of SRM (or DRM) matches
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that of expectation-based bandits, scaling as Ω(K1−1/pn1/p) [24]. Furthermore, this result is also
consistent with the minimax lower bound derived in Bhatt et al. [30].
Remark 6.4 (Limitations). A limitation of Theorem 6.1 and 6.3 lies in its focus on SRM and DRM.
The proof leverages specific properties of SRM and DRM, making it inapplicable to other risk
measures such as UBSR and CERM. As a result, this work does not provide a generalized lower
bound for all Lipschitz risk measures. Extending the analysis to include a broader class of risk
measures remains an open problem and an important direction for future research.

6.2 Optimality of DistLCB

To establish the optimality of the DistLCB algorithm, we analyze its regret bounds under heavy-tailed
reward distributions and Lipschitz risk measures.
Theorem 6.5. Consider a K-armed stochastic bandit problem with a κ Lipschitz risk measure
ρ w.r.t. W1 under Assumption 3.1. At each time t, define the number of groups in the MoEQ as
kt = ⌊8 ln(e1/8t4)⌋. Then, the expected regret Rρ

n of the DistLCB algorithm has the following
bounds,

Gap-Dependent Bound: O

 ∑
a:∆

ρ
a>0

κ
p

p−1

(
Cpνp
∆ρ

a

) 1
p−1

ln(n)


Gap-Independent Bound: O

(
κ(Cpνp)

1
p (K ln(n))

p−1
p n

1
p

)
Proof can be found in Appendix G.2. The proof can be done by applying analysis techniques of
UCB [1, 24] to the confidence interval of MoEQ. This theorem establishes that the DistLCB achieves
asymptotic optimality, with its gap-dependent regret matching the lower bound of Theorem 6.1,
scaling as O

(
1/(∆ρ

a)
1/(p−1)

)
. Furthermore, the algorithm achieves near-minimax optimality up to a

logarithmic factor of n.
Remark 6.6 (Universality of DistLCB Regret Bounds). This result demonstrates the universality of the
regret bounds achieved by the DistLCB across various settings for Lipschitz risk measures and heavy-
tailed rewards. For p = 2 case that includes bounded support, sub-Gaussian, and sub-Exponential
distributions, the regret bounds recover all previous results on expectations [24–26, 28, 29], CVaR-
based bandits [2, 7], and Lipschitz risk bandits [8, 9, 30]. This consistency highlights its ability to
unify existing analyses across different risk measures and distributional assumptions. For 1 < p < 2,
which have infinite variance, the minimax regret bound aligns with the results of Bhatt et al. [30]
for Lipschitz risk bandits under heavy-tailed distributions. Additionally, the gap-dependent regret
bound presented here complements existing studies by providing refined guarantees for Lipschitz risk
measures in heavy-tailed settings.

6.3 Regret Bounds of MR-DistLCB

Theorem 6.7. Consider a K-armed stochastic bandit problem with r Lipschitz risk measures ϱ with
a vector of Lipschitz constants, K, under Assumption 3.1. At each time t, let kt = ⌊8 ln(e1/8Krt4)⌋.
Then, the regretRPareto

n satisfies the following bounds,

Gap-Dependent Bound: O

 ∑
a∈A\P∗

κ∗(Cpνp)
1

p−1 ln(Krn)

(∆Pareto
a )

1
p−1


Gap-Independent Bound: O

(
κ∗(Cpνp)

1
p (K ln(Krn))

p−1
p n

1
p

)
,

where κ∗ := maxd∈[r] κd.

Proof is provided in Appendix G.3. Since MoEQ constructs confidence intervals for all Lipschitz
risk measures, it naturally extends to multi-risk settings. The adaptability of MoEQ to various
Lipschitz risk measures builds upon techniques from Drugan and Nowe [31]. For 1 < p ≤ 2, our
results provide the first regret bounds for multi-objective bandits under heavy-tailed rewards and
MR-DistLCB enables decision-making that considers diverse perspectives of reward distributions.
Remark 6.8 (Comparisons with Multi-Objective Bandits). For p = 2, the gap-dependent and gap-
independent bounds align with Drugan and Nowe [31] and the extended results of Xu and Klabjan
[34], matching the lower bounds Ω(ln(n)) and Ω(

√
n), respectively.
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7 Numerical Experiments

Setup. We test our methods in synthetic and real-world multi-risk bandit settings with heavy-tailed
rewards. We consider two settings: (1) Real-world portfolio selection, using daily returns from
the top 20 S&P 500 stocks; and (2) Synthetic 20-armed Pareto bandits. In the real-world case, we
evaluate 3-, 6-, and 9-risk settings with CVaR, Wang [11], and CERM. Tail indices estimated via
Hill’s method range from p = 1.5 to 4.69, and we fix p = 1.5 for all algorithms. In the synthetic case,
we vary p ∈ {1.01, 1.2, 1.5} to study the effect of tail heaviness, with p = 1.2 used as the baseline
heavy-tail configuration. All experiments run for 10,000 steps and are repeated with 20 random seeds.
Additional setup details are provided in Appendix H.

Comparison Methods. We compare against three baselines: (1) MR Trunc, a multi-risk adaptation
of the truncated empirical distribution (TED) method [30]; (2) MR LCB, a multi-risk extension
of LCB [9], incorporating ideas from the multi-objective setting of [31]; and (3) SR DistLCB, a
single-risk version of our method used to assess the necessity of multi-risk exploration.

Real-World Results. As shown in Figure 2, MR DistLCB consistently outperforms all baselines
across 3-, 6-, and 9-risk settings. This reflects its use of tight, distributionally robust confidence
bounds and risk measure aware exploration. MR Trunc performs slightly worse due to its simplified
truncation strategy (see Appendix I). This supports the theoretical advantage of MR DistLCB in
multi-risk settings, particularly as complexity increases. As noted in Remark 4.6, baseline methods
suffer from weaker deviation bounds, which slow convergence for distortion-based risks like Wang
and CERM. In contrast, MR DistLCB maintains stable risk estimation as the number of risks grows.
MR LCB performs the worst among multi-risk methods, as its sub-Gaussian assumptions lead to
unstable or miscalibrated decisions. SR DistLCB performs poorly in the 3-risk case where the Pareto
set is small, often failing to identify Pareto-optimal arms. Although its performance improves in 6-
and 9-risk settings as the Pareto set expands, it still fails to match MR DistLCB. This confirms that
single-risk methods do not suffice for multi-risk optimization.

Synthetic Results. Figure 3 compares cumulative Pareto regret across 3-, 6-, and 9-risk config-
urations under different tail indices p. MR-DistLCB consistently achieves the lowest cumulative
regret in all settings, while MR Trunc and MR LCB exhibit higher regret and larger variance. The
MoEQ-based aggregation enables robust estimation even when reward distributions have infinite
variance, whereas truncation-based or sub-Gaussian methods degrade significantly under heavier
tails.

Across tail indices p = 1.01, 1.2, 1.5, MR-DistLCB maintains the lowest mean regret and smallest
standard deviation. For extremely heavy-tailed rewards (p = 1.01), its performance advantage
becomes most pronounced, highlighting the effectiveness of the exponential-type deviation bound
in controlling uncertainty. As p increases and the tails become lighter, all methods exhibit reduced
variability, yet MR-DistLCB preserves its lead, demonstrating robustness to varying tail heaviness.
MR Trunc remains limited by its conservative cutoff rule, and MR LCB continues to misestimate
uncertainty under non-sub-Gaussian noise.

These results collectively confirm that MR-DistLCB achieves strong empirical robustness across
diverse tail regimes. Even in the extreme heavy-tail setting (p ≈ 1), it achieves substantially lower
and more stable regret, consistent with the theoretical rates derived in Section 6. This stability
across risk complexity and tail indices underscores the method’s practical applicability in real-world
heavy-tailed domains such as finance and risk-aware decision-making.

8 Conclusion

We introduce a Pareto-optimal multi-risk bandit framework under heavy-tailed rewards and derive
deviation inequalities for the 1-Wasserstein distance, which enables confidence intervals for Lipschitz
risk measures and the first lower bounds for risk measure aware bandits. The proposed MR-DistLCB
algorithm achieves minimax-optimal regret bounds and outperforms truncation-based methods in
real-world experiments. These results highlight the necessity of specialized multi-risk frameworks
for decision-making under uncertainty. Although truncation-based methods show limitations in
multi-risk settings, since we do not establish lower bounds for truncation-based LCBs, the possibility

9



Figure 2: Cumulative regret on the real-world S&P 500 dataset. Solid/dotted lines show averages;
shaded areas denote standard deviations.

