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ABSTRACT

We study the problem of transductive node classification in graphs where com-
munities align with both node features and labels. We propose a novel convex
optimization framework that integrates node-specific information (features and
labels) into graph clustering via low-rank matrix estimation. Our analysis reveals a
bidirectional interaction between graph structure and node information: not only
can features aid clustering, but graph structure can also enhance node classification.
In particular, we prove that incorporating suitable node information enables perfect
recovery of communities under milder conditions than required by graph clus-
tering alone. To make the framework practical, we develop efficient algorithmic
solutions and validate our theory with experiments demonstrating the predicted
improvements.

1 INTRODUCTION

Transductive node classification is a fundamental problem in machine learning on graphs: given a
graph G = (V, E) where nodes have features and a subset Vtrain is labeled, the goal is to predict the
labels of the remaining nodes Vtest. This setting is ubiquitous in real-world applications such as
citation networks, social networks, and recommender systems (Bhagat et al., 2011; Zhu et al., 2003).
A central idea of modern graph-based learning is that exploiting graph structure, in addition to node
features, can significantly improve classification accuracy. This idea has driven the development of
graph neural networks (GNNs) and related methods (Kipf & Welling, 2017; Hamilton et al., 2017;
Veličković et al., 2018).

However, despite strong empirical evidence supporting the utility of graph information, there is
little formal understanding of when and why it actually helps: no existing work establishes rigorous
conditions under which incorporating graph structure provably improves classification performance
over feature-only methods.

In this paper, we address this fundamental question by formulating transductive node classification
as a convex optimization problem, which enables us to derive rigorous theoretical guarantees about
when graph structure provably helps classification. We focus on homophilic graphs (McPherson
et al., 2001), where nodes of the same class exhibit higher connectivity than nodes of different
classes, a property prevalent in many real-world data, including citation networks (Sen et al., 2008;
Namata et al., 2012), social networks (Hamilton et al., 2017), and commercial networks (McAuley
et al., 2015). In homophilic settings, the graph topology naturally exhibits community structure that
correlates with node features and labels.

Our key insight is that under homophily, graph clustering and node classification are fundamen-
tally complementary: graph clustering exploits the graph topology to reveal community structure,
while classification leverages features and partial labels. This observation motivates us to develop a
unified framework that integrates both tasks. We build on convex methods for graph clustering (Kor-
lakai Vinayak et al., 2014; Chen et al., 2014; Li et al., 2021), which offer theoretical tractability and
are closely related to well-understood spectral techniques (Belkin & Niyogi, 2001; Ng et al., 2001;
Hajek et al., 2016). In particular, our approach leverages the framework of atomic norms, which
generalize the nuclear norm and allow us to define atoms that jointly capture graph structure and
node-specific information. This perspective enables us to extend convex graph clustering formulations
based on low-rank positive semidefinite representations allowing them to incorporate node features
and labels within a single convex optimization framework.
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Our contributions are as follows:
• We introduce a novel convex optimization formulation for transductive node classification that

generalizes existing graph clustering methods to incorporate node-specific information, including
features and partial labels. The framework is inspired by principles of multimodal learning and
provides a principled way to combine structural and attribute information.

• We prove that, under suitable structural assumptions, our framework achieves perfect label
recovery, i.e., exact classification of all nodes. To the best of our knowledge, this provides the
first rigorous theoretical result demonstrating that node features and graph structure can provably
interact to improve node classification.

• We develop CADO, a scalable alternating conditional gradient algorithm for solving our opti-
mization problem with a fixed number of atoms. Each step of the algorithm reduces to tractable
subproblems with closed-form solutions, making the method both efficient and practical. Through
experiments, we show that CADO solves the proposed optimization and validate our theoretical
findings.

To the best of our knowledge, no prior work has formulated node classification through the lens of
convex graph clustering. Our framework integrates ideas from convex clustering and graph clustering,
while directly incorporating both node features and graph structure into a single formulation.

2 RELATED WORK

Convex clustering. Clustering groups data points based solely on their features (Xu & Wunsch,
2005; Jaeger & Banks, 2023; Shalev-Shwartz & Ben-David, 2014; Soltanolkotabi & Candes, 2012).
Classical k-means is NP-hard (Aloise et al., 2009), and Lloyd’s algorithm is prone to local minima
and sensitive to initialization. Convex clustering addresses these issues by adding a sum-of-norms
(SON) regularizer and formulating a convex relaxation of k-means (Hocking et al., 2011; Lindsten
et al., 2011; Panahi et al., 2017; Tan & Witten, 2015; Sun et al., 2021). Recovery guarantees have
been established for two clusters (Zhu et al., 2014), k clusters (Panahi et al., 2017), and weighted
variants (Sun et al., 2021), with further contributions by Chiquet et al. (2017); Chi & Steinerberger
(2019). However, these works remain tied to k-means. Our framework allows general loss functions
and extending recovery guarantees to this broader setting and to node classification.
Graph clustering. Graph clustering (or community detection) seeks to identify clusters using only
graph structure (Schaeffer, 2007; Abbe, 2018; Li et al., 2021). The stochastic block model (Holland
et al., 1983) is the standard framework, with exact recovery thresholds established for two clusters
(Abbe et al., 2015), general k (Wu et al., 2015), and partially-observed graphs (Chen et al., 2014;
Korlakai Vinayak et al., 2014). Our work goes beyond SBM by providing recovery guarantees for
deterministic graphs and Erdős-Rényi random graphs, thereby broadening the scope of classical
graph clustering theory.
Covariate-assisted graph clustering. Many modern graphs include node covariates, motivating
methods that leverage both graph struture and node-level information. Heuristic approaches aggregate
the adjacency matrix with a Gram or kernel matrix from covariates (Binkiewicz et al., 2017; Yan &
Sarkar, 2021; Hu & Wang, 2024; Chunaev, 2020). The contextual SBM (CSBM) (Deshpande et al.,
2018) provides a statistical model for this setting, and recent theory shows that covariates can improve
graph clustering (Braun et al., 2022; Dreveton et al., 2023; Yang & Fountoulakis, 2023; Braun &
Sugiyama, 2024). These works, however, rely on Gaussian or exponential covariates combined
within the CSBM and do not capture explicitly the synergy between graph structure and covariates.
Unlike these works, our framework establishes a two-way interaction: not only can features support
clustering, but graph structure can also enhance node classification. We prove recovery guarantees
for this bidirectional setting under static graphs, arbitrary features, and any convex loss functions.

3 NODE CLASSIFICATION VIA ATOMIC NORMS

In this section, we propose a graph clustering formulation that naturally extends to incorporate
node-specific information.

We consider a graph G = (V, E) where each node v ∈ V has feature vector xv . A subset Vtrain ⊂ V
of the nodes has (possibly noisy) labels, and the goal is to predict the labels for the remaining nodes

2
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Vtest, referred to as test nodes. We denote by yv the true label of node v and its noisy label by ỹv.
For convenience, we denote by zv the information associated with node v ∈ V , where zv = xv for
v ∈ Vtest and zv = (xv, ỹv) for v ∈ Vtrain.

Our starting point is convex optimization techniques for graph clustering, which seek a low-rank
positive semi-definite (PSD) approximation of the adjacency matrix A (Korlakai Vinayak et al.,
2014),

min
L∈B

∥L−A∥1 + µ0∥L∥∗, (1)

where ∥ · ∥1 is the ℓ1-norm, ∥ · ∥∗ the nuclear norm (sum of the singular values), B denotes the set of
symmetric matrices with entries in [0, 1] and ones on the diagonal, and µ0 ≥ 0 is a regularization
parameter.

Since the nuclear norm is a special case of the atomic norm (Bhaskar et al., 2013) (see Appendix A
for details), we can equivalently replace ∥L∥∗ with the atomic norm ∥L∥A, where the atomic set is
defined as A := {ee⊤ : ∥e∥2 = 1}, where each atom is a rank-one matrix formed from a unit vector.
Using the atomic norm, (1) can be rewritten as

min
L∈B

∥L−A∥1 + µ0∥L∥A. (2)

Noting that ∥L−A∥1 can be expressed as −⟨Ā,L⟩,1 (2) can be rewritten as

min
L∈B, {λi≥0, ei∈Sn−1}i

− ⟨Ā,L⟩+ µ0

∑
i

λi (3)

s.t. L =
∑
i

λieie
⊤
i ,

where Ā is the polarized adjacency matrix with entries 1 if {u, v} ∈ E and −1 otherwise. The
summations are over the infinite elements as the atomic set contains infinite number of atoms, and
this holds for the rest of paper whenever no upper bound is specified.

This optimization serves as the foundation of our framework. Specifically, if G has r well-separated
clusters, the solution of (3) has rank r and admits the decomposition

L = EΛE⊤, Λ = diag(λ1, . . . , λr), E = [ e1, . . . , er ] ,

The v-th row of E, ϵv represents a low-rank embedding of node v ∈ V . Under some mild conditions
on the graph (see Section 4), these embeddings become one-hot vectors that perfectly indicate cluster
membership, enabling exact cluster recovery.

Incorporating node-specific information. We extend the convex graph clustering formulation in (3)
to incorporate node-specific information. We associate each node v with a model θv ∈ Θ and a loss
function fv(zv;θ) measuring how well θv fits zv. A concrete example will be given in Section 6.1.
Based on these components, we formulate the following optimization problem,

min
L∈B, {θv∈Θ}v∈V ,

{λi≥0, ei∈Sn−1, θi∈Θ}i

− ⟨Ā,L⟩+ µ
∑
v∈V

fv(zv;θv) (4)

s.t. L =
∑
i

λieie
⊤
i , θv =

∑
i

λiϵ
2
i,vθi, ∀v ∈ V

where ϵi,v is the vth element of ei, and θi ∈ Θ represents the model associated with cluster i. The
additional term in the objective function of (4) plays the role of an empirical risk, but with each zv
evaluated against a node-specific model θv . The coupling constraint θv =

∑
i λiϵ

2
i,vθi ensures these

models are not completely independent. In particular, when the embedding vectors ϵv = (ϵi,v)i
coincide with the one-hot vectors of the corresponding clusters, we have θv = θi for all v in cluster i,
so classification benefits directly from the low-rank clustering mechanism.

