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ABSTRACT

In many scenarios, decision-makers must commit to long-term actions until their
resolution before receiving the payoff of said actions, and usually, staying com-
mitted to such actions incurs continual costs. For instance, in healthcare, a newly-
discovered treatment cannot be marketed to patients until a clinical trial is con-
ducted, which both requires time and is also costly. Of course in such scenarios,
not all commitments eventually pay off. For instance, a clinical trial might end up
failing to show efficacy. Given the time pressure created by the continual cost of
keeping a commitment, we aim to answer: When should a decision-maker break a
commitment that is likely to fail—either to make an alternative commitment or to
make no further commitments at all? First, we formulate this question as a new type
of optimal stopping/switching problem called the optimal commitment problem
(OCP). Then, we theoretically analyze OCP, and based on the insight we gain,
propose a practical algorithm for solving it. Finally, we empirically evaluate the
performance of our algorithm in running clinical trials with subpopulation selection.

1 INTRODUCTION

In many real-world settings, decision-makers must commit to long-term actions and wait until their
resolution before receiving the payoff of said actions. Meanwhile, staying committed to such actions
incurs continual costs. For instance, in portfolio management, it might take time for an asset to
develop additional value after an initial investment, and keeping capital tied up in an asset comes
with an opportunity cost for the investor (Markowitz, 1959; Merton, 1969; Karatzas and Wang, 2020).
In an energy network, turning power stations on and off is not an immediate action, hence a sudden
increase in energy demand can only be met with a delay after putting more stations into operation,
and keeping stations operational obviously consumes resources (Rafique and Jianhua, 2018; Olofsson
et al., 2022). In healthcare, a newly-discovered treatment can only be marketed to patients once a
successful clinical trial that targets the said treatment is conducted, which both requires time and is
also costly (Kaitin, 2010; Umscheid et al., 2011).

Of course, not all commitments eventually pay off: An asset might end up losing value despite
investments, energy demands might shift faster than a network can react to, and a clinical trial might
fail to show efficacy for the targeted treatment. Given the time pressure created by the continual
cost of keeping a commitment, our goal in this paper is to answer the question: When should a
decision-maker break a commitment—thereby avoiding future costs but also forfeiting any potential
returns—either to make an alternative commitment instead or to make no further commitments at
all? Solving this problem optimally requires a careful balance between exploration and exploitation:
The earlier a commitment that is bound to fail is broken, the more resources would be saved (cf.
exploitation); but the longer one is kept, the more information is revealed regarding whether the
commitment is actually failing or might still succeed (cf. exploration)—and in certain cases, also
regarding the prospects of similar commitments one could make instead.

Related problems are mostly studied within the context of adaptive experimentation and sequential
hypothesis testing (see Section 5). As such, we focus on adaptive experimentation as our main
application as well. More specifically, we consider the problem of selecting the target population of
an adaptive experiment. Suppose an experimenter, who is interested in proving the efficacy of a new
treatment, starts running an initial experiment that targets a certain population of patients. Incidentally,
the treatment being tested is effective only for a relatively narrow subpopulation of patients but not
for the wider population as a whole. Hence, an experiment targeting the overall population, but not
the subpopulation specifically, will most probably fail to prove efficacy and prevent the deployment
of the treatment for the patients who would have actually benefited from it, not to mention waste
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time and resources (Moineddin et al., 2008; Lipkovich et al., 2017; Chiu et al., 2018). Of course,
the experimenter has no knowledge of this in advance but the initial experiment they have set up
would slowly reveal more information regarding the effects of the treatment and the fact that the
ongoing experiment is bound to fail. In that case, we want to be able to determine at what point the
experimenter has enough information to justify breaking their commitment to the initial experiment
that targets too wide of a population to be successful, in favor of making a new commitment to a
follow-up experiment that focuses on a narrower subpopulation instead?

Contributions Our contributions are threefold: First, we formulate the problem of making and
breaking commitments in a timely manner as a new type of optimal stopping/switching problem called
the optimal commitment problem (OCP) (Section 2). The defining feature of OCP is that rewards
are received only when a known time point is reached but costs are incurred continually, requiring
commitment to actions but with incentive to abandon those commitments. As we will show later, OCP
cannot be easily solved via conventional reinforcement learning techniques due to its non-convex
nature. Second, we theoretically analyze a simplified case of OCP to identify the characteristics of
the optimal solution (Section 3), and based on the insights we gain, propose a practical algorithm for
the more general case (Section 4). Third, we empirically evaluate the performance of our algorithm
in running experiments with subpopulation selection (Section 6). Before we move on, it should
be emphasized that, although we predominantly consider adaptive experimentation as our main
application, our contributions remain generally applicable to portfolio management, energy systems,
and any other decision-making scenarios that require commitments to long-term actions.

2 OPTIMAL COMMITMENT PROBLEM

We first introduce the problem of optimal commitment from the perspective of running experiments.
As far as our formulation is concerned, experiments are conducted to confirm the efficacy of an inter-
vention by observing the outcome of the said intervention for subjects belonging to a particular popula-
tion. However, this experiment-focused perspective does not limit the applicability of OCP; we stress
its generality later at the end of the section. We provide a glossary of terms and notation in Appendix K.

Populations Let X be a discrete set of atomic-populations such that every subject is only the
member of exactly one atomic-population x ∈ X . Denote with ηx ∈ [0, 1] the probability of a
subject being from atomic-population x (such that ∑

x∈X ηx = 1), and with Ωx the distribution of
outcomes for atomic-population x such that the mean outcome θx = Ey∼Ωx [y] is the effect of some
intervention for atomic-population x. Now, wider populations can be constructed by combining
various atomic-populations. Let anyX ⊆ X represent the population of subjects who belong to either
one of the atomic-populations {x ∈ X}. Then, the probability of a subject being from population X
can be written as ηX =

∑
x∈Xηx, the probability of a subject being from atomic-population x

conditioned on the fact that they are from population X can be written as ηx|X = ηx/ηX , and the
average effect for population X can be written as θ̄X =

∑
x∈Xηx|Xθx.

Experiments An experiment is largely characterized by the population it targets, its sample
horizon, and its success criterion. During an experiment that targets population X , at each time
step t ∈ {1, 2, . . .} that the experiment continues, first a subject from some atomic-population xt
within the targeted population X arrives with probability ηxt|X , and then the outcome yt ∼ Ωxt
for that subject is observed. This process generates an online dataset Dt = {xt′ , yt′}tt′=1. The
experiment terminates when a pre-specified sample/time horizon τ is reached. Once terminated, the
experiment is declared a success if ρ(Dτ ) = 1, where ρ : (X ×R)τ → {0, 1} is the success criterion,
and declared a failure otherwise. Formally, the tuple ψ = (X, τ, ρ) constitutes an experiment design.

Meta-experimenter Suppose a meta-experimenter is given a set of viable experiment designs Ψ
and is tasked with running at least one successful experiment. Each experiment ψ ∈ Ψ has an
associated cost Cψ ∈ R+, which the experiment incurs per time step that it continues, and an
associated reward Rψ ∈ R+, which the experiment provides only if it eventually succeeds. The meta-
experimenter aims to maximize utility—that is the difference between any eventual reward received
and the total costs incurred by running experiments. They first pick an initial experiment ψ1 ∈ Ψ
and start conducting it, which generates an online dataset D1

t as described earlier. Now at each time
step t, they need to decide whether they should stay committed to their initial decision and wait until
ψ1 terminates, or stop ψ1 early in favor of starting a new experiment ψ2. They might decide on
the latter to avoid unnecessary costs if D1

t already indicates ψ1 is unlikely to succeed. If at some
point a secondary experiment ψ2 is started, now the meta-experiment has a similar decision to make
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regarding whether to stop ψ2 early in favor of starting a new experiment ψ3 ∈ Ψ. This process
continues until either an experiment finally succeeds or the meta-experimenter decides not to conduct
any further experiments; let the random variable n ∈ {1, 2, . . .} be such that ψn is the last experiment.
We denote with ψi = (Xi, τ i, ρi) the i-th experiment conducted by the meta-experimenter, and
with T i the number of time steps for which the i-th experiment is conducted either until it was
stopped by the meta-experimenter or the time horizon τ i was reached. Denote with π(t, ψi, D̄it)
the decision-making policy of the meta-experimenter, where t is the current time step of the latest
experiment ψi and D̄it = (∪i−1

j=1D
j
T j ) ∪ D

i
t is an aggregate dataset. We write (i) π(t, ψi, D̄it) = ψi

if the meta-experiment decides to keep conducting the current experiment ψi, (ii) π(t, ψi, D̄it) =
ψ′ 6= ψi if the meta-experimenter decides to stop experiment ψi and start experiment ψ′ instead,
and (iii) π(t, ψi, D̄it) = ∅ if the meta-experimenter decides not to conduct any further experiments.

Objective Once all experimentation is concluded, the meta-experimenter achieves the total utility

G = Rψn · 1{Tn = τn} · ρn(Dnτn)−
∑n
i=1Cψi · T

i . (1)
Then, the optimal commitment problem is to find the optimal policy π∗ = argmaxπ Eπ[G] that
maximizes the expected utility given Ψ, {ηx}. {Rψ, Cψ} without knowing mean outcomes {θx}
or outcome distributions {Ωx}. It is called the optimal commitment problem because each exper-
iment ψ = (X, τ, ρ) only provides a reward if the meta-experimenter commits to incurring its
costs for at least τ time steps, and the meta-experimenter needs to decide which experiment in Ψ
is the better commitment—or if there is any experiment worth committing to at all—adaptively.

Table 1: Equivalent concepts across dif-
ferent domains. OCP can model scenarios
other than adaptive experimentation.
Domain Equivalent Concepts

Adaptive experimentation Atomic-population Population
Portfolio management Financial asset Portfolio of assets
Energy systems Power station Network of stations

General applicability of OCP Although we have de-
scribed OCP from the perspective of (meta-)experiment
design, it can potentially be useful in modeling many other
problems as we have stressed during the introduction (see
Table 1). For instance, in portfolio management, atomic-
populations can be regarded as various assets one can in-
vest in, then a population would correspond to a portfolio
of assets. Similar to experiments, when these portfolios require a time commitment (cf. τ ) before they
provide their payoff (cf. Rψ) and incur an opportunity cost (cf. Cψ) in the mean time, the decision-
making problem of managing when and which portfolio to invest in constitutes an instance of the opti-
mal commitment problem. Another good examples is energy management, where power stations and
the networks they form are akin to atomic-populations and populations. Since power stations cannot
be turned on and off immediately, putting one in operation requires a certain amount of commitment.

3 WARM-UP: WHEN TO BREAK A SINGLE COMMITMENT?
In this section, to gather insights, we commence by analyzing a simplified instance of OCP. Later, in
Section 4, using these insights, we construct a practical algorithm for solving a more general case
of OCP. As the simplified instance, we only consider one atomic-population such that X = {X0}
and one experiment design that targets this atomic-population such that Ψ = {Ψ0 = (X0, τ, ρ)}.
Moreover, we assume that the outcomes are distributed normally with unit variance such that
Ω
.
= ΩX0

.
= N (θ

.
= θX0

, 1) and the success criterion is a simple Z-test to see whether θ > 0 such
that ρ(Dτ )

.
= ρ(µτ )

.
= 1{µτ > α/

√
τ}, where µt =

∑
(xt′ ,yt′ )∈Dt

yt′/|Dt| is the empirical mean
outcome given dataset Dt, and α determines the significance threshold for the test. Since there is just
one viable experiment in this setting, the only decision that needs to be made at each time step is
whether to keep conducting experiment ψ1 = Ψ0 or to stop all experimentation. For this decision
to be interesting, we will also assume that C .

= CΨ0 > 0—so that never stopping is not necessarily
optimal—and R .

= RΨ0 > τC—so that always stopping is not necessarily optimal either.

Value and Q-functions Since t and µt are sufficient statistics to estimate the success probability of
the experiment, it is also sufficient to only consider policies of the form π(t, µ). For a given policy π,

V π(t, µ) = E[R · 1{Tπt > τ} · ρ(µτ )− C · (min{Tπt , τ} − t) |µt = µ] (2)
Qπ(t, µ) = E[R · 1{Tπt+1 > τ} · ρ(µτ )− C · (min{Tπt+1, τ} − t) |µt = µ] (3)

are the value function, and the Q-function of conducting the experiment for at least one more time
step respectively, where Tπt = min{t′ ≥ t : π(t′, µt′) = ∅} is the first time step at or after time t
that policy π decides to stop; let V ∗ = V π

∗
and Q∗ = Qπ

∗
be the optimal value and Q-functions.

