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Abstract

Traditionally, Reinforcement Learning (RL) problems are aimed at optimization of
the behavior of an agent. This paper proposes a novel take on RL, which is used
to learn the policy of another agent to allow real-time recognition of that agent’s
goals. Goal Recognition (GR) has traditionally been framed as a planning problem
where one must recognize an agent’s objectives based on its observed actions. Re-
cent approaches have shown how RL can be used as part of the GR pipeline, but
are limited to recognizing predefined goals and lack scalability in domains with a
large goal space. This paper formulates a novel problem, “Online Dynamic Goal
Recognition” (ODGR), as a first step to address these limitations. It introduces the
concept of dynamic goals into the standard GR problem definition and demonstrates
the feasibility of solving ODGR in a navigation domain using transfer learning.

1 Introduction

Goal Recognition plays a crucial role in a variety of domains in Human-Robot Interaction (Massardi
et al., 2020; Jiang et al., 2021; Shvo et al., 2022; Geib, 2002; Inam et al., 2018) and Multi-Agent
Systems (Avrahami-Zilberbrand & Kaminka, 2005; Freedman & Zilberstein, 2017; Su et al., 2023).
Reasoning about the goal of another agent presents an important challenge that complements an
ego agent’s policy learning and can inform and leverage RL techniques by facilitating significant
breakthroughs in how machines perceive and interpret other agents, especially human intentions.

Existing GR approaches commonly assume that a fixed set of goals is provided as part of the
problem formulation (Mirsky et al., 2021; Meneguzzi & Pereira, 2021). In recent GR approaches
called GR as RL that leverage Reinforcement Learning (RL) (Amado et al., 2022), a policy is
learned for each goal during a dedicated learning phase, often occurring offline before the GR task.
Then, during the inference phase, the algorithm is given a sequence of observed actions and uses
inference methods to perform GR. Unlike planning-based GR (Ramirez & Geffner, 2010; Meneguzzi
& Pereira, 2021), these approaches have two fundamental limitations: first, all possible goals must
be specified before the inference phase. This requirement may not hold in dynamic environments
where goals can emerge or change over time. Second, an issue of scalability arises when dealing with
domains that encompass many goals. GR requires significant computational effort and resources
for considering each individual goal, posing a challenge for large-scale applications. This problem is
further exacerbated in learning-based GR methods, where training an agent for each goal becomes
prohibitively costly and infeasible due to the computational burden and time required for training.

*These authors contributed equally.
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Considering these two limitations, the first contribution of this paper is conceptual: it formulates
a problem called Online Dynamic Goal Recognition (ODGR) with a temporal setting,
where the time steps in which inputs are given are specified. By generalizing the definition of GR,
this paper can help evaluate various GR frameworks across different settings and assumptions. The
second contribution of this paper is algorithmic: we offer a general algorithm that leverages
Transfer Learning between RL tasks and demonstrates the feasibility of a framework that would
implement this solution by presenting a proof-of-concept for simple navigational environments. The
algorithm expands the capacity of traditional learning-based GR methods by adapting to “dynamic
goals” — goals not set before the inference phase. For this navigational domain, we propose a
method that aggregates existing Q-functions into new Q-functions for the dynamic goals, which can
adequately facilitate recognition. In the proposed solution, existing Q-functions are learned before
any observations are given, and they are designed to represent the expected policies for a predefined
set of base goals. The success of our solution is measured by the ability of the recognizer to use the
generated policies when performing recognition and succeed in inferring the correct goal.

2 Preliminaries

The basic model used to describe a domain is a Markov Decision Process (MDP) M, which
is a 4-tuple (S, A, P, R) such that S represents a set of states in the environment, A is the set of
actions the agent can execute, P is a transition function, and R is a reward function. A transition
function P(s'|s,a) returns the probability of transitioning from state s to state s’ after taking action
a, and a reward function R(s,a, s’) returns the reward obtained when an agent transitions from s to
s’ using action a. The utility function @ (or Q-function) is a function @ : S x A — R that defines
the expected utility of executing an action a € A in state s € S. A Q-learning agent estimates the
values of Q(s,a) from its experiences. A Policy 7 : S x A — [0, 1] represents the probability that
an agent would choose to perform an action a € A in state s € S.

