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Abstract

Variable importance is one of the most widely used
measures for interpreting machine learning with
significant interest from both statistics and machine
learning communities. However, attention has only
recently been directed toward uncertainty quantifi-
cation in these metrics. Current approaches largely
rely on one-step procedures, which, while asymp-
totically efficient, can present higher sensitivity
and instability in finite sample settings. To address
these limitations, we propose a novel method by
employing the targeted learning (TL) framework,
designed to enhance robustness in inference for
variable importance metrics. Our approach is par-
ticularly suited for conditional permutation vari-
able importance. We show that it (i) retains the
asymptotic efficiency of traditional methods, (ii)
maintains comparable computational complexity,
and (iii) delivers improved accuracy, especially in
finite sample contexts. We further support these
findings with numerical experiments that illustrate
the practical advantages of our method and validate
the theoretical results.

1 INTRODUCTION

Machine Learning (ML) models offer high-quality predic-
tions for complex data structures and have become indis-
pensable across various fields, including civil engineering
[Lu et al., 2023], sociology [Molina and Garip, 2019], and
archaeology [Bickler, 2021], due to their versatility and pre-
dictive power. However, due to their complexity, humans
find the internal structures of ML models challenging to turn
into real-world interpretation [Hooker and Hooker, 2017,
Hooker et al., 2021, Freiesleben et al., 2024]. To address
this, a considerable suite of post hoc interpretable machine
learning (IML) tools have been developed.

Among these tools, variable importance, which measures
the contribution of individual covariates to the response vari-
able, is a widely adopted measure in IML [Molnar, 2020].
Traditionally, this has been applied to assess the behavior
of fixed models, such as random forests [Breiman, 2001]
and linear models [Grömping, 2007]. Additionally, efforts
have been made to create model-specific uncertainty quan-
tification methods, as seen in Gan et al. [2022]. Building
on these advances, there is a growing interest in exploring
model-agnostic variable importance using nonparametric
techniques [van der Laan, 2006, Lei et al., 2018, Williamson
et al., 2021, Donnelly et al., 2023, Verdinelli and Wasser-
man, 2024a].

Despite substantial efforts devoted to developing new
methodologies, little attention has been given to fully un-
derstanding these tools. Specifically, there are few method-
ological developments around uncertainty quantification for
variable importance metrics. Some recent work has started
to develop such methods, [Williamson et al., 2021, 2023,
Wolock et al., 2023, Freiesleben et al., 2024, Fauvel et al.,
2025]. However, these have focused on utilizing one-step
de-biasing procedures.

In this paper, we introduce a novel method to quantify the
uncertainty of variable importance metrics. Employing the
targeted learning framework of van der Laan [2006], our
method provides a robust algorithm for conducting inference
on variable importance. Our approach is statistically effi-
cient within the class of regular estimators as well as com-
putationally cheap. Particularly, we focus on conditional
permutation importance, as this method avoids potential
issues with extrapolation [Hooker et al., 2021].

This paper is organized as follows: In Section 2, we for-
mally state the problem setup and introduce some key con-
cepts related to variable importance. In Section 3, we give
an overview of the existing methodology and its justifica-
tion, present our methodology, and illustrate it using con-
ditional permutation importance. In Section 4, we intro-
duce the efficiency theory and the theoretical guarantees of
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our methodology. Lastly, we illustrate the effectiveness of
our method through simulation studies and two real-world
data applications. We make our code publicly available at
https://github.com/xw547/TL4VI.

2 VARIABLE IMPORTANCE

2.1 PROBLEM SETUP

Suppose that we observe n independent and identically dis-
tributed (i.i.d.) observations {(Yi, Xi, Zi)}ni=1 drawn from
the unknown joint distribution P ∗

Y,X,Z ∈ M, where M is
the class of nonparametric distributions. That is,

(Yi, Xi, Zi)
i.i.d.∼ PY,X,Z , i = 1, . . . , n.

We aim to investigate the relationship between the response
Y ∈ R and the covariate of interest X ∈ X in the
presence of other covariates Z ∈ Z through some pre-
defined variable importance, make sure it is “efficient”,
and then conduct inference. We define variable importance
with respect to performance on some loss L(·), but our
estimator f̂ : X × Z → R is assumed to approximate
E(Y |X,Z). For simplicity, we’ll focus on the case where
X ⊆ R,Z ⊆ Rd−1, yet we note that our method can be
generalized to the cases where Xi is a vector.

2.2 NOTATION

We use Pn to denote the empirical measure, that is, sup-
pose f : X → R, Pn(f) = 1

n

∑n
i=1 f(Xi). In con-

trast, we use P to denote the probability measure, that is,
P(f) =

∫
f(X)dP. And L0

2(P ) denotes the collection of
functions such that Pf = 0 and Pf2 <∞. OP and oP are
used as follows: Xn = OP (rn) denotes Xn/rn is bounded
in probability and Xn = oP (rn) indicates Xn/rn

P−→ 0,
respectively. Lastly, we denote the L2(P ) norm as ∥ · ∥.

2.3 VARIABLE IMPORTANCE

A number of variable importance metrics have been sug-
gested. Here we include a brief description of some of the
most commonly studied.

2.3.1 Permutation Importance

Variable importance is obtained by considering the out-of-
bag (OOB) loss of a certain feature [Breiman, 2001]. First,
we permute the feature(s) that we are interested in quantify-
ing the importance. That is, we randomly permute the index
of the column of X , denoted by Xπ , and then put it together
with the remaining features, which results in the final data

(Y,Xπ, Z). Then, for model f̂ : X × Z → R:

V IπX =
1

N

N∑
i=1

L(Yi, f̂(X
π
i , Zi)− L(Yi, f̂(Xi, Zi))).

While providing a starting point, this metric has been cri-
tiqued in Strobl et al. [2008], Hooker et al. [2021] as result-
ing in extrapolation when (Xπ

i , Zi) are far from observed
data.

2.3.2 Conditional Permutation Importance

This metric is obtained by conditional permutation copy
of X such that: XC

i ∼ Xi|Zi, XC
i ⊥ Yi|Zi. With a simi-

lar notation defined above, we may thus have the plug-in
estimator, defined as:

V ICX =
1

N

N∑
i=1

L(Yi, f̂(X
C
i , Zi))− L(Yi, f̂(Xi, Zi)).

