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Abstract

A major challenge for Multi-Agent Systems is enabling agents to adapt dynamically
to diverse environments in which opponents and teammates may continually change.
Agents trained using conventional methods tend to excel only within the confines
of their training cohorts; their performance drops significantly when confronting
unfamiliar agents. To address this shortcoming, we introduce Inverse Attention
Agents that adopt concepts from the Theory of Mind, implemented algorithmically
using an attention mechanism and trained in an end-to-end manner. Crucial to
determining the final actions of these agents, the weights in their attention model
explicitly represent attention to different goals. We furthermore propose an inverse
attention network that deduces the ToM of agents based on observations and prior
actions. The network infers the attentional states of other agents, thereby refining
the attention weights to adjust the agent’s final action. We conduct experiments in
a continuous environment, tackling demanding tasks encompassing cooperation,
competition, and a blend of both. They demonstrate that the inverse attention
network successfully infers the attention of other agents, and that this information
improves agent performance. Additional human experiments show that, compared
to baseline agent models, our inverse attention agents exhibit superior cooperation
with humans and better emulate human behaviors.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has significantly advanced the study of complex,
interactive behaviors in multi-agent systems, allowing intricate modeling of scenarios involving
multiple autonomous agents. However, creating an ad-hoc agent that excels with various types of
teammates and opponents poses a significant challenge. Current methods suffer a limitation: while
agents trained together demonstrate proficient coordination, their performance deteriorates markedly
when paired with unfamiliar agents.

To address this challenge, we delve deeper into multi-agent collaboration by incorporating a cognitive
perspective, specifically through the modeling of attention and Theory of Mind (ToM) [Bratman,
1987] within the MARL framework. Unlike classical ToM research, which focuses on attributing
mental states such as beliefs and desires, our model shifts to the crucial yet less-emphasized compo-
nent of attention. Our methodology adopts a mentalistic approach, explicitly modeling the internal
attentional state of agents using an attention recognition neural network that can be trained end-to-end
in combination with components of MARL. Contrary to traditional ToM modeling approaches that
rely heavily on Bayesian inference to handle mental state transitions [Baker et al., 2009, Kleiman-
Weiner et al., 2016, Shum et al., 2019, Gao et al., 2020, Tang et al., 2022], our method maintains the
ontology of these states while focusing on the direct modeling of agents’ attentional mechanisms.
This shift from Bayesian methods to more direct, attention-based modeling opens new pathways for
understanding and enhancing agent interactions in complex environments.
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To enhance task performance, we craft an agent that adeptly infers the attention of other agents — a
crucial aspect of ToM. We employ gradient field functions to construct goals within the environment.
Subsequently, we incorporate a self-attention architecture within the policy network to generate
attention weights for these goals, guiding the agent’s actions accordingly. Throughout the training
phase, we accumulate the weighted goals and corresponding actions into a training dataset. This
dataset then serves to train an attention inference network that determines attention weights based on
the observations and actions of other agents, effectively modeling their attention. In the final phase,
we amalgamate the self-attention structure with the inverse attention to create our Inverse-Attention
Agent. Our agent integrates environmental observations with inferred attention weights from the
inference network to fine-tune its final actions.

We demonstrate the effectiveness of our approach through a series of experiments adapted from
the Multi-agent Particles Environment (MPE) [Lowe et al., 2017]. Specifically, we employ a Mix-
and-Match scheme to evaluate the performance of our models in ad-hoc collaboration, by pairing
models trained using various algorithms. The results indicate that our model consistently outperforms
baselines, particularly excelling in cooperative tasks. Moreover, we conduct a series of human
experiments where humans join teams alongside agents trained with different methods. Through both
quantitative and qualitative analysis, our model demonstrates superior cooperation within ad-hoc
teams comprising both humans and previously unseen agents.

To summarize, we introduce a MARL training scheme inspired by theories in cognitive science,
where each agent explicitly reasons about the attentional states of group members. Our approach
is specifically designed to enhance ad-hoc coordination among agents, addressing a long-standing
challenge in MARL. Our framework also adopts a simplified state representation using social gradient
fields, which further reduces the complexity of the environmental input that agents must process,
thereby facilitating more flexible and efficient decision making. By explicitly modeling attention
and incorporating cognitive principles, our approach paves the way for more effective multi-agent
collaboration in complex, interactive scenarios.

2 Related work
2.1 Theory of Mind and Attention

Theory of Mind (ToM) refers to the cognitive ability to attribute mental states to oneself and others
[Bratman, 1987]. It allows for tailored strategies to be generated in multi-agent scenarios, where one
can reason about what other players are doing and determine one’s action accordingly. ToM has been
an active area of research in multi-agent systems, with the goal of designing agents that coordinate
more like humans. Previous work has primarily utilized Bayesian approaches to explicitly model
beliefs, desires, and intentions [Shum et al., 2019, Kleiman-Weiner et al., 2016, Wu et al., 2021],
providing a principled framework for inferring and updating beliefs about other agents’ mental states
based on observed behavior and actions. To avoid the complexity of recurrently reasoning about each
others’ mental state, Tang et al. [2020] and Stacy et al. [2021] proposed frameworks based on the
idea of shared agency, relying on coordinating group-level mental states and establishing a shared
understanding of the task and goals among agents. Departing from Bayesian methods, Rabinowitz
et al. [2018] proposed to integrate ToM reasoning directly into the neural network architecture, aiming
to learn representations of other agents’ mental states in a data-driven manner.

