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Abstract—Opioid use disorder (OUD) is a significant global
health issue, leading to severe physiological and psychological
impacts and substantial societal costs. Current methods for
assessing opioid withdrawal, primarily relying on subjective
scales, suffer from limitations such as incomplete symptom cap-
ture, recall bias, and imprecision. Wearable sensor technologies
offer a promising alternative for objective assessment, with
previous studies demonstrating their ability to detect opioid
use and measure related physiological changes. In this study
we investigated the correlation between local cardio-mechanical
variability quantified using dynamic time warping (DTW) dis-
tances of seismocardiogram (SCG) signals and subjective opioid
withdrawal severity (SOWS) scores. In a 7-day in-patient protocol
for individuals with OUD (N = 13), we found a statistically
significant inverse correlation: shorter median DTW distances
and reduced variance in SCG signals were associated with
higher subjective withdrawal scores with statistically significant
differences between the highest withdrawal bin and the two
lowest bins (p=0.038 and p=0.044, respectively). Our results
suggests that local cardio-mechanical variability, as captured by
wearable sensors and analyzed with DTW, can serve as a valuable
indicator for quantifying opioid withdrawal severity, potentially
enabling more timely and effective preventive care.

I. INTRODUCTION

Opioid use disorder (OUD) is a detrimental disease of
drug abuse and addiction that greatly impacts an individual’s
physiological and psychological health. OUD results in im-
mense societal costs such as increased risks for crime, harms
to family cohesion, and negative impacts to employment and
economy [1]. In 2016, the Global Burden of Disease estimated
that 26.8 million people are living with OUD globally with
the majority of those affected in the United States [2]. Those
affected by OUD has continued to climb in recent years,
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Fig. 1. Full seven-day protocol. SOWS and wearable cardiac signals (con-
tinuous ECG, SCG, and PPG) were collected over a 7-day double-blind
study exploring effects of tcVNS vs. sham on patients with OUD. Signals
for analysis are taken for patients in a supine position. Four times each
day, tcVNS/sham stimulation and SOWS were administered. Days 2 and 3
consists of Biopac signal acquisition and blood draws during a neutral/opioid
cue stimuli protocol. In this analysis we focused on the relationship between
physiological and SOWS scores.

and will result in more than 700,000 drug-related deaths in
the United States by 2025 [3]. Continued opioid use leads
to physical tolerance and dependence, creating a feedback
loop where withdrawal, craving, and drug-liking derived from
opioids intensify health risks and can even result in death [4].
While medications and alternative treatments for OUD can
help lessen withdrawal symptoms and curb cravings, there
are currently few methods available to accurately assess or
quantify withdrawal, hindering our ability to deliver timely
and effective preventive care.

Current methods for assessing opioid withdrawal primar-
ily rely on opioid withdrawal scales, with the Clinical In-
stitute Narcotic Assessment (CINA), Clinical Opioid With-
drawal Scale (COWS), and Subjective Opioid Withdrawal
Scale (SOWS-Gossop) being the most common [5]. However,
these scales have significant limitations for both clinicians
and patients. Questionnaires and behavioral reports may not
capture all signs and symptoms [6]. Additionally, recall bias,



Fig. 2. Signal pre-processing pipeline. (A) The raw ECG signal is band-pass filtered between 0.5-50 Hz, while the SCG is filtered between 1-40 Hz. Key
R-peaks are then identified in the ECG, which serve as fiduciary markers to segment the continuous SCG waveform into discrete, beat-by-beat cycles. (B)
Pipeline for quantifying morphological changes in SCG heartbeats. First, a representative template heartbeat is created by averaging a moving window of 30
beats. The dynamic time warping (DTW) distance is then computed by measuring the similarity between this template and the local individual heartbeat. This
process is repeated continuously. The final output is a feature pair associated with a SOWS, consisting of the survey’s score and the median of all normalized
DTW distances calculated within the 60-minute window immediately prior to the survey.

memory retrieval difficulties, fatigue, distortion, and impre-
cision can compromise the effectiveness and accuracy of
lengthy withdrawal symptom questionnaires for both patients
and caregivers [7] [8].