Similar to (2)–(3), (4) can be expressed as a regularized atomic norm problem. To this end, we define
the joint variable U :=

(
L, {θv}v∈V

)
, the atoms ai :=

(
eie

⊤
i , {ϵ2i,vθi}v∈V

)
, and the atomic set

A :=
{(

ee⊤, {ϵ2vθ}v∈V
) ∣∣ e = (ϵv)v, ∥e∥2 = 1, θ ∈ Θ

}
.

1This follows from the fact that for aij ∈ {0, 1} and lij ∈ [0, 1], we have |lij − aij | = −lij āij + aij .
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With this notation, problem (4) can be rewritten compactly as

min
U∈U, {λi≥0,ai}i

ϕ(U) + µ0

∑
i

λi (5)

s.t. U =
∑
i

λiai,

where ϕ(U) := −⟨Ā,L⟩+µ
∑

v∈V fv(zv;θv) and U := B×Θ|V| is the feasible set of all variables(
L, {θv}v∈V

)
with L ∈ B and θv ∈ Θ.

Regularization by Sum of Norms. The formulation in (5) admits an arbitrary number of atoms,
each potentially corresponding to a distinct cluster. This flexibility risks over-parameterization: the
node-specific term in ϕ may favor assigning each node to its own cluster. Although the graph-based
term in ϕ can counteract this, the resulting balance does not capture the intended synergy between
topology and node-specific information.

To address this, we adopt the well-known sum-of-norms (SON) regularization (Lindsten et al., 2011;
Panahi et al., 2017) defined as

R(U) :=
∑
u<v

∥θu − θv∥ .

This penalty encourages node-specific models to coincide, promoting shared representations within
clusters. Incorporating it into (5) yields

min
U∈U, {λi≥0,ai}i

ϕ(U) + µ0

∑
i

λi + µ1R(U) (6)

s.t. U =
∑
i

λiai

This regularization enforces that nodes in the same cluster share identical models, thereby aligning
the clustering and classification components.

Equation (6) is our final optimization framework: it extends convex graph clustering by incorporating
node-specific information through SON regularization. In the remainder of the paper, we analyze
this framework from two complementary perspectives. First, we establish conditions under which
it achieves perfect recovery of the underlying clusters. Second, we investigate the computational
complexity of solving the problem and introduce CADO, an efficient algorithm for computing its
solution.

4 PERFECT RECOVERY

In this section, we establish conditions under which the global solution of (6) achieves perfect
recovery of the underlying clusters and, consequently, the class labels. Our analysis proceeds in three
steps. First, we characterize the structure of the ideal solution that corresponds to perfect recovery.
Next, we formalize the probabilistic model governing the graph and node features. Based on this
model, we derive explicit conditions on the parameters under which the solution of (6) coincides with
the ideal one, thereby achieving perfect recovery. Finally, we present our main theorem, showing
that perfect recovery can be achieved from graph structure alone, from node features alone, or from
their combination. Crucially, the joint setting admits strictly milder conditions than either source
individually, thereby demonstrating the synergistic effect of integrating graph and feature information.

4.1 IDEAL SOLUTION

Consider a population V of size |V| = n, partitioned into K clusters C1, C2, . . . , CK , where cluster Ci
contains ni nodes. In the ideal scenario, the solution consists of K atoms (one per cluster) denoted
by {(λ∗

i , ϵ
∗
i,vθ

∗
i )}Ki=1, with

λ∗
i = ni, ϵ∗i,v =

{
1√
ni
, v ∈ Ci,

0, otherwise.
(7)

4
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This yields the ideal partition matrix L∗ defined by L∗
uv = 1 if u, v ∈ Ci for some i, and 0 otherwise.

Moreover, each cluster Ci is associated with a single model θ∗
i . These cluster-level models arise from

the following characteristic optimization problem, obtained by substituting the ideal coefficients from
(7) into (6):

{θ∗
i }i = min

{θi}i∈Θ
µ

K∑
i=1

Fi(θi) + γ
∑
i<j

nj∥θi − θj∥, (8)

where Fi(θ) :=
∑

v∈Ci
fv(z;θ) is the aggregate loss function of cluster Ci, and γ := µ1/µ. The

solutions of (8), referred to as biased centroids, satisfy the optimality condition 0 ∈ ωi + ∂IΘ(θ
∗
i ),

where ∂IU (·) is the subdifferential of the indicator function IU of U , and

ωi := ∇Fi(θ
∗
i ) + γ

∑
j<i

nj

θ∗
i − θ∗

j

∥θ∗
i − θ∗

j ∥
. (9)

4.2 OUR MODEL

Our optimization framework takes as input both the graph structure and the node features. In what
follows, we formalize the statistical assumptions underlying each of these components and introduce
the definitions that will be used in our recovery analysis.

4.2.1 GRAPH

Let Nij :=
∑

u∈Ci,v∈Cj
Auv be the connectivity of the different partitions. Naturally, we are

interested in the case where Nii is sufficiently larger than Nij for i ̸= j. For a node v, let nv,j be
the number of edges from v to nodes in cluster Cj , nv,j :=

∑
u∈Cj

Auv. We take n+
v,j = nj − nv,j if

v ∈ Cj , and n+
v,j = nv,j if v /∈ Cj . We also define N+

i,j =
∑
v∈Ci

n+
v,j and ρ+i,j = N+

i,j/ninj .

These quantities capture the level of misconnections between clusters and vanish in the ideal case
of perfectly separated clusters. For a fixed δ > 0, we formalize and bound the level of cluster
separability using the following assumptions.
Assumption 4.1 (δ−Homogeneity). For any node v ∈ Ci and any cluster Cj , it holds that∣∣∣∣∣n

+
v,j

nj
− ρ+ij

∣∣∣∣∣ ≤ δ. (10)

Note that from Assumption 4.1, the maximum number of mis-connections in
each block (i, j), denoted by dmax

ij , is bounded as dmax
ij ≤ (ρ+ij + δ)nj .

ω1

ω3

ω2

ω4

θ∗
1

θ∗
3θ∗

2

θ∗
4

Θ

Figure 1: R-separability.

Assumption 4.2 (δ−Visibility). For any two clusters Ci, Cj , it holds that
ρ+ij <

1
2 − δ.

4.2.2 NODE-SPECIFIC VECTORS

In convex clustering, perfect recovery requires hat inter-cluster separa-
tion dominates intra-cluster variability: loosely, the minimum distance
between clusters must be significantly larger than the maximum clus-
ter diameter While prior works focus on the k-means loss function, we
consider general convex loss functions, which necessitate more general
definitions of inter-cluster distance (separability) and cluster diameter. In
the following assumptions, we formalize these two measures.
Assumption 4.3 (R-separability). The biased centroids θ∗

i are distinct.
Moreover, for every θ ∈ Θ, the relation

⟨ωi,θ − θ∗
i ⟩ ≤ R

holds for at most one index i. In addition, the feasible set Θ is assumed to be bounded, i.e.,
∥θ − θ∗

i ∥ ≤ ℓ, ∀i.

5
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This assumption guarantees that centroids corresponding to different clusters are well-separated, as
depicted in Figure 1.

Assumption 4.4 (Gradient variability). For all u, v ∈ Ci, the gradient variability is bounded by
∥∇fv(θ

∗
i )−∇fu(θ

∗
i )∥ ≤ ρ.

This assumption bounds the variability of node-specific information within clusters, i.e., it quantifies
the diameter of the clusters. It ensures that within each cluster, the local losses behave similarly around
the corresponding centroid θ∗

i (each node aligns closely with its associated centroid). Furthermore,
the parameter ρ can be interpreted as an indirect measure of data noise: larger values of ρ indicate
higher within-cluster variability, meaning the data are noisier and less homogeneous.

4.3 MAIN RESULT

Here, we present our main theoretical results.

Theorem 4.5. Consider a fixed graph G with n nodes partitioned into K classes, where class i
contains ni nodes with ni ∼ nj for all i, j. Let ρ+ij denote the relative misconnection rate between
classes, and define

ρ+ := max
i,j

ρ+ij , pmax = ρ+ + δ, a = max
i,j

aij .

Fix γ = µ1/µ, and suppose Assumptions 4.1–4.4 hold with fixed δ and R, and that the feasible set Θ
is bounded. Then:

1. Graph-structure-only regime (µ → 0). Perfect recovery is achievable if

pmax ≤ 1

2 + a · n/ni
. (11)

2. Node-information only regime (µ = Ω(n · ni)). Perfect recovery is achievable if

ρ ≤ γ ni. (12)

3. Synergistic regime (0 < µ < n · ni). Perfect recovery is achievable if

ρ ≤

(
1− (a+ 2) pmax

µℓ
+ γ

)
ni and pmax ≤ 1− µℓ(ρ/ni − γ)

2 + a
. (13)

Proof. The proof is given in Appendix B.

Theorem 4.5 unifies the recovery conditions across three regimes. In the graph-structure-only regime,
the bound pmax ≤ 1/(2 + a · n/ni) shows that recovery becomes increasingly restrictive as the
number of classes K ≈ n/ni grows, since more communities require stronger separation. In the node-
information-only regime, recovery is governed by the quality of node features, with the admissible
noise bounded by ρ ≤ γni, scaling linearly with class size.

