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Abstract

In this work, we propose a novel framework for uncertainty
prediction in autonomous driving using VisionLLM. Lever-
aging driving data collected from the CARLA simulator, we
generate bird’s-eye-view (BEV) images paired with next driv-
ing actions and uncertainty scores. To emulate real-world
challenges, occlusion masks are introduced to the BEV im-
ages, representing regions of limited visibility due to sen-
sor constraints. Our model predicts both the next driving ac-
tion and uncertainty score, utilizing additional image inputs
to enhance its reasoning capability under occlusion-rich con-
ditions. By fine-tuning VisionLLM with Parameter-Efficient
Fine-Tuning (PEFT) techniques such as LoRA, we demon-
strate the efficacy of our approach in addressing occlusion-
based uncertainty, paving the way for safer and more reliable
decision-making in high-level driving automation systems.

Introduction
With the introduction of GPT (Radford 2018) and BERT
(Devlin 2018) in 2018, large language models (LLMs)
emerged as a transformative force in natural language pro-
cessing research. Within a few years, the release of ChatGPT
in 2022, based on GPT-3.5, showed remarkable achieve-
ments in performance. The widespread success of Chat-
GPT drew significant attention to the expansive potential
of LLMs, leading to their active adoption in various appli-
cations, including automated agents. In the domain of au-
tonomous vehicles, there have been growing efforts to in-
tegrate LLMs as key components of planning systems (Cui
et al. 2024).

Vision language models (VLMs) are designed to combine
the strengths of visual and textual modalities, enabling them
to analyze and reason about complex, multimodal inputs.
Recently, VisionLLM (Wang et al. 2024) has demonstrated
promising performance across various vision-centric tasks
by effectively integrating image and text understanding. Its
performance, however, is susceptible to the type and qual-
ity of the visual inputs provided. The choice of input images
significantly impacts its ability to make accurate predictions
or perform effectively in downstream tasks.
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Figure 1: Illustration of the occlusion. The left image
shows the front camera view, highlighting a partially visi-
ble road blocked by a truck. The right image represents the
corresponding bird’s-eye-view (BEV) with occlusion areas
marked in red.

Several studies have explored generating text-based de-
scriptions of driving environments to use as input for LLMs.
However, describing complex driving scenarios using text
alone remains a significant challenge. Consequently, au-
tonomous driving applications increasingly adopt VLMs as
a preferred solution. Nevertheless, these applications en-
counter limitations analogous to those of VLMs, high-
lighting the crucial importance of selecting suitable im-
age representations—such as bird’s-eye-view (BEV) maps,
panoramic views, or sensor fusion outputs—to achieve ro-
bust performance in real-world scenarios.

In this work, we propose a novel framework that lever-
ages VLM for autonomous driving applications by BEV im-
ages with corresponding driving actions (next state) and un-
certainty scores as training data. The BEV images represent
the spatial layout of the environment, including vehicle po-
sitions, past and future trajectories, and acceleration states.
To simulate real-world challenges, we introduce occlusion
masks on the BEV images to emulate uncertainty caused
by limited visibility. A key contribution of our work is the
model’s ability to predict uncertainty scores not only from
the BEV image itself but also by leveraging additional image
inputs, enhancing its ability to reason under occlusion-rich
conditions. By fine-tuning VLM on this dataset, we demon-
strate its capability to predict both the next driving action
and the associated uncertainty, addressing critical challenges



Figure 2: An illustration of data pre-processing with a
given CARLA simulation scenario. The color scheme repre-
sents the planned trajectory over a 3-second interval, where
green corresponds to acceleration, yellow indicates constant
speed, and red signifies deceleration.

in planning for autonomous vehicles. This work highlights
the potential of integrating vision and language models to
improve safety and reliability in high-level driving automa-
tion.

