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Abstract

Scarcity of corpora with annotated causal texts001
can lead to poor robustness when training state-002
of-the-art language models for causal sentence003
classification. In particular, we find that these004
models misclassify on augmented sentences005
that have been negated or strengthened in006
terms of their causal meaning. This is worry-007
ing because minor linguistic changes in causal008
sentences can have disparate meanings. To009
resolve such issues, we propose to generate010
counterfactual causal sentences by creating011
contrast sets (Gardner et al., 2020). However,012
we notice an important finding that simply in-013
troducing edits is not sufficient to train mod-014
els with counterfactuals. We thus introduce015
heuristics, like sentence shortening or multi-016
plying key causal terms, to emphasize seman-017
tically important keywords to the model. We018
demonstrate these findings on different train-019
ing setups and across two out-of-domain cor-020
pora. Our proposed mixture of augmented021
edits consistently achieves improved perfor-022
mance compared to baseline across two mod-023
els and both within and out of corpus’ do-024
main, suggesting our proposed augmentation025
also helps the model generalize.026

1 Introduction027

Causality is an important concept for knowledge028

discovery as it conveys the idea of cause and ef-029

fect. In the simplest sense, a causal relation exists030

between entities A and B through the statement031

“A causes B" or “B is caused by A". In recent032

years, causal relation extraction from text has gar-033

nered large interests in Natural Language Process-034

ing (NLP) (Asghar, 2016; Xu et al., 2020).035

Causal sentence classification (CSC) is the task036

of identifying sentences that contain causality in-037

formation. Figure 1 demonstrates examples where038

similar claims are categorized by their causal039

strengths. CSC is challenging because the syntax040

of causality varies in context. Thus, it is difficult041

Tsunamis are caused by earthquakes.

Tsunamis are deadly, just like 
earthquakes.

Direct Causal

No Causal 
Relationship

Conditional 
Causal

Correlational

Earthquakes may trigger landslides 
which might lead to a tsunami.

Earthquakes and tsunamis tend to  
co-occur.

Example (Scientific) Claims: Causal Category 

(Strength)

Figure 1: Causal sentence classification classifies tex-
tual claims into various categories of causal strengths.

to exhaustively capture causal expressions, espe- 042

cially for implicit occurrences (Asghar, 2016). Ad- 043

ditionally, negations and the absence of causality 044

complicate automatic causality identification tasks 045

(Heindorf et al., 2020). 046

Furthermore, there is a lack of good quality CSC 047

datasets (Asghar, 2016; Xu et al., 2020). Most NLP 048

datasets typically treat causal relation extraction 049

as a subtask of relation extraction, where “Cause- 050

Effect" is one of the many relation labels. How- 051

ever, causality is a complex relation best learned 052

using dedicated causal relation datasets. Dedi- 053

cated causal relation corpora that exist are mostly 054

small in size (< 5000 sentences), except for Al- 055

tLex (Hidey and McKeown, 2016) that has over 056

40000 sentences. Datasets also tend to label causal 057

relations in an overly simplistic binary level (as 058

‘causal’ or ‘not causal’). Only some works clas- 059

sify text by causal strengths (Girju and Moldovan, 060

2002; Yu et al., 2019; Sumner et al., 2014). 061

Data augmentation is a natural avenue for han- 062

dling small-sized datasets. Augments created must 063

be meaningful to explain representation gaps in the 064

current datasets. In causality, both the causal di- 065

rection and strength matter. As such, models need 066
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to be sensitive towards negations and semantics067

