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ABSTRACT

We present a theoretical framework for constructing invariant and equivariant neu-
ral network architectures based on polarization methods from classical invariant
theory. Existing approaches to enforcing symmetries in machine learning models
often rely on explicit knowledge of the invariant ring of a group action, which is
computationally demanding or intractable for many groups. Our framework lever-
ages polarization to generate separating sets of invariant polynomials on high-
dimensional group representations from those of lower-dimensional ones. We es-
tablish conditions under which separating sets can be obtained via standard, sim-
ple, or cheap polarization and demonstrate how these results can be combined with
recent advances on separating families to yield small, expressive sets of invari-
ants. This construction ensures universal approximation of continuous invariant
functions while reducing computational complexity. We further discuss the impli-
cations for designing scalable invariant and equivariant architectures and identify
settings where polarization provides a practical advantage, particularly for high-
dimensional representations of finite groups.

1 INTRODUCTION

Enforcing symmetries in neural network architectures has been shown to improve their performance,
generalization capabilities, and data efficiency across various applications. These symmetries are
in general expressed as invariance or equivariance of the network with respect to the action of a
group on the input data. Methods to construct invariant and equivariant architectures include the use
group convolutions (Cohen & Welling, 2016; Cohen et al., 2018) or the use of explicit invariant and
equivariant functions (Zaheer et al., 2017; Maron et al., 2018; Kondor & Trivedi, 2018; nathaniel
thomas et al., 2018; Satorras et al., 2021; Simeon & De Fabritiis, 2023; Deng et al., 2021). Although
these methods have been successfully applied to a variety of problems, they often rely on the specific
knowledge of the group action and the resulting ring of invariant polynomials it induces. While
these rings are well characterized for some common groups, such as the symmetric group or the
orthogonal group, they can be difficult to determine for other groups. In this paper, we introduce
a theoretical framework based on polarization methods from invariant theory to construct invariant
and equivariant architectures for high-dimensional representations of a group from low-dimensional
ones. This framework is applicable when the high-dimensional representation can be decomposed
as a direct sum of smaller representations on which the group acts diagonally. We show that under
certain conditions, a set of polynomials that separates orbits in the high-dimensional representation
can be obtained by polarization from a separating set of polynomials on a smaller representation.
Since separating sets are known to be easier to compute and smaller in size than generating sets, this
result provides a practical way to construct invariant functions that are guaranteed to be sufficiently
expressive to approximate any continuous invariant function. The proof we provide only assume
that the group is compact and that the representation is real or complex, making it applicable to a
wide range of problems. We structure the rest of the paper as follows. In Section 2, we provide the
necessary background on group actions, invariant polynomials, and separating sets. In Section 3,
we introduce polarization methods and show how they can be used to construct separating sets of
invariant polynomials, formulating several results regarding the generation of separating families of
invariant polynomials. In Section 4, we discuss how polarization can be used to construct invariant
architectures and what cases are most suitable for practical applications. Finally, in Section 5, we
summarize our contributions and discuss future research directions.
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2 INVARIANT POLYNOMIALS FOR FUNCTION APPROXIMATION

2.1 GROUP THEORY

2.1.1 GROUP ACTIONS AND REPRESENTATIONS

Let V be a vector space of finite dimension over the field K (either R or C) and G a compact group
acting linearly on V via the action ρV , which is a group homomorphism from G to GL(V ), the
group of invertible linear transformations on V . We say that V is a representation of G, or a G-
representation. V is said to be irreducible if it does not contain any proper subspace that is stable
under the action of G. According to Maschke’s theorem, any representation of a finite group can
be decomposed as a direct sum of irreducible representations, and this result is known to extend to
compact groups as well. Additionally, for finite groups, there is only a finite number of irreducible
representations up to isomorphism.

2.1.2 INVARIANCE AND EQUIVARIANCE

For any function f : V 7→ K, we say that f is invariant with respect to the action of G if f ◦ρV = f ,
that is

f(ρV (g)(v)) = f(v), ∀g ∈ G,∀v ∈ V. (1)

This concept can be generalized to the notion of equivariance. For a function f : V 7→ W , where W
is another vector space with a linear action ρW of G, we say that f is equivariant with respect to the
action of G if f ◦ ρV = ρW ◦ f . The case of invariance can be seen as a special case of equivariance
by considering the trivial action of G on K defined by ρK(g)(λ) = λ for all g ∈ G and λ ∈ K.