The synergistic regime is the most interesting: here both graph structure and node features interact,
and a clear trade-off emerges between tolerance to feature noise and tolerance to misconnected
edges. As seen in (13), decreasing µ from infinity (the node-information-only setting) introduces an
additional term, which enlarges the admissible range of ρ and thus allows for higher noise tolerance.
At the same time, from (13), pmax no longer depends on the number of classes K and can be relaxed
by either choosing γ close to ρ/ni or by reducing µ. However, this improvement in pmax comes at
the expense of reducing the admissible range for ρ. In other words, there is a tension: one can either
tolerate noisier features at the cost of stricter structural requirements, or tolerate higher misconnection
rates in the graph at the cost of requiring cleaner features. This trade-off highlights the importance
of balancing graph and feature contributions when designing algorithms, as exploiting both sources
simultaneously provides the broadest recovery guarantees.

6
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Algorithm 1 CADO Algorithm

1: Input: Number of atoms r, graph Ā, node data {zv}, step size sequence {γt = 2/t+2}
2: Initialize {ē(0)i ∈ U}ri=1, {θ̄(0)

i ∈ Θ}ri=1
3: for t = 0, 1, 2, . . . until convergence do
4: // Embedding Update via Conditional Gradient
5: Compute gradients ∇ēiϕ using current θ̄(t)

i

6: Solve LMO (15); let Ẽ(t) = {ẽ(t)i } be the solution
7: Update: ē(t+1)

i = (1− γt)ē
(t)
i + γtẽ

(t)
i

8: // Model Update via Conditional Gradient
9: Compute gradients ∇θ̄i

ϕ using updated ē
(t+1)
i

10: Solve LMO (14); let θ̃(t)
i be the solution

11: Update: θ̄(t+1)
i = (1− γt)θ̄

(t)
i + γtθ̃

(t)
i

12: Return: {ē(T )
i }, {θ̄(T )

i }

5 COMPLEXITY ANALYSIS AND ALGORITHMIC SOLUTIONS

In this section, we analyze the computational aspects of solving (6). In Appendix C, we show that
an iterative procedure exists that achieves polynomial-time convergence to an ϵ-optimal solution.
While theoretically appealing, this algorithm is still computationally expensive and does not scale
to large graphs. To address this limitation, we propose a practical and scalable method, referred to
as constrained atomic decomposition optimization solver (CADO), which solves the non-convex
formulation in (4) under a fixed number of atoms. This fixed-rank approximation is well motivated
by the SON regularization, which naturally promotes sparsity in the active atoms, and in practice we
find that CADO consistently converges to the optimal solution.

CADO: An efficient algorithmic solution. To solve (6) with a fixed number of atoms, we propose an
alternating conditional gradient algorithm, termed CADO. The algorithm alternates between updating
the embedding vectors {ēi}, which define the low-rank matrix L, and updating the cluster-level
models {θ̄i}, which induce the node-specific models {θv}. This alternating structure allows CADO
to minimize the joint objective efficiently without explicitly enumerating the infinite set of atoms.

Each update step follows a conditional gradient (Frank–Wolfe) approach. At iteration t, a linear
minimization oracle (LMO) is solved for both the embeddings and the model parameters, yielding
descent directions:

θ̃i = arg min
θ̄i∈Θ

〈
∇θ̄i

ϕ, θ̄i
〉
, (14)

Ẽ = arg min
{ēi}r

i=1

r∑
i=1

⟨∇ēi
ϕ, ēi⟩ , (15)

s.t. L =

r∑
i=1

ēiē
⊤
i ∈ B, θv =

r∑
i=1

ϵ̄2i,vθ̄i ∈ Θ,

where ϵ̄i,v denotes the v-th entry of ēi. The exact solutions of these LMOs depend on the loss
function fv and the domain Θ. In the case study presented in Section 6.1, we show that both LMOs
admit efficient closed-form solutions. Detailed derivations and alrorithmic steps are provided in
Appendix D.

After obtaining the LMOs, the models θv and embeddings ēi are updated via a convex combination
with the results from previous iterations, ensuring feasibility throughout iterations. While the
alternating conditional gradient approach leads to a non-convex problem, in practice CADO converges
quickly to stable solutions, as supported by our experimental results. The procedure is summarized in
Algorithm 1.

7
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6 EXPERIMENTS

For our experiments, we focus on a particular case study (Section 6.1) that admits closed-form
solutions for (14) and (15). The corresponding specialized version of CADO is summarized in
Algorithm 2 in Appendix D. We then evaluate our framework and CADO on node classification
within this case study. Specifically, we first demonstrate the bidirectional interaction between graph
structure and node information, and then empirically assess the effectiveness of CADO. Additional
experiments are reported in Appendix E, further supporting our theoretical and algorithmic findings.

6.1 CASE STUDY

Our general framework in (6) accommodates a wide range of settings through different choices
of the loss functions fv. To make the discussion concrete, we focus here on a specific case. We
assume that the vectors zv are statistically independent and, within each class, identically distributed.
Furthermore, in the training set, conditional on the true class label yv , the features and the labels are
independent, i.e., p(xv, ỹv | yv = i) = p(xv | Ri)p(ỹv | πi).

We model the feature vectors as m-dimensional centered Gaussians, xv ∼ N (0, R̄i), where R̄i is
the class-dependent covariance matrix. Features in each class are assumed to concentrate near a
distinct linear subspace. Specifically, the eigenvalues of R̄i are divided into two groups: those larger
than a fixed positive threshold ρ+, corresponding to a signal subspace, and those smaller than another
threshold ρ−, corresponding to a noise subspace. Naturally, we require ρ+ > ρ−.

In the training set of class i, we assume that the noisy label ỹv = j is observed with probability π̄ji,
and define π̄i = (π̄ji)j . We further assume that π̄ii is significantly larger than π̄ji for j ̸= i, i.e., the
probability of observing the correct label is significantly higher than that of any incorrect label.

To instantiate (6) in this setting, we choose Θ and fv as follows. Each model parameter θ consists of
a covariance R and a label distribution π. The node-level losses are defined by

ffeature(x;R) :=
1

m

(
x⊤R−1x+ Tr(R)

)
, (16)

flabel(ỹ = j;π) := −πj . (17)

and combined as

fv(z;θ) =

{
ffeature(x;R) + βflabel(ỹ;π) v ∈ Vtrain

ffeature(x;R) v ∈ Vtest
(18)

We constrain R to lie in the set Sρ−,ρ+
of symmetric matrices with eigenvalues in [ ρ−, ρ+], i.e.,

Sρ−,ρ+
=
{
R | R = R⊤, ∀x ∈ Rn : ρ−∥x∥22 ≤ x⊤Rx ≤ ρ+∥x∥22

}
. (19)

Similarly, we constrain π to lie in the standard simplex ∆ = {π = (πk) | πk ≥ 0,
∑

k πk = 1} ,
Accordingly, we take Θ = Sρ−,ρ+ ×∆.

6.2 EXPERIMENTAL SETUP

Data generation model. We generate a synthetic dataset with K clusters of equal size n0, so that
the total numnber of nodes is n = Kn0. The graph is drawn from an SBM, while node features
follow a Gaussian mixture model.

Graph structure: Edges are placed independently, with nodes in the same cluster connected with
probability p and nodes in different clusters connected with probability q.

Node features: Each cluster generates zero-mean Gaussian feature vectors with a covariance matrix
whose eigenvalues encode signal and noise. Specifically, mω eigenvalues are set to ω2 (noise), while
the remaining eigenvalues are set to σ2 (signal). The parameters ω and mω jointly control the noise
level and hence the degree of separability between the feature subspaces of different clusters.

Node labels: From each cluster, nt nodes are selected as training examples. A training node is
assigned the correct label with probability π and an incorrect label chosen uniformly at random
otherwise. This design allows us to explore the effect of the fraction of labeled data and the level of
label noise.

8
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Figure 2: Left: Test accuracy vs. p; Middle: Test accuracy vs. ω; Right: Test accuracy vs. training label ratio. All plots highlight the synergy of
combining graph, features, and labels, with the highest accuracy achieved by the full framework (Graph + Feature + Label).

Hyperparameters. A full list of hyperparameters is provided in Appendix E. Unless otherwise
specified, we adopt the following defaults: K = 3 clusters with n0 = 300 nodes each, and we fix
the number of atoms to r = K. Edge probabilities are p = 0.1 within clusters and q = 0.05 across
clusters. Node features are 6-dimensional, with mω = 4 noisy eigenvalues of magnitude ω = 0.04
in the covariance matrix, yielding well-separated feature subspaces. For training labels, we set the
label ratio to nt

n0
= 0.2 and assume no label noise (π = 1). To simplify the experimental setup, we

reparameterize the original scaling setup by introducing effective weights for each term. While our
theoretical framework uses a scaling of 1 for the graph term, µ for the feature term, and µβ for the
label term, we fix the weights to βg = 1.0, βf = 2.5, and βl = 13.0, corresponding to the graph,
feature, and label terms, respectively.
Evaluation settings. To assess the contribution of each information source (graph structure, node
features, and node labels) we perform an ablation study by selectively enabling or disabling each term
in the objective. Specifically, we evaluate the graph-only setting, the feature-only setting, all pairwise
combinations (graph+features, graph+levels, and features+labels), and the full model integrating
all three. These ablations are implemented by setting the corresponding regularization weights to
zero and solving the resulting problem with CADO, except for the graph-only case, where we apply
spectral clustering instead of the ablated CADO variant.