Building upon previous frameworks, our work addresses three key aspects: First, we develop our
model around the idea that ToM is not merely concerned with beliefs, desires, and intentions,
but is a human-unique ability to be sensitive to what others are attending to. While attention as
a critical mental state is often neglected in ToM research, our work aims to address this gap by
explicitly modeling attention mechanisms. Second, we model cooperation from an individualistic
perspective to encourage more flexible behavior generation. In this way, instead of shared agency, our
agents maintain an individualistic perspective while coordinating with teammates. Third, we deviate
from traditional Bayesian approaches to modeling ToM and instead develop an end-to-end neural
network-based training, thus allowing for more flexibility and generalizability.

2.2 Ad-Hoc Teaming

Ad-hoc collaboration is defined as the challenge of enabling autonomous agents to effectively
coordinate with previously unknown teammates, without any prior opportunities for coordination or
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agreement on strategies [Stone et al., 2010]. Addressing this problem necessitates agents to model
the behavior of their teammates and subsequently select actions that facilitate effective collaboration,
while simultaneously adapting to changes or new information that emerges during the interaction.
A prominent approach to modeling teammate behavior is type-based reasoning, which represents
teammates as belonging to hypothesized behavior types [Barrett et al., 2017]. Alternatively, neural
network-based techniques have been proposed to infer teammate types from observations [Rabinowitz
et al., 2018, Rahman et al., 2021, Xie et al., 2021]. Once teammate models are obtained, agents
perform downstream action planning with techniques such as Monte Carlo tree search [Barrett
et al., 2014, Albrecht and Stone, 2019] and meta-learning action selection [Zintgraf et al., 2021].
Adapting the agent’s behavior based on new information about teammates is also crucial in sustaining
the collaboration. Addressing this, Macke et al. [2021] employed communication between agents
and Lupu et al. [2021] proposed a method to generate diverse training trajectories to improve
generalization to novel teammates.

In our work, we tackle the ad-hoc problem by leveraging the attention mechanism. We argue that
the instability issues in ad-hoc settings typically arise because agents fail to comprehend unseen
states, consequently making it difficult to generalize the trained policies. However, by implementing
the attention mechanism, our agents are capable of selectively focusing on relevant aspects of the
environment. This focused attention helps maintain consistency in decision-making across different
scenarios [Cheng et al., 2023]. Thus, the attention mechanism serves as a method for filtering
information, which is crucial for achieving generalizability when interacting with previously unseen
teammates.

3 Background

3.1 Markov Games

We consider multi-agent Markov Decision Processes (MDPs) [Littman, 1994], where the state
transitions and rewards depend on the actions of all agents. Formally, a Markov game for N
agents is defined by a set of states S, a set of actions Ai for each agent i, and a transition function
T : S × A1 × · · · × AN → ∆(S), where ∆(S) denotes the set of probability distributions over
S. Each agent i receives a reward as a function of the state and action of all agents, denoted by
Ri : S ×A1×· · ·×AN → R. The goal of each agent is to maximize its expected discounted reward
E[

∑∞
t=0 γ

tRi(st, a1,t, . . . , aN,t)], where γ ∈ [0, 1] is the discount factor and st denotes the state
at time t. In the multi-agent reinforcement learning (MARL) context, each agent typically learns
a policy πi : S → ∆(Ai) that specifies the action distribution given the current state, aiming to
optimize its own long-term payoff in the environment defined by the Markov game.

3.2 Gradient Field Representation in Multi-Agent Systems

The Gradient Field (GF) representation in multi-agent systems has proven to yield better policy
learning [Wu et al., 2022, Long et al., 2024]. Instead of using raw observation of the environment,
the GF is a higher level representation which enhances the ability of agents in the environment. The
key idea is that a Denoised Score Matching (DSM) [Song et al., 2021] generative model aims to
learn the gradient field of a log-data-density; i.e., the score function. Given samples {xi}Ni=1 from
an unknown data distribution {xi ∼ pdata(x)}, the goal is to learn a score function to approximate
∇x log pdata(x) via a score network sθ(x) : R|X | → R|X |, by adopting an extension of DSM that
estimates a time-dependent score network sθ(x, t) : R|X | ×R1 → R|X | to denoise the perturbed data
from different noise levels simultaneously:

L(θ) = Et∼U(ϵ,T )

{
E x̃∼qσ(t)(x̃|x),

x∼pdata(x)

λ(t)

[∥∥∥∥sθ(x̃, t)− 1

σ2(t)
(x− x̃)

∥∥∥∥2
2

]}
, (1)

where T , ϵ, λ(t) = σ2(t), σ(t) = σt
0, and σ0 are hyper-parameters. The optimal time-dependent

score network holds s∗θ(x, t) = ∇x log qσ(t)(x) where qσ(t)(x) is the perturbed data distribution:

qσ(t)(x̃) =

∫
qσ(t)(x̃|x)pdata(x)dx. (2)