Note that the Q-factor of stopping all experimentation is always equal to zero for all policies. Hence,
the optimal policy must be such that π∗(t, µ) = Ψ0 if Q∗(t, µ) > 0 and π∗(t, µ) = ∅ otherwise.
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Figure 1: Optimal value function V ∗(t, µ)
for C = 1, R = 10, τ = 4, and α = 0.
It can clearly be seen that neither V ∗ nor
−V ∗ is convex in µ (cf. Proposition 1).

Once we identify the value and Q-functions, a naive at-
tempt at finding the optimal policy would be to compute
V ∗ and Q∗ via dynamic programming as they would sat-
isfy the following Bellman optimality conditions:

Q∗(t, µ) = −C + E[V ∗(t+ 1, µt+1)|µt = µ] (4)
V ∗(t, µ) = max{0, Q∗(t, µ)} (5)

and V ∗(τ, µ) = R · ρ(µ). However, a major complication
in applying dynamic programming methods to compute
V ∗ and Q∗ is that they are continuous functions in µ. In
the literature of partially-observable Markov decision pro-
cesses (POMDPs), which OCP happens to be an instance
of (see Appendix A), the standard approach of addressing this complication would be to leverage the
convexity of V ∗ and Q∗, and approximate them with functions of the form f(µ) = maxi aiµ+ bi
(Spaan, 2012). However, this standard approach is not applicable in OCP because, in general, neither
V ∗(t, µ) nor −V ∗(t, µ) is a convex function with respect to µ (see Figure 1):

Proposition 1 (Non-convexity). There exist a problem instance (C,R, τ, α) and t ∈ {1, . . . , τ − 1}
such that ∃µ, µ′ ∈ R, p ∈ [0, 1] : V ∗(t, pµ + (1 − p)µ′) < pV ∗(t, µ) + (1 − p)V ∗(t, µ′) and
∃µ, µ′ ∈ R, p ∈ [0, 1] : −V ∗(t, pµ+ (1− p)µ′) < −pV ∗(t, µ)− (1− p)V ∗(t, µ′).1

Properties of the optimal policy Although identifying π∗ exactly by computing V ∗ and Q∗
is challenging, we can still identify some properties that π∗ should have, which can then help us
design a heuristic policy that we expect to perform well, albeit not optimally. First of all, the
optimal policy π∗ should be a “thresholding-type” policy—that is the meta-experimenter should keep
conducting the experiment as long as µt stays above a time-dependent threshold µ∗t and should stop
all experimentation the moment µt drops below that threshold (see the top panel of Figure 2):

Proposition 2 (Thresholding). For all problem instances (C,R, τ, α), there exists time-dependent
thresholds {µ∗t ∈ R}τ−1

t=1 such that

π∗(t, µ) = {Ψ0 if µ > µ∗t ; ∅ otherwise} (6)
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Figure 2: Visualization of Propositions 2–4
for C = 1, R = 50, τ = 18, and α =
0. Top figure shows how the thresholds in
Proposition 2 evolve over time. Notice that
µ∗t ≤ µgreedy

t hence why π∗ is optimistic (cf.
Proposition 3). Bottom figure shows how the
optimism of π∗ measured as |µ∗t − µgreedy

t |
decreases over time (cf. Proposition 4).

Intuitively, a higher test statistic µt means that the exper-
iment is only more likely to succeed, hence if it is optimal
to continue conducting the experiment when µt = µ, then
it should also be optimal to continue when µt = µ′ > µ
(likewise, lower µt means success is even less likely hence
π∗(t, µ) = ∅ implies π∗(t, µ′) = ∅ for µ′ < µ).

Moreover, the optimal policy π∗ must be “optimistic” that
the experiment will succeed when making decisions. Con-
sider a greedy policy πgreedy that continues as long as the
expected utility of committing fully to conducting the ex-
periment until it terminates at t = τ is positive—that is
πgreedy = Ψ0 if and only if V π

(0)

(t, µ) > 0 where π(0) is
the policy that always waits until the experiment termi-
nates such that π(0)(t, µ) = Ψ0 for all t, µ; πgreedy is said
to be greedy because the decision to continue is made as-
suming a full commitment to the experiment without con-
sidering the possibility to stop at a future time step. Then,
whenever such greedy reasoning suggests continuing, the
meta-experimenter should indeed continue. However,
whenever the same reasoning suggests stopping, the meta-
experimenter should be optimistic that the experiment will succeed and occasionally make the decision
to continue instead—that is π∗ should be biased towards continuing (see the threshold gap in Figure 2):

Proposition 3 (Optimism). First, πgreedy is also of thresholding type and there exists {µgreedy
t ∈ R}τ−1

t=1

such that πgreedy(t, µ) = Ψ0 if and only if µ > µgreedy
t . Moreover, for all t ∈ {1, . . . , τ − 1},

µ∗t ≤ µ
greedy
t ⇐⇒ {µ : π∗(t, µ) = Ψ0} ⊇ {µ : πgreedy(t, µ) = Ψ0} (7)

1Proofs of all propositions are given in Appendix I.
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Intuitively, the optimism of π∗ accounts for the information gained from observing more samples
when the experiment is continued. Remember that πgreedy estimates the reward to be received if the
experiment is conducted until termination, and it stops whenever its estimate is negative. But, the
estimate of πgreedy has some uncertainty associated with it. Whenever it is uncertain enough that
the reward to be received is actually negative; incurring the cost of continuing for one more time
step, gaining new information, and forming a more certain estimate can lead to a more accurate
decision and a higher overall utility. Finally, the optimism of π∗ has a strictly decreasing upper bound;
denoting with F (x) = (1/

√
2π)

∫ x
−∞ e−(1/2)x2

the c.d.f. of the standard normal distribution:

Proposition 4 (Decreasing optimism). For all t ∈ {1, . . . , τ − 1},

|µ∗t − µ
greedy
t | ≤

√
1/t− 1/τ ×

(
F−1((τ − t)C/R)− F−1(C/R)

)
(8)

Intuitively, as the experiment continues, the information gained from one individual sample decreases
relative to the total information accumulated, hence the optimism of π∗ that accounts for the that
information gain also decreases (see the bottom panel of Figure 2). Consider one extreme: When
t = τ − 1, there is no more information to be gained before the experiment terminates at t = τ , hence
π∗ should make the same decisions as πgreedy. Indeed, Proposition 4 implies that µ∗τ−1 = µgreedy

τ−1 .

4 A PRACTICAL ALGORITHM: BAYES-OCP
Summarizing our discussion in the previous section, we suspect the optimal policy to be (i) of thresh-
olding type (cf. Proposition 2), (ii) optimistic (cf. Proposition 3), and (iii) increasingly more greedy
(cf. Proposition 4). These findings are not a complete surprise as optimism-in-the-face-of-uncertainty
is a well-known principle in solving online decision-making problems (Auer et al., 2002; Bubeck
et al., 2012). Our earlier analysis shows rigorously that this principle holds for at least a special case
of OCP and strengths our intuition that it should be applicable for more general cases of OCP as well.

Keeping properties (i–iii) in mind, we now propose a practical algorithm for solving OCP in a more
general setting than the one we analyzed earlier. Let |X | ≥ 1 and Ψ = {(X, τ, ρ) : X ∈ 2X \ ∅}
include all experiment designs that target a unique subpopulation within X for a given time horizon τ
and success criterion ρ; let CX

.
= C(X,τ,ρ) and RX

.
= R(X,τ,ρ). We assume that the conditional

power of performing a hypothesis test at time τ according to ρ—that is the probability of the test
being successful conditioned on mean outcomes {θx}—can be computed for interim datasets—that is

P(X,Dt; {θx}) = Ext′∼{ηx|X}x∈X ,yt′∼N (θx
t′
,1)[ρ(Dt ∪ (∪τt′=t+1{xt′ , yt′}))] (9)

can be evaluated efficiently. Then, based on this conditional power function, we define

Algorithm 1 Bayes-OCP
1: Initialize µx and σ2

x for all x ∈ X
2: X ← X , t← 0, D0 ← ∅
3: Start experiment ψ = (X , τ, ρ)
4: loop:
5: t← t+ 1; Dt ← Dt−1 ∪ {xt, yt}
6: 1/σ2

xt ← 1/σ2
xt + 1

7: µxt ← µxt + (yt − µxt)σ2
xt

(i) Identify a candidate subpopulation X ′ to replace X:
8: X ′ ← ∅
9: while X \X ′ ⊃ ∅:

10: x∗ ← argmaxx∈X\X′

Eθx∼N (µx,σ2
x)

[G(0)(X ′ ∪ {x}; {θx})]
11: if Eθx∼N (µx,σ2

x)
[G(0)(X ′ ∪ {x∗}; {θx})]

> Eθx∼N (µx,σ2
x)

[G(0)(X ′; {θx})]:
12: X ′ ← X ′ ∪ {x∗}
13: else: break
(ii) Decide whether to actually replace X with X ′:

14: if Pθx∼N (µx,σ2
x)
{G(0)(X ′; {θx})

> G(X,Dt; {θx})} > β:
15: X ← X ′, t← 0, D0 ← ∅
16: Start a new experiment ψ = (X, τ, ρ)

G(X,Dt; {θx})
= RX · P(X,Dt)− CX · (τ − t)

(10)

as the expected utility of fully committing to an
experiment and waiting until it terminates when
the experiment targets populationX , is currently
at time step t, and has collected datasetDt so far.
Denote with G(0)(X; {θx}) = G(X,∅; {θx})
the same expected utility but for an experiment
that is yet to start, and with G(0)(∅; {θx}) = 0
the utility of stopping all experimentation.

Our algorithm is called Bayes-OCP and is given
in Algorithm 1. It maintains a posterior distri-
bution N (µx, σ

2
x) for each mean outcome θx

assuming that, given mean θx, outcomes are
distributed normally with unit variance—that is
Ωx = N (θx, 1). These posteriors are only used
in deciding which experiment to run next and
not in determining whether the experiment was
a success or not. Hence, even when the assump-
tion of outcomes being normally distributed is
violated, the integrity of the experiments would
not be effected; only the performance of Bayes-
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OCP in managing various experiments would degrade (see Appendix C for related experiments).
Making use of the posteriors it maintains, Bayes-OCP performs two steps at each iteration:

(i) First, a subpopulation X ′ ⊂ X within the currently targeted population X is identified as a
potential candidate to target next; due to the combinatorial size of Ψ, it would not be prac-
tical to consider every subpopulation individually as a candidate for large |X |. The ideal
candidate would be the subpopulation with the largest expected utility: X ′ = argmaxX′⊂X
Eθx∼N (µx,σ2

x)[G(0)(X ′; {θx})]. But again due to the combinatorial size of the search space,
Bayes-OCP employs a greedy algorithm instead and forms candidate subpopulations by com-
bining, one by one, the atomic-subpopulations that increase the expected utility the most, until
the expected utility no longer improves. Note that it is common to use greedy algorithms to
solve combinatorial optimization problems (Lawler, 1976; Papadimitriou and Steiglitz, 1982).

(ii) Then, it is decided whether the current experiment targeting population X should be stopped in
favor of targeting candidate X ′ identified earlier instead. A greedy strategy would have done
so whenever Eθx∼N (µx,σ2

x)[G(0)(X ′; {θx})] > Eθx∼N (µx,σ2
x)[G(X,Dt; {θx})]. But from our

earlier analysis, we have learned that the optimal strategy is optimistic (cf. Proposition 3). As
such, Bayes-OCP checks whether it is overwhelmingly likely that the alternative experiment has
higher expected utility—that is whether Pθx∼N (µx,σ2

x){G(0)(X ′; {θx}) > G(X,Dt; {θx})} >
β, where β ∈ (1/2, 1) controls the decision-making threshold. When β is large, we are more
optimistic that the current experiment will succeed and require stronger evidence that the alterna-
tive experiment has higher expected utility. Note that, as the posteriorsN (µx, σ

2
x) get narrower,

the optimism of this rule naturally decreases, which should be the case for the optimal strategy
(cf. Proposition 4). As one extreme, the two switching rules become equivalent when {σ2

x → 0}.

5 RELATED WORK

Optimal stopping Optimal commitment is essentially a new type of optimal stopping/switching
problem. In typical optimal stopping problems (OSPs), the reward an agent can receive evolves based
on a stochastic process and the goal of the agent is to determine the optimal time step to stop when the
reward to be received is in some sense maximized (Shiryaev, 2007). Optimal commitment is unique
in that a positive reward can only be received by not stopping until a pre-specified time horizon τ . In
optimal commitment, there is still a stochastic process (namely, samples yt) that gradually reveals
more information regarding what that positive reward will be at the end, however, the reward—or
rather the cost—of stopping earlier is independent of this stochastic process (and is equal to −tC).