2.1.3 THE RING OF INVARIANT POLYNOMIALS

Let K[V ] be the symmetric algebra of V ∗, the dual space of V . K[V ] can be identified with the
polynomials on V by choosing a basis (x1, . . . , xd) of V ∗ that form the indeterminates. We denote
by K[V ]G the subalgebra of K[V ] consisting of G-invariant polynomials. It is known from the
finiteness theorem of Hilbert (1890) that K[V ]G is finitely generated as an algebra, i.e. there exists
a finite set of invariant polynomials p1, . . . , pn such that any invariant polynomial p ∈ K[V ]G can
be expressed as a polynomial in p1, . . . , pn. In addition, K[V ]G can be obtained from K[V ] via the
Reynolds operator, which is the surjective map RG : K[V ] 7→ K[V ]G defined by

RG(p) =

∫
G

p ◦ ρV (g)dµ(g), (2)

where µ is the Haar measure on G.

2.1.4 APPROXIMATION OF INVARIANT FUNCTIONS BY INVARIANT POLYNOMIALS

The Stone-Weierstrass theorem can be used to prove that invariant polynomials are dense in the
space of continuous invariant functions with compact support, with respect to the supremum norm.
Such a proof relies on the Reynolds operator to construct invariant polynomials that approximate
any continuous invariant function. This procedure, when paired with Hilbert’s finiteness theorem,
provides a constructive way to approximate any continuous invariant function from a finite number
of invariant polynomials.

For finite groups, the degree bounds given by Noether (1915) ensure that K[V ]G admits a generating
set of invariant polynomials of degree at most |G|, which can be computed using the Reynolds oper-
ator applied to the monomials of degree up to |G|. This bound is known to be tight for certain group
actions. Unfortunately, the search for generators of K[V ]G is known to be a computationally hard
problem given the exponential scaling of the number of polynomials to search given by Noether’s
bound. For infinite groups, the situation can be more complex, and the degree of the generators can
be arbitrarily large. For this reason, neural network architectures that enforce invariance or equivari-
ance for infinite groups often rely on the known characterization of the set of invariants of the most
common groups. For example, the action of the orthogonal group O(m) on Rm×n results in a ring
of polynomials generated by the inner products of the columns of the input matrix (Weyl, 1946),
which is the basis for multiple invariant architectures for point clouds (Qi et al., 2017; Li et al.,
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2018; Zhang et al., 2019). An overview of existing computational methods for finding generators of
K[V ]G can be found in Derksen & Kemper (2015).

2.1.5 SEPARATING SETS OF INVARIANT POLYNOMIALS

Recently, promising theoretical approaches on the universality properties of invariant and equivariant
architectures have forgone the use of generating sets of polynomials and have instead considered
separating sets of polynomials, which can be defined as follows. A set of invariant polynomials
{p1, . . . , pn} ⊂ K[V ]G is said to be a separating set if for any two vectors v1,v2 ∈ V such that
pi(v1) = pi(v2) for all i = 1, . . . , n, there exists a group element g ∈ G such that v2 = ρV (g)(v1).
Separating sets are particularly important for universality results, as they can be used to construct
invariant architectures that can approximate any continuous invariant function with compact support,
as shown by Azizian & marc lelarge (2021). Separating sets are also known to be easier to compute
than generating sets and to be smaller in size. In addition, the technique of polarization, which we
introduce in the next section, can be used to construct separating sets of invariant polynomials on
high-dimensional representation that can be represented as direct sums of smaller spaces on which
a group acts diagonally.

2.1.6 A NOTE ON EQUIVARIANCE

The concept of invariant polynomials extends naturally to equivariant polynomials. For V and W
two G-representations, the set of equivariant polynomials from V to W , denoted by Mor[V,W ]G,
is defined as the set of polynomial maps f : V 7→ W such that f ◦ ρV = ρW ◦ f . It is known that
Mor[V,W ]G is a finitely generated module over the ring K[V ]G, meaning that there exists a finite
set of equivariant polynomials f1, . . . , fn ∈ Mor[V,W ]G such that any equivariant polynomial
f ∈ Mor[V,W ]G can be expressed as

f =

n∑
i=1

pifi, (3)

where pi ∈ K[V ]G for all i = 1, . . . , n. For this reason, the construction of equivariant architectures
is typically achieved by combining invariant nonlinear functions with known equivariant functions,
such as linear equivariant layers or equivariant polynomials (nathaniel thomas et al., 2018; Anderson
et al., 2019).