This approach was first proposed by Strobl et al. [2008]
for the random forest, where they obtain the conditional
permuted version by conducting the permutation within
each leaf. A similar idea is also present in Fisher et al.
[2019], Chamma et al. [2024]. Hooker et al. [2021] observes
that both conditional permutation, as well as Leave-One-
Covariate-Out (LOCO) and other retraining methods, have
the same population estimand that serves as our target.

2.3.3 Leave-One-Covariate-Out

LOCO can be considered a nonparametric extension of the
classical R2 statistic [Williamson et al., 2023]. In addition
to f̂ , we training another model f̂−X : Z → R, which has
no access to X . The plug-in estimator is defined as:

V IdX =
1

N

N∑
i=1

L(Yi, f̂−X(Zi)− L(Yi, f̂(Xi, Zi))).

This approach was first proposed by Lei et al. [2018], and
Williamson et al. [2023] quantified the uncertainty of the
method through the efficient influence function. See Mentch
and Zhou [2022] for cautionary results.

3 METHODOLOGY

Existing literature on quantifying the uncertainty of vari-
able importance is scarce. There are two main trends in the
uncertainty quantification of IML.

The first is a de-biasing approach utilizing the influence
function, in which a bias correction and confidence intervals
are constructed from a one-step method [Williamson et al.,
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2023, Wolock et al., 2023]. In Williamson et al. [2021] and
Williamson et al. [2023], the efficient influence function is
leveraged to construct confidence intervals, since the plug-in
estimator is shown to be efficient under mild assumptions.
While Wolock et al. [2023] applies this concept to de-bias
the variable importance for survival analysis, and then con-
struct the confidence interval, an approach also seen in Ning
and Liu [2017], Chernozhukov et al. [2018].

Alternatively, Molnar et al. [2023] and Freiesleben et al.
[2024] propose a bootstrap-like approach for uncertainty
quantification. In these methods, models are refitted on dif-
ferent subsets of the data, and the variance is estimated
from the ensemble of models and their associated metrics.
This approach is conceptually similar to the bootstrap vari-
ance estimation described by DiCiccio and Efron [1996].
However, these bootstrap-based methods require significant
computational effort.

In the following subsections, we first review efficient in-
fluence function. Next, we briefly introduce the theory be-
hind the de-biasing approach. We then formally present the
proposed methodology within the targeted learning frame-
work. Lastly, we present an implementation of the proposed
methodology.

3.1 EFFICIENT INFLUENCE FUNCTION

Influence functions characterize the first-order behavior of
pathwise differentiable functionals. By naively appending
the empirical estimator of the influence function, we can
“de-bias” the estimator, which will be discussed in detail in
the next section.

Definition 1. Let M be a class of probability distributions
and Ψ : M → R be a functional. We say that Ψ is pathwise
differentiable at P ∗ ∈ M with tangent space Ṗ0 if there
exists a bounded linear function ψP∗ , called the influence
function, such that for Pε,g = (1 + ε)P ∗ + εg ∈ Ṗ ∗ , the
following holds:

d

dϵ
Ψ(Pϵ,g)

∣∣∣∣
ϵ=0

= EP∗

[
ψP∗(X) · d

dϵ
log

dPϵ,g

dP ∗ (X)

∣∣∣∣
ϵ=0

]
.

Following Hines et al. [2022], for many targets Ψ the influ-
ence function can be calculated from a Gâteaux derivative
in the direction of a point-mass contamination at each x:

ψP (x) =
d

dϵ
Ψ((1− ϵ)P + ϵδX=x) .

For distributions P̂ , P ∗ ∈ M, if Ψ is a pathwise differen-
tiable functional, we can consider the von Mises expansion:

Ψ(P̂ )−Ψ(P ∗) =

∫
ψP̂ (x)d(P̂ − P ∗)(x) +R2(P̂ , P

∗),

(1)

where R2(P̂ , P
∗) is the second-order remainder term. In-

tuitively, the von Mises expansion can act as a distribution
version of a Taylor expansion. In particular, if M is the
class of nonparametric distributions, the influence function
ψ is also the efficient influence function [Hines et al., 2022,
Kennedy, 2022]. The efficient influence function character-
izes the optimal attainable asymptotic variance (See lemma
25.19 of van der Vaart [2000] and theorem 5.2.1 of Bickel
et al. [1993].

3.2 DE-BIASING APPROACH

Based on the above explanation, a natural idea would be to
seek a bias correction. A naive bias correction estimator is:

Ψ̂naive = Ψ(P̂ ) + Pn(ψP̂ ).

With the same von Mises expansion, we may then have:

Ψ̂naive −Ψ(P ∗) = (Pn − P)(ψP∗)

+ (Pn − P)(ψP̂ − ψP∗)

+R2(P̂ , P
∗)

The first term is a simple average of fixed functions, where
we can then apply the central limit theorem. The second
term is usually referred to as the empirical process term.
If ψP̂

P−→ ψP∗ , it can be shown to be of order oP (1/
√
n)

under either Donsker class assumptions on P̂ , or in the
sample-splitting regime which we adopt. The last term, also
called second order term, is generally assumed to be of
order oP (1/

√
n), which is typically determined in a case-

by-case manner [Cheng, 1984, Luo et al., 2016, Benkeser
and van der Laan, 2016, Farrell et al., 2018, Wei et al.,
2023].

Wolock et al. [2023] employs this first-order correction to
provide uncertainty quantification for variable importance
of survival analysis. This gives rise to the construction of a
confidence interval from

Ψ̂naive ± zα/2sPn(ψP̂ )

in which zα/2 are the quantile of a normal distribution and
sPn

(ψP̂ ) indicates the standard deviation over the values
of the influence function. However, we note from the non-
asymptotic perspective, that the instability of empirical dis-
tributions can hinder the effectiveness of both methods, as
highlighted by Booth and Sarkar [1998] and van der Laan
et al. [2011b].