Leveraging wearable sensor technologies offers an alterna-
tive approach to these limitations for monitoring withdrawal
symptoms while addressing the limitations of survey-based
methods. Sensors have demonstrated the ability to measure
symptoms like tremor, muscle aches, and anxiety, which are
common in opioid withdrawal [9] [10]. For instance, one study
with 30 participants used a wrist-based sensor to measure
electro-dermal activity (EDA), skin temperature, and motion
before and after opioid use, finding a significant increase
in temperature post-consumption [11]. Another study utilized
EDA, skin temperature, and accelerometer data from 30 partic-
ipants to detect opioid intake with 99% accuracy in a real-time
system [12]. Although these technologies appear promising for
detecting opioid use, they currently have limited data quanti-
fying the level of withdrawal symptoms and largely depend
on skin temperature as their most crucial feature, which may
not effectively capture crucial physiological details. Regulated
by the autonomic nervous system, the heart provides crucial
clinical information about sympathetic and parasympathetic
drive [13]. Therefore, analyzing cardio-mechincal signals and
their variability using dynamic time warping (DTW) distances
may provide further insights about autonomic function and
help in quantifying withdrawal symptoms for patients with
OUD.

In this study, we investigated a novel method for correlat-
ing DTW distances for seismocardiogram (SCG) signals dur-
ing 60-minute windows prior to measuring withdrawal severity
using the SOWS. The study cohort (N = 13), comprised
of patients suffering from OUD and acute withdrawal. We
found that the median DTW distance, calculated for each
individual SCG beat, is inversely correlated with SOWS,
where shorter distances and variances equated to higher sub-
jective withdrawal. This analysis demonstrates that cardio-
mechanical variability measured using SCG can enable real-
time intervention and assessment of withdrawal severity in the
future.

II. METHODS

A. Study Cohort and Protocol

As shown in Fig. 1, we collected data from 19 patients over
a 7-day period to observe the physiological and psychological
effects of transcutaneous cervical vagus nerve stimulation
(tcVNS) vs. sham stimulation during acute opioid withdrawal
in an in-patient clinical setting. Patients abstained from opioid
use approximately 24 hours prior to hospital admission. The
study protocol consisted of daily SOWS and tcVNS/sham
stimulation at four time points: morning, afternoon, evening
and night. A CardioTag (Cardiosense, Chicago, IL, USA)
device was worn by the patient to record continuous physio-
logical signals throughout the 7 days. Additionally, on days
2 and 3 of the study, we conducted neutral stimuli and
opioid cue exposure, respectively, during which we recorded



physiological signals and measured blood biomarkers. Out of
the 19 patients, 9 completed the entire 7-day protocol and 10
withdrew early. From 19 patients’ data, 5 were discarded due
to lack of data or SOWS surveys during analysis, and 1 was
excluded due to unusable data.

B. Cardiovascular Signal and SOWS Score Processing

During the entirety of the study, the CardioTag device
collected raw cardio-mechanical signals (i.e., SCG, electro-
cardiogram (ECG), and photoplethysmogram (PPG)). For this
analysis, we only focused on ECG and SCG signals. Fig. 2 (A)
outlines our signal processing pipeline, where ECG (0.5-50
Hz) and SCG (1-40 Hz) were band-pass filtered prior to ECG
R-peak segmentation of SCG signals [14]. Additionally, using
tri-axial accelerometry data measured by the CardioTag, we
estimated trunk angle using a prior algorithm from our group
[15]. To address variability during movement and standing
positions, we isolate supine periods and kept all portions where
trunk angle exceeded 60°. SOWS scores were normalized on
a 0 to 1 scale on a per-subject basis. This is to account for
the intra-subject variability and ranges in withdrawal severity.