Related Works
Planning using LLM in Autonomous Driving Early
studies attempting to adopt LLM for planning in au-
tonomous driving used text input describing the driving en-
vironment. Mao et al. (2023) proposed GPT-Driver, which
approaches the motion planning problem in driving by con-
verting it into language modeling problem. Sha et al. (2023)
proposed LanguageMPC, which is a method to determine
low-level actions by converting the high-level decision made
by LLM that received the text description of driving envi-
ronment into mathematical parameter matrix. Wang et al.
(2023) also proposed an approach similar to Sha et al. in that
they use text description input and MPC. (Fu et al. 2024)
used Llama-Adapter (Zhang et al. 2023) to convert image
into text and then provide it as input to LLM. Chen et al.
(2024) proposed DrivingQA, which embeds vector repre-
sentations containing information about vehicles, pedestri-
ans, and routes into LLM so that the policies can be decoded.

Planning using VLM in Autonomous Driving Beyond
using only text descriptions of driving situations as input,
studies have also been published that applied VLMs using
image input. Wen et al. (2023) and Xu et al. (2024) pre-
sented an approach to utilize GPT4, which is provided with
multimodal input, for applications in autonomous driving.
However, previous studies only evaluate it in a simple high-
way environment (Wang et al. 2023; Fu et al. 2024) or use
raw images of video as input (Wen et al. 2023; Xu et al.
2024).

Figure 3: Overview of fine-tuning VLM using processed
dataset. The VLM is trained by comparing with the ground
truth and generated output.

Safety Force Field (SFF) Nistér et al. (2019b,a) proposed
the Safety Force Field (SFF), which mathematically models
that collisions do not occur if all vehicles on roads comply
with safe control to ensure that the actor itself does not cause
unsafe situations. In detail, actor can drive along a claimed
set, which is a trajectory determined by a safety procedure,
a family of control policies. According to the chain rule for
safety potential, if all actors follow the safety procedure, it
is guaranteed that the safety potential will not increase, and
thus no unsafe situation will occur. The safety potential is
the size of the intersection between the claimed sets of the
actors, and the goal of the safety procedure is to minimize it.

Uncertainty due to Occlusion SFF simply addresses the
visibility problem in autonomous driving by assuming that
there may be invisible actors moving reasonably beyond
occlusion or sight range 1. Similarly, Koschi and Althoff
(2020) also consider the presence of phantom traffic partici-
pants in the occlusion caused by the field of view and line of
sight of the ego vehicle. However, to perform safe planning
even in long tail cases due to occlusion, more sophisticated
processing is needed rather than simple assumptions.

Vision-language Models Models like LLaVA and Llama
3.2 have significantly influenced recent advances in VLMs
(Liu et al. 2024; Dubey et al. 2024). LLaVA integrates a
vision encoder with a LLM to enable comprehensive vi-
sual and linguistic understanding, reaching 85.1% of GPT-
4’s performance on multi-modal instruction-following tasks.
Similarly, Llama 3.2 extends LLM capabilities by incorpo-
rating multilingual support, coding, reasoning, and tool us-
age, with its largest model comprising 405 billion parame-
ters and a context window of up to 128,000 tokens. These
developments underscore the potential for integrating visual
and textual modalities within large-scale language models.



Figure 4: Illustration of the system prompt used for decision-
making tasks in a simulated truck-driving scenario. The
model analyzes an image to predict the next driving action
(e.g., acceleration, constant speed, deceleration, or staying
still) and provides an uncertainty score representing the con-
fidence level of the prediction (range: 0 to 1).

Method
BEV Image Data Generation We collected driving data
in the urban environment of the CARLA simulator Dosovit-
skiy et al. (2017) and generated BEV images based on this
data. In the BEV image, the black rectangles represent the
position and heading of vehicles, the lines behind the vehi-
cles represent the paths the vehicles have traveled for 1 sec-
ond, and the polygons in front of the vehicles represent the
future trajectory for 3 seconds, corresponding to the claimed
set defined in SFF. The color of the claimed set indicates the
acceleration state of the vehicle. Green indicates accelera-
tion, yellow indicates constant speed, and red indicates de-
celeration. A claimed set representing a 3-second future tra-
jectory is drawn in 3 parts separated by 1 second intervals.
Each lane on the road is represented by an virtual wedge-
shaped center line that vehicles follow. To distinguish be-
tween roads when they intersect, roads are painted in differ-
ent colors depending on direction.