3.3 PROPOSED METHODOLOGY

In contrast to current de-biasing methods, our method pro-
vides an iterative update to remove the bias and produces
a more refined estimator than the one-step versions. The



targeted learning framework, first proposed by van der Laan
and Rubin [2006], originates from semiparametric statistics
and causal inference. To obtain an asymptotically linear esti-
mator, they proposed to perturb the empirical distribution in
the direction of the influence function to obtain an efficient
estimator. Specifically, we create a one-dimensional family
of densities starting from P̂ and moving in the direction
of the influence function: Pε = (1 + εψ̂)P̂ and find the
maximum likelihood estimate of ε:

ε̂ = argmin
ε

Pn logPε.

This defines a new estimated density P̂ε̂ for which we
can calculate an efficient influence function, a new one-
dimensional family and a corresponding update. Repeating
this yields a sequence of estimates:

ε̂j+1 = argmin
εj

Pn logP
j
ε

P j+1
ε = (1 + εj+1ψ̂P j )P j

We continue updating the distribution until we obtain and
update ε̂k = 0 at iterate k and obtain a final debiased estima-
tor Ψ̂n = Ψ(P k). Many extensions of this framework have
been proposed for causal inference: cross-validation TL, dy-
namic treatment regimes, and time-to-event outcome van der
Laan et al. [2011a], Luedtke and van der Laan [2016], Cai
and van der Laan [2020]. Instead, we employ TL to conduct
uncertainty quantification for variable importance.

The intention of this iterative definition is to ensure that
the likelihood is maximized and that the plug-in bias
term (Pnψ(P̂ )) is zero. From this, the first order error of
Ψ̂n−Ψ(P ∗) is described by PnψPk which admits a central
limit theorem and in common with the naive method we base
confidence intervals on the standard deviation sPn(ψPk).
The improved accuracy of this framework over the naive
implementation is due both to a more exact control of bias
and because the naive method does not account for uncer-
tainty due to the plug-in bias. The iterative scheme that we
propose requires a single representation of the distribution
P and thus cannot directly be employed within LOCO-type
models that rely on re-training estimators.

We note that in order to obtain theoretical results with
weaker conditions, we adopted the sample splitting strategy
implemented in van der Laan et al. [2011a], Chernozhukov
et al. [2018] and Newey and Robins [2018]. That is, the
plug-in estimate is obtained from the first set of data I1 and
the iterative update is conducted using an independent data
set I2. In theoretical results, we also assume a third set I3
used to quantify uncertainty, although we do not believe
this is strictly necessary. In the next section, we present an
implementation of the proposed methodology through CPI.

3.4 ILLUSTRATION

In this section we apply our methodology to conditional
variable importance. Detailed steps of our implementation
can be found at Algorithm 1. We begin by observing that
the estimand of conditional permutation metric is defined
as:

ΨC(X,Y, Z) = E
[
L(y, ŷ(XC , Z))− L(y, ŷ(X,Z))

]
,
(2)

where ŷ(x, z) = E [Y |X = x, Z = z], XC ∼ X|Z, and
XC ⊥ X|Z.

Here the first term measures the “conditional permuted” per-
formance. The second term in the estimand is the reference
loss, which serves as the “benchmark” of our importance.
We therefore decompose the conditional permutation impor-
tance into:

ΨC(X,Y, Z) = ΨC
0 (X,Y, Z)−Ψ0(X,Y, Z),

where ΨC
0 (X,Y, Z) = E

[
L(y, ŷ(XC , Z))

]
and

Ψ0(X,Y, Z) = E [L(y, ŷ(X,Z))].

These each have a corresponding influence function:

Lemma 1. The efficient influence function for

Ψ0(X,Y, Z) = E [L(y, ŷ(X,Z))]

is:

ψ0(X,Y, Z)

= (Y − ŷ(X,Z))

∫
L′(y, ŷ(X,Z))P (y|X,Z)dy

+ L(Y, ŷ(X,Z))−Ψ0(P ).

Lemma 2. The efficient influence function for

ΨC
0 (X,Y, Z) = E

[
L(y, ŷ(XC , Z))

]
is:

ψC
0 (X,Y, Z) =

∫
L′(y, ŷ(X,Z))(Y − ŷ(X,Z))p(y|Z)dy

+

∫
L (y, ŷ(X,Z)) p(y|Z)dy

−
∫
L (y, ŷ(x, Z)) p(y|Z)p(x|Z)dxdy

+

∫
L (Y, ŷ(x, Z)) p(x|Z)dx−ΨC

0 (P ).

The algorithm for calculating conditional permutation im-
portance is shown in Algorithm 1, following the methodol-
ogy outlined in Section 3.3.

Implementing a TL update for CPI requires, in addition to
and estimate of ŷ(X,Z), which we obtain from f̂ , auxiliary



estimates of p(y|Z) and p(x|Z). In practice, we implement
these via a weighted empirical distribution on I1 and cal-
culate the integrals above via Monte Carlo simulation. In
particular, we fit a random forest (RF) to predict X or Y
from Z and use OOB data to derive the conditional distri-
butions for p(y|Z) and p(x|Z) from the tree kernel defined
by in-leaf proximities, following Lu and Hardin [2021]. We
express this as P (y = Yi|Z) = wi(Z) where the wi(Z) are
initially obtained the frequency with which Zi appears in
the same leaf as Z across trees in the RF for which (Yi, Zi)
is out of bag. To construct an updated TL distribution we
simply need to multiply the weights wi(Z) by (1 + ϵ̂)ψ̂.

We can easily generalize this algorithm into K−folds rather
than a single split, which would result in the same asymp-
totic result; choosing K = 10 produces to a more numeri-
cally stable result. We refer the readers to Smith et al. [2023]
for a more comprehensive review on the selection of folds
for targeted learning.