(a) 3-risk (p = 1.01) (b) 6-risk (p = 1.01) (c) 9-risk (p = 1.01)

(d) 3-risk (p = 1.2) (e) 6-risk (p = 1.2) (f) 9-risk (p = 1.2)

(g) 3-risk (p = 1.5) (h) 6-risk (p = 1.5) (i) 9-risk (p = 1.5)

Figure 3: Cumulative regret on the synthetic 20-armed Pareto bandit across different numbers of
risk measures (3, 6, 9) and tail indices p. Solid and dotted lines represent mean regret across runs,
while shaded regions denote one standard deviation. As the tail index decreases (heavier tails), MR
DistLCB maintains lower and more stable regret compared to MR Trunc and MR LCB.

of improvement remains open. Future research could investigate whether adaptive truncation or
alternative refinements can enhance confidence intervals for SRM and DRM, potentially addressing
the observed limitations.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly summarize our main contributions: (i)
deviation inequalities for the 1-Wasserstein distance under heavy-tailed rewards, (ii) a robust
estimator (MoEQ), (iii) the DistLCB and MR-DistLCB algorithms, (iv) regret bounds with
matching lower bounds, and (v) experimental validation. Each of these contributions is
precisely developed in later sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6.2, Remark on Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes. See Assumptions 1 and 2 in Sections 3 and 4.3. Complete proofs are
deferred to the appendix (Sections A–E).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: main paper and appendix fully describe the algorithms (DistLCB, MR-
DistLCB), risk estimators (MoEQ), evaluation metrics, and experimental setup. Algorithm
pseudocode is included in Appendix F, and synthetic and real-world experiments are clearly
explained in Section 7. All experimental results directly support theoretical claims and
conclusions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While code is not yet released, we will make it available upon acceptance, and
the information in Sec. 7 and Appendix E is sufficient to reproduce all key experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: All key settings and parameters are specified in the text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations are reported in plots and tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Since our experiments involve simple setups and the main contributions are
theoretical, the computational demands were minimal and not a limiting factor.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work follows the NeurIPS Code of Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical with no direct societal applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not release any such resource or asset.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No external code, data, or models were used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations, Definitions, and Assumptions
• p ∈ (1, 2]: Order of the bounded moment
• νp: Constant bound of the moment
• H(p) := {µ ∈ L1 : ∃νp s.t. EX∼µ[|X|p] ≤ νp}
• µ: Probability measure
• µ̂n: Empirical measure with n samples
• L1: Space of probability measure with finite expectation.
• Xi: ith sample
• X(i): ith smallest sample

• F (x) and F−1(t): CDF and Quantile

• F̂n(x) and F̂−1
n (x): Empirical CDF and quantile with n samples

• F̂B
n (x) and F̂B,−1

n (x): Empirical CDF and quantile constructed by n bootstrap-resampled
points

• F̂−1
med,n and F̂med,n: Median of empirical quantiles and its corresponding CDF.

• F̂B,−1
med,n and F̂B

med,n: Median of empirical quantiles and its corresponding CDF constructed
by partially bootstraped samples.

• F̂FB,−1
med,n and F̂FB

med,n: Median of empirical quantiles and its corresponding CDF constructed
by fully bootstraped samples.

• D(µ, µ′): Distance between probability measures in L1

• W1: 1-Wasserstein distance
• ρ(X): Lipschitz risk measure
• κ: Lipschitz constant of Lipschitz risk measure
• A: Set of actions
• a ∈ A: Action
• t and n: Time step and total rounds (or total number of samples)
• At: The action selected at time t

• Ta(t): The selection count for action a over t steps
• Xa,t: Random reward of action a at time step t

• ρa := ρ(Xa): Risk measure of action a

• X̂a,n: The median of empirical quantiles for action a

• ρ(X̂a,n): Estimated risk measure for action a based on n samples.

• ρ(X̂a,Ta(t)): Estimated risk measure for action a at time t, where Ta(t) is the number of
times action a has been selected up to time t.

• a∗ := argmina∈A ρ(Xa): Optimal action that maximizes the given risk ρ.
• ∆ρ

a := ρ(Xa)− ρ(Xa∗): Sub-optimality gap given risk ρ

• Rρ
n := E

[∑n
t=1 ∆

ρ
At

]
: Cumulative regret

• ϱ(Xa) := [ρ1(Xa), ρ2(Xa), · · · , ρr(Xa)]
⊺: r dimensional risk vector

• v ≺ u: A vector u dominates a vector v
• v ⊀ u: A vector u does not dominates a vector v. There exists at least one dimension d such

that vd ≥ ud holds.
• P∗ := {a ∈ A|∀a′ ∈ A/{a}, ϱ(Xa) ⊀ ϱ(Xa′)}: Pareto optimal actions that are not

dominated by any other action across all risk measures.
• ∆Pareto

a := infϵ≥0{ ϵ |ϱ(Xa) + ϵ1 ∥ϱ(Xa′), ∀a′ ∈ P∗ }: Pareto sub-optimality gap

• RPareto
n := E

[∑n
t=1 ∆

Pareto
At

]
: Cumulative Pareto regret
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B Detailed Comparison of Prior Work

This appendix presents a structured comparison of prior risk measure aware bandit methods across
risk types, reward distributions, and theoretical guarantees.

risk measure aware Bandits with Light-Tailed Rewards. Numerous studies have analyzed bandits
under light-tailed rewards for specific risk measures, including CVaR [2, 3] or mean-variance[6, 7].
Especially, CVaR-based bandits have garnered significant attention among risk measures. Galichet
et al. [2] achieved O(ln(n)) regret bounds for CVaR-based bandits with bounded rewards, and Vakili
and Zhao [7], Maillard [3] achieved similar bounds under sub-Gaussian assumptions. For bounded
support distributions, Tamkin et al. [21] and Baudry et al. [22] provided regret bounds with detailed
dependency on the sub-optimality gap, achieving problem-dependent bounds of O(

∑
a
log(n)/∆CVaR

a )

and problem-independent bounds of O(
√
Kn log(n)), where ∆CVaR

a is the sub-optimality gap under
CVaR. Recently, Tan and Weng [23] extended these results to sub-Gaussian reward settings for
stochastic and adversarial CVaR bandits. These works significantly advance optimization for specific
single risk measures but do not generalize to broader risk classes or heavy-tailed settings.

risk measure aware Bandits for Lipschitz Risk Measures. Beyond single risk measures, re-
searchers have developed bandit algorithms for Lipschitz risk measures [8–10], which is a broad class
including CVaR, SRM, DRM, UBSR, and CERM. These risk measures satisfy Lipschitz continuity
with respect to distribution distances, allowing algorithms to address multiple risk metrics in this class,
simultaneously. Several studies have explored Lipschitz risk measures in risk measure aware bandit
settings. Cassel et al. [8] considered sub-Gaussian rewards and achieved regret bounds of O(ln(n)).
A. and Bhat [37], Tan et al. [9] expanded the scope further to sub-Exponential and finite variance
distributions, with regret bounds of O(ln(n)) for sub-Gaussian rewards, O(

√
n) for sub-Exponential

distributions, and O(np/(p+1)) for finite variance distributions (2 < p), where p is the order of finite
moment. Liang and Luo [10] extended this result to locally Lipschitz risk measures under bounded
support rewards. However, none of these works address distributions with infinite variance, leaving
heavy-tailed rewards unexplored.

risk measure aware Bandits with Heavy-Tailed Rewards. Most studies on heavy-tailed dis-
tributions have focused on specific risk settings, such as maximizing expected rewards [24–29]
or optimizing CVaR [4, 5], while research on a broad class of risk measures under heavy-tailed
assumptions remains scarce. To the best of our knowledge, Bhatt et al. [30] is the only study that
addresses Lipschitz risk class under heavy-tailed reward distributions with infinite variance. Bhatt
et al. [30] analyzed bandits under piecewise-stationary regimes with heavy-tailed rewards, achieving
regret bounds of Õ(

√
Kn) for gap-dependent cases and Õ(K1−1/pn1/p) for worst-case scenarios,

where p ∈ (1, 2] is the largest order of the finite moment.3They also proposed a truncated empirical
distribution method applicable to the Lipschitz risk class. However, since their analysis considers
non-stationary distributions, it does not provide tight regret bounds for multi-risk settings in stationary
distributions.