We note that the theoretical results that we apply to invariant polynomials in the next section can
be extended to equivariant polynomials as well. To do so, it is enough to realize Mor[V,W ]G

corresponds to the invariant polynomials with variables in V ×W ∗ that have degree in W ∗ equal to
one. For the details of this construction, we refer the reader to Section 4.2.3 of Derksen & Kemper
(2015).

3 POLARIZATION METHODS FOR SEPARATING SETS OF INVARIANT
POLYNOMIALS

3.1 POLARIZATION

3.1.1 POLARIZATION DEFINITION

We now introduce the concept of polarization, as well as the closely related concepts of simple and
cheap polarization. Keeping the notations V and W for vector spaces on which G acts linearly,
we denote by V n the direct sum of n copies of V . Given integers m and n, polarization produces
polynomials in K[V n⊕W ] from polynomials in K[V m⊕W ] in the following way. Introducing the
indeterminates {Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, for every (v1, . . . ,vn) ∈ V n and w ∈ W , we can
write

f

 n∑
j=1

X1jvj , . . . ,

n∑
j=1

Xmjvj ,w

 =
∑

α∈Nm×n

fα(v1, . . . ,vn,w)Xα, (4)

where α = (α11, . . . , αmn) is a multi-index, Xα = Xα11
11 . . . Xαmn

mn and fα ∈ K[V n ⊕ W ]. For
S ⊂ K[V m ⊕W ], the polarization of S to n copies of V is defined as the set

poln S =
{
fα | f ∈ S,α ∈ Nn×d

}
⊂ K[V n ⊕W ]. (5)

3
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Note that if S is finite, poln S is also finite since there are only a finite number of non-zero fα
polynomials for each f ∈ S. If f ∈ K[V m ⊕ W ]G, then clearly, fα ∈ K[V n ⊕ W ]G for all
α ∈ Nn×d, which implies that if S ⊂ K[V m ⊕W ]G, poln S ⊂ K[V n ⊕W ]G. In addition, if f is
homogeneous, the degree of the non-zero fα polynomials is the same as the degree of f .

3.1.2 POLARIZATION FOR GENERATING AND SEPARATING SETS

By Weyl’s theorem, if m ≥ min(n, dim (V )), a generating set of K[V n ⊕W ]G can be obtained by
polarization from a generating set of K[V m ⊕W ]G (Kraft & Procesi, 1996). Draisma et al. (2008)
extended this result to separating sets, showing that under the same conditions, a separating set of
K[V n ⊕W ]G can be obtained by polarization from a separating set of K[V m ⊕W ]G.

3.1.3 POLARIZATION VARIANTS

For m ≥ dim (V ) + 1, an even simpler procedure named simple polarization is given by Domokos
(2007). For S ⊂ K[V m ⊕W ]G, the simple polarization of S to n copies of V , defined for n ≥ m,
is the set

polsimple
n S =

{
f ◦ π(i1,...,im) | f ∈ S, 1 ≤ i1 < . . . < im ≤ n

}
⊂ K[V n ⊕W ]G, (6)

where π(i1,...,im) : V
n ⊕W 7→ V m ⊕W is the projection onto the components i1, . . . , im of V n.

The author of simple polarization proved that if S ⊂ K[V m⊕W ]G is a separating set, then polsimple
n S

is a separating set of K[V n ⊕W ]G.

Draisma et al. (2008) also introduced a variant of polarization called cheap polarization, which only
relies on a single indeterminate a and on polynomials of K[V ⊕W ] (instead of K[V m ⊕W ]). This
procedure is defined similarly to polarization, by expanding homogeneous polynomials f of degree
d into

f

 n∑
j=1

aj−1vj ,w

 =

d·(n−1)∑
k=0

fk(v1, . . . ,vn,w)ak, (7)

The cheap polarization of S ⊂ K[V m ⊕W ] to n copies of V is defined as the set

polcheap
n S = {fk | f ∈ S, 0 ≤ k ≤ d · (n− 1)} ⊂ K[V n ⊕W ]. (8)

Unlike polarization and simple polarization, cheap polarization requires that G be a finite group for
separation to carry over. In this case, it is enough to set m = 1, such that if S is a separating set of
K[V ⊕W ]G, then polcheap

n S is a separating set of K[V n ⊕W ]G.