Occlusion Mask Generation We define uncertainty as the
inability to perceive a part of the driving environment be-
cause the partial field of view is blocked due to the sensor’s
line of sight issue. We generate an occlusion mask centered
on the ego vehicle at random orientation and angle. The oc-

clusion is represented by a gray mask, which obscures every-
thing, including road structures. If the center of the vehicle
is inside the mask, the vehicle is judged to be occluded and
is not expressed, and the claimed set of the vehicle occluded
by the mask is also not expressed at all.

Dataset Pre-processing For fine-tuning, we utilized a
dataset collected from 125 vehicles driving in Carla Town
03, generating a total of 600,000 samples amounting to
33GB of data. Each sample in the dataset consists of (1) a
BEV image representing the spatial layout of the environ-
ment, (2) the next driving action to be taken, and (3) a con-
fidence score ranging from 0 to 1, indicating the level of oc-
clusion in the corresponding scene. Due to the large dataset
size, we performed random sampling to select 10,000 sam-
ples for training and evaluation, ensuring a diverse represen-
tation of the driving scenarios within the environment. This
preprocessing step enabled efficient model fine-tuning with-
out compromising the dataset’s integrity.

Model Architecture The proposed model leverages both
Llama 3.2 (11B Vision-Instruct) and LLaVa v1.6 (Mistral
7B Vision-Instruct) models to achieve a robust architecture
capable of processing visual and textual inputs (AI 2024;
Liu 2024). These models are built upon a base language
model that has been fine-tuned using instruction-following
data, enabling it to perform effectively in a conversational,
chat-based format. The model takes as input a BEV image
with occlusions and a simple text prompt describing the sce-
nario. The Vision Encoder processes the BEV image, ex-
tracting high-level visual features, which are combined with
the text prompt and passed to the LLM. The LLM generates
two outputs: (1) the next driving action, which is one of four
predefined options—ACCELERATION, CONSTANT, DE-
CELERATION, or STILL, and (2) the confidence score (un-
certainty) associated with the prediction. This architecture
effectively integrates multimodal inputs to deliver context-
aware driving actions, demonstrating the synergy between
large-scale vision-language models.

Fine-tuning Details For fine-tuning, we utilized
Parameter-Efficient Fine-Tuning (PEFT) with the LoRA
(Low-Rank Adaptation) method to adapt two large pre-
trained models (Hu et al. 2021; Mangrulkar et al. 2022):
Llama 3.2 (11B Vision-Instruct) and LLaVa v1.6 (Mistral
7B Vision-Instruct). Instead of full fine-tuning, LoRA
enabled to efficient training of task-specific parameters with
reduced computational cost.

The fine-tuning was conducted on a single NVIDIA A100
GPU (80GB) with a learning rate of 1e-5 over 3 epochs. The
training data consisted of BEV images paired with corre-
sponding next driving actions and uncertainty scores.

Figure 4 shows the entire prompt. Validation was per-
formed during training to monitor performance, and a batch-
ing strategy of padding was applied to handle variable input
sizes. The training used a batch size of 2, while for LLaVa, a
batch size of 1 was employed, combined with gradient accu-
mulation steps of 2 to optimize memory usage. Checkpoints
for both models were saved in their respective directories,
allowing efficient evaluation and further analysis.



This setup demonstrates the feasibility of fine-tuning
large-scale vision-language models on a single GPU, lever-
aging PEFT techniques like LoRA to achieve task-specific
optimization with minimal hardware resources.

Table 1: Hyperparameter Settings for Fine-Tuning

Hyperparam Llama 3.2 LLaVa v1.6 Qwen2 VL

Model size 11B 7B 7B
Learning rate 1e-5

Epochs 3
Batch size 2
Optimizer AdamW
Scheduler Linear decay

PEFT LoRA

Experimental Results
We evaluate the fine-tuned models on two key metrics: ac-
tion prediction accuracy and the uncertainty gap, which rep-
resents the absolute difference between the predicted un-
certainty and the ground truth. As shown in Table 2, the
LLaMA 3.2 model achieved the best overall performance,
demonstrating its ability to effectively learn both action pre-
diction and uncertainty simultaneously. The results indicate
that LLaMA 3.2 is more effective in both predicting the next
action and aligning its uncertainty prediction.