Sequential hypothesis testing Among other OSPs, optimal commitment is most closely related
to sequential hypothesis testing (SHT), where an agent makes sequential observations regarding a
given hypothesis and eventually needs to decide whether to reject the said (alternate) hypothesis or
reject some null hypothesis (Wald and Wolfowitz, 1948; Yu et al., 2009; Drugowitsch et al., 2012;
Shenoy and Angela, 2012; Zhang and Angela, 2013; Drugowitsch et al., 2014; Khalvati and Rao,
2015; Schönbrodt et al., 2017; Fauß et al., 2020). Rejecting the correct hypothesis provides a positive
reward whereas waiting for more observations, while informative, is also costly as in OCP. It is well
known that the optimal policy in the classic setting of SHT is a thresholding-type policy with fixed
thresholds that do not vary over time: The null hypothesis is rejected if some test statistic gets above a
threshold (and the alternate hypothesis is rejected if the same statistic gets below a different threshold).

Optimal commitment can be thought of as a SHT problem with the crucial difference that the meta-
experimenter has only the option of discarding the alternate hypothesis (i.e. breaking a commitment),
and once some time horizon is reached (i.e. when a commitment is kept), either the null hypothesis
or the alternate hypothesis is automatically rejected according to some external success criterion ρ,
regardless of what the meta-experimenters’s decision might have been otherwise. As we have shown
in Proposition 2, the optimal policy still remains a thresholding-type policy, but since there is now a
deadline to discard the alternate hypothesis early, the thresholds become time-varying; in particular,
they become less and less optimistic as the said deadline approaches (cf. Proposition 4).

Frazier and Angela (2007); Dayanik and Angela (2013); Alaa and van der Schaar (2016) consider
SHT under stochastic deadlines, but different from optimal commitment, they still allow agents to
reject both hypotheses at any time. In these works, the agent must make the rejection decision before
the deadline is reached to be able to receive a positive reward, whereas in our case, the agent must
wait until the deadline to see whether the null hypothesis will be rejected or not. Naghshvar and
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Table 2: Comparison of related experiment designs. Optimal commitment is the only design that aims to
decide both when an alternative population should be targeted—as opposed to switching the target population
only at a fixed decision point—as well as which population to target among many potential candidates—as
opposed to a simple binary decision of “overall population vs. sub-population” or “go vs. no-go”.

Design Reference When? Which?

Randomized Controlled Trial (RCT) Fisher (1935) Never Only the initial population
Adaptive Enrichment Design Ondra et al. (2019) Fixed decision point Overall vs. fixed subpopulation
Adaptive Signature Design Zhang et al. (2017) Fixed decision point Possibly any population
RCT with Futility Stopping He et al. (2012) Possibly any time Go vs. no-go

Optimal Commitment (Ours) Possibly any time Among multiple populations

Javidi (2013); Jarrett and van der Schaar (2020) consider active versions of SHT where the agent
is able to choose what type of observations to make. Our case is “passive” in the sense that the
meta-experimenter cannot influence what kind of samples they are going to receive from the currently
running experiment. Finally, optimal commitment, and SHT in general, can be thought of as more
structured instances of partially-observed reinforcement learning (RL). As we have discussed earlier,
the standard technique here relies on convex reward structures whereas the optimal value function in
our case is not convex in general (cf. Proposition 1, see Appendix A for a detailed discussion).

Adaptive experimentation We introduced optimal commitment predominantly as a tool for
population selection during an experiment. In clinical trials, dominant approach to population
selection is adaptive enrichment (Mehta et al., 2009; Magnusson and Turnbull, 2013; Simon and
Simon, 2013; Wang and Hung, 2013; Simon and Simon, 2018; Ondra et al., 2019; Thall, 2021) and
adaptive signature designs (Freidlin and Simon, 2005; Freidlin et al., 2010; Mi, 2017; Zhang et al.,
2017; Bhattacharyya and Rai, 2019). These designs are capable of adapting the target population of
a trial as the trial continues, but unlike optimal commitment, they can only do so at fixed analysis
points and not just at any time step. While adaptive signature designs can select arbitrary populations,
adaptive enrichment designs are also limited by the number of pre-specified populations they can
select between, which is typically only two: the overall population and an alternative subpopulation.

Optimal commitment is also related to clinical trial designs with futility stopping, where an experi-
menter might terminate a trial early once it becomes apparent that the said trial is highly unlikely
to succeed (van der Tweel and van Noord, 2003; Lachin, 2005; He et al., 2012; Jitlal et al., 2012;
Kimani et al., 2013; Chang et al., 2020). However, this does not consider the possibility of switching
to a new trial that targets a different population. As we will see during our experiments, switching to
an alternative experiment might prove preferable even before an ongoing experiment can be deemed
futile. In such cases, optimal commitment can make more timely decisions. Table 2 summarizes
the experiment designs related to optimal commitment. Finally, it is worth mentioning that there
are several methods for managing clinical trials at a portfolio level—that is determining which
clinical trial is to be conducted next (Rogers et al., 2002; Colvin and Maravelias, 2008; Graham et al.,
2020). Trial management in this vain is orthogonal to optimal commitment: They are concerned
with the success of multiple new treatments and make decisions on a trial-by-trial basis whereas
we only ever consider a single intervention and make decisions regarding the target population on a
sample-by-sample basis while experiments still continue. See Appendix H for extended related work.

6 EXPERIMENTS

We want to investigate how Bayes-OCP behaves in environments that differ in terms of ground-truth
outcomes, for instance, what happens in environments where the original experiment is quite likely to
succeed versus what happens in ones where switching to an alternative experiment is needed. To this
end, we simulate experiments where mean outcomes are varied but other aspects of an experiment
are fixed: In our environments, there are two atomic-populations, X = {XA,XB}. Both atomic-
populations have equal propensities ηXA = ηXB = 1/2 and the meta-experimenter has the same
positively-biased prior for the mean outcome associated with each atomic-population: θXA , θXB ∼
N (0.1, 0.1). Experiment designs targeting one or both of these atomic-populations all have the
same time horizon τ = 600 and success criterion ρ(Dτ ) = 1{∑(xt,yt)∈Dτ yt/|Dτ | > α/

√
τ},

where α = F−1(95%). So, experiments are powered to detect a positive mean outcome of 0.1 with
probability ∼ 80. Rewards are given by RX = 1000η0.1

X —the wider the target population is, the
more people a successful intervention can be marketed to—and costs are given by CX = 1/η0.1

X —the
narrower the target population is, the harder it becomes to find subjects eligible to participate.
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Table 3: Performance comparison in various environment in-
stances. Bayes-OCP has the highest expected utility—and a smaller
FWER then conventional RCTs—when averaged over all environ-
ment instances. This is because Bayes-OCP is a balanced design
whose structure does not favor certain environment instances over
others. As an example, compare it with conventional RCTs: RCTs
do not have an adaptive structure hence they favor green environ-
ments where it is not necessary to adapt the target population of the
initial experiment. ∗Instances favored/addressed partially
Algorithms: Oracle

RCT RCT Adaptive
Enrichment

Futility Stopping
w/ Bayes-OCP

Greedy
Bayes-OCP Bayes-OCP

Favored Instances: N/A Green Green/Amber∗ Green/Red Amber∗/Red Balanced
(incl. Amber)

All
Instances
(100%)

Utility 260.4 -39.4 (6.7) 106.5 (6.9) 150.0 (3.5) 32.6 (3.1) 171.8 (3.6)
FWER 0.0% 0.3% (0.1%) 0.2% (0.1%) 0.1% (0.1%) 0.0% (0.0%) 0.1% (0.1%)

Switches 0.5 0.0 (0.0) 0.4 (0.0) 0.5 (0.0) 1.0 (0.0) 0.6 (0.0)
Success 75.2% 56.1% (0.7%) 53.2% (0.8%) 45.4% (1.3%) 10.5% (0.8%) 52.4% (1.2%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 607.5 (1.9) 615.1 (1.2)
T-to-F 35.6 600.0 (0.0) 548.9 (16.1) 57.6 (4.6) 3.0 (0.5) 70.8 (8.2)

Green
Instances
(47.3%)

Utility 389.6 388.7 (3.9) 385.6 (3.7) 337.7 (5.7) 63.1 (3.5) 343.4 (7.3)
FWER 0.0% 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

Switches 0.0 0.0 (0.0) 0.0 (0.0) 0.1 (0.0) 0.9 (0.0) 0.1 (0.0)
Success 99.0% 98.9% (0.4%) 97.4% (0.7%) 86.0% (1.4%) 18.8% (0.9%) 88.2% (2.0%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 605.8 (1.5) 602.8 (0.4)
T-to-F 600.0 600.0 (0.0) 759.4 (36.4) 46.6 (7.6) 2.5 (0.5) 62.3 (14.3)

Amber
Instances
(29.4%)

Utility 258.6 -300.3 (19.8) -17.6 (6.5) -5.3 (5.4) 11.6 (3.4) 63.2 (5.6)
FWER 0.0% 0.7% (0.3%) 0.6% (0.3%) 0.4% (0.3%) 0.0% (0.0%) 0.3% (0.2%)

Switches 1.0 0.0 (0.0) 0.7 (0.0) 0.8 (0.0) 1.1 (0.0) 0.9 (0.0)
Success 96.6% 30.0% (2.0%) 22.6% (1.5%) 15.2% (2.0%) 5.3% (1.0%) 35.2% (1.8%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 617.2 (5.9) 663.9 (7.2)
T-to-F 600.0 600.0 (0.0) 745.0 (13.1) 78.3 (9.3) 3.4 (0.6) 104.4 (19.1)

Red
Instances
(23.3%)

Utility 0.0 -579.2 (4.1) -304.2 (4.4) -35.1 (1.7) -2.8 (1.1) -39.7 (3.4)
FWER 0.0% 0.2% (0.3%) 0.2% (0.3%) 0.1% (0.2%) 0.0% (0.0%) 0.2% (0.3%)

Switches 1.0 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.1 (0.0) 1.0 (0.0)
Success 0.0% 2.1% (0.4%) 1.8% (0.5%) 0.9% (0.3%) 0.3% (0.4%) 1.6% (0.7%)

T-to-S – 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 634.8 (39.1)
T-to-F 0.0 600.0 (0.0) 343.1 (8.1) 38.9 (2.1) 3.5 (1.4) 45.8 (2.9)

Benchmarks We consider the meta-
experiment designs summarized in
Table 2 as benchmarks (see Appen-
dix A.1 for an RL-based benchmark).
Conventional RCT always targets the
overall population and never stops
early—that is it always conducts the
experiment ψ = ({XA,XB}, τ, ρ) un-
til its completion. Adaptive Enrich-
ment performs an intermediary anal-
ysis at t = τ/2 = 300 and greed-
ily selects the experiment with the
highest expected utility from Ψ =
{(X, τ, ρ)}X⊆{XA,XB}. Futility Stop-
ping is implemented via Bayes-OCP
by initializing the set of all experi-
ments as a singleton Ψ = {Ψ0 =
({XA,XB}, τ, ρ)}. Intuitively, futil-
ity stopping only decides whether or
not to stop the initial experiment that
targets the overall population early.
Bayes-OCP is initialized with β =
0.80 (see Appendix E for a sensitivity
analysis). We also consider an abla-
tion of Bayes-OCP where decisions are made greedily instead of optimistically (Greedy Bayes-OCP).
As a baseline of maximum achievable performance, we consider an oracle (Oracle RCT) that always
runs the RCT with the optimum target (or does not run any RCT at all if that happens to be optimal).

Environments A meta-experimenter’s performance is specific to the environment instance. In
particular, it depends on the ground-truth outcome distributions {Ωx} for different populations. For
example, an algorithm that always immediately stops the experiment would perform best when
the mean outcome is negative. Hence, to faithfully evaluate the benchmarks, we need to focus
on the average performance across different environments. To this end, we randomly generated
1000 environments (repeated five times to obtain error bars) with true mean outcomes θXA , θXB
sampled independently from N (0.1, 0.1). Given these means, outcome distributions are set to be
Gaussian with unit variance such that Ωx = N (θx, 1). Depending on the true mean outcome, these
environments can be categorized into three groups: (i) green instances where the initial experiment
targeting the overall population has the highest utility, (ii) amber instances where an alternative
experiment that targets a subpopulation has the highest utility, and (iii) red instances where no
experiment has positive utility hence running no experiments is the optimal decision.