C. Dynamic Time Warping Calculations

We calculated beat-specific signal quality scores by lever-
aging DTW. DTW is a method of estimating the distance
between two signals that are stretched or warped [16]. Useful
in quantifying cardio-mechanical variability, DTW has prece-
dence in classifying ECG segments using a reference template
[17]–[19] and SCG signal quality assessments [20], [21]. As
illustrated in Fig. 2 (B), a DTW template was used for each
local SCG heartbeat by averaging the local beats around it
with a window size of 30 beats. Rolling windows captured
local signal morphology changes and periods of instability
over time. Additionally, analyzing a 30-beat segment made
measurements less sensitive to noise from a single anomalous
beat. Using the fastdtw package in Python, we computed the
DTW distance value between each local beat and the template
formed by the ensemble average of the 30-beat local window.

For each SOWS measurement, the DTW distance scores
from the 60 minutes immediately prior were aggregated for
analysis. Only DTW distances calculated when the participant
was in a supine position, as indicated by a trunk angle greater
than 60°, were included in the dataset. Within each 60-minute
segment, outliers were removed from the non-parametric data
using the Inter-quartile Range (IQR) method. The resulting
data was then grouped into five bins based on the relative
SOWS score. The final feature pair used for analysis consisted
of the SOWS score and the median of the DTW distances from
the corresponding 60-minute windows. To assess statistical
significance, a Wilcoxon rank sum test was calculated for
DTW distances between each combination of SOWS bins with
Bonferroni corrected p-values.

III. RESULTS

The Fig. 3 box-plot illustrates a negative correlation be-
tween median DTW distances and binned SOWS scores, with

Fig. 3. Box-plot showing the average median DTW distances for 60 minutes
of data prior to each normalized SOWS score across all patients. Top indicates
significant Bonferroni corrected p-values (0.038, 0.044) for associated SOWS
bins (0-0.2 to 0.8-1.0, 0.2-0.4 to 0.8-1.0).

the average median DTW distance and variance decreasing
with increasing SOWS score. Table I also shows mean, stan-
dard deviation, median, and IQR of DTW distances decreasing
across increasing SOWS severity. For median DTW values, a
non-parametric Wilcoxon rank sum test found statistical sig-
nificance when comparing the lowest SOWS score bins (0.0-
0.2 and 0.2-0.4) to the highest bin (0.8-1.0), with Bonferroni
corrected p-values of 0.038 and 0.044, respectively.

IV. DISCUSSION AND CONCLUSION

The analysis of 13 patients with OUD found a statistically
significant inverse correlation between the morphology of
the SCG signal, as measured by DTW distances, and the
SOWS. As withdrawal symptoms intensify, the beat-to-beat
morphological variability of the SCG signal decreased. These
reduced DTW distances and tighter variances at higher with-
drawal scores suggest a state of diminished cardio-mechanical
variability. This finding could indicate that increased stress
from opioid withdrawal leads to more uniform and rigid
cardiac activity.

Despite its strengths, this study is not without limitations.
First, while data was collected continuously over a seven-
day period, the analysis was conducted on a relatively small

TABLE I
SOWS BINNED DATA SUMMARY

SOWS Count Mean ± Std Median Min Max IQR
0-0.2 78 0.32 ± 0.22 0.287 0.030 1.000 0.310

0.2-0.4 58 0.31 ± 0.21 0.222 0.071 0.961 0.324
0.4-0.6 60 0.27 ± 0.19 0.216 0.009 0.794 0.253
0.6-0.8 49 0.24 ± 0.14 0.207 0.000 0.586 0.172
0.8-1.0 31 0.19 ± 0.12 0.139 0.007 0.471 0.163



number of patients (N = 13). Furthermore, this analysis was
limited to data collected under controlled conditions, using
signals only from when patients were in a supine position
within an inpatient clinical setting. Finally, the study protocol
was designed with the analysis of tcVNS/sham stimulation as
a primary objective. Although the current analysis appears in-
dependent, future work should investigate how this stimulation
may have affected the results.