The fact that all three polarization methods are defined with W as an additional representation of
G allows us to recursively create separating sets of invariant polynomials on G-representations V ,
decomposed as

V = V n1
1 ⊕ V n2

2 ⊕ · · · ⊕ V nk

k , (9)

by successive polarizations from a separating set of invariant polynomials on V m1
1 ⊕ V m2

2 ⊕ · · · ⊕
V mk

k , where mi ≥ min(ni, dim (Vi)) for polarization, mi ≥ dim (Vi) + 1 for simple polarization,
and mi ≥ 1 for cheap polarization. For S ⊂ K[V m1

1 ⊕ V m2
2 ⊕ · · · ⊕ V mk

k ]G, we therefore define

poln1,n2,...,nk
S = polnk

. . . poln2
poln1

S, (10)

where each polni
operator is applied to the V mi

i component of its input. polsimple
n1,n2,...,nk

S and
polcheap

n1,n2,...,nk
S are defined similarly.

3.1.4 LIMITATIONS AND PRACTICAL CONSIDERATIONS

Given the constructive nature of polarization, the set poln S can be computed explicitly from S
using equation 4. This is done by expanding each monomial of f in the indeterminates {xij}
and collecting terms with equal powers of the xij’s, which requires computing nd terms for each
monomial of degree d. It is clear that even for relatively low degrees of invariant polynomials, the
number of terms to consider becomes quickly intractable as n increases, even if the determination
of poln S for the purpose of constructing invariant architectures needs to be done only once. In the
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case of polsimple
n S, the separating set is given explicitly, but still includes a relatively large number

of polynomials, equal to |S|
(
n
m

)
, which is asymptotically equivalent to |S|nm for large n. Including

polsimple
n S in an invariant architecture would therefore require computing and storing a very large

number of features and present a serious bottleneck for most practical application. The case of cheap
polarization is much more manageable, as the number of polynomials in polcheap

n S scales linearly
with n. The fact that cheap polarization is applicable to finite groups only also ensures that d is
bounded by |G| when S is a generating set of K[V ]G. However, the restriction to finite groups
means that many problems of interest, such as the action of the orthogonal group on point clouds,
cannot be addressed using cheap polarization.

On the bright side, the large number of polynomials produced by polarization and simple polariza-
tion does not mean that all these polynomials are necessary for separating orbits. In fact, cardinality
bounds on separating sets suggest that both poln S and polsimple

n S are excessively large for the single
purpose of separation as n grows. Indeed, if K is algebraically closed, a separating set of size at most
2dim (V ) + 1 always exists for K[V ]G, as proven by Dufresne (2008). This proof is constructive
and therefore provides a method to obtain such a small separating set from any separating set. This
result, which is directly applicable to C, can also be adapted to R by considering the complexifica-
tion of V and G, leading to a higher bound on the size of a separating set. However, we note that
methods to construct a small separating set from a given separating set are of limited utility if an
original large set needs to be computed first.

3.2 SMALL SEPARATING SETS FROM SEPARATING FAMILIES OF INVARIANT POLYNOMIALS

Recently, Dym & Gortler (2025) proved a result that can be conveniently combined with any po-
larization method to obtain small separating sets of invariant polynomials, without requiring the
computation of a large separating set. While their result relies on a hypothesis of strong separability
for families of semi-algebraic functions, it can be simplified to a weaker statement in the context of
this paper. We first introduce the concept of a separating family of invariant polynomials.
Definition 1. Let V be a G-representation over R and p a positive integer. A family of functions
φ ∈ R[V × Rp] is said to be separating if for any two vectors v1,v2 ∈ V in different orbits, there
exists λ ∈ Rp such that φ(v1,λ) ̸= f(v2,λ).