The Goal Recognition (GR) problem consists of two agents: an actor and an observer. The GR prob-
lem is defined from the observer’s perspective, who needs to recognize the actor’s goal. Recognizing
someone’s goal can be challenging, particularly when these goals undergo sudden and unanticipated
transformations. This work relies on a line of work in which a GR algorithm produces a set of
policies or behaviors, one per goal (Polyvyanyy et al., 2020; Ko et al., 2023; Chiari et al., 2023). We
follow the utility-based GR problem formulation from Amado et al. (2022):

Definition 1 A Goal Recognition problem is a tuple (S, A,O,G,Q¢), such that S is a set of states
and A is a set of actions an observed actor can take, O is a sequence of observations which are states
and actions tuples, G C S is a set of goals (the actor pursues only one goal at a time), and Q¢ 1is a
set of Q-functions {Qg}gea. The output of a GR problem is a goal g € G that best explains O.

Addressing GR through existing RL methodologies, such as those proposed by Amado et al. (2022),
involves learning a distinct policy for each goal within a predefined goal set and then comparing these
policies against observed behaviors. Importantly, policies should not be perfectly optimal to tackle
many GR challenges. Hence, this article will introduce the application of zero-shot transfer learning
and heuristic strategies in simple navigational domains as a first step in developing sub-optimal
policies that nevertheless provide precise GR outcomes. This paper focuses on goal-directed reward
functions (i.e., a reward function-oriented towards a goal g). In addition, we focus on a specific
implementation of GR using Q-Learning, but we highlight that the ODGR problem, in general, is
not limited to this implementation. To represent the behavior of agents pursuing each potential goal
in G, we use a set Ilg. Each policy m, for an actor pursuing goal g is a softmax based on the Q

values over all actions in state s: m4(als) = %
a’e A CIND

a goal 7, chooses an action based on this probability distribution. Using this formulation, we can
say that a goal g explains an observation sequence by evaluating the likelihood that the actor will
produce o from 7,. As this paper focuses on learning dynamic goals, we use an existing underlying
approach to learn Il and follow a similar learning procedure as Amado et al. (2022) to learn Ilg.

Then, the policy for an agent pursuing
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Figure 1: OSGR and ODGR; the symbol ¢; denotes the initiation time of each process.

3 Online Dynamic Goal Recognition

Certain methodologies for GR rely on the notion that inputs to the problem arrive at distinct time
steps, along with varying assumptions regarding their nature, such as whether they constitute goals
or new observations. For example, in Plan Recognition as Planning (Ramirez & Geflner, 2010), it is
expected that the description of the environment will be decoupled from a specific problem instance,
and different GR problems can be defined for the same environment. We now present a formulation
that aims to identify the different components that can change within each problem, potentially
facilitating the selection of a more appropriate framework based on the expected scenarios the user
may encounter, and the requirements from the expected solution.

Definition 2 An  Online Dynamic Goals Recognition (ODGR) problem is a tuple
(T, (G' {0} ic1.n), where T = (S, A) is a domain theory such that S is the set of all possi-
ble states and A is the set of actions, G' is a set of goals such that Vi € {1.n},G* C S, and
{O}" represents a set of observations sequences (which might contain gaps), where each O; € {O}!
is a single observation sequence O; = (o%,o?...) = <<s}-,a}>,<s?,a§),...). Aligning with other
online problems, each input is given at an increasing time-step, lexicographically ordered, while it is
inherent that because of the input dependency, T,G* and 0; € {0} arrive at increasing time-steps
Vi, j. For each two sequences of observations ok, o € Oy o3, 0;? € O; wheret < j,l <m, and z <k,

it holds that the observations are given chronologically, such that o\ < of* < 07 < oé?.

An algorithm for the ODGR problem is expected to return a goal g € G° that best ex-
plains O; € {O}" upon its arrival for all i,j. The final output is a set of goals G* =
{{91,93, -}, {97,935, -}, {91, g%, ...} } where g} is the goal returned by the algorithm upon re-
ceiving O; € {O}". Using this formulation, one can define a general GR domain according to T. In
this work, the domain consists of an MDP, but the formulation allows for different representations
as well. For each domain, several instances can be constructed at different times according to the set
of potential goals G* the actor might be pursuing. For each instance, a single recognition problem is
an observation trace that needs to be explained by G*. We can split an ODGR problem into several
time intervals, depending on the reception of each input type, T, G, and O.