When learning from different offline datasets DN , N gradient field (GF) representation functions
sθ are learned, resulting in the observation representations sθ1(o), sθ2(o), . . . , sθn(o). These GF
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Figure 1: Pipeline for training the inverse attention agent: The first phase involves applying a self-
attention mechanism, where the agent assigns attention weights to its observations and acts based on
these weights. In the second phase, the agent performs attention inference on other agents of the same
type using the inverse attention network. By placing itself in the position of these agents, it infers
their attention weights, gaining insights into their goals and behaviors. In the final phase, the inverse
attention agent uses the inferred information from the previous step to update its original attention
weights, {w1, w2, ..., wn} to {w̃1, w̃2, ..., w̃n}, consequently leading to changes in its final actions.

representations can be seen as the goals of the agent within specific environments, potentially offering
greater effectiveness than raw observations such as relative coordinates. This is because GFs are not
limited to specific objects and can more directly represent future trends, which are aligned with the
agent’s goals. By leveraging these learned representations, agents can gain a deeper understanding of
their environment and make more informed decisions.

4 Problem Statement
In the context of a fully observable Multi-agent environment E(N, {Ai}) under the MDP settings,
where agents types are fixed and can make observations (previous action included) of itself and also
of other agents, we aim to learn a decentralized policy π. This policy, trained with a single group
of agents, should achieve optimal long-term pay off not only with the trained agents but also when
interacting with previously unseen agents.

5 Method
In this section, we introduce the inverse-attention agent, which acts based on its attention weights of
goals and updates the weights based on the inferred goal weights of other agents. The agent is trained
in three phases. The first phase involves applying the self-attention mechanism to the policy function
[Vaswani et al., 2017] so that an agent acts based on the weights of the attentions. The second phase is
to infer the attention of other agents of the same type using the inverse attention network. By placing
itself in the position of the other agents, the agent infers their attention weights, gaining insights
into their attention and behavior. The final phase involves training the inverse attention agent. The
agent uses the inferred attention weights from the previous phase to update its own attention weights,
consequently leading to changes in its final actions. The following subsections present the details of
our algorithm. The overall pipeline is shown in Figure 1. The architecture of the inverse attention
agent policy network is shown in Figure 2.

5.1 Self-Attention Structure

We incorporate a self-attention mechanism into the policy network in order to explicitly model the
agent’s mental states through attention weights assigned to different goals. These mental states
are crucial, as they influence the agent’s final action, and altering the attention weights will lead to
changes in the action. Additionally, during this phase, we prepare the data required for training the
inverse attention network. The agent trained with this structure is referred to as the Self-Att agent.
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Figure 2: Network architecture of the inverse attention agent. For agent i, Wi is the observation
embedding function which takes in the observation and outputs initial attention weights. IWi is the
inverse attention network which takes in the action and observation of the other agents and outputs the
inferred attention weights. The UWi takes consideration of self initial weights and inferred weights
from others and update ai’s attention weights. The hi function outputs the final action based on the
updated weights.

Self-Attention Network: Instead of using an MLP for the policy network, we adopt a structure
similar to that proposed by Long et al. [2020], which utilizes attention embeddings of the goal for the
decentralized policy network. This can be represented as

πi(oi) = hi(Wi(fi(oi)), Vi(fi(oi))), oi = oi,1, oi,2, ..., oi,N , (3)

where oi is the observation of agent i, which can be decomposed into a combination of N goals
within the environment, fi is a two-layer fully connected network that embeds the N goals, Wi(oi)
is the weight encoder that outputs the attention weights of the goals, whose details we will discuss
later, and Vi is the value function implemented as a two layer fully connected layer. The function hi

multiplies the attention weights with all the goal information to get the weighted goals goalweighted =∑
wi,jVi(fi(oi,j)) and then passed into a two-layer fully connected neural network to output the

final action.

Attention Weight Function: We define the attention weight embedding function as

Wi(fi(oi)) = attention(fi(oi,i), fi(oi,j)), ∀j ̸= i. (4)

Self-attention is applied to the agent’s own information along with all the goals and generates the
output attention weights.

Attention Inference Dataset Construction : We collect the data pairs ({wi,1, wi,2, ..., wi,N}, oi)
during the training of the self-attention network. Once the policy has converged, we retain only the
most recent 1/10 of these data pairs in the dataset D for training our inverse attention network.

5.2 Attention Inference

We train the inverse attention network using the attention inference dataset D. This network operates
inversely to the self-attention network: It outputs the predicted attention weights based on the given
goals and past actions. An agent then applies the inverse attention network to other agents of the
same type to infer their attention weights. This allows the current agent to infer the attentions of other
agents without knowing the ground truth values of their attention weights.