Different benchmarks favor different instances (see the top row of Table 3): Conventional RCTs do not
allow for any adaptation hence they favor green instances where the target population of the initial ex-
periment does not need to be adapted. Adaptive Enrichment allows for adaptation but only at a certain
time point, which is often too late to stop unsuccessful experiments (as in red instances). However,
an adaptive enrichment design at least makes it possible to eventually target a subpopulation, even
though it might be too late to do so at the pre-specified decision point, hence it partially accommodates
amber instances. Futility Stopping decides between either continuing with the initial experiment or
stopping all experimentation completely (targeting a subpopulation is not an option) hence it favors
either green or red instances (but not amber instances). Greedy Bayes-OCP is pessimistic (or rather
not optimistic enough) towards any ongoing experiment succeeding, hence it favors red instances
where no experiment is likely to succeed. Similar to adaptive enrichment, Greedy Bayes-OCP at
least allows subpopulations to be targeted hence it too partially accommodates amber instances.

Main results Performance of a meta-experimenter is primarily measured by Bayesian utility which
is the expected utility averaged over randomly sampled environment instances (Utility). Remember
that maximizing utility was our main objective, and as such, Bayes-OCP has the highest expected util-
ity when averaged over all environment instances, see Table 3. Unlike other benchmarks, Bayes-OCP
strikes a good balance in prioritizing all environment instances at the same time. This is because Bayes-
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Figure 3: Timeliness of Bayes-OCP. Bayes-
OCP is first to (correctly) stop the initial ex-
periment in an amber instance (excluding
Greedy Bayes-OCP). Adaptive enrichment
can only stop at a pre-specified time, while
futility stopping fails to consider switching
to an alternative experiment, which is proven
to be preferable earlier than stopping.
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Figure 4: Optimism of Bayes-OCP. Greedy
Bayes-OCP (incorrectly) stops due to initial
noise in a green instance while Bayes-OCP
does not stop since it is more optimistic (as
the optimal policy should, cf. Proposition 3).

OCP (i) can make timely decisions—unlike Adaptive
Enrichment—and (ii) is optimistic hence it does not
stop likely-to-succeed experiments prematurely—unlike
Greedy Bayes-OCP. More specifically,

(i) Timeliness of Bayes-OCP: Bayes-OCP has an ad-
vantage in amber and red instances over adaptive
enrichment and futility stopping. Consider the exam-
ple in Figure 3: While Bayes-OCP stops in a timely
manner, adaptive enrichment can only stop at a fixed
decision point and experiments with futility stopping
only stop when the ongoing experiment is failing not
as soon as a better alternative emerges. This under-
lines the exploitative aspect of Bayes-OCP—making
and breaking commitments to maximize utility.

(ii) Optimism of Bayes-OCP: While a design that fa-
vors early stopping is obviously desirable in amber
and red environments, how much it is favored should
be moderated to also succeed in green environments.
Consider the example in Figure 4: Greedy Bayes-
OCP prematurely stops the initial experiment in a
green environment while Bayes-OCP does not. The-
oretically, we know that the optimal policy should
be optimistic towards the ongoing experiment suc-
ceeding and be hesitant to stop to a certain extend.
This underlines the exploratory aspect of Bayes-
OCP—keeping a seemingly failing commitment still
has value as it reveals more information regarding
whether the commitment is actually failing.

In Table 3, in addition to Utility, we also report the family-
wise error rate (FWER)—that is the frequency of runs
where at least one experiment (denote it with ψi) is de-
clared successful (i.e. ρi(Diτ ) = 1) despite the mean
outcome being negative for the targeted population (i.e.
θ̄Xi < 0)—the average number of times the target pop-
ulation has been switched (Switches), the probability of
success which is defined as achieving positive utility (Suc-
cess), the average time until a successful outcome (Time-
to-Success, T-to-S), and the average time until until an un-
successful outcome where all experimentation is stopped
with negative utility (Time-to-Failure, T-to-F), see Appendix G for details. Importantly, Bayes-OCP
does not compromise the error control of experiments, on the contrary, it even achieves a smaller
FWER than conventional RCTs. This is because aggregate data is only ever used to select experiments,
otherwise no two experiments consult each other’s data when evaluating a success criterion so that the
potential confoundedness that could have been caused by the adaptiveness of Bayes-OCP is avoided
when declaring an experiment as successful (see Appendix B for a discussion on error control).

Supplementary results We also provide supplementary results: Appendix A.1 evaluates RL-based
benchmarks, Appendix B.1 investigates error control, Appendix C considers environments with non-
Gaussian outcomes, Appendix D considers environments with more than two atomic-populations,
and Appendix E analyzes the sensitivity of Bayes-OCP’s performance to its hyper-parameter β.

7 CONCLUSION

Two aspects of OCP require further discussion: (i) How can it be approached from the perspective of
reinforcement learning? While OCP technically describes a special class of POMDPs, we have not
found this to be constructive in finding a solution (see Appendix A). (ii) What are the implications
of using Bayes-OCP in terms of error control? It has no impact on individual error rates and can be
adapted to control FWER (see Appendix B). See Appendix F for a discussion on future work.
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ETHICS STATEMENT

As the main application of optimal commitment, we have focused on adaptive experimentation,
particularly experiments that are run as part of clinical development. Clinical trials have a huge
impact on the wellbeing of patients and this high-stakes nature of clinical trials naturally raises some
ethical concerns; we discuss two major ones in this section. However before we start our discussion,
it should be emphasized that clinical trials is not the only application domain of optimal commitment.
As we have highlighted at the end of Section 2, our contributions are generally applicable to decision-
making problems such as portfolio and energy management. Moreover, not all adaptive experiments
are clinical and have the same high stakes as a clinical trial. For instance, A/B testing is common
in online advertisement to determine what recommendation policies lead to more user engagement
(Gui et al., 2015; Xu et al., 2015; Kohavi and Longbotham, 2017). Therefore, the ethical concerns we
discuss here does not universally concern all possible applications of optimal commitment.

The first concern is how the designed error rate of an individual experiment is affected when multiple
such experiments are managed together using Bayes-OCP in an adaptive manner, in particular,
whether any error rate is inflated by the use of Bayes-OCP or not. We discuss error control in
Appendix B with supplementary experiments. But briefly, Bayes-OCP has essentially no impact on
the error rate of experiments on an individual level, and when controlling their family-wise error rate
is also a concern, it can easily be adapted to accommodate this additional constraint as well.

The second concern is that an adaptive approach to population selection might lead to overly conser-
vative experiments that unnecessarily limit the use of an effective treatment. As we have mentioned
in the introduction to motivate the need for optimal commitment, when the treatment is effective
only for a subpopulation (cf. amber instances in our experiments), population selection is absolutely
necessary, otherwise the treatment is most likely to be found ineffective and discarded after an
experiment that targets the overall patient population as a whole, which would deny the treatment
for the subpopulation that would have benefited from it. On the flip side of this, when the treatment
happens to be effective for everyone (cf. green instances in our experiment), population selection
might lead to conducting a restrictive experiment that only targets a small subpopulation, which
this time, would deny the treatment for the rest of the patient population. This is essentially the
reason behind the performance drop between Bayes-OCP and conventional RCTs in green instances
(see Table 3). There is a trade-off between the performance in amber instances and green instances;
and Bayes-OCP achieves a better balance between the two compared with a conventional RCT as
evidenced by its superior performance when averaged over all environment instances (again see
Table 3); although it causes a drop in performance for green instances, it more than makes up for that
drop in amber instances. This balance is partly controlled by how optimistic Bayes-OCP is, which
is in turn dictated by its hyper-parameter β—larger β leads to more optimistic decisions towards
ongoing experiments, which favors green instances more then amber instances. We analyze the
sensitivity of Bayes-OCP’s performance to β in Appendix E; and for all configurations that we have
evaluated, Bayes-OCP always performs significantly better than a conventional RCT.

REPRODUCIBILITY STATEMENT

All our experiments are based on synthetic simulations, hence our results can easily be reproduced by
following the specifications in Section 6 without needing access to any private dataset. In order to
aid reproducibility, we have rigorously described all our benchmarks in algorithmic form, similar to
Algorithm 1, in Appendix J. Moreover, the source code necessary to reproduce our main results in
Table 3 is made publicly available at https://github.com/alihanhyk/optcommit and
https://github.com/vanderschaarlab/optcommit.
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A A REINFORCEMENT LEARNING PERSPECTIVE

Optimal commitment can be viewed as a partially-observed reinforcement learning problem. Let the
tuple (S,A,Z, T ,O,R) denote a partially-observable Markov decision process (POMDP), where
S is the (unobserved) state space, A is the action space, Z is the observation space, T ∈ ∆(S)S×S

describes the transition dynamics, O ∈ ZS describes the observation dynamics, and R ∈ RS
describes the reward dynamics. Then, OCPs as defined in Section 2 can also be expressed as a special
class of POMDPs: Letting Y = R denote the outcome space for clarity, D = ∪t=0(X × Y)t be the
space of all possible datasets Dt, and O be the space of all possible outcome distributions Ω,

• S .
= {∅} ∪ (Ψ ×D ×OX ), where states s = (ψ,Dt, {Ωx}x∈X ) consist of the ongoing

experiment ψ ∈ Ψ, the dataset Dt ∈ D collected by the ongoing experiment so far, and the
true outcome distributions {Ωx ∈ O},

• A .
= {∅} ∪Ψ,

• Z .
= {∅} ∪ (X × Y),

• T (s = ∅, a)
.
= ∅ and

T (s = (ψ = (X, τ, ρ),Dt, {Ωx}), a)

.
=



∅ if a = ∅
s′ = (ψ,Dt+1 = Dt ∪ {xt+1, yt+1}, {Ωx})

s.t. xt+1 ∼ {ηx|X}, yt+1 ∼ Ωxt+1
if a = ψ

s′ = (ψ′,D1 = {x1, y1}, {Ωx})
s.t. x1 ∼ {ηx|X′}, y1 ∼ Ωx1 if a = ψ′ = (X ′, τ ′, ρ′) 6= ψ ,

• O(s′ = ∅)
.
= ∅ and

O(s′ = (ψ,Dt+1 = Dt ∪ {xt+1, yt+1}, {Ωx}))
.
= (xt+1, yt+1) ,

• R(s′ = ∅)
.
= 0 and

R(s′ = (ψ = (X, τ, ρ),Dt+1, {Ωx}))
.
= −Cψ +Rψ · 1{t+ 1 = τ} · ρ(Dt+1) .

Since ongoing experiments ψ are completely dictated by actions, and datasets Dt collected by the
ongoing experiments consist solely of observations (xt, yt), the only unobserved component of
the states in this POMDP is the true outcome distributions {Ωx}x∈X . Hence, the optimal policy
should have the form π(ψ,Dt, b) where b ∈ ∆(OX ) denotes beliefs over {Ωx}—that is posterior
distributions over the true outcome distributions. For instance, when Ωx = N (θx, 1) as we have
been assuming in Sections 3 and 4, posteriors over mean outcomes {θx}x∈X , which are given by
parameters {µx, σ2

x} such that θx|D̄it ∼ N (µx, σ
2
x), constitute as beliefs.

Now although an OCP can be expressed as a POMDP, doing so is not particularly helpful in finding
a solution. As we have already discussed in Section 3, the standard approach to solving a POMDP
would be to use dynamic programming and compute the optimal value function V ∗ and the optimal
Q-function Q∗ iteratively according to Bellman optimality conditions

Q∗(b, a) = Es∼b,s′∼T (s,a),z′=O(s′),b′|{b,z′}[R(s′) + V ∗(b′)]

V ∗(b) = maxa∈AQ
∗(b, a) ,

where b′|{b, z′} denotes the updated belief b′ after having belief b and making a new observa-
tion z′. When the state space S is discrete—or equivalently in our case, when the space of outcome
distributions Ω ∈ O is discrete—V ∗ and Q∗ happen to be convex functions, which makes it pos-
sible to perform these iterations efficiently by approximating V ∗ and Q∗ using functions of the
form f(b) = max{aib + a′i} (Spaan, 2012). However, even in the simplest of cases where S is
continuous—or equivalently, the space of outcome distributions Ω ∈ O is continuous, for instance
when Ωx = N (θx, 1)—the convexity of V ∗ and Q∗ no longer generally holds. In fact, we show in
Proposition 1 that neither V ∗ nor −V ∗ is convex with respect to beliefs b ≡ {t, µ} for at least one
instance of the simplified OCP that we have analyzed in Section 3.
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Table 4: Performance comparison between Futility Stopping with RL-based algorithms and with Bayes-OCP.