Future research can build upon this study in several key
directions. As data collection is ongoing, a larger cohort can
be incorporated into the analysis. To assess the method’s
real-world applicability, future studies should explore data
from different environments and from body positions other
than supine. The analysis could be expanded to incorporate
other cardiac signals collected by the CardioTag device, such
as the photoplethysmogram (PPG), and utilize alternative
methods like spectral analysis. A more granular approach
to the withdrawal scale could also be taken; instead of
using the total SOWS score, future work could categorize
the questions to determine which specific symptoms most
impact the physiological data. Additionally, there is room for
algorithm refinement, such as experimenting with different
DTW templates by adjusting the 30-beat averaging window or
modifying the 60-minute time period used to associate DTW
values with SOWS scores. Finally, fundamental studies are
needed to provide deeper insight into why cardio-mechanical
variability decreases during withdrawal, which would advance
the physiological understanding of the condition.

Because OUD is a time-sensitive disease, it is increasingly
important to investigate how remote technologies can replace
traditional withdrawal scales and surveys. When withdrawal
symptoms are not monitored or addressed effectively, this can
lead to relapse and increase the potential for deadly overdoses.
This analysis highlights an underexplored method of quanti-
fying withdrawal symptoms using low-cost wearable sensors,
which offers the potential for timely medication adjustments
and preventative care for OUD.

V. DISCLOSURES

O. T. Inan is a co-founder and board member of Car-
diosense, Inc., the company that manufactures CardioTag, and
has equity ownership in that company. He also holds equity
in Physiowave and Biozen.

REFERENCES

[1] J. Strang, N. D. Volkow, L. Degenhardt, M. Hickman, K. Johnson, G. F.
Koob, B. D. L. Marshall, M. Tyndall, and S. L. Walsh, “Opioid use
disorder,” Nature Reviews Disease Primers, vol. 6, p. 3, Jan. 2020.
Publisher: Nature Publishing Group.

[2] T. Vos and et al., “Global, regional, and national incidence, prevalence,
and years lived with disability for 328 diseases and injuries for 195
countries, 1990–2016: a systematic analysis for the Global Burden of
Disease Study 2016,” The Lancet, vol. 390, pp. 1211–1259, Sept. 2017.
Publisher: Elsevier.

[3] Q. Chen, M. R. Larochelle, D. T. Weaver, A. P. Lietz, P. P. Mueller,
S. Mercaldo, S. E. Wakeman, K. A. Freedberg, T. J. Raphel, A. B.
Knudsen, P. V. Pandharipande, and J. Chhatwal, “Prevention of Pre-
scription Opioid Misuse and Projected Overdose Deaths in the United
States,” JAMA network open, vol. 2, p. e187621, Feb. 2019.

[4] J. Kakko, H. Alho, A. Baldacchino, R. Molina, F. A. Nava, and
G. Shaya, “Craving in Opioid Use Disorder: From Neurobiology to
Clinical Practice,” Frontiers in Psychiatry, vol. 10, p. 592, Aug. 2019.

[5] J. K. Nuamah, F. Sasangohar, M. Erraguntla, and R. K. Mehta, “The past,
present and future of opioid withdrawal assessment: a scoping review
of scales and technologies,” BMC Medical Informatics and Decision
Making, vol. 19, p. 113, June 2019.

[6] S. Shiffman, A. A. Stone, and M. R. Hufford, “Ecological momentary
assessment,” Annual Review of Clinical Psychology, vol. 4, pp. 1–32,
2008.

[7] S. M. Fishman, B. Wilsey, J. Yang, G. M. Reisfield, T. B. Bandman, and
D. Borsook, “Adherence monitoring and drug surveillance in chronic
opioid therapy,” Journal of Pain and Symptom Management, vol. 20,
pp. 293–307, Oct. 2000.

[8] S. Rolstad, J. Adler, and A. Rydén, “Response burden and questionnaire
length: is shorter better? A review and meta-analysis,” Value in Health:
The Journal of the International Society for Pharmacoeconomics and
Outcomes Research, vol. 14, pp. 1101–1108, Dec. 2011.

[9] R. Treister, M. Kliger, G. Zuckerman, I. G. Aryeh, and E. Eisenberg,
“Differentiating between heat pain intensities: the combined effect of
multiple autonomic parameters,” Pain, vol. 153, pp. 1807–1814, Sept.
2012.