Domain Learning Time is the duration necessary from receiving the domain theory 7' until
concluding the domain-specific processing and being prepared to receive G.

Goals Adaptation Time is the duration from receiving G until completing the inner-state changes
and becoming ready to perform inference based on observation trajectories O.

Inference Time is the time it takes to process an observation and produce a goal in response.

A GR framework can receive a new input before completing the processing of the previous one.
Following Allen’s interval algebra (Allen, 1983), we say that one input may overlap another in-
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put. These definitions remain independent of the time steps assigned to each input. However, for
simplicity, in this work, we assume that inputs must precede one another.

We identify the family of problems where n = 1 as Online Static GR (OSGR) problems. They are
static in the sense that in all instances, the set of goals remains the same. Later in this section, we
will show that many GR solutions solve OSGR problems rather than their dynamic counterparts.
Figure 1 illustrates OSGR and ODGR problems. The next section reviews recent work, accompanied
by an evaluative analysis associated with each methodology in light of the novel definitions.

Model-Based GR (MBGR) In MBGR, the recognition process entails utilizing a pre-defined
model that encompasses the characteristics of an environment along with the actions that can be
executed within that environment (Mirsky et al., 2021; Meneguzzi & Pereira, 2021; Masters & Vered,
2021). Traditional MBGR often exploits planning and parsing techniques (Avrahami-Zilberbrand
& Kaminka, 2005; Geib & Goldman, 2009; Geib, 2009; Ramirez & Geffner, 2009; Mirsky & Gal,
2016; Son et al., 2016). A major limitation of such approaches is their inflexibility in dynamic
domains and that a complete model is crucial to solving the GR problem. Such algorithms require
complex computation processes to calculate the likelihood of the goal given the observations. These
computations are required for every given observation sequence, making these solutions less suitable
for real-time performance.

Model-Free GR (MFGR) In MFGR problems (Geffner, 2018; Amado et al., 2024), the recognizer
does not have access to the underlying model that describes the properties and dynamics of the envi-
ronment. While some approaches learn the model dynamics and then employ MBGR methods (Asai
& Fukunaga, 2018; Amado et al., 2018), other approaches perform GR directly, without learning the
model of the world. Among these approaches, the main techniques include leveraging RL (Amado
et al., 2022) or employing deep neural networks to perform GR using a classification network (Min
et al., 2014; Borrajo et al., 2020; Chiari et al., 2023). These methods typically have no Domain
Learning Time (as the learning process depends on the set of goals), a fairly long Goals Adaptation
Time, and a short Inference Time when given an observation sequence.

Different approaches have been proposed for learning an MFGR classification model using languages
like PDDL (Geib & Kantharaju, 2018; Maynard et al., 2019; Borrajo et al., 2020; Min et al., 2014;
2016; Fang et al., 2023). These approaches aim for generality by employing a simple domain file that
specifies actions using labels and defines a state space based on a finite set of fluents (facts). Chiari
et al. (2023) proposed a framework (termed GRnet) that generalizes to any set of goals without
additional learning, presenting a model-free solution suitable for environments with changing goals.
Compared to the other approaches, GRnet excels in ODGR, demonstrating immediate adaptation to
new goal sets and fast inference for new observations through a forward pass of the trained network.
While this approach is promising, its reliance on fluent enumeration is critical for its success.

A separate line of work uses MDPs instead of planning languages to model the environment. Amado
et al. (2022) presented an MDP-based method termed GR as RL, which trains RL agents during
Goals Adaptation Time and computes the likelihood of such agents to produce the sequence of ob-
servations given at Inference Time. In this method, information sharing across various GR problems
constructed by different observation traces with identical domain theories and goals is inherent.
This sharing facilitates short Inference Time. This framework demonstrates high effectiveness in an
OSGR setting, However, as these approaches are not designed to handle dynamic environments if
employed in an ODGR context, every new set of goals necessitates re-training for each distinct goal.