Algorithms: Oracle
RCT

Futility Stopping
w/ Discretized RL

Futility Stopping
w/ Deep Q-learning

Futility Stopping
w/ Bayes-OCP

All
Instances
(100%)

Utility 260.4 131.8 (4.3) 78.8 (3.1) 150.0 (3.5)
FWER 0.0% 0.1% (0.1%) 0.0% (0.0%) 0.1% (0.1%)

Switches 0.5 0.6 (0.0) 0.7 (0.0) 0.5 (0.0)
Success 75.2% 41.0% (1.0%) 24.2% (0.8%) 45.4% (1.3%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0)
T-to-F 35.6 54.3 (2.2) 23.6 (1.8) 57.6 (4.6)

Green
Instances
(47.3%)

Utility 389.6 309.5 (4.1) 185.0 (4.9) 337.7 (5.7)
FWER 0.0% 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

Switches 0.0 0.2 (0.0) 0.5 (0.0) 0.1 (0.0)
Success 99.0% 80.9% (0.7%) 47.7% (1.1%) 86.0% (1.4%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0)
T-to-F 600.0 72.7 (7.1) 11.0 (0.8) 46.6 (7.6)

Amber
Instances
(29.4%)

Utility 258.6 -23.9 (5.4) -16.6 (6.8) -5.3 (5.4)
FWER 0.0% 0.2% (0.2%) 0.1% (0.1%) 0.4% (0.3%)

Switches 1.0 0.9 (0.0) 0.9 (0.0) 0.8 (0.0)
Success 96.6% 9.1% (0.8%) 5.2% (1.3%) 15.2% (2.0%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0)
T-to-F 600.0 66.1 (4.3) 39.5 (4.4) 78.3 (9.3)

Red
Instances
(23.3%)

Utility 0.0 -33.0 (1.6) -16.5 (5.2) -35.1 (1.7)
FWER 0.0% 0.1% (0.2%) 0.1% (0.2%) 0.1% (0.2%)

Switches 1.0 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Success 0.0% 0.2% (0.2%) 0.4% (0.4%) 0.9% (0.3%)

T-to-S – 600.0 (0.0) 600.0 (0.0) 600.0 (0.0)
T-to-F 0.0 33.7 (0.9) 18.3 (4.8) 38.9 (2.1)

A.1 EXPERIMENTS WITH REINFORCEMENT LEARNING BENCHMARKS

Having said all that, one naive way to still compute V ∗ and Q∗ iteratively according to Bellman
optimality conditions is to discretize the belief space. We call this benchmark Discretized RL and
we use it to perform futility stopping—that is when |Ψ| = 1, deciding whether to stop the only
viable experiment design early or not. Otherwise, the dimensionality of the belief state explodes
combinatorially with respect to |Ψ|. We consider the same setting that we have considered during our
experiments in Section 6 and compare the performance of Futility Stopping with Discretized RL with
that of Futility Stopping with Bayes-OCP. When implementing discretized RL, instead of keeping
track of the entire dataset Dt, we only keep track of the sufficient statistic µt =

∑
(xt′ ,yt′ )

yt′/|Dt|,
restrict the domain of µt to interval [−0.3, 0.3], and discretize this interval into 100 equally-spaced
bins. In addition to discretized RL, we also consider the approach proposed by Ni et al. (2022) for
solving complex classes of POMDPs, which the optimal commitment problem is one of. Briefly,
we employ deep Q-learning (as such, we call this benchmark Deep Q-learning) to train a neural
network as an approximation of the Q-function Q∗(b, a) using the POMDP we formalized earlier
as a simulator. As the network architecture, we consider a multi-layer perceptron with two hidden
layers of size 100 and with tanh activations.

Results are given in Table 4; futility stopping with Bayes-OCP performs better than futility stop-
ping with discretized RL as well as futility stopping with deep Q-learning. In addition to the bad
performance of discretized RL, it is also not feasible to scale it to use cases beyond futility stopping.
When |Ψ| > 1, we would need to keep separate track of each µx. Moreover, we would also need to
start keeping track of the scale parameters {σx} since it would now be possible to distribute samples
among multiple atomic-populations in multiple ways by targeting different populations with different
experiments (we no longer would be able to treat the target population of the only viable experiment
design as the only atomic-population there is). Noting that σx’s already take discrete values with at
least τ -many possible values, merely increasing the number of viable experiments |Ψ| from one to
two causes the dimensionality of the belief space to jump from 100 to ∼ (100× 600)2 = 36× 108.
Deep Q-learning performs even worse as it ignores all structure present in the optimal commitment
problem, and instead, views the POMDP that describes it as a black-box simulator.
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Table 5: Performance comparison of algorithms with family-wise error control.

Algorithms: Oracle
RCT RCT Adaptive Enrichment

w/ Bonferroni Corr.
Futility Stopping
w/ Bayes-OCP

Greedy Bayes-OCP
w/ Bonferroni Corr.

Bayes-OCP
w/ Bonferroni Corr.

All
Instances
(100%)

Utility 260.4 -39.4 (6.7) 91.4 (5.4) 150.0 (3.5) 23.7 (2.2) 158.7 (5.2)
FWER 0.0% 0.3% (0.1%) 0.1% (0.1%) 0.1% (0.1%) 0.0% (0.0%) 0.1% (0.1%)

Switches 0.5 0.0 (0.0) 0.5 (0.0) 0.5 (0.0) 1.0 (0.0) 0.6 (0.0)
Success 75.2% 56.1% (0.7%) 51.1% (0.7%) 45.4% (1.3%) 7.7% (0.5%) 49.3% (1.5%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 606.2 (2.3) 616.6 (1.7)
T-to-F 35.6 600.0 (0.0) 543.0 (15.7) 57.6 (4.6) 2.3 (0.3) 65.8 (7.0)

Green
Instances
(47.3%)

Utility 389.6 388.7 (3.9) 378.8 (3.1) 337.7 (5.7) 46.1 (3.3) 325.8 (5.5)
FWER 0.0% 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

Switches 0.0 0.0 (0.0) 0.0 (0.0) 0.1 (0.0) 1.0 (0.0) 0.2 (0.0)
Success 99.0% 98.9% (0.4%) 96.1% (0.6%) 86.0% (1.4%) 13.8% (0.8%) 84.7% (1.5%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 604.9 (2.0) 604.0 (0.7)
T-to-F 600.0 600.0 (0.0) 768.6 (19.0) 46.6 (7.6) 2.0 (0.3) 66.5 (17.7)

Amber
Instances
(29.4%)

Utility 258.6 -300.3 (19.8) -51.9 (15.6) -5.3 (5.4) 8.3 (2.9) 44.6 (4.6)
FWER 0.0% 0.7% (0.3%) 0.3% (0.1%) 0.4% (0.3%) 0.0% (0.0%) 0.2% (0.2%)

Switches 1.0 0.0 (0.0) 0.8 (0.0) 0.8 (0.0) 1.1 (0.0) 0.9 (0.0)
Success 96.6% 30.0% (2.0%) 18.2% (2.2%) 15.2% (2.0%) 3.8% (0.9%) 30.7% (1.4%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 613.4 (5.8) 670.6 (8.9)
T-to-F 600.0 600.0 (0.0) 724.6 (9.4) 78.3 (9.3) 2.6 (0.6) 95.5 (18.4)

Red
Instances
(23.3%)

Utility 0.0 -579.2 (4.1) -312.5 (2.3) -35.1 (1.7) -2.2 (0.3) -37.0 (2.4)
FWER 0.0% 0.2% (0.3%) 0.2% (0.3%) 0.1% (0.2%) 0.0% (0.0%) 0.1% (0.2%)

Switches 1.0 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.1 (0.0) 1.0 (0.0)
Success 0.0% 2.1% (0.4%) 1.1% (0.4%) 0.9% (0.3%) 0.1% (0.2%) 1.1% (0.7%)

T-to-S – 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 649.8 (62.6)
T-to-F 0.0 600.0 (0.0) 334.9 (3.7) 38.9 (2.1) 2.4 (0.5) 39.8 (2.5)

B DISCUSSION ON ERROR CONTROL

Bayes-OCP is a method for managing experiments—that is deciding what experiment to conduct and
when—as opposed to a hypothesis testing strategy in and of itself. Implication of this in terms of
error control is that the type 1 error of any individual experiment run by Bayes-OCP can always be
controlled by choosing an appropriate experimental design, in particular, by specifying an appropriate
success criterion ρ. This individual-level error control built into the design of each experiment is
not compromised by Bayes-OCP; no aggregate data from multiple experiments is ever fed into
the success criterion of one alone (see Section 2, experiment ψi is successful if ρi(Dit) = 1 not if
ρi(D̄it) = 1); and any assumptions made by Bayes-OCP regarding outcomes in Section 4, whether
accurate or inaccurate, have no effect on the results produced by an external success criterion.

While Bayes-OCP does not compromise the individual error control of experiments, neither does
it control their collective family-wise error rate (FWER)—that is the probability of at least one
experiment among all that are conducted making a false discovery. Bayes-OCP views the problem
of managing experiments purely as a utility maximization problem with no additional constraints.
Within the scope of our discussion, the purpose of measuring FWER as a metric is to check empiri-
cally whether the individual error rates are inflated or not (note that FWER is a stricter notion of error
than individual error rate). In practice, depending on how closely related the managed experiments
are, controlling FWER might not necessarily be a concern. Let us highlight this: Any algorithm that
manages experiments for long enough is bound to make at least one false discovery. Each year more
than a thousand clinical trials are launched (that eventually post results) and more than half of these
trials succeed (Takebe et al., 2018; Cli). If the type 1 error rate of all these trials were %5, we would
expect at least 25 false discoveries in a year, which is more than one hence it would have put FWER of
all real-world trials at almost 100% when measured in a year-by-year basis. Of course, this is not prob-
lematic since not all clinical trials are related to each other closely enough to be considered a family.

B.1 EXPERIMENTS WITH FAMILY-WISE ERROR CONTROL

When controlling FWER is of concern, Bayes-OCP can easily be adapted to satisfy this additional
constraint by first limiting the number of total experiments that can be conducted—that is putting
an upper bound on n—and then using well-established methods for family-wise error control such
as Bonferroni correction or alpha spending functions (Demets and Lan, 1994) to adjust the success
criteria of the viable experiments in Ψ. We run additional experiments to evaluate the performance
of Bayes-OCP with Bonferroni correction. We consider the same setting that we have considered
during our experiments in Section 6 except for one difference: We limit the number of experiments

16



Published as a conference paper at ICLR 2023

Table 6: Performance comparison when the ground-truth outcome distributions are not Gaussian.

Algorithms: Oracle
RCT RCT Adaptive

Enrichment
Futility Stopping
w/ Bayes-OCP

Greedy
Bayes-OCP Bayes-OCP

All
Instances
(100%)

Utility 266.5 -38.4 (14.7) 110.0 (9.5) 150.8 (8.5) 46.3 (3.8) 178.2 (7.3)
FWER 0.0% 0.1% (0.1%) 0.0% (0.1%) 0.0% (0.1%) 0.0% (0.0%) 0.0% (0.1%)

Switches 0.5 0.0 (0.0) 0.4 (0.0) 0.5 (0.0) 1.0 (0.0) 0.6 (0.0)
Success 76.6% 56.2% (1.5%) 53.6% (1.5%) 46.5% (1.8%) 14.7% (1.1%) 54.9% (1.7%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 607.3 (1.0) 617.2 (1.8)
T-to-F 32.5 600.0 (0.0) 563.5 (9.9) 65.8 (3.8) 4.3 (0.5) 81.9 (7.1)

Green
Instances
(48.0%)

Utility 391.3 388.0 (4.1) 383.7 (3.1) 343.3 (4.4) 89.4 (6.7) 348.7 (3.5)
FWER 0.0% 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

Switches 0.0 0.0 (0.0) 0.0 (0.0) 0.1 (0.0) 0.9 (0.0) 0.1 (0.0)
Success 99.1% 98.8% (0.4%) 97.3% (0.4%) 87.6% (0.7%) 26.6% (2.0%) 89.3% (0.3%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 605.8 (1.2) 602.2 (1.3)
T-to-F 600.0 600.0 (0.0) 710.1 (33.9) 54.8 (10.0) 4.2 (1.5) 77.2 (10.6)

Amber
Instances
(29.9%)

Utility 263.5 -316.2 (18.2) -13.1 (3.6) -18.7 (8.8) 14.1 (2.4) 67.6 (6.4)
FWER 0.0% 0.2% (0.3%) 0.1% (0.3%) 0.1% (0.3%) 0.0% (0.0%) 0.1% (0.3%)

Switches 1.0 0.0 (0.0) 0.7 (0.0) 0.8 (0.0) 1.1 (0.0) 0.9 (0.0)
Success 97.2% 28.4% (1.8%) 22.6% (1.1%) 14.7% (1.5%) 6.3% (0.8%) 39.3% (2.3%)

T-to-S 600.0 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 617.5 (6.1) 670.6 (6.1)
T-to-F 600.0 600.0 (0.0) 765.5 (11.4) 91.0 (6.0) 4.3 (1.3) 126.0 (16.6)

Red
Instances
(22.1%)

Utility 0.0 -588.3 (4.6) -316.6 (12.2) -37.0 (4.5) -3.8 (1.1) -41.7 (3.0)
FWER 0.0% 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

Switches 1.0 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.1 (0.0) 1.0 (0.0)
Success 0.0% 1.2% (0.5%) 1.0% (0.5%) 0.5% (0.2%) 0.2% (0.2%) 1.6% (0.4%)

T-to-S – 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 600.0 (0.0) 654.7 (21.8)
T-to-F 0.0 600.0 (0.0) 341.9 (5.1) 39.4 (4.2) 4.2 (1.0) 46.4 (3.9)

that can be conducted by each algorithm as at most two, and we specify α = F−1(0.975) for
algorithms that can potentially run more than one experiment—namely, adaptive enrichment and
(Greedy) Bayes-OCP—while we still specify α = F−1(0.95) for algorithms that always run exactly
one experiment—namely, RCT and futility stopping. These specifications ensure that FWER of all
algorithms are bounded by %5. Results are given in Table 5; Bayes-OCP still performs the best when
explicit control of FWER is required.