Multi-Risk Bandits. Multi-risk bandits extend single-risk settings by optimizing multiple risk
measures simultaneously, often through Pareto-optimality. Existing works [31–34] have focused on
Pareto regret minimization but are limited to light-tailed distributions and do not address broader risk
classes like Lipschitz risk measures. Efforts to combine multi-risk settings with heavy-tailed rewards
or generalize to diverse risk measures remain unexplored.

Lower Bounds of risk measure aware Bandits. Lower regret bounds in risk measure aware bandit
settings depend on the chosen risk measure and the reward distribution assumptions. For CVaR-based
bandits under the sub-Gaussian assumption, Baudry et al. [22] established an asymptotic lower bound
of Ω(

∑
a
∆CVaR

a log(n)/Kα
inf(νa,c

α)). However, no asymptotic lower bounds exist for Lipschitz risk
measures, even under sub-Gaussian distributions, and remain unexplored for heavy-tailed rewards.

3Bhatt et al. [30] originally considered piecewise-stationary reward settings, where the regret bounds are
Õ(
√
MKn) for gap-dependent cases and Õ((MK)1−1/pn1/p) for worst-case scenarios. Here, M represents

the number of distribution changes. Setting M = 1 corresponds to stationary heavy-tailed reward settings,
which is the focus of this paper.
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Establishing the dependency of asymptotic lower bounds on the sub-optimality gap (e.g., ∆CVaR
k )

for generalized risk classes and heavy-tailed settings remains a critical open problem. We would
like to note that the minimax lower bound on general risk measure aware bandits are derived as
Ω(K1−1/pn1/p) in Bhatt et al. [30].

C Summary of Lipschitz Risk Measure

The following well-known risk measures satisfy Lipschitz continuity defined in Definition 3.2. Note
that we generally follow the definition of risk measures in Tan et al. [9] and Liang and Luo [10].

• Conditional Value-at-Risk (CVaR):
– Definition: CVaR at level α ∈ (0, 1) is defined as

CVaRα(X) =
1

1− α

∫ 1

α

F−1(t) dt, (13)

– Lipschitz Constant: (1− α)−1, where α is the risk level.
– Distance Metric: W1.
– Condition on Lipschitzness: None explicitly required beyond the definition.

• Spectral Risk Measure (SRM):
– Definition: A spectral risk measure is defined as

SRM(X) =

∫ 1

0

ϕ(t)F−1(t) dt, (14)

where ϕ(t) is the risk spectrum satisfying ϕ(t) ≥ 0 and
∫ 1

0
ϕ(t) dt = 1 and increasing

function.
– Lipschitz Constant: supβ∈[0,1] ϕ(β), where ϕ(β) is the risk spectrum.
– Distance Metric: W1.
– Condition on Lipschitzness: ϕ(β) must be bounded.

• Distortion Risk Measure (DRM)
– Definition: A distortion risk measure is defined as:

DRM(F ) =

∫ ∞

0

g(1− F (x)) dx, (15)

where g : [0, 1]→ [0, 1] is a continuous, concave, and increasing distortion function
satisfying g(0) = 0 and g(1) = 1. We further assume that g is strictly increasing
g′(x) > 0, thus, infx∈[0,1] g

′(x) > 0 holds.
– Lipschitz Constant: ∥g′∥∞, where ∥g′∥∞ is the supremum of the derivative g′ over its

domain [0, 1].
– Distance Metric: W1 (1-Wasserstein distance).
– Condition on Lipschitzness: The derivative g′(t) of the distortion function must be

bounded, i.e., g′(t) ≤ ∥g′∥∞ for all t ∈ [0, 1]. To prove the Lipschitz property of
DRM under the Wasserstein distance W1, we apply the Mean Value Theorem for the
distortion function g, yielding |g(1− F (x))− g(1−G(x))| ≤ ∥g′∥∞|F (x)−G(x)|.
Integrating over the domain gives:

|DRM(F )−DRM(G)| ≤ ∥g′∥∞W1(F,G). (16)

Thus, the Lipschitz constant of DRM with respect to W1 is ∥g′∥∞.
• Utility-Based Shortfall Risk (UBSR):

– Definition: UBSR is defined as

UBSR(X) = inf{m ∈ R : E[l(X −m)] ≤ η}, (17)

where l is a utility function and η > 0 is a threshold parameter.
– Lipschitz Constant: K

k , where K is the Lipschitz constant of the utility function l, and
k is its strong convexity parameter.

– Distance Metric: W1.
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– Condition on Lipschitzness: The utility function l must be K-Lipschitz and satisfy the
strong convexity property l(x2) ≥ l(x1) + k(x2 − x1) for x2 ≥ x1.

• Certainty Equivalent (CE) Risk Measure:

– Definition: The Certainty Equivalent (CE) risk measure is defined as

CE(F ) = u−1

(∫ ∞

−∞
u(x) dF (x)

)
, (18)

where u(x) is a continuous, strictly increasing, and differentiable utility function, and
u−1 is its inverse.

– Lipschitz Constant:

∥u′∥∞
infx∈range(u) u′(x)

, (19)

where ∥u′∥∞ is the supremum of the derivative u′(x), and infx∈range(u) u
′(x) is the

minimum derivative over the range of u.
– Distance Metric: W1.
– Condition on Lipschitzness: The utility function u(x) must be continuously differen-

tiable, with u′(x) bounded above and away from zero, i.e., 0 < infx∈range(u) u
′(x) ≤

u′(x) ≤ ∥u′∥∞ <∞.

D On the Validity of Assumption 4.3

In this section, we provide additional justification and concrete examples supporting Assumption 4.3,
which postulates a polynomial concentration inequality for the empirical distribution under a given
distance metric. The validity of this assumption depends on both the underlying distributional class
and the choice of distance metric. Below, we demonstrate that the assumption is satisfied in a range
of settings, including both heavy-tailed and light-tailed regimes.

(i) ℓ∞ distance under heavy-tailed distributions (1 < p). By the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality [38], for the empirical distribution function F̂ of n i.i.d. samples and the true CDF
F , we have:

P
(
sup
u
|F̂ (u)− F (u)| > x

)
≤ 2 exp(−2nx2).

Since the exponential bound decays faster than any polynomial, there exists a constant Cp such that:

P
(
sup
u
|F̂ (u)− F (u)| > x

)
≤ Cpνp

np−1xp
, for all n ∈ N, x > 0.

(ii) W1 distance under heavy-tailed distributions (1 < p ≤ 2). Dedecker and Merlevède [39,
Theorem 2.1] provide the following deviation bound for the 1-Wasserstein distance between F̂ and F
under finite p-th moment conditions:

P(W1(F̂ , F ) > x) ≤ Cpνp
np−1xp

.

(iii) W1 distance under bounded, sub-Gaussian, or sub-Exponential distributions. Prashanth
and Bhat [40] show that for light-tailed distributions, deviation bounds for the Wasserstein distance
admit exponential tails:

P(W1(F̂ , F ) > x) ≤ O
(
exp(−nxβ) + exp(−nx2)

)
,

for some β > 0. Since the exponential decay dominates polynomial tails, this again satisfies
Assumption 4.3 with appropriate constants.
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(iv) ℓ1 distance under bounded support. Liang and Luo [10] establish the following concentration
bound:

P(ℓ1(F̂ , F ) > x) ≤ O

(
exp

(
−c · n

e

(
x− 32

8(b− a)

)2
))

,

where [a, b] denotes the support. Again, exponential decay implies the existence of Cp satisfying
Assumption 4.3.

These results confirm that Assumption 4.3 is satisfied under commonly used distance metrics across
both heavy-tailed and light-tailed settings. In the final version of the paper, we will include these
clarifications along with appropriate citations to ensure completeness and transparency.

E Median of Empirical Quantiles

E.1 Median of Empirical Quantiles

Lemma E.1. F̂−1
med,N (y) and F̂med,N (x) are a valid quantile and cumulative distribution function,

respectively.