Inverse Attention Network: We propose the inverse attention network, designed to infer the attention
of agents of the same type from their perspective. This function has the following structure:

{wi,1, wi,2, ..., wi,N} = IWi(oi) = attention(oi,i, fi(oi,j)), ∀j ̸= i. (5)

Similar to the attention weight function, the IWi function predicts the attention weight by applying
self-attention between the embedding of self-information oi,i and the embedding of other goals
fi(Oi,j). Using the dataset D, which is agent’s own data collected during the training process of
Phase 1, we train the IWi network by minimizing the following loss function:

Loss = L2({wi,1, wi,2, ..., wi,N}, IWi(oi)). (6)
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Algorithm 1: Inverse attention algorithm
Data: environment E(N, {Ai}) with N agents
Result: an inverse attention agent
Use (3) as the policy function for the target training agent ai; // self-att framework
while ai’s policy network is not converged do

MARL training on ai;
Collect {w, oi} pair and store it to the dataset D; // training dataset for IW

Keep the 1/10 latest {w, oi} in D and discard the rest;
Training inverse attention network IW using {w, oi} pair from the trimmed D by following eq.6;
Replace the policy network of ai with (9) using trained IW ; // inverse-att framework
while ai’s policy network is not converged do

MARL training on ai;
Return: ai is the inverse attention agent;

Inference of Others: To estimate the attention weights of other agents, we position the current agent
as if it were one of the other agents. In a fully observable environment, we gather the observations
and previous actions of other agents of the same type. Then, we utilize the inverse attention network
to infer their attention towards different goals. The inference attention weight for aj is

{w̃j,1, w̃j,2, ..., w̃j,N} = IWi(oj). (7)

5.3 Inverse Attention Agent

We construct the inverse attention agent (Inverse-Att) by concatenating its original attention weights
with the inferred weights. This concatenated vector is then passed through a fully connected layer,
UWi, to update the attention weights. This mechanism enables an inverse attention agent to adapt its
attention weights and consequently adjust its actions based on the attentions of other agents. The
process is represented by the following equation:

{w̃i,1, w̃i,2, ..., w̃i,N} = UWi(Wi(fi(oi)), IWi(oj)), ∀j ̸= i and aj is the same type as ai, (8)

where oj is the observation from the other agent in the previous step, IWi(oj) outputs the inverse
attention estimation of agent j from agent i, and UWi is the weight updating model, which concate-
nates the estimated attention weights from other agents of the same type with the original weights
Wi(fi(x)). The concatenated weights are then passed through a one-layer fully connected network
to update the attention weights to w̃. Given that the attention weight embedding is a high-level
representation, only a shallow network is required.

For fast convergence, the UWi are initialized to 1 when connected to the original attention weight
and 0 when connected to the other agents’ attention weights. This initialization guarantees that the
initial output aligns with that of the Self-attention agent, maintaining unchanged attention weights.
Commencing the optimization process from this point enhances effectiveness.

The complete policy network module for the inverse attention agent is outlined as follows:

πi(oi) = hi(UWi(Wi(fi(oi)), IWi(oj)), Vi(fi(x)))), ∀j ̸= i and aj is the same type as ai.
(9)

algorithm 1 is the inverse attention algorithm.

6 Experiments

We adopted MAPPO [Yu et al., 2022] as our MARL training scheme. We evaluated the adaptive
performance of the policies in collaboration with human participants across all these tasks and found
that the inverse attention agent performed well in these environments. Additionally, we compared our
agents’ behavior with human behavior. Our results indicate that the inverse attention agent is more
adaptable to a wider variety of agents.
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Figure 3: Environment visualization of the spread, adversary and grassland game.

6.1 Environment

All of the environments used in our experiment were built on top of MPE [Mordatch and Abbeel,
2017, Lowe et al., 2017]. Agents are depicted as particles inhabiting a continuous two-dimensional
space, where they navigate, interact with one another, and with static landmarks, all within discrete
time intervals. The key distinction lies in our application of the GF function atop raw observations,
resulting in a gf representation structured as {gf1, gf2, ..., gfN , gfwall}. This representation comprises
the gradient fields of N entities and the gradient field of the boundaries, serving as the goals for
the agents. Appendix A provides additional insights into the gf representation and the environment.
We assessed the efficacy of our algorithm across five challenging environments: Spread, Adversary,
Grassland, Navigation, and Tag on MPE. Visualizations of these environments are depicted in
Figure 3.

Spread: This is a fully cooperative game. In this scenario, N agents must spread to cover N
landmarks. At each discrete time step, an agent earns 5 points if it occupies a landmark, and 0 points
otherwise. The optimal state is each agent occupies a distinct landmark. The default setting is N = 3.

Adversary: This is a fully competitive game that involves two types of agents: N sheep and N
wolves. Wolves catch sheep, while sheep avoid capture. Sheep are faster than wolves. Each wolf
earns 5 points for catching a sheep, while each caught sheep loses 5 points. The scale of this game is
denoted as N −N . The default setting is N = 3.

Grassland: This is a mixed game. Entities include N sheep, N wolves, and 4 grass. Sheep aim to
collect as much grass as possible while evading wolves. Wolves seek to catch as many sheep as they
can. Each sheep earns 3 points for each collected grass but loses 5 points for each capture. Wolves
earn 5 points for each caught sheep. Grass re-spawns at random positions after being consumed by
sheep. The scale of this game is denoted as N −N . The default setting is N = 3.

Navigation: This is a fully cooperative game with a group reward system. There are two fast agents
and one slow agent, and the goal is for the agents to navigate to three different landmarks as quickly
as possible. The team earns 5 points for each landmark occupied, shared equally among all agents.
The fast agents must accommodate the slow agent to help reach the more distant landmarks.

Tag: This is a mixed game involving 3 wolves and 3 sheep, with group rewards. The objective for
the wolf team is to catch the sheep while avoiding three obstacles during the chase. When any wolf
catches a sheep, all wolves received 5 points and all sheep lose 5 points.