C EXPERIMENTS WITH MISSPECIFIED OUTCOME DISTRIBUTIONS

We consider the same setting that we have considered during our experiments in Section 6. Except now,
the ground-truth outcome distributions are such that, when y ∼ Ωx, y = 1 with probability (θx+1)/2
and y = −1 otherwise. In order to ensure that θx ∈ [−1, 1], we also sample ground-truth mean
outcomes so that θx = 2p−1 where p is distributed according to Beta distribution with α = 979/200
and β = 801/200 (note that the mean and variance of θx remains the same as in our original
experiments). Despite the fact that outcomes are now distributed in a non-Gaussian way, we leave
the implementation of Bayes-OCP unchanged, which still assumes that outcomes distributions are
Gaussian. So, there is now a mismatch between the structure of outcome distributions specified
as part of Bayes-OCP and the ground-truth outcome distributions. Results are given in Table 6;
Bayes-OCP still does not inflate FWER despite the misspecified outcome distributions.

D EXPERIMENTS WITH MORE ATOMIC-POPULATIONS

We repeat our main experiments with more than two atomic-populations, specifically we set |X | = 10.
As before, all atomic-populations have equal propensities such that ηx = 1/10,∀x ∈ X , and the
meta-experimenter has the same positively-biased prior for the mean outcome associated with each
atomic population: θx ∼ N (0.1, 0.1),∀x ∈ X . We randomly generated 100 environment (repeated
five times to obtain error bars), and the results are given in Table 7. We observe that Bayes-OCP
still performs the best. These results confirm that a greedy approximation is suitable in identifying
candidate experiments when the number of atomic-populations is large.

E SENSITIVITY ANALYSIS

Bayes-OCP has one hyper-parameter: β, which controls how optimistic the switching rule given in
line 14 of Algorithm 1 is, from β = 1/2 meaning decisions are made greedily to β = 1 meaning
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Table 7: Performance comparison when the number of atomic-populations is 10.

Algorithms: RCT Adaptive
Enrichment

Futility Stopping
w/ Bayes-OCP

Greedy
Bayes-OCP Bayes-OCP

All
Instances
(100%)

Utility 8.0 (39.2) 143.9 (31.1) 141.0 (27.5) 40.3 (5.9) 172.4 (23.8)
FWER 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

Switches 0.0 (0.0) 0.4 (0.0) 0.5 (0.0) 1.0 (0.0) 0.6 (0.0)
Success 60.8% (3.9%) 71.0% (3.6%) 51.2% (4.7%) 15.6% (2.6%) 63.2% (4.2%)

T-to-S 600.0 (0.0) 678.9 (8.3) 600.0 (0.0) 648.5 (13.2) 647.5 (4.4)
T-to-F 600.0 (0.0) 672.7 (58.8) 130.4 (12.5) 9.3 (5.0) 200.5 (72.2)
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Figure 5: Utility achieved by Bayes-OCP for various values of hyper-parameter β.

decisions are so extremely optimistic that the original experiment will never be abandoned (as there
will always be a chance that it succeeds). As with all online algorithms, tuning β is challenging
since no a priori data would be available to perform cross validation. However, a nice feature of
Bayes-OCP is that β is rather interpretable, it is the evidence required against the ongoing experiment:
An alternative experiment is preferred over the ongoing experiment only if it is believed to be the
better experiment with at least β-confidence. We evaluate the sensitivity of Bayes-OCP’s performance
to hyper-parameter β in Figure 5; Bayes-OCP performs better than an RCT for all configurations and
better than adaptive enrichment for most configurations.

F FUTURE WORK

Extending the scope of Bayes-OCP One limitation of Bayes-OCP is that it only adapts the target
population X ⊆ X of experiments but not the sample horizon τ or the success criterion ρ. We have
chosen to focus on the selection of a target population since we believe the target population of
an experiment to be the most critical design dimension to adjust adaptively. As we have already
highlighted in our introduction, experiments with inflexible target populations can be problematic
when responses to the treatment of interest are highly heterogeneous.

That being said, the high-level strategy of our proposed algorithm should still be applicable to adapting
design dimensions other than the target population, namely τ and ρ. At a high level, Bayes-OCP
first identifies a candidate experiment and then compares the identified experiment to the ongoing
experiment in a n optimistic manner. Regardless of the given set of viable experiment design Ψ,
one could still follow the same strategy; the only complication would be to adapt how candidate
experiments are identified depending on what design dimension varies across experiment designs in Ψ.

For instance, when experiment designs varied in terms of X , a combinatorial search was required to
identify good candidate experiments, for which we proposed a greedy strategy. When experiment
designs vary in terms of ρ, a simple search over all possible ρ would suffice for identifying candidate
experiment. The case where experiment designs vary in terms of τ is more complex; optimal τ for an
experiment would be dependent on unknown effects θx; selecting a good candidate experiment would
involve estimating the optimal τ given posteriors over θx. This would be an interesting problem to
explore as a future research direction.
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Performance guarantees While our theoretical results motivate the general use of an optimistic
decision rule, they do not provide any guarantees about the performance of the specific rule we
propose as part of Bayes-OCP. Another future research direction would be to prove an upper bound
on the sub-optimality gap of Bayes-OCP.

G FURTHER DISCUSSION ON MAIN RESULTS

Table 3 report six metrics: Utility, FWER, Switches, Success, T-to-S, and T-to-F. We have already
discussed the implications of Utility and FWER in Section 6. Here, we highlight other interesting
phenomena regarding the remaining metrics. First, we see that Greedy Bayes-OCP switches ex-
periments much more frequently compared with Bayes-OCP. This is because Greedy Bayes-OCP
requires less evidence against the ongoing experiment when comparing it against an alternative
experiment, whereas, Bayes-OCP favors the ongoing experiments more. Second, we see that a higher
success probability does not necessarily also imply a higher utility. For instance, compare RCT with
futility stopping, futility stopping is able to achieve higher utility than RCT by terminating risky
experiments early and saving costs. However, this of course also means that futility stopping sees
fewer experiments to completion hence leads to a lower success probability. Finally, we see that
succeeding or failing early does not necessarily imply a higher utility either. Our best algorithm
Bayes-OCP succeeds the latest on average as well as fails the latest compared with other benchmarks
favoring red instances. This highlights the importance being conservative when making decisions,
being optimistic, and favoring the status quo more than a potential adaptation.

H FURTHER DISCUSSION ON RELATED WORK

Multi-armed bandits The optimal commitment problem is similar to a multi-armed bandit (MAB)
problem (Auer et al., 2002; Bubeck et al., 2012) in some aspects: Like arms in a MAB problem, each
experiment design ψ has a random utility given by Rψ · ρ(Dτ )− τCψ, where Dτ is the source of
randomness, and the distribution of this utility is unknown. Also similar to a MAB problem, the
overall goal is to sequentially select experiment designs (cf. arms) that yield the maximum cumulative
utility. The main difference between the two problems is that, in a MAB problem, selecting an arm
immediately reveals a sample from its random utility, while in optimal commitment, running an
experiment ψ just for one time step only incurs a cost of Cψ; observing a full sample of its random
utility requires the experiment to be run until its completion for τ consecutive time steps, without
selecting any other experiment design in the meantime.

One can naively apply a MAB algorithm by viewing each viable experiment design as a unique
arm, and by running experiments/arms selected by the algorithm until their completion to observe
full samples from their unknown utility distributions. However, this obviously side steps the main
question we want to answer in optimal commitment: When can we abandon a commitment—in this
case, the decision to run an experiment/arm selection until its completion—before fully observing
its outcome? Looking at optimal commitment from a MAB perspective reveals that there are two
explore-exploit dilemmas present in optimal commitment: One is with respect to which experiment
to select next, and the other is with respect to when to preemptively stop the current experiment (i.e.
breaking a commitment). MAB algorithms address the former dilemma but not the latter.

Task replication in parallel computing There is work (Ghare and Leutenegger, 2005; Wand et al.,
2014; Wang et al., 2019) that focuses on the problem of when to kill existing tasks and relaunch them
in parallel computing, which is related to optimal stopping/switching. However there, the focus is
on reasoning about when a stochastic event (i.e. successful completion of a computational task) will
occur without any extra information other than the fact that the event of interest has not occurred
yet. In contrast, in our setting, the decision-maker needs to process a streaming set of samples to
reason about the random outcome of an event that is scheduled to happen at a deterministic time
point (here, the event is an experiment reaching its conclusion). This means that our problem has
a completely different information structure when compared with the problem of task replication.
More formally, we observe samples yt that are informative of whether ρ(Dτ ) = 1 when τ is a fixed
variable. In contrast, the problem of task replication would correspond to the setting where τ is a
random variable with a known distribution and ρ = 1 always holds (hence no need to observe any
samples yt). Among optimal stopping/switching problems, the structure of our problem is more
closely related to sequential hypothesis testing, which we have already covered in Section 5.
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I PROOFS OF PROPOSITIONS

I.1 PROOF OF PROPOSITION 1

We start by relating the optimal value function V ∗ to the optimal Q-function Q∗. Letting T ∗t = Tπ
∗

t ,

V ∗(t, µ)

= E[R · 1{T ∗t > τ} · ρ(µτ )− C · (min{T ∗t , τ} − t)|µt = µ]

= E[1{π∗(t, µt) = ∅}(R · 1{T ∗t > τ} · ρ(µτ )− C · (min{T ∗t , τ} − t))
+ 1{π∗(t, µt) = Ψ0}(R · 1{T ∗t > τ} · ρ(µτ )− C · (min{T ∗t , τ} − t))|µt = µ]

= E[1{π∗(t, µt) = ∅} · 0
+ 1{π∗(t, µt) = Ψ0}(R · 1{T ∗t+1 > τ} · ρ(µτ )− C · (min{T ∗t+1, τ} − t))|µt = µ] (11)

= 1{π∗(t, µ) = Ψ0} · E[R · 1{T ∗t+1 > τ} · ρ(µτ )− C · (min{T ∗t+1, τ} − t)|µt = µ] (12)
= 1{Q∗(t, µ) > 0} ·Q∗(t, µ) (13)
= max{0, Q∗(t, µ)} , (14)

where (11) holds since π∗(t, µt) = ∅ =⇒ T ∗t = t and π∗(t, µt) = Ψ0 =⇒ T ∗t ≥ t + 1 =⇒
T ∗t = min{t′ ≥ t : π∗(t′, µt′) = ∅} = min{t′ ≥ t+ 1 : π∗(t′, µt′) = ∅} = T ∗t+1, (12) holds since
µτ ⊥⊥ 1{π∗(t, µt) = Ψ0} and T ∗t+1 ⊥⊥ 1{π∗(t, µt) = Ψ0} when conditioned on µt = µ, and (13)
holds since π∗(t, µ) = Ψ0 ⇐⇒ Q∗(t, µ) > 0. Intuitively, the maximum possible value at a given
time is achieved either by stopping immediately or by conducting the experiment for at least one
more time step and then following the optimal policy thereafter.