4 Dynamic Goal Recognition using Transfer Learning

To tackle ODGR problems, we introduce a general algorithm based on transfer learning between
source and target RL tasks (Taylor & Stone, 2009). It facilitates learning in new tasks by transferring
relevant parts from the policies of the source tasks. This algorithm selects specific goals, Gy, after
receiving the domain theory 7', and trains agents with policies I, for each of them as part of the
Domain Learning time. Upon receiving a set of goals G4, the algorithm leverages transfer learning
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to create Ilg, as part of the Goals Adaptation time. When given an observation trace of an actor,
the algorithm returns the most likely goal by using distance metrics as part of the Inference time.
For convenience, we refer to the original set of goals, G}, and the policies of their agents, Ilg,, as
base goals and base policies. Similarly, the new goals, Gg4, in the adaptation phase are referred to as
dynamic goals, and the policies generated for them, Ilg,, are called dynamic policies.

Algorithm 1 DomainLearningPhase Algorithm 2 GoalsAdaptationPhase
Require: T = (S, A) - a domain theory Require: T, = (5, 4, Qa, = {q5}¢ec,)
1: Gy = SelectBaseGoals(T) Require: g; € G4: a set of new goals

2: for g € G do 1: for g € G4 do

3: gy = Learn(T, g) 2 gy = Transfer(Tg,, g)
4 Qa, = {dg}qeq, 3: Qa, = {a}gec.

5: TGb = <S,A,ng> 4: TGd :<S,A,di>

6: return T, 5: return T,

Algorithm 3 InferencePhase

Require: T, = (S, A4,Qq.), Qa. = {gg}4ec. - State and action spaces, Q-functions per goal (g.)

Require: O: a sequence of states and actions ({sg, o), - -, {St,a¢)), where t is the length of O
1: Sample/receive set of dynamic goals Gy
2 My 4= 00 > Init shortest distance
3: for all g in G, do > Compute distances from O
4 qgo is the Q-function of goal g from {¢,}4eq. for O states and actions
5: Mg DISTANCE(ng7 0) > Use distance measure
6 if my < m; then
7 g* < g and mg < my
8: return g*

Goal Adaptation using Transfer Learning (GATLing) consists of three parts that are essential to
solving the ODGR problem. The Domain Learning Time consists of building a domain theory using
Algorithm 1. Then, the system receives inputs sequentially. If the input is a set of new goals, it
creates a new domain theory using algorithm 2, which uses transfer learning from the base policies
to train agents to the new goals, with the objective of minimizing the Goals Adaption Time in this
phase. The framework keeps the most updated domain theory for future recognition, and if the input
is a trace of observations, it performs recognition using the most updated domain theory by calling
Algorithm 3 as part of the Inference Time, which takes the dynamic goals’ Q-functions, compares
them to the observation, and chooses the most likely dynamic goal using the DISTANCE metric.

4.1 Implementation in a Navigational Domain

We implement GATLing using a simple navigational domain without obstacles to show feasibility.
We use the Gym MiniGrid navigational domain (Chevalier-Boisvert et al., 2023) as a case study, in
which we conduct a comparative analysis of the different techniques’ respective performances.

We implement Algorithm 1 using Q-Learning, as suggested in the GRAQL framework of Amado
et al. (2022). As part of Algorithm 2, for policy transfer, we assign utilities to states and actions by
applying weights to the expected utilities of actions from states in the Q-functions of the base goals.
The weights assigned to these Q-functions are determined by the similarity of the path from the
state to the base goal and the path to the dynamic goal, as perceived at each state individually. In
the navigational domain, we used the distance metric as a similarity metric (where a lower distance
means greater similarity). We employed two different methods to calculate this distance:

Static weights are assigned between each pair of base and dynamic goals, according to their Eu-
clidean distance. The weight assignment is considered static as the weight for each action remains
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unchanged regardless of the states’ spatial proximity to the dynamic goal. However, this approach
introduces challenges. In certain states, there may be a tendency to move in directions contrary to
those leading to the dynamic goal, deviating from the optimal policy, because of the proximity of
the dynamic goal to another foundational goal in the opposite direction within these states.

Dynamic assigns variable weights to each state’s utility. This weight assignment is based on the
cosine similarity between the trajectory from the current state at which the Q-function was being
calculated to the dynamic goal and the trajectory from this state to each base goal. The equation
that describes the dynamic approach based on cosine similarity is denoted as follows:

Cosine_ Similarity(s, g», ga) = traj(s, gv) - traj(s, ga)
- o [traj(s, go)l| - [Itrai(s, ga)l|

where s is the current state, g, is a base goal, g4 is a dynamic goal, and traj(s, g,) represents a 2D
vector originating in s and ending at g,. The cosine similarity between two trajectories ranges from
-1 (perfectly opposite directions) to 1 (perfectly aligned directions), with 0 indicating orthogonality.