6.2 Baseline and Evaluation Method

In the experiments, we compared agents trained with the following methods: (1) MAPPO: We follow
the same method as [Yu et al., 2022]. (2) IPPO: We follow the same method as [Schulman et al.,
2017] (3) MAA2C: It extends the existing on-policy actor-critic algorithm A2C [Mnih et al., 2016]
by applying centralised critics conditioned on the state of the environment. (4) ToM2C*: A modified
ToM method adapted from [Wang et al., 2022], where agents directly predict other agents goals
without communication. (5) Self-Att: We adopt the self-attention structure proposed in subsection 5.1.
(6) Inverse-Att: Our proposed attention inference agent described in subsection 5.3. All the baseline
methods are trained for the same amount of accumulative episodes as an Inverse-Att agent required.
All agents trained in these methods do not see agents of other methods until evaluation time.

We assessed the performance of our algorithm through mix-and-match. For each method, we select
three different seeds to form three distinct groups. We formed an agent pool by putting agents trained
using all the evaluated methods. During the cross-competition period, agents were randomly sampled
from this pool to form a unique composition. The cross competitions were conducted over 1000
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Table 1: Full Result
MAPPO IPPO MAA2C ToM2C* Self-Att Inverse-Att

Spread 31.82±1.21 0.55±0.01 48.46±0.47 49.04±3.77 283.89±6.23 404.14±5.40
Adversary Sheep -113.97±1.74 -121.03±4.17 -96.54±3.26 -86.15±2.80 -23.15±0.83 -16.91±1.84
Adversary Wolf 48.76±1.86 25.18±1.40 109.14±0.69 61.58±1.31 107.93±2.26 110.15±3.74
Grassland Sheep -84.50±4.20 -86.54±0.32 -70.79±2.41 -61.60±1.98 -10.02±5.19 28.59±0.93
Grassland Wolf 27.86±0.79 22.60±1.38 74.28±1.27 41.11±1.59 93.68±1.61 101.21±2.84
Navigation 251.14±4.93 230.10±0.89 279.87±7.05 249.41±5.29 328.24±7.76 497.96±10.75
Tag Sheep -93.51±2.13 -111.79±3.03 -77.81±2.03 -56.69±1.02 -11.74±0.65 -5.99±0.44
Tag Wolf 42.17±3.46 26.77±0.82 59.41±1.10 52.99±1.17 67.60±1.00 109.81±1.36

episodes with each episode consisting of 200 steps. During each episode, we recorded the agents’
rewards according to their respective methods and calculated the average reward for performance
comparison.

6.3 Quantitative Results

In this section, we delve into the quantitative results across all five games. We conducted training for
MAPPO, IPPO, MAA2C, ToM2C* and Self-Att agents over 40 million steps across all scales. For
training the Inverse-Att agent, Phase 1 encompassed 20 million steps, followed by another 20 million
steps for Phase 3. Phase 2 training involved offline learning, obviating the need for interaction with
the environments. Subsequently, evaluations were carried out over 2× 106 steps of mix-and-match
for all five games.

We tested all the methods across all environments, with the full results presented in Table 1. The
Inverse-Att method demonstrates significant improvement over all the other methods across the five
games in cooperative, competitive, and mixed settings, as well as with both individual and team
rewards. This highlights the superior adaptability and generality of Inverse-Att when dealing with
unseen agents. Self-Att ranks second, while the remaining baselines perform similarly and rank
below both Inverse-Att and Self-Att. Due to the similar performance of MAPPO, IPPO, MAA2C,
and ToM2C*, and computational limitations, in the following sections we will focus on MAPPO,
Self-Att, and Inverse-Att in the Spread, Adversary, and Grassland games.

6.4 Impact of Different Population Scales

We tested the scalability of Inverse-Att by comparing with MAPPO and Self-Att in the Spread,
Adversary, and Grassland games in the MPE environment.

Table 2: Spread Result

MAPPO Self-Att Inverse-Att

2 51.14 ± 1.15 288.75 ± 2.80 363.02 ± 1.99
3 31.10 ± 0.93 258.81 ± 5.35 379.95 ± 1.99
4 19.59 ± 0.22 253.48 ± 1.13 269.12 ± 0.86

In the Spread game, evaluations were conducted
across three scales: 2, 3, and 4 agents. The results
are detailed in Table 2. Meanwhile, in the Adversary
and Grassland games, evaluations were conducted
across scales of 2-2, 3-3, and 4-4 for both sheep and
wolves. The outcomes are presented in Table 3 and
Table 4, respectively.

Across all three games, notable enhancements were evident when comparing the outcomes of MAPPO
and Self-Att, underscoring the efficacy of the self-attention network. The Inverse-Att method exhibited
superior performance across the tested environments, particularly in cooperative-related games such
as Spread and Grassland. This superiority likely stems from the attention inference being exclusively
applied to agents of the same type (teammates), a factor more critical in cooperative settings than in
fully competitive games.