Proof. First, the domain of F̂−1
med,N (y) is clearly y ∈ [0, 1]. Second, we prove the non-decreasing

property. It is equivalent to show that, for any y1 ≤ y2, F̂−1
med,N (y1) ≤ F̂−1

med,N (y2). If k is odd, say
k = 2v + 1 for some integer v, then, by definition of the median, at least v number of F−1

N,j(y1) are
greater than F̂−1

med,N (y1) and at least v number of F−1
N,j(y1) are less than F−1

N,j(y1). Since F−1
N,j(y)

is non-decreasing, we have, for all j, F−1
N,j(y1) ≤ F−1

N,j(y2). Hence, any empirical CDF F−1
N,j(y1)

that was greater than F̂−1
med,N (y1) satisfies the same condition at y2, i.e., F̂−1

med,N (y1) ≤ F−1
N,j(y1) ≤

F−1
N,j(y2). So, at least v number of empirical CDFs are still greater than F̂−1

med,N (y1) at y2. In this
regard, F̂−1

med,N (y2) cannot be less than F̂−1
med,N (y1), i.e., F̂−1

med,N (y1) ≤ F̂−1
med,N (y2). For even

number k = 2v, the same argument also holds. Third, by definition of F̂med,N (x), its quantile
function is F̂−1

med,N (y).

Lemma E.2. For all x ∈ R, F̂med,N (x) = median
j∈{1,2,··· ,k}

(
F̂N,j(x)

)
holds.

Proof.

F̂med,N (x) =
1

N

N∑
i=1

I
[
F̂−1
med,N (i/N) < x

]
=

1

N

N∑
i=1

I
[
medianj(X(i),j) < x

]
(20)

=
1

N

N∑
i=1

medianj(I
[
X(i),j < x

]
) = medianj

(
1

N

N∑
i=1

I
[
X(i),j < x

])
(21)

= median
j∈{1,2,··· ,k}

(
F̂N,j(x)

)
(22)

E.1.1 Proof of Theorem 4.4

Proof. First, we would like to note that, due to convexity of D(·, F ), we have

D(F̂med,N , F ) ≤ median
ℓ∈[k]

(
D(F̂N,ℓ, F )

)
, (23)

where detail proof can be found in Merkle [41]. Then, the similar technique in Bubeck et al. [24]
is applied. Let x > 0 and Yℓ := I[W1(F̂N,ℓ, F ) > x] for ℓ ∈ [1, 2, 3, · · · , k]. Then, from the
Assumption 4.3, we have,

q := P(Yℓ = 1) = P(D(F̂N,ℓ, F ) > x) ≤ Cpνp
xpNp−1

(24)
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Note that for

x =
(4Cpνp)

1/p

N1−1/p
(25)

we have q ≤ 1/4. Then, by using Hoeffding’s inequality for the tail of a binomial distribution, we get

P
(
D
(
F̂med,N , F

)
≥ x

)
≤ P

(
median

ℓ∈[k]

(
D(F̂N,ℓ, F )

)
> x

)
(26)

= P

(
k∑

ℓ=1

Yℓ >
k

2

)
≤ exp

(
−2k(1/2− q)2

)
(27)

≤ exp (−k/8) ≤ δ. (28)

where the last inequality holds since k = ⌊8 ln(e1/8/δ)⌋ > 8 ln(1/δ). Hence, we have N = ⌊n/k⌋ >
n

16 ln(e1/8/δ)
. Consequently, with probability at least 1− δ,

D
(
F̂med,N , F

)
≤ x =

(4Cpνp)
1/p

N1−1/p
≤ (4Cpνp)

1/p

(
16 ln(e1/8/δ)

n

)1−1/p

. (29)

E.1.2 Proof of Corollary 4.5

To handle bootstrap resampling, we first derive the following two lemmas.
Lemma E.3 (Deviation of PB-MoEQ). Under the same conditions as Theorem 4.4 and the 1-
Wasserstein distance W1, let F̂B

N+1,j be one sample bootstrapped empirical CDF of F̂N,j . Then, for
any fixed x > 0,

P
(
W1(F̂

B
N+1,j , F̂N,j) > x

)
≤ 2p+1νp

Np−1xp
(30)

Proof. To quantify the difference between the empirical distributions before and after adding a
bootstrap-resampled sample, we compute the 1-Wasserstein distance:

W1(F̂N,j , F̂
B
N+1,j) =

∫
R

∣∣∣F̂N,j(x)− F̂B
N+1,j(x)

∣∣∣ dx. (31)

Then, the difference between the two distributions is:

F̂B
N+1,j(x)− F̂N,j(x) =

1

N + 1
I[XBoot ≤ x]− 1

N(N + 1)

N∑
i=1

I[Xi ≤ x]. (32)

where XBoot is a bootstrapped sample. Then, reorganizing, this becomes:

F̂B
N+1,j(x)− F̂N,j(x) =

1

N + 1

(
I[XBoot ≤ x]− F̂N,j(x)

)
. (33)

Thus, the Wasserstein distance is expressed as:

W1(F̂N,j , F̂
B
N+1,j) =

1

N + 1

∫
R

∣∣∣I[XBoot ≤ x]− F̂N,j(x)
∣∣∣ dx ≤ 1

N + 1
2 max

i∈[N ]
|Xi|. (34)

where the last inequality holds since the gap between the indicator and empirical CDF is clearly zero
outside of [−maxi |Xi|,maxi |Xi|]. Now, for the deviation probability,

P
(
W1(F̂

B
N+1,j , F̂N,j) > x

)
≤ P

(
1

N + 1
2 max

i∈[N ]
|Xi| > x

)
(35)

≤ NP
(
|Xi| >

(N + 1)x

2

)
≤ 2pνpN

(N + 1)pxp
≤ 2pνp

Np−1xp
(36)

Lemma E.4 (Deviation of FB-MoEQ). Under the same conditions as Theorem 4.4 and the 1-
Wasserstein distance W1, let F̂FB

N,ℓ be the ℓth full bootstrap empirical CDF, and let F̂n be the
empirical CDF obtained by original dataset. Then, for any N , t > 0, and any fixed x > 0,

P
(
W1(F̂

FB
N,ℓ , F̂n) > x

)
≤ 2n exp

(
−2N

( x

4nt

)2)
+

2nνp
tp

. (37)
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Proof. Consider the conditional probability:

P(W1(F̂
FB
N,ℓ , F̂n) > x) = EX1,··· ,Xn

[
P(W1(F̂

FB
N,ℓ , F̂n) > x | X1, · · · , Xn)

]
. (38)

Then, given original datasets, the Wasserstein distance can be bounded by:

W1(F̂N,ℓ, F̂n) =

∫ ∞

−∞
|F̂N,ℓ(x)− F̂n(x)|dx =

∫ maxi |Xi|

−maxi |Xi|
|F̂N,ℓ(x)− F̂n(x)|dx (39)

≤
∫ maxi |Xi|

−maxi |Xi|

n∑
i=1

∣∣∣∣kiN − 1

n

∣∣∣∣ I[Xi < x]dx ≤
n∑

i=1

∣∣∣∣kiN − 1

n

∣∣∣∣ · 2max
i
|Xi|, (40)

where ki is a random variable that indicates the number of times Xi is selected in the bootstrap
resample. Given the original samples, uniform resampling with replacement is equivalent to sampling
N independent categorical random variables with equal probability 1/n. Thus, we have:

P(W1(F̂N,ℓ, F̂n) > x | X1, · · · , Xn) ≤ P

(
n∑

i=1

∣∣∣∣kiN − 1

n

∣∣∣∣ > x

2maxi |Xi|

∣∣∣∣∣X1, · · · , Xn

)
(41)

≤
n∑

i=1

P
(∣∣∣∣kiN − 1

n

∣∣∣∣ > x

2nmaxi |Xi|

∣∣∣∣X1, · · · , Xn

)
. (42)

Note that marginal probability of ki is a binomial distribution with N and 1/n. Using the Hoeffding
inequality for the deviation of a binomial variable:

P
(
W1(F̂N,ℓ, F̂n) > x | X1, · · · , Xn

)
≤ 2n exp

(
−2N

(
x

4nmaxi |Xi|

)2
)
. (43)

Now, consider the total probability, for t > 0,

P(W1(F̂N,ℓ, F̂n) > x/2) = P(W1(F̂N,ℓ, F̂n) > x/2 | max
i
|Xi| ≤ t)P(max

i
|Xi| ≤ t) (44)

+ P(W1(F̂N,ℓ, F̂n) > x/2 | max
i
|Xi| > t)P(max

i
|Xi| > t). (45)

For the first term:

P(W1(F̂N,ℓ, F̂n) > x | max
i
|Xi| ≤ t) ≤ 2n exp

(
−2N

( x

4nt

)2)
. (46)

For the second term, using the tail bound on maxi |Xi|:

P(max
i
|Xi| > t) ≤ 2nνp

tp
. (47)

Combining these, we have,

P(W1(F̂N,ℓ, F̂n) > x) ≤ 2n exp

(
−2N

( x

4nt

)2)
+

2nνp
tp

. (48)

By using the deviation inequalities of bootstrap resampling cases, we now prove Corollary 4.5.