Algorithm 1 Conditional permutation calculation on I1 with
mean squared error loss
Require: {Yi, Xi, Zi} for i = 1, . . . , n, I1, I2, I3 such that

I1 ∪ I2 ∪ I3 = {1, . . . , n} and I1 ∩ I2 ∩ I3 = ∅.
1: Train an initial estimate f̂I1 .
2: Estimate P̂ (x|z), P̂ (y|z).
3: for each iteration t do
4: Sample from P̂ (x|z), P̂ (y|z), denoted as{

X∗
j

}
j=1,...,m

and {Y ∗}k=1,...,m respectively.
5: Calculate

Ψ̂C
I2,0 =

1

|I2|
∑
i∈I2

(Yi − f̂(XC
i , Zi))

2.

and

ψ̂C
I2,0(Xi, Yi, Zi; P̂ )

=
1

m

n∑
j=1

L(Yi, f̂(X
∗
j , Zi))

− 1

m2

n∑
j=1

n∑
k=1

L(Y ∗
k , f̂(X

∗, Zi))

+
1

m

n∑
k=1

L(Y ∗
k , f̂(Xi, Zi))

6: Find ϵ̂ to maximize the likeli-
hood of

∑
i∈I2

c(ϵ̂)P̂ (Xi, Yi, Zi)(1 +

ϵ̂ψ̂C
I2,0

(Xi, Yi, Zi; P̂ )).
7: Update P̂ = c(ϵ̂)(1 + ϵ̂ψ̂C

I2,0
)P̂

8: Repeat the above iteration until convergence.

9: Return: Ψ̂(f̂I1 , Pεkn ) and variance
√

1
n

∑
i∈I3

ψ̂C
I2,0

based on I3.

3.5 WHY CONDITIONAL PERMUTATION
IMPORTANCE?

We explore conditional permutation importance for two
reasons: CPI provides an orthogonal factorization and CPI
avoids density ratio estimation, as mentioned in Verdinelli
and Wasserman [2024a].

Example: CPI factorization

Traditional targeted learning relies on factorizing the in-
fluence function into orthogonal components in order to
conduct updates, as seen in average treatment effect estima-
tion [van der Laan et al., 2011a].

For conditional permutation importance we consider com-
ponents corresponding to PX,Y |Z and PZ . Then, we have:

• PX,Y |Z :

ψC
0 (X,Y |Z) =

∫
L (y, ŷ(X,Z)) p(y|Z)dy

−
∫
L (y, ŷ(x, Z)) p(y|Z)p(x|Z)dxdy

+

∫
L (Y, ŷ(x, Z)) p(x|Z)dx

• PZ :

ψC
0 (Z) =

∫
L′(y, ŷ(X,Z))(Y − ŷ(X,Z))p(y|Z)dy

−ΨC
0 (P ).

Notice that for PZ the empirical log-likelihood of the data
points Z is already maximized at the empirical distribution
and thus no update is needed.

For PX,Y |Z , we employ the iterative update methodology,
which follows a similar structure as algorithm 1, but with a
much simpler form.

As a contrast, we consider the efficient influence function of
the LOCO importance. Following the similar construction as
conditional permutation importance, for LOCO importance,
we have:

Ψd(X,Y, Z) = Ψd
0(Y,Z)−Ψ0(X,Y, Z),

where Ψd
0(Y, Z) = E [L(y, ŷ(Z))]. The corresponding in-

fluence function is:

Lemma 3 (Williamson and Feng [2020]). Let
Ψd

0(X,Y, Z) = E [L(y, ŷ(Z))], the efficient influence
function is:

ψd
0(X,Y, Z) = (Y − ŷ(Z))

∫
L′(y, ŷ(X,Z))P (y|Z)dy

+ L(Y, ŷ(Z))−Ψd
0(P ).



Compared to CPI, the estimation of the LOCO involves
the estimation of two models ŷ(Z), ŷ(X,Z), where ŷ(Z) is
based on the retraining of a new model based on perturbed
data. This is described as having variational dependent mod-
els and thus need a more subtle treatment.

Finally, we also examine the influence function of the tradi-
tional permutation importance metric.

Lemma 4. Let

ΨπL
0 (X,Y, Z) = E [L(y, ŷ(Xπ, Z))] .

The efficient influence function is:

ψπL
0 (X,Y, Z)

= (Y − ŷ(X,Z))

∫
L′(y, ŷ(X,Z))

P (X)P (y, Z)

P (X,Z)
dy

+

∫
L(Y, ŷ(x′, Z))P (x′)dx′

+

∫
L(y, ŷ(X, z))P (y, z)dydz − 2ΨπL

0 (P ),

where Xπ ∼ X , and Xπ ⊥ X .

We note that the performance of the density ratio estimation
in the first term can be unstable, due to extrapolation and
inherent low density at certain regions – a problem that also
applies to the decorrelated LOCO as mentioned in Verdinelli
and Wasserman [2024a].

4 THEORETICAL RESULTS

In this section, we present the theoretical results of our
methodology. To formally introduce the theoretical results,
we start with a brief introduction to a few concepts that
would be helpful in developing our method. We start with
the efficiency theory and methodology of targeted learning
in section 4.1, then we present the theoretical result for the
estimator obtained in algorithm 1.

4.1 EFFICIENCY THEORY AND TARGETED
LEARNING

By considering the variable importance as general parame-
ter Ψ : P → R, P ∈ M, where M is the class of nonpara-
metric distributions, our aim is to find a “good” estimator of
the true value Ψ(P ∗), and then construct the corresponding
confidence interval. We define “good” using three criteria:

• Consistency: we would like to construct an estimator
that is statistically consistent, which can be guaranteed
by asymptotically linearity.

• Robustness: we would like to construct an estimator
that is robust to small perturbations of the data distri-
bution, which can be guaranteed with regularity.

• Efficiency: we hope to have an estimator that has
minimum-possible variance given the available data,
which will be ensured by the TL methodology, based
on the two other requirements.

Building upon these three objectives, our goal is to construct
an efficient, regular, and asymptotically linear estimator. In
the following sections, we will rigorously define our con-
cepts and then introduce the targeted learning methodology
to construct such an estimator.

4.1.1 Regular Asymptotically Linear (RAL)
Estimators

To begin with, we at least hope we can estimate with guaran-
teed consistency. One such class of estimators is the asymp-
totically linear estimators, where classical asymptotically
linear estimators for parametric models include maximum
likelihood estimation and generalized method of moments
under mild conditions. In addition to the fact that the influ-
ence function characterizes the first-order term of a pathwise
differentiable estimand, it also determines the asymptotic
distribution of asymptotic linear estimator. Formally, asymp-
totically linear estimator is defined as:

Definition 2. An estimator sequence {Ψ̂n(P
∗)} is said

to be asymptotically linear with influence function ψ ∈
L0
2(P

∗) at distribution P ∗ if

√
n(Ψ̂n(P

∗)−Ψ(P ∗))− 1√
n

n∑
i=1

ψ(Xi) = oP (1).