6.5 Human Experiments

To further assess the adaptive capabilities of the Inverse-Att agents, we conducted human experiments
to evaluate their performance in collaboration with human players. Five participants engaged in
Spread, Grassland and Adversary games across the following scales: Spread (3 agents), Adversary (3-
3), and Grassland (3-3), assuming five distinct roles (agent for Spread; sheep and wolf for Adversary
and Grassland). In each role, participants cooperated with teammate agents of the same type trained
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Table 3: Adversary Result
MAPPO Self-Att Inverse-Att MAPPO Self-Att Inverse-Att
WOLF WOLF WOLF SHEEP SHEEP SHEEP

2-2 14.30 ± 0.61 39.75 ± 1.88 42.45 ± 1.50 -64.23 ± 1.70 -18.49 ± 0.48 -13.82 ± 1.10
3-3 29.30 ± 1.42 71.95 ± 2.38 75.44 ± 1.02 -132.75 ± 2.27 -30.79 ± 1.82 -12.61 ± 0.24
4-4 32.93 ± 1.21 66.75 ± 1.62 67.15 ± 0.97 -134.31 ± 3.01 -16.82 ± 0.28 -15.59 ± 0.65

Table 4: Grassland Result
MAPPO Self-Att Inverse-Att MAPPO Self-Att Inverse-Att
WOLF WOLF WOLF SHEEP SHEEP SHEEP

2-2 20.80 ± 0.23 36.85 ± 2.18 56.69 ± 1.78 -70.17 ± 1.71 10.25 ± 2.33 33.66 ± 1.23
3-3 22.06 ± 0.78 65.50 ± 1.96 70.28 ± 0.78 -99.73 ± 1.19 -21.52 ± 1.32 25.45 ± 0.13
4-4 35.38 ± 0.54 46.35 ± 0.79 81.67 ± 1.51 -138.71 ± 2.68 14.14 ± 0.71 36.16 ± 0.14

using each of the three methods (MAPPO, Self-Att, Inverse-Att) over five episodes, while opponent
agents remained consistently MAPPO agents. Agents were sampled by type in each environment and
then fixed to ensure uniformity across participant groups. Each episode comprised 100 steps, with
rewards recorded based on the respective training methods. The results are summarized in Table 5.
Appendix A provides further insights.

It is noteworthy that both Self-Att and Inverse-Att agents outperformed human participants in the
tested environments. Across most roles within the environments, Inverse-Att agents exhibited greater
adaptability to human players and demonstrated greater stability compared to the other methods, with
exceptions observed in the role of wolf in the Grassland environment.

6.6 Impact of Multiple Inverse-Att Agents

In multi-agent systems, incorporating Theory of Mind (ToM) can introduce intricate dynamic interac-
tions. This complexity is amplified when the inference is reciprocal, potentially creating a cognitive
loop that exacerbates uncertainty and leads to unpredictable or suboptimal decision-making outcomes.
Our objective is to explore the impact of increasing the number of Inverse-Att agents on emergent
behavior patterns.

We initiated the investigation by replacing randomly sampled MAPPO agents, trained with different
seeds, with Inverse-Att agents gradually. Evaluations were conducted over 2× 106steps per group in
the Spread game, across three different scales: 2, 3, and 4 agents. The total rewards earned by the
teams are summarized in Table 6. We observe a nonlinear marginal return pattern as more Inverse-Att
agents are introduced into the game at all three scales. This observation underscores the effectiveness
of our Inverse-Att agent in cooperating effectively with other attention-aware agents.

6.7 Inverse Attention Network Prediction Accuracy

We collected 2 × 106 steps of weights-observation pair from one Self-Att agent per environment,
considered as the attention ground truth of those agents. We then inputed the observation into our
inverse attention network and compared the predicted weights with the ground truth across the spread,
adversarial, and grassland environments at scales {spread: 3, adversarial: 3− 3 and grassland: 3− 3}.

Table 5: Results of the human experiments
MAPPO Self-Att Inverse-Att Human

Spread 16.8± 13.81 272.0± 30.41 332.3 ± 17.13 115.86± 55.89
Adversary (Wolf) 81.5± 38.42 197.4± 25.85 286.9 ± 22.21 188.4± 74.87
Adversary (Sheep) −48.8± 24.06 −8.0± 3.46 -0.8 ± 1.16 −15.33± 10.47
Grassland (Wolf) 49.3± 20.38 197.9 ± 12.76 185.7± 30.45 132.86± 51.84
Grassland (Sheep) −20.75± 13.95 9.8± 8.66 20.34 ± 2.33 −30.52± 32.15
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Table 6: Group reward in spread game with multi Inverse-Att agents

Scale
#N Inv-Att 0 1 2 3 4

2 86.44± 0.36 472.92± 4.93 593.57± 7.02 - -
3 148.53± 1.64 635.40± 7.01 812.77± 5.12 1070.28± 8.75 -
4 109.26± 1.60 494.59± 11.30 701.60± 13.95 818.24± 8.20 1140.23± 4.67

Figure 4: We evaluated the prediction accuracy of the inverse attention network across five roles in
the spread, adversary, and grassland environments under the scale of {spread: 3, adversarial: 3− 3
and grassland: 3− 3}. In each bar graph, from left to right, we display the prediction accuracy from
the most attended goal to the least attended goal. The results demonstrate that the inverse network
can accurately predict the attentions of other agents, particularly for the top two attentions of interest.