Using this definition, we can state the following theorem.
Theorem 1. Let V be a G-representation of dimension d over R and p a positive integer. If
φ ∈ R[V × Rp] is a separating family of invariant polynomials, then there are 2d + 1 parame-
ters λ1, . . . ,λ2d+1 ∈ Rp such that the set

S = {φ(·,λi) | i = 1, . . . , 2d+ 1} ⊂ R[V ]G (11)

is a separating set of R[V ]G.

The proof of this theorem is an elementary consequence of the Theorem 2.7 of Dym & Gortler
(2025) and is given in Appendix 6.1.

3.3 LEARNED POLARIZATION FOR SMALL SEPARATING SETS

We now show how Theorem 1 can be combined with polarization methods to obtain small separating
sets of invariant polynomials from an irreducible decomposition of V , given by

V = V n1
1 ⊕ V n2

2 ⊕ · · · ⊕ V nk

k . (12)

We write d = dim (V ) =
∑k

i=1 nidim (Vi). For S ⊂ K[V m1
1 ⊕ V m2

2 ⊕ · · · ⊕ V mk

k ]G finite, with
m1, . . . ,mk some integers, we denote by s = |S| the size of S and write f1, . . . , fs its elements. For
v ∈ V , we denote by vi the component of v in V ni

i and vij the j-th component of vi in Vi.

3.3.1 STANDARD POLARIZATION

We start with the case of standard polarization. Let φS be the map defined by

φS :
V ×Ks×Km1×n1×· · ·×Kmk×nk → K
(v , λ , X1 , . . . , Xk) 7→

∑s
j=1 λjfj (X1v1, . . . ,Xkvk) ,

(13)

5
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where Xivi is in V mi
i and whose j-th component for j = 1, . . . ,mi is equal to

∑ni

l=1 Xijlvil ∈ Vi.
Proposition 1. For every i = 1, . . . , k, assume mi ≥ min(ni, dim (Vi)). Assume S is a separating
set. Then, φS defined by equation 13 is a separating family of invariant polynomials of K[V ]G.

The main idea behind the proof starts from equation 5. It consists in realizing that each individual
polynomial fα on the right-hand side of this equation can be obtained by a linear combination
of multiple f ’s evaluations where the indeterminate X is substituted by appropriate values. This
construction is a classical result in interpolation theory based on the use of a Vandermonde matrix.
The proof is given in Appendix 6.2.

Using Proposition 1 and Theorem 1, we can now conclude that there are 2d + 1 parameters wi ∈
Ks ×Km1×n1 × · · · ×Kmk×nk , i = 1, . . . , 2d+ 1, such that the set

S′ = {φS(·,wi) | i = 1, . . . , 2d+ 1} ⊂ K[V ]G (14)

is a separating set of K[V ]G.

3.3.2 SIMPLE POLARIZATION

The case of simple polarization is very similar and relies on the same φS.
Proposition 2. For every i = 1, . . . , k, assume mi ≥ dim (Vi)+ 1. If S is a separating set, then, φS
defined by equation 13 is a separating family of invariant polynomials of K[V ]G.

Note that Proposition 1 implies 2, since dimVi + 1 > min(n1,dimV ). However, we provide a
simple proof that does not rely on Proposition 1.

Proof. It is easy to see that the parameters Xi can be chosen such that Xivi is equal to any pro-
jection of vi onto mi components. Then, setting λ as the vector with 1 at the j-th position and
0 elsewhere, we obtain that φS(·,λ,X1, . . . ,Xk) is equal to fj evaluated at any desired pro-
jection of v onto V m1

1 ⊕ V m2
2 ⊕ · · · ⊕ V mk

k . Therefore, polsimple
n1,n2,...,nk

S ⊂ {φS(·,w) | w ∈
Ks ×Km1×n1 × · · ·×Kmk×nk}. Since S is separating, polsimple

n1,n2,...,nk
S is separating, and therefore

φS is a separating family.

3.3.3 CHEAP POLARIZATION

For cheap polarization, the number of parameters involved in the definition of φ is significantly
reduced, given that only one indeterminate is used in equation 7. We make the additional assumption
that mi = 1 for all i = 1, . . . , k. φcheap

S is then defined as

φcheap
S :

V ×Ks×K → K
(v , λ , a) 7→

∑s
j=1 λjfj

(∑n1

l=1 a
l−1
j v1l, . . . ,

∑nk

l=1 a
l−1
j vkl

)
.