We note that when the influence function is the same as effi-
cient influence function, the asymptotically linear estimator
is efficient.

4.1.2 Tangent Space

The tangent space characterizes the collection of possible
functions to locally construct a path between distributions,
defined by score function h = d

dε log dP
∗
∣∣
ε=0

and their
linear combinations at distribution P ∗ ∈ M [Bickel et al.,
1993, van der Vaart, 2000]. Formally, tangent space is de-
fined as:

Definition 3. Let {V1, . . . , Vn} denote the collection of
score functions of P ∗ ∈ M, then the tangent space Ṗ ∗ of
P ∗ is defined as the linear span of V1, . . . , Vn.

For the class of nonparametric distributions M, the tangent
space is Ṗ∗ := L0

2(P
∗) [Bickel et al., 1993].

With the tangent space defined, we can say that a sequence
of estimators Ψ̂n at P ∗ is regular if there exists a probability
measure L such that:
√
n
(
Ψ̂n −Ψ

(
P1/

√
n,g

)) P1/
√

n,g
⇝ L, for each g ∈ Ṗ∗,



where P1/
√
n,g = (1 + 1√

n
g)P ∗.

4.2 ASYMPTOTIC RESULTS

In this section, we outline the assumptions necessary to es-
tablish the efficiency of our final estimator and then present
our main theorem.

Assumption 1 (Convergence). Let kn denote the number of
iterations until the algorithm converges. Assume that there
exists kn = k(P̂ ) > 0 such that P (k(P̂ ) < k0) → 1 for
some k0 ≡ k(P ∗) and

1

|I2|
Pn,I2ψPkn

ε
= oP (1/

√
n),

The same equation holds if we consider the empirical distri-
bution of I3. In addition, we assume that the k0−th step
of estimate Pεk0 converges to P ∗ almost surely, where
P ∗ ∈ M is the least favorable model.

This assumption is standard for cross-validation TL [van der
Laan et al., 2011a]. Here we assume that the algorithm will
converge in at most the k0 steps and that the efficient in-
fluence function will be small. In addition, the assumption
ensures the limiting distribution is within the nonparamet-
ric model class and the first-order optimality. Lastly, As-
sumption 1 implicitly places an assumption on the initial
estimator, as a poorly chosen initial estimator could result
in divergence. In practice, initial estimators based on either
the plug-in or Z-estimation approach have been shown to
perform well.

Assumption 2 (Differentiability and Optimality). Given a
variable importance metric Ψ, we assume that it is pathwise
differentiable for the class of nonparametric distributions
M. In addition, the von Mises expansion satisfies:

Ψ(f̂I1 , P̂ )−Ψ(f∗, P ∗) =

∫
ψ(f̂I1 , P̂ )d(P̂ − P ∗)

+OP (∥Ψ(f̂I1 , P̂ )−Ψ(f∗, P ∗)∥2),

where P̂ ∈ M, f∗ ≡ ŷ, and ŷ is defined as in equation 2.

This assumption restricts the differentiability of the vari-
able importance measure and imposes an assumption on
the asymptotic performance of the second-order remainder
term, originating from van der Laan et al. [2011a]. Together
with Assumption 1, the above two results guarantee the
asymptotic efficiency of the TL estimator.

Remark 1. We note that assumption 2 functions in a
similar manner as the (A1) and (B1) given in Williamson
et al. [2023] or Assumption 5 of Wei et al. [2023]. In
both cases, the aim is to control the second-order term.
By considering the second-order term as the order of

the bias directly, the proof is greatly simplified. For
conditional permutation variable importance, we can
alternatively have the order of EI2 [∥p̂(y|z)− p(y|z)] ∥,
EI2 [∥p̂(x|z)− p(x|z)∥] ,EI2

[
∥f̂(x, z)− f∗(x, z)∥

]
be

oP (n
−1/4), where f is the estimator and p̂(x|z) is the

estimator of density p(x|z). A similar assumption can be
defined for I3 as well.

Assumption 3 (Consistency).∫ (
Ψ(f̂I1 , P

∗)−Ψ(f∗, P ∗)
)2
dP ∗ = oP (1)

This assumption ensures the consistency of the plug-in es-
timator, which is also given in van der Laan et al. [2011a].
Without such, the result wouldn’t be efficient.

Assumption 4 (Sample-Splitting). Let εj∗ be the limit of εjn,

that is εjn
P−→ εj∗ for j ∈ 1, . . . , k0. We assume that the final

efficient influence function ψP
ε
kn
n

is estimated from I1, I2,
independent from empirical measure of I3, denoted as Pn,I3 .
And our final estimator is obtained through I3. To ensure
the consistency, we assume that supj≤k0

∥ψP
ε
j
n

− ψP∗∥ =

oP (1).

Remark 2. Assumption 4 is specifically designed to address
the empirical process term. In particular, we introduce an
additional subset of the data, I3, to ensure independence be-
tween the efficient influence function and the final estimator.
Although this approach differs from the classical method
described by Chernozhukov et al. [2018], it is necessitated
by the iterative nature of our procedure, in contrast to their
one-step framework.

As an alternative to Assumption 4, Donsker assumptions
similar to A2 of van der Laan et al. [2011a] can also be
made to establish the asymptotic results, which we refer to
as Assumption 5; details can be found in the supplementary
materials.

Theorem 1. Assume that Assumptions 1-3 hold, and As-
sumption 4 or 5 hold. Our final estimator Ψ̂(f̂I1 , Pεkn

n
) is

asymptotically linear and satisfies:

Ψ̂(f̂I1 , Pεkn
n
)−Ψ(P ∗) = PnψP∗ + oP (1/

√
n),

where ψ(P ∗) is the efficient influence function.

Note that the above three assumptions are defined for f̂I1 ,
where similar assumptions can easily be defined for f̂I2 , f̂I3 .
As a result, we can also average over swapping the rolls
of subsets and Ψ̄ ≡ 1/3(Ψ̂(f̂I1 , Pεkn

n
) + Ψ̂(f̂I2 , Pεkn

n
) +

Ψ̂(f̂I3 , Pεkn
n
)) obtains the same asymptotic results while

achieving better sample efficiency.