We evaluated the effectiveness of our inverse network in accurately predicting weights based on their
rank. For example, if the inverse network identifies gfwall as having the highest weight, this prediction
is considered accurate if the self-attention network also determines that the weight of gfwall is the
highest. The results are summarized in Figure 4. The prediction of the most significant attention
reaches nearly 100% accuracy, demonstrating that the inverse network can accurately predict the
attentions of other agents, especially for the top two attentions of interest.

7 Conclusion

We have introduced the Inverse Attention Agent, which operates by leveraging attention weights to
infer the attention of other agents. It then utilizes these inferred weights to adjust its own attention
weights, thereby fine-tuning its final actions. The Inverse Attention Agent demonstrates superior
adaptability to unseen agents, as evidenced by interactions with policies trained using various methods,
as well as with human participants.

Limitations and future work: Currently, the attention inference is limited to the same type of agents.
In future work, we would like to model the ToM of agents of different types. We will also develop an
attention model for the UW network that can accommodate an arbitrary number of inferred attention
weights.

8 Broad Impact

The board impact of this work is that it provides a new and promising approach to MARL. Inverse-
Attention can be used to train agents that can adapt to changing teammates. This work has the
potential to make a significant impact on the development of autonomous systems that can interact
with other agents in complex and dynamic environments, such as for robotics and autonomous driving
applications.
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A Appendix

A.1 Environmental Details

Reward: In the Spread scenario, during training, agents are awarded +100 reward for occupying a
landmark at every timestep. For reward engineering, the agent’s reward will be deducted proportional
to the minimum distance to the landmarks Rdistance = 0.2min(Distance(self,Landmarkall)) In the
Adversary scenario, wolves are awarded with +100 reward for every sheep it catches, while sheep
are awarded with −100 reward for every time it gets caught. The wolves reward will be deducted
proportional to the minimum distance to the sheep Rdistance = 0.2 ∗min(Distance(self,Sheepall)). In
the Grassland scenario, wolves are awarded a +5 reward for every sheep they catch, while sheep are
awarded a −5 reward for every time they get caught and +2 reward for every landmark they occupy.
The wolves’ reward will be deducted proportional to the minimum distance to the sheep Rdistance =
0.2min(Distance(self,Sheepall)). On the other hand, the sheep’s reward will be deducted propor-
tional to the minimum distance to the landmarks Rdistance = 0.2min(Distance(self,Landmarkall)).
For Navigation environment, the group reward is defined as +5 reward for every landmark an agent
occupied. For Tag environment, when any wolf catches a sheep, all wolves received +5 points and
all sheep receive −5.

Observation: In the Spread scenario, MAPPO and Self-Att agents receive information regarding their
own position, velocity, other agents’ positions, and landmarks’ positions. They use these information
to generate gradient field {velocity, gfo} as observation. Inverse-Att agents also receive the past
actions and past observations of their teammates and have { teammate past action, teammate past
observation } in addition to the gradient fields. In the Adversary scenario, the observation is the
same except for the omission of gflandmarks, and Grassland, Navigation and Tag have exactly the same
observation space.

Action: The agent’s action is represented by a two-dimensional continuous vector, which describes
the force applied to an entity, considering both magnitude and angular direction.

A.2 Training Details

We present the hyperparameters for gradient field as well as for all agent training.

Table 7: Hyperparameters for Gradient Field
lr sigma t0 hidden size optimizer optimizer betas network

Agent GF 2e-4 25 1 64 Adam [0.5, 0.999] GNN
Boundary GF 2e-4 25 1 64 Adam [0.5, 0.999] MLP

Table 8: Hyperparameters for Agent Training
lr gain share policy optimizer critic lr ppo epoch

MAPPO 7e-4 0.01 False Adam 7e-4 10
IPPO 7e-4 0.01 False Adam 7e-4 10
MAA2C 7e-4 0.01 False Adam 7e-4 10
ToM2C* 7e-4 0.01 False Adam 7e-4 10
Self-Att 7e-4 0.01 False Adam 7e-4 10
Inverse-Att 7e-4 0.01 False Adam 7e-4 10

Table 9: Hyperparameters for Inverse Network
lr batch size hidden dim patience threshold num epoch Optimizer

0.001 64 64 100 3000 Adam

70% of the dataset is used for training. 10% of the dataset is split into a validation dataset, which is
used for early stopping. 20% of the dataset is used for testing.
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Figure 5: Qualitative results in spread, adversary and grassland games in MPE demonstrate that
Inverse-Att agents can successfully adapt to unseen agents.

A.3 Gradient Field Synthetic Data Generation

We use synthetically generated data to train the Agent Gradient Field as well as the Boundary Gradient
Field. Detailed instructions for synthetic data generation are as follows:

Entity Gradient Field: We randomly generated 10,000 two dimensional points within a 2× 2 grid
as one entity’s position. We then randomly generated another entity’s position close to the previous
position such that the L1 distance is less than 10−5. We mark this gf representation as gfe. This gf
function takes in the agent’s location and a relative position of another entity.

Boundary Gradient Field: We randomly generated 10000 positions (x, y) ∈ [−0.8, 0.8] ×
[−0.8, 0.8]. We mark this gf representation as gfwall. This gf function only takes in the position
of the agent’s position.

A.4 Gradient Field Representation of the Environment

For the spread, adversary and grassland environments, we applied entity gradient field for all the
other entities around that agent as entity attentions, as well as a boundary gradient field used as the
environment attention. Thus we transform the observation from {oi,1, oi,2, ..., oi,n} which is the
information of N entities to {gfe(oi,1), gfe(oi,2), . . . , gfe(oi,n), gfwall(oi,i)}.