Next, we observe that

P{µt+1 ≤ µ′|µt = µ} =
∫
P{µt+1 ≤ µ′|θ, µt = µ}dP{θ|µt = µ}

=

∫
F

(
µ′ − θ + tµ

t+ 1
;

1

(t+ 1)2

)
f(θ − µ; 1/t)dθ

=

∫∫
1{µt+1 ≤ µ′}f

(
µt+1 −

θ + tµ

t+ 1
;

1

(t+ 1)2

)
f(θ − µ; 1/t)dµt+1dθ

=

∫∫
1{µt+1 ≤ µ′}f

(
µt+1 −

y + (t+ 1)µ

t+ 1
;

1

(t+ 1)2

)
f(y; 1/t)dµt+1dy

=

∫∫
1

{
x+

y + (t+ 1)µ

t+ 1
≤ µ′

}
f(x; 1/(t+1)2)f(y; 1/t)dxdy

= PX∼N (0,1/(t+1)2)
Y∼N (0,1/t)

{
X +

Y

t+ 1
≤ µ′ − µ

}
= PX+Y/(t+1)∼N (0,1/t−1/t+1)

{
X +

Y

t+ 1
≤ µ′ − µ

}
= F (µ′ − µ; 1/t− 1/t+1) , (15)

where f(x;σ2) = (1/
√

2πσ2)e−(1/2)x2/σ2

and F (x;σ2) = (1/
√

2πσ2)
∫ x
−∞ e−(1/2)x′2/σ2

dx′ are
the p.d.f. and the c.d.f. of the Gaussian distribution with mean zero and variance σ2 respectively.
Hence dP{µt+1 = µ′|µt = µ} = f(µ′ − µ; 1/t− 1/t+1)dµ′.

Then, using the relationship between V ∗ andQ∗ and the observation regarding P{µt+1 ≤ µ′|µt = µ},
we drive the following Bellman optimality condition:

Q∗(t, µ) = E[R · 1{T ∗t+1 > τ} · ρ(µτ )− C · (min{T ∗t+1, τ} − t)|µt = µ]

= −C + E[R · 1{T ∗t+1 > τ} · ρ(µτ )− C · (min{T ∗t+1, τ} − t− 1)|µt = µ]

= −C +
∫
E[R · 1{T ∗t+1 > τ} · ρ(µτ )− C · (min{T ∗t+1, τ} − t− 1)|µt+1 = µ′]

× dP(µt+1 = µ′|µt = µ)

= −C +
∫
V ∗(t+ 1, µ′)dP(µt+1 = µ′|µt = µ)

= −C +
∫
V ∗(t+ 1, µ′)f(µ′ − µ; 1/t− 1/t+1)dµ′
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= −C +
∫
V ∗(t+ 1, µ+ z)f(z; 1/t− 1/t+1)dz (16)

= −C +
∫

max{0, Q∗(t+ 1, µ+ z)}f(z; 1/t− 1/t+1)dz . (17)

For the problem setting where C = 1, R = 2, α = 0, and τ = 2, we have

V ∗(1, µ) = max{0,−1 +
∫
V ∗(2, µ+ z)f(z; 1/2)dz}

= max{0,−1 + 2
∫
1{µ+ z > 0}f(z; 1/2)dz}

= max

{
0,−1 + 2

∫ ∞
−µ

f(z; 1/2)dz

}
= max{0,−1 + 2F (µ; 1/2)}

=

{
0 if µ < 0

−1 + 2F (µ; 1/2) if µ ≥ 0 .

Notice that, for µ > 0,

d2

dµ2
V ∗(1, µ) =

d2

dµ2

(
− 1 + 2F (µ; 1/2)

)
=

d

dµ

(
2f(µ; 1/2)

)
= −(4/π)µe−µ

2

< 0

hence V ∗(1, µ) is concave at least on interval µ ∈ (0,∞) and is not a convex function. More-
over, −V ∗(1, µ) cannot be a convex function—or equivalently V ∗(1, µ) cannot be a purely con-
cave function—either: For an arbitrary µ ∈ (0,∞), V ∗(1, µ) > 0 and V ∗(1,−µ) = 0 hence
(1/2)V ∗(1, µ) + (1/2)V ∗(1,−µ) > 0 but V ∗(1, (1/2)µ+ (1/2)(−µ)) = V ∗(1, 0) = 0.

I.2 PROOF OF PROPOSITION 2

We will prove the proposition by showing that

(i) Q∗(t, µ) is non-decreasing in µ—that is µ < µ′ =⇒ Q∗(t, µ) ≤ Q∗(t, µ′),
(ii) limt→∞Q∗(t, µ) = −(τ − t)C +R > 0, and

(iii) limt→−∞Q∗(t, µ) = −C < 0

for all t ∈ {1, . . . , τ −1} via mathematical induction. Notice that these three facts—together with the
fact that Q∗(t, µ) is a continuous function in µ for t ∈ {1, . . . , τ − 1}—would imply the existence of
a unique µ∗t such that Q∗(t, µ∗t ) = 0, Q∗(t, µ) > 0 ⇐⇒ µ > µ∗t , and Q∗(t, µ) ≤ 0 ⇐⇒ µ ≤ µ∗t ,
which in turn would imply that

π∗(t, µ) =

{
Ψ0 if µ > µ∗t ⇐⇒ Q∗(t, µ) > 0

∅ if µ ≤ µ∗t ⇐⇒ Q∗(t, µ) ≤ 0 ,

meaning the optimal policy π∗ is indeed of “thresholding -type” as the proposition states.

First, we observe the following base cases for t = τ − 1:

(i) Q∗(τ − 1, µ) is non-decreasing in µ. When µ < µ′,

Q∗(τ − 1, µ) = −C +
∫
V ∗(τ, µ+ z)f(z; 1/(τ−1)− 1/τ)dz (18)

= −C +R
∫
1{µ+ z > α/

√
τ}f(z; 1/(τ−1)− 1/τ)dz

≤ −C +R
∫
1{µ′ + z > α/

√
τ}f(z; 1/(τ−1)− 1/τ)dz (19)

= Q∗(τ − 1, µ′) ,

where (18) is due to (16), and (19) holds since µ+z > α/
√
τ =⇒ µ′+z > µ+z > α/

√
τ .

(ii) limµ→∞Q∗(τ − 1, µ) = −C +R > 0 since

lim
µ→∞

Q∗(τ − 1, µ) = lim
µ→∞

(
− C +R

∫
1{µ+ z > α/

√
τ}f(z; 1/(τ−1)− 1/τ)dz

)
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= lim
µ→∞

(
− C +R

∫ ∞
α/
√
τ−µ

f(z; 1/(τ−1)− 1/τ)dz

)
= −C +R

∫
f(z; 1/(τ−1)− 1/τ)dz

= −C +R .

(iii) limµ→−∞Q∗(τ − 1, µ) = −C < 0 since

lim
µ→−∞

Q∗(τ − 1, µ) = lim
µ→−∞

(
− C +R

∫
1{µ+ z > α/

√
τ}f(z; 1/(τ−1)− 1/τ)dz

)
= lim
µ→−∞

(
− C +R

∫ ∞
α/
√
τ−µ

f(z; 1/(τ−1)− 1/τ)dz

)
= lim
µ→−∞

(
− C +R

(
1−

∫ α/
√
τ−µ

−∞
f(z; 1/(τ−1)− 1/τ)dz

))
= −C +R

(
1−

∫
f(z; 1/(τ−1)− 1/τ)dz

)
= −C .

Then, we show that the following inductive cases hold for t ∈ {τ − 1, . . . , 2}:
(i) Given thatQ∗(t, µ) is non-decreasing in µ, Q∗(t−1, µ) is also non-decreasing in µ. Similar

to the base case, when µ < µ′,

Q∗(t− 1, µ) = −C +
∫

max{0, Q∗(t, µ+ z)}f(z, 1/(t−1)− 1/t)dz (20)

≤ −C +
∫

max{0, Q∗(t, µ′ + z)}f(z, 1/(t−1)− 1/t)dz

= Q∗(t− 1, µ′) ,

where (20) is due to (17).

(ii) Given limµ→∞Q∗(t, µ) = −(τ − t)C+R—and also given that Q∗(t, µ) is non-decreasing
in µ—we have limµ→∞Q∗(t − 1, µ) = −(τ − t + 1)C + R > 0, which can be shown
using the sandwich theorem:

Q∗(t− 1, µ) = −C +
∫

max{0, Q∗(t, µ+ z)}f(z, 1/(t−1)− 1/t)dz

≤ −C +
∫

max{0, limµ′→∞Q∗(t, µ′)}f(z, 1/(t−1)− 1/t)dz

≤ −C + (−(τ − t)C +R)
∫
f(z, 1/(t−1)− 1/t)dz

= −(τ − t− 1)C +R . (21)

Q∗(t− 1, µ) = −C +
∫

max{0, Q∗(t, µ+ z)}f(z, 1/(t−1)− 1/t)dz

≥ −C +

∫ ∞
−|µ|1/2

max{0, Q∗(t, µ+ z)}f(z, 1/(t−1)− 1/t)dz

≥ −C +

∫ ∞
−|µ|1/2

max{0, Q∗(t, µ− |µ|1/2}f(z, 1/(t−1)− 1/t)dz

≥ −C +Q∗(t, µ− |µ|1/2)

∫ ∞
−|µ|1/2

f(z, 1/(t−1)− 1/t)dz , (22)

Finally, observing that

lim
µ→∞

(22) = lim
µ→∞

(
− C +Q∗(t, µ− |µ|1/2)

∫ ∞
−|µ|1/2

f(z, 1/(t−1)− 1/t)dz

)
= −C +

(
limµ′→∞Q∗(t, µ′)

)∫
f(z, 1/(t−1)− 1/t)dz

= −(τ − t− 1)C +R ,

together with bounds (21) and (22), we obtain limµ→∞Q∗(t− 1, µ) = −(τ − t+ 1)C+R.

(iii) Given limµ→−∞Q∗(t, µ) = −C < 0—and also given that Q∗(t, µ) is non-decreasing in µ
and limµ→∞Q∗(t, µ) > 0 so that µ∗t exists—we have limµ→−∞Q∗(t− 1, µ) = −C < 0,
which again can be shown using the sandwich theorem:

Q∗(t− 1, µ) = −C +
∫

max{0, Q∗(t, µ+ z)}f(z, 1/(t−1)− 1/t)dz
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≥ −C . (23)

Q∗(t− 1, µ) = −C +
∫

max{0, Q∗(t, µ+ z)}f(z, 1/(t−1)− 1/t)dz

=

∫ ∞
µ∗t−µ

Q∗(t, µ+ z)f(z, 1/(t−1)− 1/t)dz (24)

≤ −C +R

∫ ∞
µ∗t−µ

f(z, 1/(t−1)− 1/t)dz (25)

≤ −C +R

(
1−

∫ µ∗t−µ

−∞
f(z, 1/(t−1)− 1/t)dz

)
, (26)

where (24) holds since Q∗(t, µ+ z) > 0 if and only if z > µ∗t − µ and max{0, Q∗(t, µ+
z)} = 0 otherwise, and (25) holds sinceQ∗(t, µ) ≤ limµ′→∞Q∗(t, µ′) = −(τ−t)C+R ≤
R for all µ as Q∗(t, µ) is non-decreasing in µ. Finally, observing

lim
µ→−∞

(26) = lim
µ→−∞

(
− C +R

(
1−

∫ µ∗t−µ

−∞
f(z, 1/(t−1)− 1/t)dz

))
= −C ,

together with bounds (23) and (26), we obtain limµ→−∞Q∗(t− 1, µ) = −C.

When put together, the base cases and the inductive cases above imply that conditions (i–iii) hold for
all t ∈ {1, . . . , τ − 1}—hence µ∗t exists for all t ∈ {1, . . . , τ − 1}—which concludes our proof.

I.3 PROOF OF PROPOSITION 3

First, we prove the existence of µgreedy
t for all t ∈ {0, . . . , τ − 1} by driving an analytical formula for

V (0)(t, µ)
.
= V π

(0)

(t, µ). Letting T (0)
t = Tπ

(0)

t ,

V (0)(t, µ) = E[R · 1{T (0)
t > τ} · ρ(µτ )− C · (min{T (0)

t , τ} − t)|µt = µ]

= E[R · ρ(µτ )− C · (τ − t)|µt = µ] (27)

= −C +
∫
E[R · ρ(µτ )− C · (τ − t− 1)|µt+1 = µ′]dP(µt+1 = µ′|µt = µ)

= −C +
∫
V (0)(t+ 1, µ′)dP(µt+1 = µ′|µt = µ)

= −C +
∫
V (0)(t+ 1, µ′)f(µ′ − µ; 1/t− 1/(t+1))dµ′ (28)

= −C +
∫
V (0)(t+ 1, µ+ z)f(z; 1/t− 1/(t+1))dz , (29)

where (27) holds since π(0)(t, µ) = Ψ0 for all t and µ hence it is always the case that T (0)
t =∞, and

(28) is due to (15).