6.3 OUR RESULTS

We present three sets of experiments in Figure 2, each isolating the impact of one component while
keeping the others fixed. For each configuration, we report accuracy on test nodes.
Graph structure (left figure). We vary the intra-cluster edge probability p while keeping fea-
tures and labels fixed. Our framework consistently outperforms graph-only and pairwise baselines,
especially as the graph becomes less informative (i.e., p ≈ q).
Feature quality (center figure). We degrade the signal-to-noise ratio by increasing the noise level
ω in the feature covariance. Even when features become unreliable, our method remains robust by
leveraging the graph structure.
Training label availability (right figure). We vary the ratio of labeled training nodes. Our
framework effectively exploits even a small number of noisy labels when integrating graph and
feature information.

Detailed discussions of these experiments together with additional experiments are provided in
Appendix E, providing further support for our theoretical and algorithmic contributions. Overall,
our results confirm that the proposed framework effectively integrates graph, feature, and label
information. CADO consistently recovers the true structure when the theoretical conditions are met
and remains robust as the problem becomes harder (p ↓, ω ↑). The first plot illustrates how features
and labels enhance spectral clustering when the graph is weak, while the latter two show how graph
structure strengthens classification when node-specific information is degraded.

Conclusion. We proposed a novel optimization framework for transductive node classification,
formulated through the lens of convex graph clustering. Our approach integrates graph structure, node
features, and labels within a unified convex formulation, and we developed an efficient algorithmic
solution based on a fixed number of atoms. We established theoretical guarantees for perfect recovery,
showing that combining graph and feature information requires strictly milder conditions than using
either source alone. Experimental results corroborate our theory, demonstrating that node features
enhance graph clustering while graph structure strengthens classification.

9
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MATHEMATICAL NOTATION.

To simplify notation and enhance readability, we use the following conventions throughout the paper.
Collections such as {λa}a∈A, {Lvv}v∈V , {Luv}u,v∈V , and {θv}v∈V are often abbreviated to {λa},
{Lvv}, {Luv}, and {θv} when the indexing set is clear from context. When two nodes u and v
belong to the same cluster, we write u, v ∈ Ci; otherwise, we denote u ∈ Ci and v ∈ Cj to indicate
distinct clusters.

We denote vectors by bold lowercase letters (e.g., x) and matrices by bold uppercase letters (e.g.,
W). The entry in the vth row and uth column of a matrix W is denoted by Wvu, and its transpose by
W⊤. The Euclidean inner product between vectors is written as ⟨·, ·⟩, and the matrix inner product is
defined by ⟨A,C⟩ := tr(AC⊤), where tr(·) denotes the trace operator.

The indicator function IΘ(θ) refers to the indicator of the feasible set Θ, and ∂IΘ(θ) denotes the
normal cone of Θ at point θ. The cardinality of a set T is denoted by |T |. We use 1n and 0n to
denote the n-dimensional all-one and all-zero vectors, respectively. An m × n all-zero matrix is
denoted by Om×n, with subscripts omitted when dimensions are clear from context.
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A ATOMIC NORM REVIEW

In many signal processing and machine learning applications, the objective is to reconstruct a signal
that admits a simple or structured representation. The concept of atomic norms provides a unifying
framework for this purpose by promoting simplicity in the signal representation. Specifically, an
atomic norm can be used as a convex regularizer that induces a desired structure, such as sparsity or
low-rankness, by relying on a predefined set of fundamental building blocks called atoms.

A.1 ATOMS AND ATOMIC NORMS

The basic elements used to represent a signal are referred to as atoms. For a signal x, the atomic set
A is a collection of these basic elements, allowing the signal to be expressed as a nonnegative linear
combination of a small number of atoms from A. The atomic norm, denoted by ∥x∥A, quantifies the
complexity of the signal in terms of how economically it can be represented using these atoms.

Formally, the atomic norm is defined as:

∥x∥A = inf

{∑
i

ci : x =
∑
i

ciai, ai ∈ A, ci ≥ 0

}
. (20)

This norm is often employed as a regularizer in optimization problems to encourage solutions that are
structurally simple, such as sparse vectors or low-rank matrices. Different choices of the atomic set
A yield different atomic norms. Two important examples are as follows:

• Sparsity (ℓ1-norm): For sparse signals, the atomic set consists of the signed canonical basis
vectors:

Aℓ1 = {±ei | i = 1, . . . , n},
where ei denotes the i-th canonical basis vector in Rn. The induced atomic norm is:

∥x∥Aℓ1
=

n∑
i=1

|xi| = ∥x∥1,

which is the familiar ℓ1-norm, widely used to promote sparsity.
• Low-rank matrices (nuclear norm): For low-rank matrix recovery, such as in matrix comple-

tion or graph clustering, the atomic set consists of rank-one matrices with unit norm:

A∗ = {uv⊤ | u ∈ Rm, v ∈ Rn, ∥u∥2 = ∥v∥2 = 1}.
The induced atomic norm is:

∥X∥A∗ =

min(m,n)∑
i=1

σi(X) = ∥X∥∗,

which is the nuclear norm, equal to the sum of the singular values of X. This norm is the convex
surrogate of the rank function and promotes low-rank structure.
For symmetric matrices, the above definitions can be simplified. If X = X⊤, we can define the
symmetric atomic sets

Asym,+ = {uu⊤ : ∥u∥2 = 1 }, Asym,± = {±uu⊤ : ∥u∥2 = 1 }.

Then, with the eigenvalue decomposition X =
∑

i λi uiu
⊤
i (like graph Laplacian matrix):

∥X∥Asym,+
=
∑
i

λi = tr(X) for X ⪰ 0,

and, for general symmetric X,

∥X∥Asym,± =
∑
i

|λi| = ∥X∥∗.

In particular, for symmetric matrices the nuclear norm equals the sum of absolute eigenvalues,
and for symmetric PSD matrices it reduces to the trace.
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B PROOF OF THEOREM 4.5

We begin with an overview of the proof methodology, followed by the problem setup and optimization
formulation. We then outline the key elements, focusing on optimality conditions for exact recovery.
The main proof is divided into three parts, each covering a different information regime: (i) node-
specific, (ii) graph-based, and (iii) combined. For each, we construct a dual certificate via a “guess-
and-golfing” approach and establish recovery conditions. We conclude by stating the theorem.

B.1 PROOF OVERVIEW

Our proof follows a standard dual certificate approach. We aim to verify that the ideal solu-
tion—comprising one atom per cluster—satisfies the optimality (KKT) conditions of the convex
problem (6). The core idea is to construct a dual certificate matrix Z (and associated subgradients
{gvu}) such that the ideal solution is locally optimal.

To achieve this, we employ a guess-and-golfing strategy. Starting from a natural or trivial guess for Z
(e.g., diagonal or block-structured), we iteratively refine it to meet the necessary conditions. Each
refinement step aims to adjust the certificate to satisfy one or more of the following:

• sign constraints ensuring dual feasibility;
• inner product constraints capturing primal-dual consistency;
• and positive semidefiniteness of the gap matrix enforcing inequality optimality.

B.2 PROBLEM SETUP

Optimization Problem Restatement. The optimization problem we analyze, with the goal of
establishing conditions for perfect recovery, is our convex framework augmented with a sum-of-norms
(SON) regularization term. For clarity and completeness, we restate it below, as in equation (6).

min
U∈U, {λa≥0}a∈A

ϕ(U) + µ0

∑
a∈A

λa + µ1R(U) (21)

s.t. U =
∑
a∈A

λaa

In this formulation, U := (L, {θv}v∈V). The feasible set is U := B × Θ|V|, where B denotes the
set of symmetric matrices with entries in [0, 1] and unit diagonal, and Θ is the feasible domain for
node-specific models. The objective ϕ(U) is defined as: ϕ(U) := −⟨Ā,L⟩+ µ

∑
v∈V fv(zv;θv),

and R(U) is the SON regularization term. Each atom a ∈ A is of the form a =
(
ee⊤, {ϵ2vθ}v∈V

)
,

and comes from the atomic dictionary A defined as:

A :=
{(

ee⊤, {ϵ2vθ}v∈V
) ∣∣ e = (ϵv)v∈V , ∥e∥ = 1, θ ∈ Θ

}
. (22)

Using the definitions above, the optimization problem (21) can be explicitly given as:

min
L∈B, {θv∈Θ}v∈V ,

{λa≥0}a∈A

− ⟨Ā,L⟩+ µ
∑
v

fv(zv,θv) + µ0

∑
a∈A

λa + µ1

∑
u<v

∥θv − θu∥ (23)

s.t. L =
∑
a∈A

λaeae
⊤
a , θv =

∑
a∈A

λaϵ
2
a,vθa

Equivalent Optimization Problem. We simplify the problem in (23) by enforcing Lvv = 1 for all
v, which implies that the sum of coefficients λa is fixed, and the conditions Luv ≤ 1 and θv ∈ Θ are
automatically satisfied (see Lemma B.2). We also eliminate the auxiliary variables θv by expanding
their definition in the objective, leading to the following simplified problem:

min
{Luv≥0}u,v,
{λa≥0}a∈A

− ⟨Ā,L⟩+ µ
∑
v∈V

fv

(
zv,

∑
a∈A

λaϵ
2
a,vθa

)
+ µ1

∑
u<v

∥∥∥∥∥∑
a∈A

λa

(
ϵ2a,u − ϵ2a,v

)
θa

∥∥∥∥∥
(24)

s.t. L =
∑
a∈A

λaeae
⊤
a , Lvv = 1, ∀v ∈ V.
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B.3 PROOF ELEMENTS

Ideal Solution. We define the ideal (perfect recovery) solution as one consisting of K atoms—one
per cluster—denoted by {(λ∗

i , e
∗
i ,θ

∗
i )}Ki=1. These ideal atoms take the form:

λ∗
i = ni, ϵ∗i,v =

{
1√
ni
, v ∈ Ci

0, otherwise
, e∗i = (ϵ∗i,v)v∈V . (25)

{θ∗
i }Ki=1 = arg min

{θi∈Θ}i

∑
v∈V

hv(θyv
) (26)

where hv(θi) = fv(zv;θi) + γ
∑

i<j nj

∥∥θi − θ∗
j

∥∥. This yields an ideally partitioned matrix L
with:

L∗
uv =

{
1, u, v ∈ Ci for some i

0, otherwise
. (27)

and the following characteristic condition derives from the first-order optimality condition of (26):

1

ni

∑
v∈Ci

∇hv(θ
∗
yv
) := ωi ∈ −∂IΘ(θ

∗
i ) (28)

where ∂IΘ(θ
∗
i ) is the normal cone of Θ at θ∗

i defined as

∂IΘ(θ
∗
i ) :=

{
{ω ∈ Rd : ⟨ω,θ − θ∗

i ⟩ ≤ 0, ∀θ ∈ Θ} if θ∗
i ∈ Θ

∅ if θ∗
i /∈ Θ

. (29)

Note that,
∇hv(θ

∗
i ) = ∇fv(θ

∗
i ) + γ

∑
u

gvu . (30)

with γ := µ1/µ. The terms gvu in (30) correspond to subgradients of the SON regularization term,
and can be calculated as:

gvu =

{
any gvu with ∥gvu∥ ≤ 1, if u, v ∈ Ci
θ∗
i −θ∗

j

∥θ∗
i −θ∗

j ∥
, if u ∈ Ci, v ∈ Cj , i ̸= j.

(31)

By symmetry of the SON term, it is required that gvu = −guv . As a results, its easy to show that

ωi = ∇Fi(θ
∗
i ) + γ

∑
i<j

nj

θ∗
i − θ∗

j

∥θ∗
i − θ∗

j ∥
(32)

where ∇Fi(θ) :=
1
ni

∑
v∈Ci

∇fv(zv;θ).

Optimality Conditions. To establish that the ideal solution is optimal for the simplified prob-
lem (24), it suffices to verify the first-order optimality (KKT) conditions at the ideal solution.
Specifically, we aim to construct a dual certificate: a symmetric matrix Z ∈ Rn×n and a collection of
subgradients {gvu} such that the following optimality conditions are satisfied:

(Z− Ā)uv ≤ 0, if u, v ∈ Ci, (33)

(Z− Ā)uv ≥ 0, if u ∈ Ci, v ∈ Cj , i ̸= j, (34)

e∗⊤i
(
µD(θ∗

i )− Z
)
e∗i = 0, ∀i, (35)

e⊤
(
µD(θ)− Z

)
e ≥ 0, ∀(e,θ) ∈ A. (36)

where D(θ) := diag(dv(θ)) with

dv(θ) =
〈
∇hv(θ

∗
yv
), θ

〉
. (37)

Conditions (33) and (34) ensures complementary slackness with respect to the matrix variable
L. Also, importantly, the diagonal elements of Z are unconstrained and need not satisfy the sign
conditions, as they are not involved in the objective due to the fixed diagonal constraint Lvv = 1.
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Inequality (36) must hold for all atoms (e,θ) ∈ A, while equality (35) holds for the K ideal atoms
{(e∗i ,θ∗

i )}Ki=1.

Hence, the KKT conditions reduce to constructing a dual matrix Z and a consistent set of subgradients
{gvu} that jointly satisfy equations (33)–(36). Note that gvu is undefined when u, v ∈ Ci (i.e., both
nodes belong to the same cluster). In this case, gvu acts as a free design parameter and must satisfy
the subgradient constraint ∥gvu∥ ≤ 1. We jointly construct the collection {gvu}u,v∈Ci and the dual
certificate Z such that the full set of optimality conditions (33)–(36) are all satisfied.

B.4 PERFECT RECOVERY WITH COMBINED GRAPH AND NODE-SPECIFIC INFORMATION

The goal of this section is to demonstrate that by combining graph structure and node-specific
information, we obtain looser requirements on the parameters λ, µ, and ρ for perfect recovery.

B.4.1 CONSTRUCTING Z

We begin by constructing a candidate for the dual certificate Z and the subgradients {gvu} that satisfy
the optimality conditions (33)- (36). We proceed via a step-by-step design, where we iteratively
refine a candidate Z to satisfy each condition.

Step 1: Structured Guess. We begin with a matrix S ∈ Rn×n defined blockwise according to:

Suv :=


0 if u, v ∈ Ci and {u, v} ∈ E,

−aii if u, v ∈ Ci and {u, v} /∈ E,

0 if u ∈ Ci, v ∈ Cj , {u, v} /∈ E,

aij if u ∈ Ci, v ∈ Cj , {u, v} ∈ E,

where aii, aij > 0 are scalar parameters. This form penalizes incorrect intra-cluster disconnections
and inter-cluster connections.

Step 2: Projection for Orthogonality. To ensure that Z is orthogonal to the ideal atoms (i.e.,
satisfies (35)), we project S onto the orthogonal complement of the span of ideal atoms:

Zs := P⊥(S− λI)P⊥, where P⊥ := I−EE⊤,

and E = [e∗1, . . . , e
∗
K ] is the matrix of ideal cluster indicators. This construction ensures e∗⊤i Zse

∗
i =

0.

Step 3: Feature Guess. To account the effect of µD(θ∗
i ) we will add the term µD̄ :=

µdiag
(
dv(θ

∗
yv
)
)

to Z with dv(θ) is given in equation (37). This ensures that
(
D(θ∗

i )− D̄
)
vv

=
0 ∀v, i
The dual certificate defined as:

Z = Zs + µD̄, (38)

B.4.2 VERIFYING OPTIMALITY CONDITION

The optimality condition (35) holds due to D̄’s diagonal structure and the projection P⊥.

B.4.3 VERIFYING SIGN CONDITIONS

Next, we enforce the sign constraints (33)-(34) by analyzing the entrywise form of Z− Ā. Using
Assumptions 4.1–4.2, we compute worst-case deviations after projection and derive bounds:

1 + λ/ni

1− ρii − 2δ
≤ aii ≤

1− λ/ni

ρii + 2δ
,

1

1− ρij − 2δ
≤ aij ≤

1

ρij + 2δ
.
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To ensure that the sign conditions remain valid, we must enforce 1+λ/ni

1−ρii−2δ ≤ 1−λ/ni

ρii+2δ which lead to

λ ≤ (1− 2pmax)ni (39)

where pmax := ρ+ + δ with ρ+ = maxi,j ρ
+
ij .

B.4.4 VERIFYING POSITIVE DEFINITENESS.

Finally, to ensure Z ⪰ 0 as required by (36), we must choose λ large enough so that P⊥(λI− S)P⊥

has all non-positive eigenvalues.

Step 1: Design gvu. To enforce condition (36), first notice

d̃v(θ) :=
(
D(θ)− D̄

)
vv

= (dv(θ)− dv(θ
∗
yv
))

=
〈
∇hv(θ

∗
yv
), θ − θ∗

yv

〉
=

〈
∇fv(θ

∗
yv
) + γ

∑
u

gvu, θ − θ∗
yv

〉
(40)

By defining gvu as

gvu =


∇fu(θ

∗
i )−∇fv(θ

∗
i )

γ · ρ
, if u, v ∈ Ci,

θ∗
i − θ∗

j

∥θ∗
i − θ∗

j ∥
, otherwise.

(41)

we have the following result

d̃v(θ) =
〈
τv + ωyv

, θ − θ∗
yv

〉
≥ 0. (42)

where τv =
(
1− γni

ρ

)
(∇fv(θi)−∇Fi(θi))

Step 2: Bounding Node-specific Term. Substituting the dual certificate Z, we get:

ϵ⊤(D(θ)− Z)ϵ = ϵ⊤
[
Zs + µD̃(θ)

]
ϵ (43)

where D̃(θ) = diag
(
d̃v(θ)

)
with d̃v(θ) =

〈
τv + ωyv ,θ − θ∗

yv

〉
. According to (28) we know that〈

ωyv
,θ − θ∗

yv

〉
≥ 0 ∀θ ∈ Θ. Moreover, under assumption 4.3, there exists at most one index i for

which 〈
ωyv

,θ − θ∗
yv

〉
≤ R.

Without loss of generality, assume this is index i = 0. We define the diagonal matrix Q ∈ Rn×n by:

Q = diag(rv) with rv =

{
0 v ∈ Ci
R v /∈ Ci

.