Our result implies that our estimator is asymptotically nor-
mal and efficient. We note that under similar assumptions,



the plug-in estimator with bias correction may obtain the
same asymptotic performance, yet preserve worse finite data
performance. These asymptotic results can also be easily
extended to K−fold case and the asymptotic performance
would remain the same.

Remark 3. Compared to van der Laan et al. [2011a], the
only difference in assumptions is that we do not impose
Donsker conditions on f̂ by considering the sample splitting
methodology if we adopt Assumptions 1-3 and 4. Relative to
Williamson et al. [2023], we additionally imposed Assump-
tion, Assumption 1 to ensure the stochastic convergence of
the algorithm.

Bias

Coverage

CI Length

Figure 1: Bias, Coverage and Length of Confidence Intervals
of targeted learning and plug-in estimators using three dif-
ferent initial estimators: General Additive Model (left), XG-
Boost (middle), and Multi-Layer Perceptron (right) based
on 240 simulated data, each with 1000 observations

5 SIMULATION STUDY

In this section, we present the simulation results, starting by
comparing the bias of our estimator with that of the plug-
in estimator Strobl et al. [2008], as well as examining a
bootstrap correction to the bias.

To construct the initial estimator f̂ , we consider three
models: Generalized Additive Model (GAM) via pyGAM
package, Multi-Layer Perceptron (MLP) implemented in
scikit-learn, and eXtreme Gradient Boosting (XG-
Boost) from xgboost package. To mitigate the impact of
hyperparameter tuning, we employ the default parameters
for both GAM and XGBoost; additional technical details
are provided in the supplementary materials.

For each simulation setting, we generate 1,000 observations
and repeat the entire procedure 240 times. The outcome yi
is generated following one of the following three designs:

(a) yi = 3xi1 + ϵi, following Verdinelli and Wasserman
[2024b].

(b) yi = 3xi1 + xi2 + xi3 + xi4 + xi5 + 0xi6 + 0.5xi7 +
0.8xi8+1.2xi9+1.5xi10+ ϵi, following Hooker et al.
[2021].

(c) yi = 10 sin(xi1)+10 cos(xi2)+3xi3xi6+3xi10+ϵi.

In all casesϵi ∼ N (0, 1). Following Hooker et al. [2021],
the 10-dimensional covariate vector X is sampled from a
multivariate normal distribution with mean vector 0 and
covariance matrix Σ. For setting (a), the covariance matrix
is defined as Σii = 1,Σ12 = Σ21 = ρ and 0 otherwise. In
settings (b) and (c), the covariance matrix is Σij = ρ|i−j|.

Consistent with Verdinelli and Wasserman [2024b] and
Hooker et al. [2021], we vary ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} to
examine the performance of the proposed algorithm under
different correlation structures. For settings (a) and (b), the
true value is derived theoretically, while for setting (c) it is
approximated via Monte Carlo integration.

As illustrated in Figure 1, our estimator consistently exhibits
lower bias compared to the plug-in estimator and offers a
consistently good estimator compared to LOCO and boot-
strap estimators. The proposed estimator generally achieves
superior coverage compared to the plug-in estimator. This
improvement is primarily attributable to a reduction in bias,
as evidenced in Figure 1. In particular, the plug-in estima-
tor exhibits considerably higher bias than the TL estimator,
which in turn leads to substantially compromised coverage.
Moreover, when the correlation is strong, the performance
of both the initial estimator f̂ and the conditional density
estimator deteriorates, potentially violating Assumption 1.
Although the confidence interval (CI) length for our pro-
posed estimator is slightly longer, it achieves significantly
better coverage than the plug-in estimator, indicating supe-
rior overall performance. For the XGboost model, the CI
lengths for both estimators are nearly identical, making the



corresponding lines in the plots indistinguishable. A table
of computational costs is provided in the supplementary
material.

5.1 REAL WORLD DATA APPLICATION

5.1.1 Bike sharing

In our real-data application, we examine the variable impor-
tance scores for the hourly bike share dataset obtained from
the UCI repository [Fanaee-T, 2013]. We employ XGBoost
to generate the initial estimates, and the results are presented
in Figure 2.

From the plot, we see that workingday and yr sit well
above the rest in terms of importance, suggesting they
explain a larger share of the variability in the response
than other predictors. Meanwhile, features like holiday and
weathersit occupy the next tier of influence, although
their bars are noticeably shorter. At the lower end, vari-
ables such as month and wdspd barely rise above zero,
implying they may add little explanatory power. A notewor-
thy takeaway is how Temp and atemp rank surprisingly
low, despite one might expect temperature-related variables
to matter more. Hence, even though many features cluster
in a middle range of importance, the disagreements at the
extremes illustrate why a nuanced approach to screening
(beyond raw importance scores alone) is often necessary for
sound statistical analysis.

Figure 2: Conditional variable importance scores for the
hourly bike share dataset, obtained using TL with an
XGBoost-based initial estimate.

5.1.2 Wine quality

In addition, we included the wine quality dataset to illus-
trate the application of our method in classification settings
through the wine quality dataset. We employ random forest
to generate the initial estimates.

Figure 3: Conditional variable importance scores for the
wine quality, obtained using TL with an Random Forest-
based initial estimate.

From the conditional permutation importance plot, we
see that free sulfur dioxide and total sulfur
dioxide sit well above the rest in terms of importance,
suggesting they explain a larger share of the variabil-
ity in wine quality than other chemical measures. Mean-
while, residual sugar and fixed acidity oc-
cupy the next tier of influence, although their bars are
noticeably shorter. In the middle range, variables such as
chlorides, sulphates, alcohol, and volatile
acidity cluster with moderately high importance, indi-
cating their meaningful but not dominant contribution. To-
ward the lower end, features like density and citric
acid display only modest importance, while pH barely
rises above zero, implying it adds little explanatory power
in this context. A noteworthy takeaway is how preservative-
related variables dominate the ranking even though one
might expect acidity or alcohol content to matter more
strongly. Here we note that width of our confidence intervals
suggest that the data only provide a highly uncertain ranking
of variable importance.

6 CONCLUSION

In this paper, we study uncertainty quantification in IML us-
ing the targeted learning framework, illustrated through con-
ditional permutation importance. Under mild assumptions,
our methodology achieves asymptotic efficiency, maintains
comparable computational complexity, and delivers im-
proved finite-sample accuracy.