In the remainder of our proofs, we take α = 0 for notational brevity. This is without any loss of
generality as, by simply shifting each value function and Q-function by α/

√
τ with respect to µ, all

of the following arguments would still hold. For α = 0, we show that

V (0)(t, µ) = −(τ − t)C +R · F
(

µ√
1/t− 1/τ

)
(30)

for all t ∈ {1, . . . , τ − 1} via mathematical induction. Note that (30) is true for t = τ − 1:

V (0)(τ − 1, µ) = −C +
∫
V (0)(τ, µ+ z)f(z; 1/(τ−1)− 1/τ)dz

= −C +R
∫
1{µ+ z > 0}f(z; 1/(τ−1)− 1/τ)dz

= −C +R

∫ ∞
−µ

f(z; 1/(τ−1)− 1/τ)dz

= −C +R

∫ µ

−∞
f(z; 1/(τ−1)− 1/τ)dz

= −C +R

∫ µ/
√

1/(τ−1)−1/τ

−∞
f(z; 1)dz
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= −C +R · F
(

µ√
1/(τ−1)− 1/τ

)
,

where F (x)
.
= F (x; 1) is the c.d.f. of the standard Gaussian distribution. Moreover, assuming (30) is

true for t, it is also true for t− 1:

V (0)(t− 1, µ)

= −C +
∫
V (0)(t, µ+ z)f(z; 1/t−1− 1/t)dz

= −(τ − t+ 1)C +R
∫
F ((µ+ z)/

√
1/t− 1/τ; 1)f(z; 1/(t−1)− 1/t)dz

= −(τ − t+ 1)C

+R

∫∫ (µ+z)/
√

1/t−1/τ

−∞
f(z′; 1)f(z; 1/(t−1)− 1/t)dz′dz

= −(τ − t+ 1)C

+R

∫∫ µ+z

−∞
f(z′; 1/t− 1/τ)f(z; 1/(t−1)− 1/t)dz′dz

= −(τ − t+ 1)C

+R

∫∫
1{z′ ≤ µ+ z}f(z′; 1/t− 1/τ)f(z; 1/(t−1)− 1/t)dz′dz

= −(τ − t+ 1)C +R · PZ∼N (0,1/(t−1)−1/t)
Z′∼N (0,1/t−1/τ)

{Z ′ ≤ µ+ Z}

= −(τ − t+ 1)C +R · P Z′−Z√
1/(t−1)−1/τ

∼N (0,1)

{
Z ′ − Z√

1/(t−1)− 1/τ
≤ µ√

1/(t−1)− 1/τ

}
= −(τ − t+ 1)C +R · F

(
µ√

1/(t−1)− 1/τ

)
.

Therefore, (30) indeed holds for all t ∈ {1, . . . , τ − 1}.

Next, we observe that V (0)(t, µ) has a root at µ = F−1((τ − t)C/R)
√

1/t− 1/τ provided that
(τ − t)C/R ∈ (0, 1), which is the case for all t ∈ {1, . . . , τ−1} since τC < R. Moreover, V (0)(t, µ)

is a strictly increasing function in µ. Hence, there exists a unique µgreedy
t for all t ∈ {1, . . . , τ − 1}

such that V (0)(t, µgreedy
t ) > 0 and V (0)(t, µ) > 0 ⇐⇒ µ > µgreedy

t . In other words, πgreedy is also a
thresholding-type policy as the proposition states.

Finally, we have V (0)(t, µ∗t ) = Q(0)(t, µ∗t ) ≤ Q∗(t, µ∗t ) = 0 hence µ∗t ≤ µ
greedy
t . This is because, by

definition, Q∗(t, µ) ≥ Qπ(t, µ) for all t, µ for any given policy π, including π(0).

I.4 PROOF OF PROPOSITION 4

As in the proof of Proposition 3, we take α = 0 for notational brevity. Once again, this is without any
loss of generality as, by simply shifting each value function and Q-function by α/

√
τ with respect

to µ, all of the following arguments would still hold. Remember that the formula we derived for
V (0)(t, µ) in (30) holds when α = 0.

We start by deriving two bounds on the optimal Q-function Q∗(t, µ): (i) a lower bound and (ii) an
upper bound. For the lower bound, it is sufficient to observe that

V (0)(t, µ) = Q(0)(t, µ) ≤ Q∗(t, µ) ,

which holds since, by definition, Q∗(t, µ) ≥ Qπ(t, µ) for all t, µ for any given policy π.

For the upper bound, we use mathematical induction to show thatQ∗(t, µ) ≤ (τ−t−1)C+V (0)(t, µ).
First, for the base case of τ − 1,

Q∗(τ − 1, µ) = −C +
∫
V ∗(τ, µ+ z)f(z; 1/t− 1/t+1)dz (31)

= −C +
∫
1{µ+ z > α}f(z; 1/t− 1/t+1)dz
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= −C +
∫
V (0)(τ, µ+ z)f(z; 1/t− 1/t+1)dz

= V (0)(τ − 1, µ) , (32)

where (31) is due to (16), and (32) is due to (29). Then, for the inductive case, assuming Q∗(t, µ) ≤
(τ − t− 1)C + V (0)(t, µ),

Q∗(t− 1, µ) = −C +
∫

max{0, Q∗(t, µ+ z)}f(z, 1/(t−1)− 1/t)dz (33)

≤
∫
Q∗(t, µ+ z)f(z, 1/(t−1)− 1/t)dz (34)

≤ (τ − t− 1)C +
∫
V (0)(t, µ+ z)f(z, 1/(t−1)− 1/t)dz

= (τ − t)C + V (0)(t− 1, µ+ z) ,

where (33) is due to (17), and (34) holds since −C ≤ Q∗(t, µ) implies that max{0, Q∗(t, µ)} ≤
max{C +Q∗(t, µ), Q∗(t, µ)} ≤ C +Q∗(t, µ).

Define µ+
t and µ−t such that

V (0)(t, µ+
t ) = 0 ⇐⇒ µ+

t = F−1

(
(τ − t)C

R

)√
1

t
− 1

τ

(τ − t− 1)C + V (0)(t, µ−t ) = 0 ⇐⇒ µ−t = F−1

(
C

R

)√
1

t
− 1

τ
,

which we are able to write in closed form using the formula we derived for V (0)(t, µ) in (30) during
the proof of Proposition 3.

By definition, µgreedy
t = µ+

t . Moreover, (i) V (0)(t, µ∗t ) ≤ Q∗(t, µ∗t ) = 0 = V (0)(t, µ+
t ) due to our

lower bound, hence µ∗t ≤ µ+
t (remember that V (0)(t, µ) was a strictly increasing function in µ), and

(ii) (τ − t − 1)C + V (0)(t, µ−t ) = 0 = Q∗(t, µ∗t ) ≤ (τ − t − 1)C + V (0)(t, µ∗t ) due to our upper
bound, hence V (0)(t, µ−t ) ≤ V (0)(t, µ∗t ) meaning µ−t ≤ µ∗t . Putting together these facts, and also
the fact that µ∗t ≤ µ

greedy
t , we obtain |µ∗t − µ

greedy
t | ≤ µ+

t − µ−t as the proposition states.

J BENCHMARKING ALGORITHMS

Algorithm 2 Adaptive Enrichment, Futility Stopping with Bayes-OCP, Greedy Bayes-OCP

1: Initialize µx and σ2
x for all x ∈ X

2: X ← X , t← 0, D0 ← ∅
3: Start experiment ψ = (X , τ, ρ)
4: loop:
5: t← t+ 1
6: Observe xt, yt
7: Dt ← Dt−1 ∪ {xt, yt}
8: 1/σ2

xt ← 1/σ2
xt + 1

9: µxt ← µxt + (yt − µxt)σ2
xt

10: X ′ ← ∅
11: while X \X ′ ⊃ ∅:
12: x∗ ← argmaxx∈X\X′ Eθx∼N (µx,σ2

x)
[G(0)(X ′ ∪ {x}; {θx})]

13: if Eθx∼N (µx,σ2
x)

[G(0)(X ′ ∪ {x∗}; {θx})] > Eθx∼N (µx,σ2
x)

[G(0)(X ′; {θx})]:
14: X ′ ← X ′ ∪ {x∗}
15: else:
16: break
17: if Adaptive Enrichment

and t = τ/2 and Eθx∼N (µx,σ2
x)

[G(0)(X ′; {θx})] > Eθx∼N (µx,σ2
x)

[G(X,Dt; {θx})]:
18: X ← X ′, t← 0, D0 ← ∅
19: Start a new experiment ψ = (X, τ, ρ)
20: if Greedy Bayes-OCP and Eθx∼N (µx,σ2

x)
[G(0)(X ′; {θx})] > Eθx∼N (µx,σ2

x)
[G(X,Dt; {θx})]:

21: X ← X ′, t← 0, D0 ← ∅
22: Start a new experiment ψ = (X, τ, ρ)
23: if Futility Stopping with Bayes-OCP and Pθx∼N (µx,σ2

x)
{G(0)(∅; {θx}) > G(X,D0; {θx})} > β:

24: Stop all experimentation
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K GLOSSARY OF TERMS AND NOTATION

Term Notation Description

Experiment – Conducted to confirm efficacy of an intervention, e.g. a new
treatment in clinical trials, or a new recommendation policy in
online advertisement

Subject – Individual participant of an experiment, e.g. patients in a clini-
cal trial, or customers in online advertisement

Population X ⊆ X Collection of subjects that all share the same qualities, e.g. all
female patients in a clinical trial, or all customers with the
same preferences in online advertisement

Atomic-population x ∈ X Indivisible populations
Propensities ηx The probability that a subject being from atomic-population x

ηX The probability that a subject being from population X
ηx|X The probability that a subject being from atomic-population x

conditioned on the fact that they from population X
Outcome distribution Ωx Distribution of outcomes that is indicative of the effect of the

intervention of interest for atomic-population x
Mean outcomes θx Expected outcome, i.e. the effect of the intervention of interest,

for atomic-population x
θ̄X Expected outcome for population X

Experiment design ψ = (X, τ, ρ) Target populationX , sample horizon τ , and success criterion ρ
that characterize an experiment

Viable experiment designs Ψ Experiment designs that can potentially be followed by a meta-
experimenter

Meta-experimenter – The decision-making agent that decides when to run experi-
ments according to which experiment design in Ψ

Sample/time horizon τ An experiment is terminated when t = τ

Success criterion ρ An experiment is declared a success if ρ(Dτ ) = 1

Online dataset Dt Data collected by an ongoing experiment at time step t

Dit Data collected by the i-th experiment run by the meta-experi-
menter at time step t

Aggregate dataset D̄it Collective data collected by all experiments up to time step t
of the i-th experiment

– T i Number of time steps for which the i-th experiment is con-
ducted until it was stopped or its time horizon was reached

Cost Cψ Cost incurred per time step by running experiment ψ
Reward Rψ Reward received if experiment ψ is successful
Utility G Sum of costs and rewards received after all experimentation is

concluded
Policy π Decision-making policy of the meta-experiment
Optimal policy π∗ The optimal policy that maximizes utility G in expectation

Greedy policy πgreedy See Section 3
Test statistic µt In the simplified case in Section 3, the empirical mean outcome
Value function V π(t, µ) The expected utility of following policy π when µt = µ

Q-function Qπ(t, µ) The expected utility of following policy π after conducting the
ongoing experiment for one more time step when µt = µ

– Tπt The first time step at or after time step t that policy π decides
to stop all experimentation

Optimal value function V ∗ The value function associated with π∗

Optimal Q-function Q∗ The Q-function associated with π∗

Thresholds µ∗t Decision-making thresholds associated with π∗

µgreedy
t Decision-making thresholds associated with πgreedy
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Term Notation Description

Conditional power function P(X,Dt; {θx}) The probability of a hypothesis test being successful condi-
tioned on mean outcomes {θx}

Expected utility function G(X,Dt; {θx}) The expected utility of fully committing to an experiment and
waiting until it terminates when the experiment targets popula-
tion X , is currently at time step t, and collected dataset Dt

Posteriors N (µx, σ
2
x) Posterior distributions over mean outcomes {θx} maintained

by Bayes-OCP such that θx|D̄ ∼ N (µx, σ
2
x)
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