(15)

Proposition 3. For every i = 1, . . . , k, assume mi = 1 and that G is a finite group. If S is a
separating set, then, φcheap

S defined by equation 15 is a separating family of invariant polynomials of
K[V ]G.

The proof of this proposition, which is similar to the proof of Proposition 1, is given in Appendix 6.3

4 DISCUSSION ON APPLICABILITY AND PRACTICAL USE

The results presented in this paper provide a theoretical framework to construct small separating sets
of invariant polynomials from an irreducible decomposition of a G-representation V . In particular,
they are particularly interesting when V is a high-dimensional representation that can be decom-
posed as V = V n1

1 ⊕ V n2
2 ⊕ · · · ⊕ V nk

k , In this case, the polarization methods presented in this
paper can be used to construct separating sets of invariant polynomials on V from separating sets
of invariant polynomials on V m1

1 ⊕ V m2
2 ⊕ · · · ⊕ V mk

k , under the conditions on the mi’s given in
Propositions 1, 2 and 3. Therefore, the problem of constructing a separating set of invariant poly-
nomials on V is reduced to the problem of constructing a separating set of invariant polynomials on
a lower-dimensional representation, making it more tractable to compute such a separating set for

6
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the purpose of building invariant architectures. In addition, the number of parameters involved in
polarization as well as the number of polynomial evaluations both scale linearly with the dimension
of V .

For high-dimensional representations of finite groups, the finite number of irreducible representa-
tions ensures that k and dim (Vi) are bounded, making it the most compelling case for polarization.
In addition, cheap polarization becomes applicable, which further reduces the number of parameters
involved in the construction of small separating sets and well as the dimension of the space for which
a set of separating invariants has to be determined. We also note that the powers of a in equation 15
might look like a limitation because of the numerical instabilities that very large or small values
might create. However, a powerful workaround is to constrain a to be on the unit circle in C, which
ensures that all powers of a have modulus equal to one. The identity theorem for holomorphic func-
tions can then be used to show that the separation property still holds, since a non-zero polynomial
can only have a finite number of roots on the unit circle. Problems on real vector spaces can also be
addressed by considering the complexification of V .

A potential limitation of the approach presented in this paper is that, by being restricted to the
diagonal action of a group on multiple copies of a base space, it cannot include additional group
actions that permute these copies. We therefore do not expect this method to be the most appropriate
for problems where the group action includes such permutations, such as in the case of learning
on permutation-invariant sets of vectors. However, many problems of interest can be formulated
where each copy of a base space is distinguishable from the others, such as in the case of learning
on sequences of geometric objects, where each object in the sequence is associated with a position
in time.

5 CONCLUSION

In this work, we have presented a novel theoretical framework for constructing invariant and equiv-
ariant neural network architectures by leveraging the mathematical tool of polarization. We have
shown that for high-dimensional group representations that can be expressed as a direct sum of
smaller representations, the challenging problem of finding a basis of invariant polynomials can be
addressed by computing separating invariants from a lower-dimensional space. Our key contribution
was to combine the method of polarization with recent results on the existence of small separating
sets. By re-framing polarization as a parameterized, learnable operation, we proved that a com-
pact set of learned invariant features is guaranteed to form a separating set, which is sufficient for
universal function approximation.

This approach provides a constructive method for designing expressive invariant features, which can
be integrated into neural network architectures to ensure the capacity to distinguish between different
group orbits and therefore to approximate any continuous invariant function on the representation
space. This framework transforms the task of analytically deriving a complete set of generators
into a practical learning problem on a much lower-dimensional space. The method is particularly
compelling for finite groups, where “cheap polarization” offers a highly efficient implementation.
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6 APPENDIX

6.1 PROOF OF THEOREM 1

Proof. Theorem 1 is a direct consequence of Theorem 2.7 of Dym & Gortler (2025). In that theorem,
the authors consider a family of semi-algebraic functions φ ∈ R[V ×Rp] that is strongly separating,
that is, such that for every x, y ∈ V in different orbits, the set

{w ∈ Rp | φ(x,w) ̸= φ(y, w)} (16)

has dimensions ≤ p − 1. Under these conditions, they prove that for Lebesgue almost 2d + 1
parameters λ1, . . . ,λ2d+1 ∈ Rp, the set S = {φ(·,λi) | i = 1, . . . , 2d + 1} is a separating set
of R[v]g . They also remark that families of polynomials functions are semi-algebraic and that are
separating if and only if they are strongly separating. Therefore, if φ is a separating family of
invariant polynomials, it satisfies the hypotheses of Dym & Gortler (2025)’s theorem, such that
there exist 2d + 1 parameters λ1, . . . ,λ2d+1 ∈ Rp such that S = {φ(·,λi) | i = 1, . . . , 2d + 1} is
a separating set of R[v]g .