Proof of Corollary 4.5. Proof of MoEQ: First, for the case of MoEQ, let us verify that the 1-
Wasserstein distance satisfies Assumption 4.3 to apply Theorem 4.4. From Theorem 2.1 in Dedecker
and Merlevède [39], for an empirical distribution of heavy-tailed distribution with p > 1, we have:

P(W1(F̂N,ℓ, F ) > x) ≤ Cpνp
Np−1xp

. (49)

This implies that W1 satisfies Assumption 4.3. By applying Theorem 4.4, we know that β(δ) =
βp,n(δ) = (4Cpνp)

1/p(16 ln(e1/8/δ)/n)1−1/p. Hence, the proof of the first case is completed.

Proof of PB-MoEQ: For the case of PB-MoEQ, it follows directly from the proof of the Lemma E.3.
By the triangle inequality:

P
(
W1

(
F̂B
N+1,j , F

)
> x

)
≤ P

(
W1

(
F̂B
N+1,j , F̂N,j

)
>

x

2

)
+ P

(
W1

(
F̂N,j , F

)
>

x

2

)
(50)

≤ 22pνp
Np−1xp

+
2pCpνp
Np−1xp

=
C′

pνp

Np−1xp
, (51)
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where C ′
p := 22p + 2pCp. From this fact, we can apply Theorem 4.4. From Theorem 4.4, we get:

W1

(
F̂B
med,N+1, F

)
≤ (4C′

pνp)
1/p

(
16 ln(e1/8/δ)

n

)1−1/p

= βp,n(δ)
′. (52)

This completes the proof.

Proof of FB-MoEQ For the case of FB-MoEQ, it is enough to prove the following probability bound,

P
(
W1

(
F̂FB
N,j , F

)
> x

)
≤ P

(
W1

(
F̂FB
N,j , F̂n

)
> x/2

)
+ P

(
W1

(
F̂n, F

)
> x/2

)
(53)

Then, for the first term, by using the Lemma E.4, we get,

P(W1(F̂
FB
N,ℓ , F̂n) > x/2) ≤2n exp

(
−2N

( x

8nt

)2)
+

2nνp
tp

(54)

≤2n exp

−2N
 x

256n
1+ 1

p ν
1
p
p

2+
1

16
by choosing t = 32n1/pν1/p

p (55)

For the second term, again, from Theorem 2.1. in Dedecker and Merlevède [39], we have,

P(W1(F̂n, F ) > x/2) ≤ 2pCpνp
np−1xp

(56)

Finally, by combining two results, we get,

q := P
(
W1

(
F̂FB
N,j , F

)
> x

)
≤ 2n exp

−2N
 x

256n
1+ 1

p ν
1
p
p

2+
1

16
+

2pCpνp
np−1xp

(57)

Note that for

x =
(8 · 2p · Cpνp)

1/p

n1−1/p
, N ≥ ln(32n)

2

(
128n2

(8Cp)1/p

)2

, (58)

we get q ≤ 1/4. Applying Hoeffding’s inequality for the median, the probability bound is established,
leading to:

W1

(
F̂FB
med,N , F

)
≤ 2(8Cpνp)

1/p

n1−1/p
= βp,n(δ)

′′. (59)

Consequently, this completes the proof.

F Algoirthmic Details

F.1 Distributional LCB

The Distributional LCB algorithm extends the classical lower confidence bound approach to risk
measure aware settings by leveraging a Lipschitz-continuous risk measure. At each round, the
algorithm constructs a confidence interval for the estimated risk of each arm using the median-of-
empirical-quantiles (MoEQ) estimator, and selects the arm with the lowest lower confidence bound.
This design enables robust decision-making under heavy-tailed reward distributions.
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Algorithm 1 Distributional LCB

1: Input: A: Set of actions, K: Number of actions, (ρ, κ): A Lipschitz risk measure with Lipschitz
constant, n: Total time steps, p: The order of a bounded moment, νp: The bound of the pth
moment, Cp: Scaling factor of deviation bound, k: Number of empirical quantiles

2: Output: Optimal action â∗
3: Initialize Ta ← 0 for all a ∈ A, X̂a,0 ← 0 for all a ∈ A, LCB(a)← 0 for all a ∈ A
4: for all a ∈ A do
5: Pull arm a and observe reward Xa, update X̂a,1, and increment Ta ← Ta + 1
6: end for
7: for t = K + 1 to n do
8: for all a ∈ A do
9: Compute βa,t−1 based on Corollary 4.5

10: LCB(a)← ρ(X̂a,Ta
)− κβa,Ta

11: end for
12: Select action At ← argmina∈A LCB(a)
13: Observe reward XAt and update TAt ← TAt + 1

14: Update X̂At,TAt
←MoEQ({XAt,1, . . . , XAt,TAt

})
15: end for
16: Return: â∗ ← argmina∈A ρ(X̂a,Ta)

F.2 Median of Empirical Quantiles with Bootstrap Resampling

The Median of Empirical Quantiles (MoEQ) estimator is used to construct robust estimates of the
reward distribution under heavy-tailed noise. The data is partitioned into multiple blocks, and the
empirical quantiles of each block are computed. The final estimate is obtained by taking the median
across blocks at each quantile level. To ensure balanced partitioning, bootstrap resampling is applied
if the sample size is not divisible by the number of blocks.

Algorithm 2 Median of Empirical Quantiles with Bootstrap Resampling

1: Input: X1, X2, . . . , Xn: n Samples, k: Number of empirical quantiles (or groups)
2: Output: The computed median quantiles {F̂−1

M (j/N) : j = 1, 2, . . . , N}
3: If n mod k ̸= 0, bootstrap-resample from X1, X2, . . . , Xn to ensure n = kN .
4: Compute block size: N ← ⌊n/k⌋.
5: Divide the data into k groups, each of size N :

Group1 = {X1, . . . , XN},Group2 = {XN+1, . . . , X2N}, . . . ,Groupk = {X(k−1)N+1, . . . , XkN}.
(60)

6: Sort each group: For each Groupi, sort the observations to compute order statistics:

X(1),i ≤ X(2),i ≤ · · · ≤ X(N),i. (61)

7: Compute the median of quantiles: For each quantile level j
N , compute:

F̂−1
M (j/N)← Median

(
{X(j),1, X(j),2, . . . , X(j),k}

)
. (62)

F.3 Multi-Risk Distributional LCB

The Multi-Risk Distributional LCB algorithm generalizes the risk measure aware exploration to
settings involving multiple Lipschitz risk measures. For each arm and risk type, the algorithm
computes lower confidence bounds and identifies a Pareto-optimal set of actions that are non-
dominated across all considered risks. An action is then sampled uniformly from this Pareto set,
balancing risk-sensitive exploration under multiple objectives. This approach is particularly useful in
applications where trade-offs between different types of risks must be considered simultaneously.
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Algorithm 3 Multi-Risk Distributional LCB

1: Input: A: Set of actions, K: The number of actions, {(ρ1, κ1), (ρ2, κ2), . . . , (ρr, κr)}: Set of r
Lipschtiz risk measures with Lipschtiz constants, n: Total time steps, p: The order of a bounded
moment, νp: The bound of the pth moment, Cp: Scaling factor, k: The number of empirical
quantiles