Moreover, Based on assumption 4.3, the feasible set Θ is bounded as:

∥θ − θi∥ ≤ ℓ, ∀i,

Using the Cauchy-Schwarz inequality, we get:

⟨τv,θ − θi⟩ ≥ −ζI. (44)

where ζ := ℓ (ρ− γ · ni)

Thus,
D̃(θ) ⪰ Q− ζI. (45)
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Step 3: PSD Conditions. Putting (45) into (43), we obtain:

ϵ⊤(D(θ)− Z)ϵ ≥ ϵ⊤ (µQ− µζI− Zs) ϵ. (46)

We want the matrix
Γ := P⊥(λI− S)P⊥ + µQ− µζI

to be positive semi-definite. By invoking Lemma B.3, we obtain sufficient conditions on λ, µ, and
ρ that guarantee positive semi-definiteness, and hence, perfect recovery. To apply Lemma B.3, we
define the following block components:

Γ11 =
(
P⊥(λI− S)P⊥)

(Ci,Ci)
− µζIni

(47)

Γ22 =
(
P⊥(λI− S)P⊥)

(C̸=i,C̸=i)
+ µRIn−ni

− µζIn−ni
(48)

Γ12 =
(
−P⊥SP⊥)

(Ci,C̸=i)
(49)

where for a matrix M, the notation M(A,B) denotes the submatrix with rows indexed by A and
columns indexed by B. Here, C̸=i := V \ Ci is the set of nodes not belonging to Ci.
Based on the block definitions in (49) and applying Lemma B.6, we can compute the quantities α, β,
and σ2

max(Γ12) required in Lemma B.3 as follows:
α = λ− a · pmax · ni − µζ (50)
β = λ− a · pmax · (n− ni) + µR− µζ (51)

σ2
max(Γ12) = a2 · p2max · ni · (n− ni) (52)

For positive semidefiniteness, the condition σ2
max(Γ12) ≤ αβ must hold. Substituting the above

expressions, this reduces to verifying
λ · (λ− a · pmax · n− µζ) + µ ·R · (λ− a · pmax · ni − µζ) ≥ 0 (53)

B.4.5 COMBINING CONDITIONS

The sufficient conditions derived earlier can be unified by analyzing three distinct regimes, depending
on whether the graph structure dominates, the node-specific information dominates, or both contribute
jointly.

Case 1: Graph structure dominates. When µ → 0, only the graph structure contributes. In this
case, the condition for positive semidefiniteness reduces to

λ ≥ a · pmax n. (54)
On the other hand, from the spectral bound (39), we also require

λ ≤ (1− 2pmax)ni. (55)
Combining the two yields the feasibility condition

pmax ≤ 1

2 + a · n/ni
. (56)

Thus, recovery is possible only when the graph is sufficiently assortative: dense within clusters and
sparse across clusters. The threshold depends on the ratio n/ni, which can be approximated by the
number of classes K.

Case 2: Node-specific information dominates. When µ ≫ −⟨Ā,L⟩, in particular when µ =
Ω(n · ni), the node-specific information outweighs the graph structure. In this case we require

λ ≥ a · pmax ni + µζ. (57)
On the other hand, the spectral bound (39) still enforces

λ ≤ (1− 2pmax)ni. (58)
Combining the two yields the feasibility condition

ρ ≤

(
1− (a+ 2) pmax

µℓ
+ γ

)
ni ≈ γ ni, (59)

showing that perfect recovery depends primarily on the feature noise ρ, which can tolerate more with
increasing nodes per clusters.
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Case 3: Graph and node-specific information are synergistic. When 0 < µ < n · ni, both graph
structure and node features contribute jointly. Two scenarios may arise:

1. If λ ≥ a · pmax n+ µζ, then combining with λ ≤ (1− 2pmax)ni leads to

ρ ≤

(
1− (a · n/ni + 2) pmax

µℓ
+ γ

)
ni, (60)

pmax ≤ 1− µℓ(ρ/ni − γ)

2 + a · n/ni
. (61)

2. If a · pmax n+ µζ ≥ λ ≥ a · pmax ni + µζ , then combining with λ ≤ (1− 2pmax)ni gives(
1− (a+ 2) pmax

µℓ
+ γ

)
ni ≥ ρ ≥

(
1− (a · n/ni + 2) pmax

µℓ
+ γ

)
ni, (62)

1− µℓ(ρ/ni − γ)

2 + a
≥ pmax ≥ 1− µℓ(ρ/ni − γ)

2 + a · n/ni
. (63)

Combining both scenarios, the feasible region for perfect recovery can be summarized as

ρ ≤

(
1− (a+ 2) pmax

µℓ
+ γ

)
ni, (64)

pmax ≤ 1− µℓ(ρ/ni − γ)

2 + a
. (65)

This highlights the advantage of combining both sources of information: perfect recovery is achievable
under sparser graphs (smaller pmax) and noisier features (larger ρ) than in the graph-only or node-only
regimes.

B.5 FINAL THEOREM

Theorem B.1. Consider a fixed graph G with n nodes partitioned into K classes, where class i
contains ni nodes with ni ∼ nj for all i, j. Let ρ+ij denote the relative misconnection rate between
classes, and define

ρ+ := max
i,j

ρ+ij , pmax = ρ+ + δ, a = max
i,j

aij .

Fix γ = µ1/µ, and suppose Assumptions 4.1–4.4 hold with fixed δ and R, and that the feasible set Θ
is bounded. Then:

1. Graph-only regime (µ → 0). Perfect recovery is achievable if

pmax ≤ 1

2 + a · n/ni
.

2. Node-only regime (µ = Ω(n · ni)). Perfect recovery is achievable if

ρ ≤ γ ni.

3. Synergistic regime (0 < µ < n · ni). Perfect recovery is achievable if

ρ ≤

(
1− (a+ 2) pmax

µℓ
+ γ

)
ni, (66)

pmax ≤ 1− µℓ(ρ/ni − γ)

2 + a
. (67)
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B.6 LEMMAS

Lemma B.2. Let θv :=
∑

a∈A λaϵ
2
a,vθa and L :=

∑
a∈A λaee

⊤, where each θa ∈ Θ and ∥e∥ = 1.
Assume that for all v ∈ V ,

∑
a∈A λaϵ

2
a,v = 1. Then, it follows that θv ∈ Θ, Luv ≤ 1 for all u, v ∈ V ,

and
∑

a∈A λa = n.

Proof. If
∑

a∈A λaϵ
2
a,v = 1 holds, we have:

• Since each θa ∈ Θ and
∑

a∈A λaϵ
2
a,v = 1, it follows that θv is a convex combination of

elements in Θ, and hence θv ∈ Θ due to the convexity of Θ.

• For L =
∑

a∈A λaee
⊤, the Cauchy–Schwarz inequality implies

Luv =
∑
a∈A

λaϵa,uϵa,v ≤
√∑

a∈A
λaϵ2a,u ·

√∑
a∈A

λaϵ2a,v = 1.

• Summing the constraint over all v, considering ∥e∥2 = 1, gives:∑
v

∑
a

λaϵ
2
a,v =

∑
a

λa

∑
v

ϵ2a,v = n.

Lemma B.3. Consider the symmetric block matrix

Γ =

[
Γ11 Γ12

Γ⊤
12 Γ22

]
,

where Γ11,Γ22 are symmetric matrices satisfying Γ11 ⪰ αI and Γ22 ⪰ βI for some α, β ≥ 0.
Then D is positive semidefinite if σ2(Γ12) ≤ αβ, where σ(Γ12) denotes the largest singular value
of B.

Proof. Take any vector x = [x⊤
1 ,x

⊤
2 ]

⊤. Then, the quadratic form associated with Γ can be written
as:

x⊤Γx = x⊤
1 Γ11x1 + 2x⊤

1 Γ12x2 + x⊤
2 Γ22x2.

Using the given conditions A ⪰ αI and Γ22 ⪰ βI, we have: x⊤
1 Γ11x1 ≥ α∥x1∥2,x⊤

2 Γ22x2 ≥
β∥x2∥2. Applying these lower bounds and the definition of singular value (∥Γ11x2∥ ≤ σ(Γ12)∥x2∥),
it follows by the Cauchy–Schwarz inequality that:

x⊤Γx ≥ α∥x1∥2 + β∥x2∥2 − 2σ(Γ12)∥x1∥∥x2∥.

Now, complete the square explicitly to factorize the expression clearly:

x⊤Γx ≥ (
√
α∥x1∥ −

√
β∥x2∥)2 + 2(

√
αβ − σ(Γ12))∥x1∥∥x2∥.

Since σ2(Γ12) ≤ αβ (implying σ(Γ12) ≤
√
αβ), both terms in this expression are nonnegative.

Thus:
x⊤Γx ≥ 0, for all x.

Hence, Γ is positive semi-definite.

Lemma B.4 (Spectral bound from sparsity and entry size). Let M ∈ Rn×n be symmetric. Suppose
each row has at most dmax nonzero entries and |Mij | ≤ a for all i, j. Then

λmax(M) = ∥M∥2 ≤ dmax a.
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Proof. Since M is symmetric, λmax(M) = ∥M∥2. Also,

∥M∥∞ = max
i

n∑
j=1

|Mij | ≤ dmax a.

Because M is symmetric, ∥M∥1 = ∥M∥∞. Hence

∥M∥2 ≤
√
∥M∥1 ∥M∥∞ = ∥M∥∞ ≤ dmax a.

This yields the bound λmax(M) ≤ dmaxa.

Remark B.5. The bound λmax(M) ≤ a dmax is tight up to constants in general. For example, if M
is the adjacency matrix of a d-regular graph with a = 1, then λmax(M) = d = dmax.
Lemma B.6 (Lower bound for a projected principal block). Let S ∈ Rn×n be symmetric. Fix any
index set B ⊆ {1, . . . , n} and let SB,B denote the corresponding principal submatrix. Assume:

1. Each row of SB,B has at most dmax(B) nonzeros;

2. |Sij | ≤ a for all i, j.

Let P⊥ be any orthogonal projector (P⊥2
= P⊥ = P⊥⊤

), and define

MB :=
(
P⊥(λI− S)P⊥ )

B,B.

Then
λmin(MB) ≥ min

{
0, λ− a dmax(B)

}
.

Proof. Since P⊥ is an orthogonal projector, ∥P⊥∥2 = 1 and

MB =
(
λP⊥ −P⊥SP⊥)

B,B.

Hence

λmin(MB) ≥ min
{
0, λmin

(
(λI− S)B,B

)}
≥ min

{
0, λ− λmax

(
(S)B,B

)}
,

where we used ∥P⊥∥2 = 1 and submultiplicativity to drop P⊥ in the norm bound on the B × B
block.