6.2 PROOF OF PROPOSITION 1

Proof. To prove that φ as defined in equation 13 is a separating family, we start by showing that
given f ∈ K[vm ⊕ w], for every v = (v1, . . . ,vn) ∈ vn, w ∈ w,

span

f

 n∑
j=1

X1jvj , . . . ,

n∑
j=1

Xmjvj ,w

 | X ∈ Km×n


= span {fα (v1, . . . ,vn,w) | fα ∈ poln{f}} .

Since by definition of poln{f},

f

 n∑
j=1

X1jvj , . . . ,

n∑
j=1

Xmjvj ,w

 =
∑

α∈Nm×n

fα(v1, . . . ,vn,w)Xα,

it is clear that the ⊂ inclusion holds. To prove the ⊃ inclusion, we first define some β ∈ Nm×n

such that αij ≤ βij for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and α with fα ̸= 0. Then, for
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and Xij ∈ Kβij+1, we define the Vandermonde matrix Vij ∈
K(βij+1)×(βij+1) such that

Vij =


1 Xij,1 X2

ij,1 . . . X
βij

ij,1

1 Xij,2 X2
ij,2 . . . X

βij

ij,2
...

...
...

...
1 Xij,βij+1 X2

ij,βij+1 . . . X
βij

ij,βij+1

 .

We also write Yα ∈ Km×n such that Yα,ij = Xij,α11
. . . Xij,αmn

for i ∈ {1, . . . ,m}, j ∈
{1, . . . , n}, with α ∈ Nm×n, and f̃α = f

(∑n
j=1 Yα,1jvj , . . . ,

∑n
j=1 Yα,mjvj ,w

)
. Then,

V11 ⊗ V12 ⊗ · · · ⊗ Vmn


f0,...,0(v1, . . . ,vn,w)
f1,0,...,0(v1, . . . ,vn,w)

...
fβ11,...,βmn

(v1, . . . ,vn,w)

 =


f̃0,...,0
f̃1,0,...,0

...
f̃β11,...,βmn

 . (17)

It is a well-known property of Vandermonde matrices that they are invertible if the Xij,k’s are all
distinct. Therefore, it is possible to choose every Vij invertible, such that the matrix V11 ⊗ V12 ⊗
· · · ⊗ Vmn is also invertible. Then, we can express each fα(v1, . . . ,vn,w) as a linear combination
of the f̃i’s, which proves the ⊃ inclusion.

Successive applications of this result to each fj ∈ S and decomposition of a space V n1
1 ⊕ V n2

2 ⊕
· · ·⊕V nk

k as in equation 12 lead to the fact than any polynomial in poln1,n2,...,nk
S can be expressed

as a linear combination of terms from the left-hand side of equation 4 evaluated at appropriate X’s.
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It remains now to prove that φS is separating. For two vectors u,v ∈ V n1
1 ⊕ V n2

2 ⊕ · · · ⊕ V nk

k in
different orbits, since S is separating, there exists fα ∈ S such that

fα(u) ̸= fα(v).

Writing fα(u) as a linear combination of terms of the form f(X1u1, . . . ,Xkuk) (where we use
the same notation as in equation 13) with X’s fixed during the Vandermonde matrix construction,
and doing the same for fα(v), since these linear combinations do not depend on u or u, there must
be an X such that

f(X1u1, . . . ,Xkuk) ̸= f(X1v1, . . . ,Xkvk).

Choosing λ as the vector with 1 at the α-th position and 0 elsewhere, we obtain the desired result.

6.3 PROOF OF PROPOSITION 3

Proof. The proof carries over directly from the proof of Proposition 1, with the main difference be-
ing that a single Vandermonde matrix is used that shows that each fk in equation 7 can be expressed
as a linear combination of evaluated polynomial terms.
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