2: Ouput: Pareto optimal actions P̂∗,n
3: Initialize P̂∗,0 ← ∅
4: Initialize Ta ← 0 for all a ∈ A
5: Initialize X̂a,0 ← 0 for all a ∈ A
6: Initialize LCB(a, d)← 0 for all a ∈ A, d ∈ (1, 2, · · · , r)
7: for all a ∈ A do
8: Pull arm a and observe reward Xa

9: Update X̂a,1 and increment Ta ← Ta + 1
10: end for
11: for t = K + 1 to n do
12: for all a ∈ A do
13: Compute βa,Ta

based on Corollary 4.5
14: for d = 1 to r do
15: LCB(a, d) = ρd(X̂a,Ta)− κdβa,Ta

16: end for
17: end for
18: for all a ∈ A do
19: Add a to P̂∗,t if ∀a′ ∈ A \ {a}, LCB(a′) ⊀ LCB(a) {Pareto dominance check}
20: end for
21: Sample At ∼ Uniform(P̂∗,t) {Select action}
22: Observe reward XAt

and update TAt
← TAt

+ 1 for selected action At

23: Update X̂At,TAt
←MoEQ({XAt,1, · · · , XAt,TAt

}) {Update quantiles with all observed re-
wards of action At}

24: end for

G Regret Analysis

G.1 Lower Bounds of risk measure aware Bandits with Heavy-Tailed Rewards

G.1.1 Asymptotic Lower Bounds

Proof. The proof will be done by using the generic lower bound (See Chapter 16 in Lattimore and
Szepesvári [35]). Especially, we apply the similar techniques in Bubeck et al. [24] for SRM and DRM.
we construct two Bernoulli random variable X1 and X2 on the set {0, 1/γ}, where γ := (2c)1/(p−1)

and c ∈ (0, 1/4). Specifically, define the probability

µ1 =
(
1 + c γ − γ p

)
δ0 +

(
γ p − c γ

)
δ1/γ . (63)

and

µ2 = (1− γ p) δ0 + γ p δ1/γ , (64)

Here, δx denotes a point mass at x. Furthermore, we can check the pth moment of Bernoulli
distributions. Under the distribution µ1, the random variable X1 takes the value 0 with probability
(1 + cγ − γ p) and 1

γ with probability γ p − cγ. Therefore,

E
[
|X1|p

]
= 0p ·

(
1 + c γ − γ p

)
+
(

1
γ

)p
·
(
γ p − c γ

)
= 1− cγ1−p = 1/2. (65)

For X2, we have

E
[
|X2|p

]
= 0p ·

(
1− γ p

)
+
(

1
γ

)p
· γ p = 1. (66)

Hence, for this Bernoulli bandit problem, νp = 1 for any choice of c.
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Then, let us compute a spectral risk measure and distortion risk measure for these two actions. First,
for SRM, we get the following risk values. For X1, we have p1 = γp − cγ and x1 = 1

γ . Thus

ρ(X1) =
1

γ

∫ 1

1−γp+cγ

ϕ(α) dα. (67)

For X2, we have p2 = γp and x2 = 1
γ . Hence

ρ(X2) =
1

γ

∫ 1

1−γp

ϕ(α) dα (68)

Then, the sub-optimality gap of X2 and X1 becomes,

∆ρ
2 := ρ(X2)− ρ(X1) =

1

γ

∫ 1−γp+cγ

1−γp

ϕ(α) dα ≥ ϕ(1− γp)c ≥ ϕ(1− (1/2)p/(p−1))c = Dϕ,pc,

(69)

where Dϕ,p := ϕ(1− (1/2)p/(p−1)).

Next, for DRM, we get the following DRM values. For X1, we have p1 = γp− cγ and x1 = 1
γ . Thus

ρ(X1) =
1

γ
g
(
γp − cγ

)
. (70)

For X2, we have

ρ(X2) =
1

γ
g
(
γp
)
. (71)

Similar to SRM, the sub-optimality gap becomes,

∆ρ
2 := ρ(X2)− ρ(X1) =

1

γ
g
(
γp
)
− 1

γ
g
(
γp − cγ

)
= g′(γp − tcγ)c ≥ Dg,pc, (72)

where there exists t ∈ [0, 1] such that the last equality holds by the mean value theorem and
Dg,p := infx g

′(x).

From the asymptotic regret lower bound for two-armed bandit problems, as in [24, 35], the regret
lower bound becomes

lim inf
n→+∞

Rn

ln(n)
≥ ∆ρ

2 ·
1

DKL(X2, X1)
≥ ∆ρ

2 · p2(1− p2)

(p2 − p1)2
=

∆ρ
2 · γp(1− γp)

c2γ2
(73)

=
∆ρ

2 · (2c)
p

p−1 (1− γp)

c
2p

p−1 2
2

p−1

≥ ∆ρ
2(1− (1/2)

p
p−1 )

c
p

p−1 2
2−p
p−1

≥ Ω

(
1

(∆ρ
2)

1
p−1

)
. (74)

G.1.2 Minimax Lower Bound

Proof. We prove the theorem using the minimax lower bound technique for K-armed bandits. We
define two different bandit problems. For the first bandit problem, define K Bernoulli distributions
where the first action has the distribution of (63) and other remaining K − 1 actions have the
distribution of (64). Then, the sub-optimality gap of SRM and DRM is

∆ρ
i ≥ Dρ,pc for i ≥ 2, (75)

where Dρ,p are constant only dependent on ρ and p. To create the second bandit problem, let
i = argminj>1 E1[Tj(n)], where E1 indicates the expectation over the first bandit problem and
Tj(n) denotes the number of times action j is pulled up to time n. Since the total number of pulls
satisfies

∑K
j=1 E1[Tj(n)] = n, it follows that E1[Ti(n)] ≤ n

K−1 . Then, for the second bandit
problem, we only change the distribution of action i as follows,

µ′
i = δ0 (76)
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where action i has all probability at zero. Here, by construction of both bandit problems, action 1 is
optimal under the first bandit problem, while action i is optimal under the second bandit problem.
Furthermore, for the second bandit problem, the sub-optimality gap of SRM of the first arm 1 is
obtained as

∆ρ
1 = ρ(X ′

1)− ρ(X ′
i) =

1

γ

∫ 1

1−γp+cγ

ϕ(α) dα (77)

≥ ϕ(1− γp + cγ)(γp−1 − c) ≥ ϕ(1− (1/2)
2p−1
p−1 )c = D′

ϕ,pc, (78)

where X ′
1 and X ′

i indicate the Bernoulli distribution for the second problem. For DRM, the gap
becomes

∆ρ
1 = ρ(X ′

1)− ρ(X ′
i) =

1

γ
g
(
γp − cγ

)
− 1

γ
g(0) ≥ D′

g,p(γ
p−1 − c) = D′

g,pc. (79)

Furthermore, the KL divergence between Xi and X ′
i is obtained as

DKL(Xi, X
′
i) ≤

(p1 − p′1)
2

p1(1− p1)
=

(γp − cγ)2

(γp − cγ)(1− γp + cγ)
=

(2
p

p−1 − 2
1

p−1 )c
p

p−1

(1− (2
p

p−1 − 2
1

p−1 )c
p

p−1 )
(80)

≤ (2
p

p−1 − 2
1

p−1 )c
p

p−1

(1− (1/2)
2p−1
p−1 )

(81)

Then, the regret of the first problem is

Rρ
n,1 ≥

∑
a̸=1

∆ρ
aE1[Ta(n)] ≥

∑
a̸=1

∆ρ
aE1[Ta(n)I(T1(n) ≤ n/2)] (82)

≥ Dρ,pc
∑
a ̸=1

E1[Ta(n)I(T1(n) ≤ n/2)] ≥ Dρ,pnc

2
P1(T1(n) ≤ n/2) (83)

The regret of the second problem is

Rρ
n,2 ≥

∑
a̸=i

∆ρ
aE2[Ta(n)] ≥ ∆ρ

1E2[T1(n)I(T1(n) > n/2)] ≥
D′

ρ,pnc

2
P2(T1(n) > n/2) (84)

by using the Bretagnolle-Huber inequality, the regret of the two bandit problems satisfies