[10] L. E. Rosebrock, D. Hoxha, C. Norris, J. T. Cacioppo, and J. K.
Gollan, “Skin conductance and subjective arousal in anxiety, depres-
sion, and comorbidity: Implications for affective reactivity,” Journal of
Psychophysiology, vol. 31, no. 4, pp. 145–157, 2017. Place: Germany
Publisher: Hogrefe Publishing.

[11] S. Carreiro, K. Wittbold, P. Indic, H. Fang, J. Zhang, and E. W. Boyer,
“Wearable Biosensors to Detect Physiologic Change During Opioid
Use,” Journal of Medical Toxicology, vol. 12, pp. 255–262, Sept. 2016.

[12] M. S. Mahmud, H. Fang, H. Wang, S. Carreiro, and E. Boyer, “Au-
tomatic Detection of Opioid Intake Using Wearable Biosensor,” Inter-
national Conference on Computing, Networking, and Communications :
[proceedings]. International Conference on Computing, Networking and
Communications, vol. 2018, pp. 784–788, Mar. 2018.

[13] O. T. Inan, P.-F. Migeotte, K.-S. Park, M. Etemadi, K. Tavako-
lian, R. Casanella, J. Zanetti, J. Tank, I. Funtova, G. K. Prisk, and
M. Di Rienzo, “Ballistocardiography and Seismocardiography: A Re-
view of Recent Advances,” IEEE Journal of Biomedical and Health
Informatics, vol. 19, pp. 1414–1427, July 2015. Conference Name:
IEEE Journal of Biomedical and Health Informatics.

[14] J. A. Berkebile, A. H. Gazi, M. Chan, T. D. Albarran, C. J. Rozell,
O. T. Inan, and P. A. Beach, “Remote Monitoring of Cardiovascular
Autonomic Dysfunction in Synucleinopathies With a Wearable Chest
Patch,” IEEE Sensors Journal, vol. 25, pp. 7250–7262, Feb. 2025.

[15] J. A. Berkebile, O. T. Inan, and P. A. Beach, “Evaluating Orthostatic Re-
sponses with Wearable Chest-Based Photoplethysmography in Patients
with Parkinson’s Disease,” in 2023 IEEE SENSORS, pp. 1–4, Oct. 2023.
ISSN: 2168-9229.

[16] D. J. Berndt and J. Clifford, “Using Dynamic Time Warping to Find
Patterns in Time Series,”

[17] B. Huang and W. Kinsner, “ECG frame classification using dynamic time
warping,” in IEEE CCECE2002. Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings (Cat. No.02CH37373),
vol. 2, pp. 1105–1110 vol.2, May 2002. ISSN: 0840-7789.

[18] B. S. Raghavendra, D. Bera, A. S. Bopardikar, and R. Narayanan,
“Cardiac arrhythmia detection using dynamic time warping of ECG
beats in e-healthcare systems,” in 2011 IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks, pp. 1–6, June
2011.

[19] Q. Li and G. D. Clifford, “Dynamic time warping and machine learning
for signal quality assessment of pulsatile signals,” Physiological Mea-
surement, vol. 33, p. 1491, Aug. 2012. Publisher: IOP Publishing.

[20] J. P. Kimball, J. S. Zia, S. An, C. Rolfes, J.-O. Hahn, M. N. Sawka, and
O. T. Inan, “Unifying the Estimation of Blood Volume Decompensation
Status in a Porcine Model of Relative and Absolute Hypovolemia Via
Wearable Sensing,” IEEE Journal of Biomedical and Health Informatics,
vol. 25, pp. 3351–3360, Sept. 2021. Conference Name: IEEE Journal
of Biomedical and Health Informatics.

[21] A. Q. Javaid, H. Ashouri, A. Dorier, M. Etemadi, J. A. Heller, S. Roy,
and O. T. Inan, “Quantifying and Reducing Motion Artifacts in Wearable
Seismocardiogram Measurements During Walking to Assess Left Ven-
tricular Health,” IEEE Transactions on Biomedical Engineering, vol. 64,
pp. 1277–1286, June 2017.