Future work includes developing methodology for estimat-
ing the overlap model as mentioned in Section 3.5, since
we cannot factorize the subspace into orthogonal ones. It
is also interesting to consider problems involving density
ratios, which might be more approachable using methods
that bypass the calculation of influence function, such as
Cho et al. [2023], van der Laan et al. [2024].
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Here, we present the proof of our main theorem, along with additional simulation results that could not be included in the
main text due to space constraints. We begin by providing more details of simulation results.

A SIMULATIONS AND REAL WORLD DATA

A.1 TECHNICAL DETAILS: PARAMETER SELECTION IMPLEMENTATION DETAILS

In this section, we mostly adopt default parameter settings to maintain consistency with R and to avoid any performance
improvements arising from parameter tuning. Specifically, for the Generalized Additive Model (GAM), we use the default
parameters. For the Random Forest model employed in conditional density estimation, we utilize the default settings
provided by randomForest package in R. In the case of XGBoost, we adjust the number of estimators to match that of
the Random Forest. Lastly, for the MLP regressor, we design a two-layer network with 64 neurons in the first layer and 32
neurons in the second layer, applying the ReLU activation function for non-linearity and the Adam optimizer for weight
updates. Training is configured to run for a maximum of 3000 iterations to ensure convergence.

To estimate densities p(x|Z) and p(y|Z) we started by fitting a random forest of B trees to predict each from Z using I1.
We then use this to provide an initial estimate based on a weighted empirical distribution from I1. P (y = Yi|Z) = wi(Z)
calculated as the fraction of trees for which (Zi, Yi) was out-of-bag, in which Z and Zi fall into the same leaf. In the targeted
learning update, the wi are multiplied by (1 + ϵ̂)ψP̂ (Xi, Yi, Zi) allow us to keep track of the updated distribution, and later
apply it to I3. The same procedure was employed to update p(x|Z).

For settings (a) and (b), theoretical calculations based on Theorem 2 in Hooker et al. [2021] show that the true value is
9(1− ρ2). In contrast, due to the complexity of the nonlinear model in setting (c), the true value is estimated via Monte
Carlo integration.

A.2 COMPUTATIONAL COST COMPARISON

Table 1: A Comparison of Computational Runtimes

Method Runtime (s)

Plug-in 1.52
TL 3.47
Bootstrap 57.20

Note: Runtimes were measured on a machine with eighty Intel® Xeon® Gold 6230 CPUs @ 2.10GHz.
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B PROOF

To facilitate these proofs, we first introduce the necessary notation.

B.1 NOTATIONS

We use Pn to denote the empirical measure, that is, suppose f : X → R, Pn(f) =
1
n

∑n
i=1 f(Xi). In contrast, we use P to

denote the probability measure, that is, P(f) =
∫
f(X)dP. L0

2(P ) denotes the collection of functions such that Pf = 0 and
Pf2 < ∞. OP and oP are used as follows: Xn = OP (rn) denotes Xn/rn is bounded in probability and Xn = oP (rn)

indicates Xn/rn
P−→ 0, respectively. Additionally, we denote the L2(P ) norm as ∥ · ∥. In addition, we denote the conditional

mean of y given x as ŷ(x) ≡ E[y|X = x]. We assume that the dataset I is divided into three mutually exclusive sets
I1, I2, I3. To facilitate the calculation of the efficient influence function, we denote δO(o) as the Dirac delta function with
respect to O, i.e., the density of an idealized point mass at O, which equals zero everywhere except at O and integrates to 1.

B.2 EFFICIENT INFLUENCE FUNCTION

We note that the derivation of the efficient influence function largely follows the work of Hines et al. [2022], adopting the
“point mass contamination” methodology.

Lemma 5. Let
Ψ0(X,Y, Z) = E [L(Y, ŷ(X,Z))] .

The efficient influence function is:

ψ0(X,Y, Z) = (Y − ŷ(X,Z))

∫
L′(y, ŷ(X,Z))P (y|X,Z)dy

+ L(Y, ŷ(X,Z))−Ψ0(P ).

Proof. We start by considering the integration form of the estimand, which can be expressed as:

Ψ0(P ) = E [L(y, ŷ(x, z))]

=

∫
L(y, ŷ(x, z))P (x, y, z)dxdydz.

Then, by considering the product rule, we may have:

ψ0(X,Y, Z) =

∫
L′ (y, ŷ(x, z))ψŷ(x,z)(X,Y, Z)P (x, z, y)dxdydz

+

∫ ∫
L (y, ŷ(x, z)) [δXY Z(x, y, z)− P (x, y, z)] dxdyz,

where L′ (y, ŷ(x, z)) is the derivative of L (y, ŷ(x, z)), and ψŷ(x,z)(X,Y, Z) is the efficient influence function of ŷ(x, z).

From example 6 of Hines et al. [2022], we have ψŷ(x,z)(X,Y, Z) = (Y − ŷ(x, z))
δX,Z(x,z)
P (x,z) .

Then, we have:

ψ0(X,Y, Z) = (Y − ŷ(X,Z))

∫
L′(y, ŷ(X,Z))P (y|X,Z)dy + L(Y, ŷ(X,Z))−Ψ0(P )

Lemma 6. Let
ΨC

0 (X,Y, Z) = E
[
L(Y, ŷ(XC , Z))

]
.



The efficient influence function is:

ψC
0 (X,Y, Z) =

∫
L′(y, ŷ(X,Z))(Y − ŷ(X,Z))p(y|Z)dy

+

∫
L (y, ŷ(X,Z)) p(y|Z)dy

−
∫
L (y, ŷ(x, Z)) p(y|Z)p(x|Z)dxdy

+

∫
L (Y, ŷ(x, Z)) p(x|Z)dx−ΨC

0 (P ).