Rρ
n,1 +R

ρ
n,2 ≥

min(Dρ,p, D
′
ρ,p)nc

4
exp

(
−E1[Ti(n)] ·DKL(Xi, X

′
i)
)

(85)

≥
min(Dρ,p, D

′
ρ,p)nc

4
exp

(
−Epnc

p
p−1

K − 1

)
. (86)

where Ep := (2
p

p−1 −2
1

p−1 )

(1−(1/2)
2p−1
p−1 )

. Consequently, the result is completed by choosing c = ((K −

1)/n)1−1/p as follows,

max(Rρ
n,1,R

ρ
n,2) ≥

Rρ
n,1 +R

ρ
n,2

2
≥ Ω

(
(K − 1)1−1/pn1/p

)
. (87)

G.2 Optimality of Distributional LCB

Proof. 1. Gap-Dependent Bound: At any time t, the event {At = a} (where action a is chosen at
time step t) can occur under the following scenarios:

{At = a} ⊂

{
ρ(X̂a∗,Ta∗ (t−1))− κ(4Cpνp)

1/p

(
8 ln(e1/8t4)

T1(t− 1)

)1−1/p

> ρ(Xa∗)

}
(88)

∪

{
ρ(X̂a,Ta(t−1)) ≤ ρ(Xa)− κ(4Cpνp)

1/p

(
8 ln(e1/8t4)

Ta(t− 1)

)1−1/p
}

(89)
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∪ {Ta(t− 1) < u}, (90)

where u = 32(2κ)
p

p−1

(
(4Cpνp)

1
p−1

(∆ρ
a)

p
p−1

)
ln(e1/32n). The expected number of times action a is chosen

is:

E[Ta(n)] = 1 +

n∑
t=K+1

P(At = a) ≤ 1 + u+

n∑
t=u+1

P(At = a, Ta(t− 1) > u) (91)

≤ 1 + u+

n∑
t=u+1

P

(
ρ(X̂a∗,Ta∗ (t−1))− κ(4Cpνp)

1/p

(
8 ln(e1/8t4)

Ta∗(t− 1)

)1−1/p

> ρ(Xa∗)

)
(92)

+

n∑
t=u+1

P

(
ρ(X̂a,Ta(t−1)) ≤ ρ(Xa)− κ(4Cpνp)

1/p

(
8 ln(e1/8t4)

Ta(t− 1)

)1−1/p
)

(93)

≤ 1 + u+

n∑
t=u+1

t−1∑
s=1

2

t4
≤ 1 + u+

n∑
t=u+1

2

t3
≤ u+ 2. (94)

Substituting u, we obtain:

E[Ta(n)] ≤ 32(2κ)
p

p−1

(
(4Cpνp)

1
p−1

(∆ρ
a)

p
p−1

)
ln(e1/32n) + 2. (95)

The regret for action a is:

Rρ
n =

∑
a:∆

ρ
a>0

∆ρ
aE[Ta(n)] (96)

<
∑

a:∆
ρ
a>0

32(2κ)
p

p−1

(
4Cpνp
∆ρ

a

) 1
p−1

ln(e1/32n) + 2
∑

a:∆
ρ
a>0

∆ρ
a. (97)

2. Gap-Independent Bound:

Define ∆ =
(

32K ln(e1/32n)
n

) p−1
p

κ(4Cpνp)
1
p . The regret is:

Rρ
n =

∑
a:∆

ρ
a>0

∆ρ
aE[Ta(n)] (98)

< n∆+
∑

a:∆
ρ
a>∆

∆ρ
aE[Ta(n)] (99)

< n∆+
∑

a:∆
ρ
a>∆

32(2κ)
p

p−1

(
4Cpνp
∆ρ

a

) 1
p−1

ln(e1/32n) + 2
∑

a:∆
ρ
a>0

∆ρ
a (100)

< n∆+K32(2κ)
p

p−1

(
4Cpνp
∆

) 1
p−1

ln(e1/32n) + 2
∑

a:∆
ρ
a>0

∆ρ
a (101)

< 4κ(4Cpνp)
1
p

(
32K ln(e1/32n)

) p−1
p

n
1
p + 2

∑
a:∆

ρ
a>0

∆ρ
a. (102)

G.3 Regret Bounds of Multi-Risk Distributional LCB

Proof. For any action a /∈ P∗, we decompose the number of times it is pulled up to time n as

Ta(n) = 1 +

n∑
t=K+1

I[At = a] ≤ 1 + ℓ+

n∑
t=1

I [At = a, Ta(t− 1) ≥ ℓ] . (103)

The second term can be further bounded

Ta(n) ≤ 1 + ℓ+

n∑
t=1

I
[
a ∈ P̂∗,t, Ta(t− 1) ≥ ℓ

]
. (104)
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From the fact that a is sampled from P̂∗,t, this becomes

Ta(n) ≤ 1 + ℓ+

n∑
t=1

∑
a∗∈P∗

I
[
ϱ(X̂a∗,t−1)−Kβa∗,t−1 ⊀ ϱ(X̂a,t−1)−Kβa,t−1, Ta(t− 1) ≥ ℓ

]
. (105)

Next, we use the union bound and consider the following decomposition;{
ϱ(X̂a∗,s)−Kβa∗,s ⊀ ϱ(X̂a,sa)−Kβa,sa

}
⊆ (106)

{
ϱ(Xa)−Kβa,sa ⊀ ϱ(X̂a,sa)

}
∪
{
ϱ(X̂a∗,s)−Kβa∗,s ⊀ ϱ(Xa∗)

}
∪ {ϱ(Xa∗) ⊀ ϱ(Xa)− 2Kβa,sa} .

(107)

For sa ≥ ℓ >
(maxd κd)(4Cpνp)

1
p−1 8 ln(Krn4)

(∆Pareto
a )

p
p−1

, the third term vanishes

{ϱ(Xa∗) ⊀ ϱ(Xa)− 2Kβa,sa} = ∅. (108)

The first two terms can be bounded using concentration inequalities

P
(
ϱ(Xa)−Kβa,sa ⊀ ϱ(X̂a,sa)

)
≤ r

1

Krt4
=

1

Kt4
(109)

P
(
ϱ(X̂a∗,s)−Kβa∗,s ⊀ ϱ(Xa∗)

)
≤ r

1

Krt4
=

1

Kt4
. (110)

Substituting these bounds into the original sum,

E[Ta(n)] ≤ 1 + ℓ+

∞∑
t=1

∑
a∗∈P∗

t−1∑
s=1

t−1∑
sa=ℓ

2

Kt4
(111)

≤ 1 + ℓ+

∞∑
t=1

∑
a∗∈P∗

2

Kt2
(112)

≤ ℓ+ 1 +
π2

3
(113)

Finally, substitute ℓ =
(maxd κd)(4Cpνp)

1
p−1 8 ln(e1/8Krn4)

(∆Pareto
a )

p
p−1

, we have

E[Ta(n)] ≤
(maxd κd)(4Cpνp)

1
p−1 8 ln(e1/8Krn4)

(∆Pareto
a )

p
p−1

+ 1 +
π2

3
. (114)

Substituting the bound for E[Ta(n)], we obtain,

RPareto
n ≤

∑
a∈A\P∗

(maxd κd)(4Cpνp)
1

p−1 32 ln(e1/32(Kr)1/4n)

(∆Pareto
a )

1
p−1

+

(
1 +

π2

3

) ∑
a∈A\P∗

∆Pareto
a . (115)

By repeating the same procedure to compute the worst case bound, the minimax regret bound is
obtained

RPareto
n ≤ 2(max

d
κd)(4Cpνp)

1
p

(
32K ln(e1/32(Kr)1/4n)

) p−1
p

n
1
p +

(
1 +

π2

3

) ∑
a∈A\P∗

∆Pareto
a . (116)

H Experimental Details

H.1 Real-World Experiment Setup

We use daily stock return data from the top 20 S&P 500 companies over 3,184 trading days
(2012.05.18–2025.01.14). At each time step, the algorithm selects one asset and observes its daily
return as the reward. The task is to identify Pareto-optimal assets across multiple risk measures:
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• 3-risk: CVaR0.75, Wang(−1.0), CERM(α = 1.0)

• 6-risk: + CVaR0.9, Wang(0.0), CERM(α = 2.0)

• 9-risk: + CVaR0.95, Wang(1.0), CERM(α = 3.0)

For CERM, u(x) := −eαx is used as a weight function. Tail indices estimated via Hill’s estimator
range from 1.50 to 4.69. We use p = 1.5 conservatively in our algorithm.