By Lemma B.4 applied to SB,B,

λmax

(
(S)B,B

)
≤ a dmax(B),

which yields
λmin(MB) ≥ min

{
0, λ− a dmax(B)

}
.
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C POLYNOMIAL-TIME CONVERGENCE

Our analysis builds on the concept of a linear minimization oracle (LMO), a standard tool in
conditional gradient methods. The LMO for a dictionary A is defined as follows:
Definition C.1 (LMO). The linear minimization oracle (LMO) of a dictionary A is a map OA(w)
that, for any vector w, returns an atom a ∈ A minimizing the inner product a⊤w.

To establish our convergence result, we make the following assumption:
Assumption C.2. The feasible set U is closed and convex, the atomic set A is bounded, and the
function ϕ(U) is convex and lower semi-continuous. Moreover, there exists an optimal solution
(U∗, {λ∗

i }i) of (5) and vectors z∗,n∗,g∗ satisfying

n∗ ∈ ∂IU (U
∗), sup

a∈A
a⊤z∗ ≤ µ0, g∗ ∈ ∂ϕ(U∗), 0 ∈ g∗ + z∗ + n∗. (68)

Under this assumption, we obtain the following result:
Theorem C.3. Under Assumption C.2, there exists an algorithm that returns an ϵ-approximate
solution of (5) in poly

(
1/ϵ
)

number of LMOs, proximal evaluations of ϕ, and orthogonal projections
onto U .

The proof of Theorem C.3 is provided in the following. This result also extends to (6) by replacing ϕ
with its composite form ϕ′ := ϕ+ µ1R. While this establishes the polynomial-time solvability of the
problem, the construction is primarily of theoretical interest and is not computationally efficient for
large-scale instances. In particular, solving (5) exactly in practice is challenging due to the additional
feasibility constraint U ∈ U . Although algorithms such as CoGEnT (Rao et al., 2015) efficiently
handle the unconstrained version of the problem, extending them to the constrained setting remains
an open question. To address these practical challenges, we turn to a scalable approach that operates
on the non-convex formulation of the problem with fixed number of atoms and provides reliable
performance in practice.

C.1 PROOF OF THEOREM C.3

For convenience, we first provide a brief overview of the proof techniques employed.

C.1.1 PROOF OVERVIEW

We cast the problem in (5) as a constrained atomic norm minimization, which we solve using a
tailored ADMM-based algorithm. This method decouples the atomic norm regularization from
additional structural constraints via a variable splitting strategy. To establish the complexity result,
we demonstrate that our problem meets the conditions required for standard ADMM convergence,
yielding an overall rate of O(1/T ).

C.1.2 CONSTRAINED ATOMIC NORM OPTIMIZATION (CANO)

We consider the following general constrained atomic norm optimization problem, referred to as
CANO:

min
x

f(x) subject to ∥x∥A ≤ τ, x ∈ X , (69)

where ∥ · ∥A is the atomic norm, and X ⊆ Rd is a closed and convex set encoding additional
constraints (e.g., feasibility constraints in (5)). This formulation introduces computational challenges
due to the coupling of a non-polyhedral norm and convex constraint sets.

C.1.3 CANO-ADMM ALGORITHM

To solve (69), we apply ADMM by introducing an auxiliary variable z and rewriting the problem as:

min
x,z

f(x) subject to x = z, ∥x∥A ≤ τ, z ∈ X . (70)

The augmented Lagrangian is defined as:

Lβ(x, z,λ) = f(x) + ⟨λ,x− z⟩+ β

2
∥x− z∥22, (71)
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where λ is the dual variable, and β > 0 is the penalty parameter. The ADMM updates proceed as
follows:

• Update x:

xt+1 = arg min
∥x∥A≤τ

f(x) + ⟨λt,x− zt⟩+
β

2
∥x− zt∥22. (72)

This step is solved using the CoGEnT algorithm (Rao et al., 2015), which is designed for atomic
norm-constrained problems.

• Update z:

zt+1 = argmin
z∈X

⟨λt,xt+1 − z⟩+ β

2
∥xt+1 − z∥22. (73)

This corresponds to projecting onto the set X , which is assumed to be tractable via a gradient-
projection update:

zt+1 = PX (zt + α(λt + β(xt+1 − zt))) ,

where α is a step size and PX denotes Euclidean projection onto X .
• Update λ:

λt+1 = λt + β(xt+1 − zt+1). (74)

C.1.4 CONVERGENCE GUARANTEES OF CANO-ADMM

The convergence of ADMM with a rate of O(1/T ) in objective residuals and constraint violations is
guaranteed under the following conditions:

1. f(x) is convex and has a Lipschitz-continuous gradient;
2. The constraint sets ∥x∥A ≤ τ and X are both closed and convex;
3. The subproblems are solvable to sufficient accuracy at each iteration.

Our setup satisfies all these assumptions:

• The function f(x) is convex and differentiable (e.g., it is the sum of a linear term and convex
node-wise losses);

• The atomic norm ball ∥x∥A ≤ τ is convex by definition, and X is assumed to be convex
and compact;

• The projection and LMO steps in CoGEnT are computationally tractable and converge
efficiently.

Hence, CANO−ADMM converges at a rate O(1/T ) in the number of iterations. As each iteration
requires a linear minimization oracle and projection operation, the overall runtime is polynomial in
1/ϵ, completing the proof of Theorem C.3.
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D DETAILS OF THE CADO ALGORITHM

This section provides the full implementation details of the CADO algorithm. We describe how the
embedding vectors and model parameters are updated using conditional gradient steps, relying on
problem-specific linear minimization oracles (LMOs). Each component is addressed in a separate
subsection, followed by the complete algorithm pseudo-code.

D.1 EMBEDDING UPDATE VIA CONDITIONAL GRADIENT

In this step, we update the embedding vectors {ēi}ri=1, which define the low-rank matrix L =∑
i ēiē

⊤
i , while keeping the class-wise models {θ̄i} fixed. The update is performed by solving the

following LMO:

arg min
{ēi}r

i=1

r∑
i=1

⟨∇ēiϕ, ēi⟩ (75)

s.t. L =
∑
i

ēiē
⊤
i ∈ B, θv =

∑
i

ϵ̄2i,vθ̄i ∈ Θ ∀v ∈ V,

where ϕ is the objective function from (4):

ϕ = −⟨Ā,L⟩+ µ
∑
v∈V

fv (zv; θv) .

Constraint simplification. We now simplify the constraints using the structure of L and θv . First,
the constraint L ∈ B requires: Lvv = 1 for all v, 0 ≤ Luv ≤ 1 for all u, v, and symmetry.

Given L =
∑

i ēiē
⊤
i , the diagonal condition Lvv = 1 becomes:

Lvv =
∑
i

ϵ̄2i,v = 1.

This implies that the vector ϵ̄v = (ϵ̄i,v)i lies on the unit sphere, and that:

θv =
∑
i

ϵ̄2i,vθ̄i

is a convex combination of class-wise models, hence satisfying θv ∈ Θ automatically. Also, under
this condition:

Luv =
∑
i

ϵ̄i,uϵ̄i,v ≤
√∑

i

ϵ̄2i,u ·
√∑

i

ϵ̄2i,v = 1,

and the upper bound constraint Luv ≤ 1 is also satisfied. The only remaining constraint is the
nonnegativity of Luv , which is equivalent to:

Luv =
∑
i

ϵ̄i,uϵ̄i,v ≥ 0.

Reparameterization. To simplify the optimization, we define: Wv,i := ϵ̄2i,v. Let W ∈ Rn×r

collect these squared embedding values. Under this reparameterization, the low-rank matrix becomes
L =

∑r
i=1

√
W:,i

√
W:,i

⊤
, and the node-specific models satisfy θv =

∑r
i=1 Wv,iθ̄i. The constraint

Lvv =
∑

i Wv,i = 1 together with Wv,i ≥ 0 implies that each row of W lies in the probability
simplex.

Thus, the LMO reduces to:

arg min
W∈Rn×r

−

〈
Ā,

r∑
i=1

√
W:,i

√
W:,i

⊤
〉

+ µ
∑
v∈V

fv

(
zv;

r∑
i=1

Wv,iθ̄i

)
(76)

s.t.
∑
i

Wv,i = 1, Wv,i ≥ 0 ∀v ∈ V.

We omit the non-negativity constraint L ≥ 0, as it is empirically satisfied due to the structure of Ā.
If needed, it can be enforced via ADMM.
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Gradient Computation. Let Rv =
∑

i Wv,iR̄i, πv =
∑

i Wv,iπ̄i. The gradient of the objective
in (76) with respect to Wv,i consists of:

• Structural term:
∂

∂Wv,i

(
−⟨Ā,L⟩

)
= −

∑
u∈V

Āu,v

√
Wu,i√
Wv,i

• Feature loss:
∂

∂Wv,i
ffeature(xv;Rv) =

1

m

(
−x⊤

v R
−1
v R̄iR

−1
v xv + Tr(R̄i)

)
• Label loss (training nodes only):

∂

∂Wv,i
flabel(ỹv;πv) = −π̄i,ỹv

Solution. The optimization in (76) is linear in each row Wv,: and constrained to the simplex.
Therefore, the optimal solution is a one-hot vector with 1 at the coordinate corresponding to the
minimum gradient value:

W̃v,i =

{
1, i = argminj ∇Wv,j

ϕ,

0, otherwise.
where

∇Wv,iϕ =
∂

∂Wv,i

(
−⟨Ā,L⟩

)
+ µ

∑
v∈V

∂

∂Wv,i
ffeature(xv;Rv) + µβ

∑
v∈Vtrain

∂

∂Wv,i
flabel(ỹv;πv)

Once W is computed, we recover embeddings via the following equations. Taking positive roots
preserves the symmetry and ensures non-negativity of L.