The results indicate that VLMs successfully learned to
predict both the next driving action and uncertainty simulta-
neously. This demonstrates the potential of utilizing VLMs
for driving uncertainty prediction, even when employing a
simplified model and a streamlined dataset. These findings
highlight the feasibility of this approach under constrained
settings and validate the effectiveness of fine-tuning. Fur-
thermore, they underscore the importance of model architec-
ture in achieving robust performance across multiple tasks
within complex, real-world scenarios.

Table 2: Accuracy of next action and uncertainty and the ab-
solute gap between predicted uncertainty and ground truth.

Model Action Uncertainty Gap
Llama 3.2 63.8% 0.03

Qwen2 VL 8.7% 0.03
LLaVa v1.6 17.4% 0.18

Future Works
Future Works This study generates occlusion with arbi-
trary orientations and angles to simulate real-world driving
scenarios. However, several enhancements could further im-
prove the modeling of occlusion and the representation of
the driving environment:
• Model-Specific Prompt Engineering:We designed dataset

prompts specifically for the LLaMA 3.2 model to opti-
mize its performance in action prediction and uncertainty

estimation. To ensure fair comparisons with other mod-
els, such as LLAVA v1.6, it is necessary to develop tai-
lored prompts that align with the strengths and architec-
ture of each model.

• Sophisticated Occlusion Modeling: Current occlusion
masks are simplified and do not account for the extent
to which surrounding objects interfere with the sensor’s
line of sight. More precise modeling of occlusions, based
on the geometry and positions of objects relative to the
ego vehicle, could more accurately emulate real-world
scenarios and better address uncertainty issues caused by
occlusions.

• Enhanced BEV Image Representation: The current BEV
images abstract the driving environment with lanes rep-
resented only as virtual center lines. To enrich the rep-
resentation, additional features such as the edges of road
structures could be included, providing a more compre-
hensive view of the environment.

• Adaptive BEV Image Shapes: The current square-shaped
BEV images could be adapted to better align with sensor
sight distances. For example, circular BEV images could
be used to reflect the radial visibility range of common
automotive sensors more naturally.

These improvements would contribute to a more realistic
and detailed simulation of driving environments, enhancing
the ability of large language models to reason about uncer-
tainty and make robust prediction.

Discussions and Conclusion
This study explores the integration of VLMs into au-
tonomous driving systems for uncertainty prediction. By
leveraging BEV images encoded with task-specific informa-
tion alongside carefully crafted textual prompts, we show
an effective framework for enabling VLMs to comprehend
complex driving scenarios. These findings underscore the
critical role of designing visual inputs that encapsulate rel-
evant environmental information and pairing them with
appropriately constructed textual prompts to enhance the
model’s reasoning capabilities.

Our results reveal that VLMs exhibits strong inherent
capabilities. However, its effectiveness in uncertainty pre-
diction is significantly enhanced when trained to infer un-
certainty through environmental understanding. Relying on
pre-defined or inherent uncertainty values alone proves less
effective. This approach better aligns with the dynamic
and context-rich challenges of real-world driving. Factors
such as occlusion and sensor limitations critically impact
decision-making in these scenarios.

We successfully fine tuning VLMs to predict both the next
driving actions and associated uncertainties with high accu-
racy under occlusion-rich conditions. This work highlights
the potential of VLMs as a core component in planning sys-
tems for autonomous driving, offering robust performance
in safety-critical applications.

Future research directions include refining visual input
representations, such as incorporating road-edge structures
or adopting dynamic BEV shapes tailored to sensor-specific



sight distances. Furthermore, sophisticated occlusion mod-
eling techniques that more accurately emulate real-world ob-
structions could further enhance the model’s predictive per-
formance. These advancements pave the way for more reli-
able and safer autonomous driving systems.
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