The heavy-tailed nature of stock returns is well-documented [13–17]. Using Hill’s estimator, we find
tail indices in the range [1.50, 4.69], confirming heavy-tailed behavior. We adopt a conservative tail
index of p = 1.5.

H.2 Synthetic Experiment Setup

We simulate a 20-armed bandit problem with Pareto-distributed rewards. Arms a18, a19, and a20
belong to the Pareto-optimal set. We vary the number of risks across:

• 3-risk: CVaR0.9, SRM1, SRM2

• 6-risk: SRM1 to SRM6

• 9-risk: CVaR0.9, SRM1 to SRM8

Each SRM is implemented as a step-function spectral risk measure (SRM) following the axiomatic
framework of ? ]. Given a quantile level x ∈ (0, 1], the spectrum function ϕ(x) is defined as a
right-continuous step function that assigns weight ϕk to quantiles below threshold αk. Formally, the
spectrum is evaluated as:

ϕ(x) =

K∑
k=1

ϕk · I(x > αk),

where I(·) is the indicator function, and the weights {ϕk} are normalized to satisfy the coherence
condition:

K∑
k=1

ϕk(1− αk) = 1.

This construction allows SRMs to be expressed as weighted averages of quantile values, where the
shape of the spectrum reflects varying degrees of risk aversion.

We adopt this formulation to flexibly construct a variety of SRMs by adjusting the αk and ϕk

parameters. This enables controlled evaluation of our algorithms under diverse risk preferences and
weight concentrations. The specific parameterizations used in our experiments are listed below:

• SRM1: alphas = [0.2, 0.4, 0.6, 0.8], ranges = [0.25, 0.5, 0.75, 1.0]

• SRM2: alphas = [0.1, 0.2, 0.5, 0.9], ranges = [0.2, 0.2, 1.0, 1.6]

• SRM3: alphas = [0.5, 0.75, 0.9], ranges = [1.0, 1.0, 2.5]

• SRM4: alphas = [0.25, 0.5, 0.75], ranges = [0.5, 1.0, 0.5]

• SRM5: alphas = [0.2, 0.4, 0.6, 0.8, 0.95], ranges = [0.0, 0.333, 1.0, 1.0, 4.0]

• SRM6: alphas = [0.2, 0.5, 0.8], ranges = [0.375, 1.0, 1.0]

• SRM7: alphas = [0.15, 0.35, 0.55, 0.75], ranges = [0.0, 0.462, 1.0, 1.0]

• SRM8: alphas = [0.3, 0.7], ranges = [1.0, 1.0]

• CV aR0.9: alpha = [0.9]

Each SRM captures a different attitude toward risk by shifting the emphasis toward different regions
of the tail. Reward means are sampled uniformly over [0, 1] and sorted in ascending order. We run
each experiment for 10,000 steps with 20 random seeds. We use a fixed tail index of p = 1.2, which
simulates a more extreme heavy-tailed condition than observed in the S&P 500 dataset, allowing us
to evaluate performance under high-risk environments.
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I Discussions on Truncated Empirical Distribution

The truncated empirical distribution (TED), introduced by Bhatt et al. [30], is designed to handle
heavy-tailed reward distributions by mitigating the impact of extreme outliers. The truncated empirical
CDF is defined as

F̂trunc,n(x) :=
1

n

n∑
i=1

I[sign(Xi)min(|Xi|, i
1
p ) < x] (117)

This truncation limits the contribution of extreme rewards by replacing large values |Xi| with a
truncation level i1/p, where p > 1 is the order of the bounded moment.

Then, the lower confidence bound (LCB) for TED, as formulated by Bhatt et al. [30], is computed as

LCBa(t) = ρ(F̂trunc,Ta(t−1))− 2q1 max
(
At, A

2
t

)
, (118)

where ρ is a Lipschitz risk measure, Ta(t− 1) is the number of times action a has been chosen up to
time t− 1, and

At :=
ln(t)

3(Ta(t− 1))1−1/p
+

ln(t)

3(Ta(t− 1))3/2−1/p
. (119)

Here, q1 is a tunable parameter to adjust the confidence width, defined in Bhatt et al. [30].

We would like to emphasize that confidence interval of the TED in (118) holds for the risk class
defined in Bhatt et al. [30] including CVaR. Bhatt et al. [30] derive deviation bounds for the semi-
norm, which is equivalent to ℓ2 for CVaR, but their framework does not address the Wasserstein
distance W1.

In this work, we extend their analysis to the Wasserstein distance W1. Let us first assume that there
exist an increasing sequence of threshold Bn. While it is i1/p in (118), in the following analysis, we
assume that it is some increasing sequence and we will specify Bn later.

F̂trunc,n(x) :=
1

n

n∑
i=1

I[sign(Xi)min(|Xi|, B
1
p
n ) < x] (120)

Ftrunc,n(x) := P[sign(Xi)min(|Xi|, B
1
p
n ) < x]. (121)

Note that Ftrunc,n is discountinuous at x = −Bn and x = Bn. Hence, we have,

Ftrunc,n(x) =


1 x ≥ Bn,

F (x) x ∈ [−Bn, Bn),

0 x < −Bn.

(122)

We first split the analysis into two parts,

W1(F̂trunc,n, Ftrunc,n) =

∫ ∞

−∞
|F̂trunc,n(x)− Ftrunc,n(x)|dx (123)

=

∫ Bn

−Bn

|F̂trunc,n(x)− Ftrunc,n(x)|dx (124)

≤2Bn · sup
x∈[−Bn,Bn]

|F̂trunc,n(x)− Ftrunc,n(x)| (125)

≤2Bn

√
ln(C/δ)

2n
(∵ DKW inequality) (126)

W1(Ftrunc,n, F ) =

∫ ∞

−∞
|Ftrunc,n(x)− F (x)|dx (127)

=

∫ −Bn

−∞
|Ftrunc,n(x)− F (x)|dx+

∫ Bn

−Bn

|Ftrunc,n(x)− F (x)|dx (128)

+

∫ ∞

Bn

|Ftrunc,n(x)− F (x)|dx (129)

≤
∫ −Bn

−∞
F (x)dx+

∫ Bn

−Bn

|Ftrunc,n(x)− F (x)| dx+

∫ ∞

Bn

1− F (x)dx (130)
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≤
∫ ∞

Bn

F (−x)dx+

∫ ∞

Bn

1− F (x)dx (131)

≤2
∫ ∞

Bn

P (|X| > x) dx ≤ 2

∫ ∞

Bn

νp
xp

dx (132)

=− 2νp
(p− 1)

x−(p−1)

∣∣∣∣∞
Bn

=
2νp

(p− 1)Bp−1
n

(133)

Combining these, the total deviation is

W1(F̂trunc,n, F ) ≤W1(F̂trunc,n, Ftrunc,n) +W1(Ftrunc,n, F ) (134)

≤ 2Bn

√
ln(C/δ)

2n
+

2νp

(p− 1)Bp−1
n

(135)

The optimal truncation level Bn minimizes the combined deviation terms. Solving for Bn gives

Bn :=

(
νp

p− 1

) 1
p

·
(

2n

ln(C/δ)

) 1
2p

(136)

Then, the confidence interval of deviation inequalities is computed as

W1(F̂trunc,n, F ) ≤ 4

(
νp

p− 1

) 1
p

·
(
ln(C/δ)

2n

) 1
2

(
1− 1

p

)
(137)

For a Lipschitz risk measure ρ with Lipschitz constant κ, we can derive the confidence interval for ρ
as

ρ(F̂trunc,n)− ρ(F ) ≤ 4κ

(
νp

p− 1

) 1
p

·
(
ln(C/δ)

2n

) 1
2

(
1− 1

p

)
(138)

This result provides a robust confidence interval for risk measure aware bandit algorithms under
heavy-tailed settings. However, the derived order of convergence, 1

2 (1−
1
p ), is worse than the ideal

order of 1 − 1
p . This highlights a limitation of the truncated empirical distribution approach, as

the truncation mitigates extreme values but sacrifices optimal convergence rates for risk measure
estimation.
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