A.5 Qualitative Results

Figure 5 provides example screenshots of a representative match involving Inverse-Att agents in
the Spread scenario. In these images, the blue balls represent Inverse-Att agents, while the small
black balls are landmarks. The left figure shows the initial state of all agents. The middle figure
demonstrates the Inverse-Att agents successfully navigating to their respective landmarks. The right
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figure shows the final result, where all three Inverse-Att agents occupy their own landmarks without
conflict.

Additionally, we visualize two representative games in the Adversary and Grassland scenarios. In
these visualizations, the smallest black balls are landmarks. Large balls represent wolves, with red
indicating Self-Att agents and white indicating Inverse-Att agents. Small balls represent sheep, with
blue indicating Self-Att sheep and white indicating Inverse-Att sheep. The screenshots illustrate that
Inverse-Att wolves cooperate with unknown Self-Att agents to corner the sheep. Inverse-Att sheep
successfully avoid wolves and capture as many landmarks as possible.

These results suggest that Inverse-Att agents can adapt successfully to new teammates, indicating that
our approach is an effective method for creating adaptive agents that excel when paired with various
types of teammates and opponents.

A.6 Human Experiment Details

There are five experiments in total: Spread, Adversary (human plays wolf), Adversary (human plays
sheep), Grassland (human plays wolf), Grassland (human plays sheep). In each experiment, human
players will cooperate with three types of agents, MAPPO, Self-Att, and Inverse-Att, for five rounds.
The episode rewards are averaged for these rounds. Human players are not informed about the type of
agents that they are playing with. In the Adversary and Cooperate games, the opponents are always
MAPPO agents.

Five participants (4 males and 1 females) participated in this experiment. All were between the
ages of 21 and 28 with normal or corrected-to-normal visual acuity. All participants were given
the Experiment Instructions below and received rewards (free food) for their participation. All
participants were instructed to use the UP, DOWN, LEFT, and RIGHT keys on the keyboard to
control their movements.

Experiment Instructions for Participants

Thank you for participating in this research experiment designed to evaluate the performance
of various MARL agents in adapting to human players. There are three scenarios: Spread,
Adversary, and Grassland. In the Adversary and Grassland, you will play both as wolf and
sheep. In total there are five scenarios to play. In each scenario, you will cooperate with three
types of MARL agent, and you will play five rounds with each type of agents.
Detailed Game Descriptions

• Spread Game:
– Setup: The game area contains several small black balls, each representing a

landmark. You are represented by a white ball, and your teammates by blue
balls.

– Objective: Each player must navigate to occupy a unique landmark. The
number of landmarks equals the number of players.

– Gameplay: Using directional controls, navigate towards the landmarks. Co-
ordination with teammates might be necessary to ensure all landmarks are
covered.

– Scoring: You earn 5 points for every timestep you occupy a landmark.
• Adversary Game:

– Setup: In this scenario, you are assigned the role of either sheep or wolves. The
color of your ball is always white, with large ball indicating wolves and small
ball indicating sheep. Large red balls are MARL wolves and small blue balls
are MARL sheep.

– Objective:

* As a Sheep: Avoid the wolves.
* As a Wolf: Work together with other wolves to catch the sheep.

– Gameplay: Sheep must use speed and agility (as they move faster) to escape
from wolves, while wolves need to coordinate their movements to catch sheep.
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– Scoring:

* As a Sheep: Each wolf catch results in a deduction of 5 points from your
score.

* As a Wolf: You gain 5 points for every sheep you catch.
• Grassland Game:

– Setup: The game environment includes the same players and roles as the Sheep
Wolf Game, but now includes four small black balls (landmarks) that appear
randomly in the game area.

– Objective:

* As a Sheep: Collect as many landmarks as possible while avoiding wolves.
* As a Wolf: Catch the sheep while they attempt to collect landmarks.

– Gameplay: Sheep must balance between quickly moving towards landmarks
and evading wolves. Wolves, while trying to catch sheep, must also strategize
to guard landmarks indirectly, making them risky spots for sheep.

– Scoring:

* As a Sheep: Gain 3 points for each landmark collected and lose 5 points
each time you are caught by a wolf.

* As a Wolf: Gain 5 points for each sheep caught. Landmarks disappear once
collected and respawn randomly.

Instructions for Each Turn:
• At the start of each round, your role (sheep or wolf) and the specific game scenario

will be communicated.
• Use the directional controls to navigate your character according to the game’s

objectives. You can move in four directions: up, down, left, and right.
• The games are within a 2× 2 grid. You will not be able to move out of this grid.
• The game ends until the time expires.

A.7 Computational Resources

Hardware specifications: All experiments are run on servers/workstations with the following
configurations:

• 128 CPU cores, 692GB RAM
• 128 CPU cores, 1.0TB RAM
• 32 CPU cores, 120GB RAM
• 32 CPU cores, 120GB RAM
• 32 CPU cores, 120GB RAM
• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.
• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.
• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.
• 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.

All experiments can be run on a single server with 24 CPU cores, 80GB RAM, 1 NVIDIA 3090 GPU.
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