ϵ̄i,v =
√

Wv,i, ēi = (ϵ̄i,v)
n
v=1.

D.2 MODEL UPDATE VIA CONDITIONAL GRADIENT

Given the updated embedding vectors {ēi}ri=1, we update the class-wise models {θ̄i = (R̄i, π̄i)}ri=1
by solving one LMO over each atom. Specifically, each model parameter is updated via:

arg min
θ̄i∈Θ

〈
∇θ̄i

ϕ, θ̄i
〉
, ∀i ∈ {1, . . . , r}, (77)

where ϕ is the global objective from (4), and the embedding matrix W (with Wv,i = ϵ̄2i,v) is fixed.

Since each θ̄i consists of a feature model R̄i ∈ Sρ−,ρ+ and a label distribution π̄i ∈ ∆, the LMO
separates into two independent problems:

arg min
R̄i∈Sρ−,ρ+

〈
∇R̄i

ϕ, R̄i

〉
, (78)

arg min
π̄i∈∆

⟨∇π̄i
ϕ, π̄i⟩ . (79)

Gradient computation. Let Rv =
∑r

i=1 Wv,iR̄i and πv =
∑r

i=1 Wv,iπ̄i. Then, the gradients
are given by:

• Feature loss (all nodes):

∇R̄i
ϕ = µ

∑
v∈V

Wv,i · ∇Rv
ffeature(xv;Rv),

where
∇Rvffeature(xv;Rv) =

1

m

(
−R−1

v xvx
⊤
v R

−1
v + I

)
.

• Label loss (training nodes only):

∇π̄i
ϕ = µβ

∑
v∈Vtrain

Wv,i · ∇πv
flabel(ỹv;πv),

where
∇πv

flabel(ỹv;πv) = −eỹv

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Closed-form solutions. Both optimization problems admit closed-form solutions:

• Update for R̄i: The optimal solution to the linear minimization problem

arg min
R̄i∈Sρ−,ρ+

〈
∇R̄i

ϕ, R̄i

〉
,

is given by

R̄i = U diag(r1, . . . , rm)U⊤,

where ∇R̄i
ϕ = U diag(λ1, . . . , λm)U⊤ is the eigen-decomposition of the gradient, and

rk =


ρ− if λk > 0,

ρ+ if λk < 0,

any value in [ρ−, ρ+] if λk = 0.

• Update for π̄i: Since the objective is linear over the simplex, the solution is the vertex corre-
sponding to the smallest coordinate:

π̃i = ek⋆ , where k⋆ = argmin
k

[∇π̄i
ϕ]k .

These updates define the model step in each iteration of the CADO algorithm.

D.3 THE SPECIALIZED CADO ALGORITHM

We now summarize the complete CADO algorithm specialized for the node classification setting
studied in this paper. This algorithm solves the constrained atomic decomposition problem in (4)
using a conditional gradient approach, alternating between updating the embedding vectors {ēi} and
the class-wise models {θ̄i = (R̄i, π̄i)}.

Embedding step. In each iteration, the embedding update seeks a direction that reduces the global
objective ϕ while maintaining feasibility. To make this step efficient, we reparameterize the squared
embedding entries as Wv,i = ϵ̄2i,v , which allows us to enforce both the diagonal constraint on L and
the convexity condition on θv . The resulting LMO admits a closed-form solution: each row of W is
set to a one-hot vector in the direction of steepest descent.

Model step. Given the updated embeddings, the model parameters θ̄i = (R̄i, π̄i) are updated by
solving LMOs over the model space Θ = Sρ−,ρ+

×∆. The gradients of the global objective ϕ with
respect to both components are derived in closed form based on the structure of the loss functions.
These LMOs also admit simple solutions: the covariance matrix R̄i is updated by projecting the
negative gradient onto the spectral box, while the label distribution π̄i is updated by selecting the
coordinate with the smallest gradient value.

Alternating optimization. The algorithm alternates between these two steps, using a step size
γt =

2
t+2 at iteration t to compute convex combinations of the previous and newly computed atoms.

This ensures feasibility at all iterations and convergence under standard assumptions. The resulting
procedure is efficient, scalable, and compatible with a wide range of feature and label models.

Final algorithm. The complete specialized version of the CADO algorithm is presented in Algo-
rithm 2 below.
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Algorithm 2 CADO Algorithm (Specialized for our studied case in section 6.1)

1: Input: Number of atoms r, graph Ā, node data {zv}, step size sequence {γt = 2/t+2}
2: Initialize {ē(0)i ∈ U}ri=1, {θ̄(0)

i = (R̄
(0)
i , π̄

(0)
i ) ∈ Θ}ri=1

3: for t = 0, 1, 2, . . . until convergence do
4: // Embedding Update via Conditional Gradient
5: Compute W

(t)
v,i = ϵ̄

(t)2
i,v , and evaluate R

(t)
v ,π

(t)
v

6: Compute gradient ∇Wv,iϕ

7: Solve embedding LMO; set W̃ (t)
v,i = 1 at minimum coordinate, 0 elsewhere

8: Set ϵ̃(t)i,v =
√
W̃

(t)
v,i , and form ẽ

(t)
i = (ϵ̃

(t)
i,v)v

9: Update: ē(t+1)
i = (1− γt)ē

(t)
i + γtẽ

(t)
i

10: // Model Update via Conditional Gradient
11: Compute ∇R̄i

ϕ, ∇π̄iϕ using formulas in Appendix D.2
12: Solve model LMO; set

R̃
(t)
i = PSρ−,ρ+

(
−∇R̄i

ϕ
)
, π̃

(t)
i = ek⋆ , k⋆ = argmin

k
[∇π̄i

ϕ]k

13: Update:

R̄
(t+1)
i = (1− γt)R̄

(t)
i + γtR̃

(t)
i , π̄

(t+1)
i = (1− γt)π̄

(t)
i + γtπ̃

(t)
i

14: Return: {ē(T )
i }, {R̄(T )

i , π̄
(T )
i }
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Figure 3: Sensitivity analysis of the proposed method with respect to the weighting parameters βg , βf , and βl, which control the contribution of
the graph structure, feature information, and label information, respectively, in the overall optimization objective. We report top-1 classification
accuracy for three different configurations: Graph + Feature + Label (cyan), Graph + Feature (magenta), and Graph + Label (brown). Each plot
varies one parameter while keeping the others fixed at their default values.

E EXTENDED EXPERIMENTS

E.1 MODEL PARAMETER SENSITIVITY

We study the sensitivity of the model’s performance with respect to the weighting parameters βg,
βf , and βl, which control the influence of the graph term, feature term, and label term in our unified
objective. The results are presented in Figure. 3.

In the left panel, we vary βg, the weight of the graph term. When βg = 0, the model essentially
ignores the graph structure, which causes a significant drop in performance in the Graph + Label
configuration. However, the full model (Graph + Feature + Label) maintains high accuracy even
at βg = 0, indicating that feature and label information alone can provide a strong signal. As βg

increases, accuracy improves across all settings, but plateaus after βg ≈ 5, suggesting diminishing
returns from overly amplifying the graph signal.

In the center panel, we vary βf , the weight of the feature term. When βf = 0, the performance of
the Graph + Feature configuration drops sharply, as expected. Interestingly, the full model remains
relatively robust, highlighting the complementary strength of the graph and label terms. Very large
values of βf lead to performance degradation in some settings, possibly due to overfitting to noisy
feature dimensions.

In the right panel, we sweep βl, the weight of the label term. At βl = 0, the Graph + Label
configuration performs poorly due to the absence of label supervision. Again, the full model is
quite robust and achieves high accuracy even with limited label contribution. Increasing βl improves
performance, but too high values lead to minor declines, likely because the model overemphasizes
noisy or limited training labels.

Overall, these results confirm that our model is robust across a wide range of parameter choices
and demonstrates strong synergy when all sources of information—graph, features, and labels—are
integrated. The default values used in the main experiments strike a good balance across components.

E.2 DATA PARAMETER SENSITIVITY

Figure 4 investigates how the performance of our method changes as we vary key data generation
parameters, specifically the number of nodes n, feature dimension m, and the number of clusters c.

In the left panel, increasing the number of nodes significantly improves test accuracy across all
configurations, as larger graphs provide more structure and statistical signal. The full model (Graph
+ Feature + Label) consistently achieves the highest accuracy and converges quickly, even with a
moderate number of nodes. This highlights the data efficiency of our joint framework, particularly
when leveraging all available modalities.
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Figure 4: Effect of data parameters on node classification accuracy under different input configurations. Left: Accuracy versus total number of
nodes n. Center: Accuracy versus total feature dimension m. Right: Accuracy versus number of clusters c. Each line corresponds to a different
combination of information sources used: Graph, Feature, Label, or their combinations.

In the center panel, we vary the total feature dimension m, which includes both signal and noise
components. As m increases, performance generally decreases—especially for methods that rely
on features (e.g., Graph + Feature)—due to the increasing influence of noisy or uninformative
dimensions. However, the full model (cyan) remains relatively stable and outperforms all other
combinations, suggesting that combining features with graph structure and labels helps mitigate the
curse of dimensionality.

In the right panel, we increase the number of clusters c, making the classification problem more
challenging due to finer partitioning and weaker homophily. The performance of all configurations
drops, but the full model retains significantly higher accuracy. Notably, using graph-only or label-only
configurations fails beyond c ≈ 10, while feature-based and joint models scale more gracefully. This
result supports our theoretical findings: the integration of feature and label information compensates
for reduced graph separability as the number of communities increases.

Overall, this experiment confirms the importance of combining multiple modalities. It also demon-
strates the robustness of our approach across different data regimes, especially when individual
signals become weak or insufficient.
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