Proof. We can start off with the integral form as well, where we shall then get:

ΨC
0 =

∫
L(y, ŷ(x′, z))P (x′|z)P (x, y, z)dx′dxdydz

Then, to consider the derivative, we may have:

ϕC0 =

∫
[L(y, ŷ(x′, z)]

′ p(x′, z)p(z, y)

p(z)
dx′ dz dy +

∫
L(y, ŷ(x′, z′)

[
p(x′, z)p(z, y)

p(z)

]′
dx′ dy dz

= R1 +R2

From here, we start with the first term and adopt a similar treatment as Lemma 5, which yields

R1 =

∫
L′(y, ŷ(x′, z))(Y − ŷ(x′, z))

δX,Z(x
′, z)

p(x′, z)

p(x′, z)p(z, y)

p(z)
dx dx′ dz dy

= (Y − ŷ(X,Z))

∫
L′(y, ŷ(X,Z)

p(y, Z)

p(Z)
dy

Then, for the second term, we may have to consider decomposing it into three terms.

∫
L (y, ŷ(x′, z))

δXZ(x
′, z)− p(x′, z)

p(z)
p(y, z) dy dz =

∫
L (y, ŷ(x′, Z)p(y|Z)) dy −ΨC

0 (P )

Also, we may have:

∫
L (y, ŷ(x′, z′))

δZ(z)− p(z))

p(z)2
p(x′, z)p(y, z) dx′ dy dz dt

=

∫
L (y, ŷ(x′, Z)) p(x′|Z)p(y|Z)dx dy −Ψ(P )

=

∫
L (y, ŷ(x, Z)) p(x|Z)p(y|Z)dx dy −ΨC

0 (P )

Lastly, we then have:

∫
L (y, ŷ(x, z))

p(x′, z)

p(z)
(δY,Z(y, z)− p(y, z)) dx dy dz

=

∫
L (Y, ŷ(x′, Z)) p(x′|Z)dx′ −Ψ(P )

=

∫
L (Y, ŷ(x, Z)) p(x|Z)dx−ΨC

0 (P )



Putting the three terms together, we shall have:

R2 =

∫
L (y, ŷ(x′, Z)p(y|Z)) dy

−
∫
L (y, ŷ(x, Z)) p(x|Z)p(y|Z)dx dy

+

∫
L (Y, ŷ(x, Z)) p(x|Z)dx− 2ΨC

0 (P )

Putting everything together, we may then obtain the desired result.

Lemma 7. Let
ΨπL

0 (X,Y, Z) = E [L(Y, ŷ(Xπ, Z))] .

The efficient influence function is:

ψπL
0 (X,Y, Z) = (Y − ŷ(X,Z))

∫
L′(y, ŷ(X,Z))

P (X)P (y, Z)

P (X,Z)
dy

+

∫
L(Y, ŷ(x′, Z))P (x′)dx′

+

∫
L(y, ŷ(X,Z))P (y, Z)dydz − 2ΨπL

0 (P ),

where Xπ ∼ X and Xπ ⊥ X .

Proof. Using a similar approach as Lemma 5, we have

ψπL(X,Y, Z) =

∫
ψŷ(x′,z)(X,Z)L′(y, ŷ(x′, z))P (x′)P (y, z)dx′dydz

+

∫
L(Y, ŷ(x′, Z))P (x′)dx′ +

∫
L(y, ŷ(X, z))P (y, z)dydz − 2ΨπL(P )

= (Y − ŷ(X,Z))

∫
L′(y, ŷ(X,Z))

P (X)P (y, Z)

P (X,Z)
dy

+

∫
L(Y, ŷ(x′, Z))P (x′)dx′ +

∫
L(y, ŷ(X, z))P (y, z)dydz − 2ΨπL(P )

B.3 ADDITIONAL ASSUMPTIONS

We note that Assumptions 5 below and Assumption 4 essentially play the same role in eliminating the empirical process
term. In Assumption 4, we used an additional share of data I3 to ensure the independence of the efficient influence function
and the final estimator. Though this is different from the classical approach described by Chernozhukov et al. [2018], we
note that our method is iterative, whereas theirs is a one-step method. And Assumption 5 is a replicate Assumption A4 of
van der Laan et al. [2011a]. Here we define −→ε k0

n to be the sequence of εjn, padded with zeros if needed to create a k0 vector.

Assumption 5 (Donsker Condition; A2 of Theorem 5 in van der Laan et al. [2011a]). Let ε∗k0
be the limit of −→ϵ k0

n , that is,
−→ϵ k0

n
P−→ ε∗k0

. Condition on Pn,I2 and consider a class of measurable functions f estimated on I1:

F(Pn,I2) ≡
{
ψ(f̂I1 , Pε)− ψ(f∗, Pεk∗

0
) : ε

}
,

where the set over which ϵ varies is chosen so that it is a subset of Rk0 and contains −→ϵ k0
n with probability tending to 1.

Define the subclasses
Fδn(Pn,I2) ≡

{
fϵ ∈ F(Pn,I2) : ∥ϵ− ε∗k0

∥ < δn
}
.



If for deterministic sequence δn → 0, we have

E

{
Entro(Fδn(Pn,I2))

√
P ∗F (δn, Pn,I2)

2

}
→ 0 as n→ ∞,

where F (δn, Pn,I2) is the envelope of Fδn(Pn,I2) and Entro(Fδn(Pn,I2)) is the entropy of Fδn(Pn,I2).

This condition is the same as A2 given in van der Laan et al. [2011a], to which we refer the reader for further details.

B.4 PROOF OF THEOREM 1

Proof. If Assumptions 1,2,3 and 4 are satisfied, this is exactly the same result as Theorem 5 of van der Laan et al. [2011a],
and so will be the proof.

If Assumptions 1,2,3 and 5 are satisfied, the only thing we need to do is create a similar lemma as Lemma 2 of van der Laan
et al. [2011a]. We can start by considering the empirical process term, that is

(Pn,I3 − P)
(
ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗)

)
For the conditional variance of the term on I3, we have:

var
(
(Pn,I3 − P)

(
ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗)

))
= var

(
Pn,I3

(
ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗)

))
=

1

n
var(ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗))

≤ 1

n
∥ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗)∥

= oP (1/n)

Then, by Chebyshev’s inequality, we have:

(Pn,I3 − P)
(
ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗)

)
= Op

(√
1

n
∥ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗)∥

)

We can then obtain the desired result by Assumption 4, that is:

(Pn,I3 − P)
(
ψ(f̂I1 , P−→ε kn

n
)− ψ(f∗, P ∗)

)
= oP (1/

√
n)

The rest of the proof follows in the same manner as Theorem 5 of van der Laan et al. [2011a].
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