To combine the policies of the base goals into a single policy for the dynamic goal, we employed
three different aggregation techniques of the Q-values. Weighted Average (normalize) is a fair
Do wiQi(sa)

and accurate approach, but slow: LI . Softmax is an accurate approach, but slow, and
j=1 "7
. . Y e¥iQi(s,a) . .
highly Vamable.—zjz1 o Max (Hard Weighted Average) is a greedy approach, fast but

less accurate: max?_; Q;(s,a).

4.2 Empirical Evaluation

We present the results of our experiments which evaluate GATLing in different scenarios. Our
evaluation focuses on four key evaluation metrics: accuracy, precision, recall, and F-score. As
the output of GATLing is a distribution over a set of goals rather than a label, we explain the
implementation of each metric in Appendix A.

Evaluating policy transfer can be complex, as it varies greatly given the domain’s dynamics and the
properties of the source policies. Instead of running batches of runs on an arbitrary subspace of poli-
cies, we focus our experiments on two clear and controlled use cases: the first presents a completely
smooth environment (without sudden changes in Q-values) and the second breaks this smoothness
property. Both experiments employed Q-learning for learning, and during the inference stage, we
leveraged KL-divergence to compare each policy with a pseudo-policy based on the observations
reported by Amado et al. (2022). The hyperparameters were set according to that work, and were
consistent across both experiments: o = 1 x 1073, e = 1 x 1078, v = 0.99, and Episodes = 107.
The base goals used for the first experiment were (1,6), (6,6), and (6,1), and for the second one
(1,7), (7,7), and (7,1). The results are reported for partial traces of 0.1, 0.3, and 0.5, as traces with
a completeness score of 0.7 or higher achieved a 100% success rate across all four metrics in all
our experiments, for both GRAQL and GATLing. (fuller traces showed absolute success for both
GRAQL and GATLing). We also implemented a scaling factor that prioritizes and emphasizes each
state’s highest-ranked action (or actions) while reducing the Q-values of other actions in the same
state. Appendix B shows an example of the Q-table generated with and without this scaling.

4.2.1 Results

Tables 1 and 2 show the results from Experiment 1 and Experiment 2, respectively. The dynamic
approach significantly outperformed the static approach, highlighting the importance of adaptability
in ODGR. When using the dynamic approach, the softmax and normalized techniques were always
able to effectively combine policies from base goals’ agents into coherent policies for dynamic goals,
while the max aggregation could not rank the true goal as the most likely one. We therefore show
the performance results of the softmaz aggregation method with a dynamic distance metric that
performed best, leaving out the results using other approaches. Regarding runtime, GATLing policy
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Empty 8x8 Minigrid
GATLing GRAQL

OBS Goals Acc Prec Rec F-score Acc Prec Rec F-score

2 1.0+0.0 0.95£0.15 | 0.95%0.15 | 0.95+0.15 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0

0.1 3 0.95£0.15 0.940.2 0.9£0.2 0.940.2 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0

4 0.940.2 0.8+0.4 0.8+0.4 0.8+0.4 0.95+0.15 0.9£0.2 0.940.2 0.9 +£0.2

2 1.0+0.0 1.0£0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+£0.0 1.0+0.0 1.0+0.0

0.3 3 1.0+0.0 1.0+0.0 1.0+£0.0 1.0+0.0 1.0+0.0 1.0+£0.0 1.0+0.0 1.0+£0.0
4 0.95+0.15 0.95+£0.15 | 0.954+0.15 | 0.95+0.15 1.0+0.0 0.95+0.15 0.95+0.15 0.95 £0.15

2 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0

0.5 3 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0£0.0 1.0+0.0 1.0+0.0

4 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0
Average 0.97 £0.05 0.95 +£0.1 0.95 £0.1 0.95 £0.1 0.99 £0.01 0.98 £0.03 | 0.98 £0.03 | 0.98 £0.03

Table 1: A comparison of dynamic GATLing and GRAQL in Experiment 1. The setup varies by
the number of goals and observability level (OBS). We present the accuracy (Acc), Precision (Prec),
Recall (Rec), and F-score. Cells show the average result (+ standard dev.) over 10 executions.

Simple Crossing (with 2 walls) 9x9 Minigrid
GATLing GRAQL
OBS Goals Acc Prec Rec F-score Acc Prec Rec F-score
0.1 2 0.940.2 0.9+£0.2 0.9+0.2 0.9+0.2 0.8+0.4 0.8+0.4 0.8+0.4 0.8+0.4
0.3 2 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0
0.5 2 1.0+0.0 1.0+0.0 1.0+0.0 1.04+0.0 1.0£0.0 1.0+0.0 1.0£0.0 1.0+0.0
Average 0.96 £0.06 | 0.96 £0.06 | 0.96 +£0.06 | 0.96 £0.06 | 0.93 £0.13 | 0.93 £0.13 | 0.93 £0.13 | 0.93 +0.13

Table 2: A comparison of dynamic GATLing and GRAQL in Experiment 2.

construction comes only after a Domain Learning Phase, in which runtime compares with GRAQL’s.
Similarly, the inference times are swift for both GATLing and GRAQL because both don’t require
any form of learning or planning. However, constructing a dynamic goal policy using the GATLing
framework required only 1.56 seconds on average across 10 runs on a GPU. In contrast, learning
a single goal with the GRAQL approach took significantly longer, averaging 485.45 seconds across
10 runs on the same GPU, emphasizing the potential of transfer learning in requiring shorter goal
adaptation times. While this evaluation cannot precisely determine the performance of different
approaches due to implementation variability, it provides some insight into the potential benefits of
considering ODGR, problems.

5 Conclusion

This paper presented the novel problem of ODGR, which emphasizes the time in which different
parts of the input are received, and the potential gain from policy transer. It formally defines
ODGR problems and how they compare to most existing GR problems. Then, the paper provides
an overview of existing GR algorithms and their computational effort distribution according to
ODGR’s components. Lastly, the paper introduces GATLing, a general algorithm for performing
ODGR in 2D navigational domains, with an implementation using two distance metrics and three
aggregation techniques for the policy ensemble. Our experiments demonstrate that in navigational
domains without obstacles, GATLing offers effective ODGR capabilities, with accurate recognition
performance and significantly reduced run-time compared to existing RL recognition approaches.

While GATLing provides a foundation for future algorithms, there are several clear areas for potential
improvements. First, the proposed aggregation techniques are expected to fail in domains that
consist of rapid changes in Q values. Moreover, it is not straightforward how this approach can
be extended to continuous state and action spaces. Nevertheless, by avoiding the lengthy policy
learning phases. GATLing ensures that the recognition process remains efficient and scalable, even
in environments where goals may emerge or evolve. As the field of data-driven GR develops, we
anticipate that the need for faster goal learning will increase. This research is expected to contribute
to developing adaptable and efficient GR systems in dynamic, changing environments.
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A Evaluation Metrics Definition

As the output of our GATLing is a distribution over a set of goals rather than a label, we explain
how we implemented each measure:

e Accuracy measures the proportion of correctly recognized dynamic goals. A goal is con-
sidered correctly recognized if it has the highest likelihood of being the actor’s goal in
comparison to other goals.

¢ Precision indicates how many of the most likely goals were the actor’s goal.
¢ Recall indicated how many of the actor’s true goals were correctly identified.

e F-score is the harmonic mean of Precision and Recall.

B Scaling Factor for Q-function Aggregation

Sometimes, the desired action may not have the highest Q-value after aggregation. This phenomenon
can sometimes be attributed to how two base goals’ policies bias the dynamic policy in a slightly
wrong direction. To mitigate this issue, we implemented a scaling factor that prioritizes and empha-
sizes each state’s highest-ranked action (or actions) while reducing the Q-values of other actions in
the same state. Figures 2 (left) and 2 (right) show the crafting of a dynamic goal (4,4) Q-table for
a 8 x 8 Minigrid environment without obstacles. The experimental setup is the same as experiment
1. These scaling methods fine-tune the Q-values for particular actions for every state to ensure
consistent and optimal behavior of the agent.

Figure 2: The heuristic Q-table generated from Q-tables whose base goals are at (1,6), (6,1), and
(6,6) using cosine similarity and softmax (without scaling) at the 8 x 8 environment. Each cell shows
the Q-values for taking the actions up, right, down, and left. The left (right) grid shows the outcome
Q-table without (with) scaling.
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