of words to avoid misclassification. For example,068

in Figure 1, two similar sentences “Tsunamis are069

caused by earthquakes." and “Earthquakes may070

trigger ... a tsunami." differ in causal strengths.071

Therefore, we propose artificially constructing072

meaningful counterfactuals that would reflect the073

model’s decision boundaries. We do so by applying074

rule-based schemes that negate causal relations or075

strengthen conditionally causal sentences. Addi-076

tionally, we explore heuristical edits on CSC per-077

formance.078

We find that state-of-the-art (SOTA) language079

models, such as BERT (Devlin et al., 2019) with080

MLP or SVM classifiers, achieve improvements081

in classification performance when trained with082

our created counterfactuals. In addition, our evalu-083

ation on cross-domain datasets shows that train-084

ing on augmented datasets (original plus edits)085

improves model generalization to out-of-domain086

(OOD) contexts. This is consistent with findings087

from (Kaushik et al., 2020a,b) in sentiment anal-088

ysis and natural language inference contexts. In089

summary, we make the following contributions:090

1. We propose causal negation and strengthen-091

ing schemes based on dependency and part-of-092

speech (POS) tags to augment causal sentences.093

To our knowledge, we are the first to study the094

effects of counterfactual augmentation in the095

context of causal claims.096

2. We show that current SOTA models are not ro-097

bust to minimally perturbed sentences that differ098

in causal direction and strength.099

3. We observe that simple heuristical edits on these100

counterfactuals make models more effective for101

low resource CSC with limited number of causal102

and conditional causal sentences.103

4. We show that a mixture of counterfactuals im-104

proves performance in the trained domain and105

also generalize better to OOD corpora such as106

SCITE (Li et al., 2021) and AltLex (Hidey and107

McKeown, 2016).108

2 Related Works109

2.1 Causal Sentence Classification110

Although causality is an important concept for111

knowledge discovery, benchmarking datasets and112

standardization of labeling rules have been limited,113

prohibiting empirical comparisons across method- 114

ologies (Asghar, 2016; Xu et al., 2020). Most NLP 115

benchmarking datasets define causal relations as 116

just one out of many class labels (e.g. Part-Whole) 117

(Jurgens et al., 2012; Gábor et al., 2018; Caselli and 118

Vossen, 2017; Mirza et al., 2014; Mirza and Tonelli, 119

2016). Others, focused on causal relations, define 120

such relations as a binary label (Li et al., 2021; 121

Hidey and McKeown, 2016). However, causal- 122

ity may not always occur at extremes in real-life 123

statements, and correlation can get confused for 124

causation (Buhse et al., 2018). As such, instead 125

of using a binary model of causality, a better way 126

is to classify varying “strengths" of causal rela- 127

tions in sentences. In fact, a seven-point scheme1 128

was proposed by Sumner et al. (2014) to categorize 129

causal statements from health-related news and aca- 130

demic press releases. Subsequently, Yu et al. (2019) 131

adapted this for scientific texts into a four-level sys- 132

tem. In this work, we adopt the four-level causality 133

labeled corpus and classification model by Yu et al. 134

(2019)2. 135

There is also an often observed issue that NLP 136

systems that perform well on task datasets do not 137

generalize to “real-life scenarios", thereby mislead- 138

ing and overstating the accuracies and usefulness 139

of their models. Ensuring model generalizability 140

to other domains can be challenging. For example, 141

Ramesh et al. (2012) showed discourse triggers 142

are different between the biomedical and general 143

domains. In recent years, more focus has been 144

placed in the field to ensure sufficient data rep- 145

resentativeness and transferability of results onto 146

OOD settings. In this work, we will also evaluate 147

the generalizability of our models to classify causal 148

sentences from other domains. 149

2.2 Counterfactuals in NLP 150

Counterfactual generation is a popular strategy for 151

NLP researchers to test and improve model robust- 152

ness via adversarial learning and attacks (Morris 153

et al., 2020; Mahler et al., 2017) or for mitigating 154

bias (Kaushik et al., 2020a; Maudslay et al., 2019). 155

Gardner et al. (2020) proposed using counter- 156

factuals to fill local theoretical gaps in a model’s 157

1The seven levels of causal strengths are (1) no statement,
(2) explicit statement of no relation, (3) correlational, (4)
ambiguous (i.e. relationship is present but the direction and
level is ambiguous), (5) conditional causal, (6) can cause, and
(7) unconditionally causal.

2We were unable to work on Sumner et al.’s dataset as it
was not publicly available and had very limited samples per
class label.

2



Causal 
StrengtheningDire

ct 
Cau

sa
l

No R
ela

tio
ns

hip

Con
dit

ion
al 

Cau
sa

l

Cor
rel

ati
on

al

Original Dataset

Counterfactual 

Augmentations

CSC Labels

Causal 

Negation

+

Results are 
encouraging 

and 
demonstrate …

Results are not 
encouraging nor 
demonstrate …

The rs7044343 
polymorphism 

could be …

The rs7044343 
polymorphism 

was …= 

Final Dataset

Figure 2: Strategies to generate counterfactual exam-
ples for CSC.

decision boundary. They relied on expert judg-158

ments to generate similar but meaningfully differ-159

ent sentences. They showed that across a variety of160

tasks (e.g. reading comprehension, sentiment anal-161

ysis, visual reasoning) and input-output formats162

(e.g. classification, span extraction, structured pre-163

diction), SOTA models struggle on contrast sets164

compared to original test sets. In our work, we gen-165

erate counterfactuals meaningful for CSC, such as166

moving sentences across labels when we perform167

Negation (causal → no relationship) and Strength-168

ening (conditional causal → causal) strategies.169

While Gardner et al. (2020) have noted that it is170

challenging to come up with automated construc-171

tion of contrast sets and proposed authors to man-172

ually perturb statements, we provide an automatic173

rule-based schema to negate and strengthen causal174

statements at scale.175

Kaushik et al. (2020a) manually revised docu-176

ments that would correspond to a counterfactual177

target label for sentiment analysis and natural lan-178

guage inference tasks. They showed that training179

with similar quantities of augmented data compared180

to the original improves generalization ability to181

OOD datasets. In this paper, we have also found182

that counterfactuals can help to improve model gen-183

eralizability for CSC. Again, our linguistics-based184

augments do not rely on human intervention.185

3 Methodology186

3.1 Task Details187

The CSC task involves classifying a span of text188

with a causal label based on its intended meaning.189

We use the PubMed-based corpus CSci3, provided190

by Yu et al. (2019) comprising of 3061 sentences191

3https://github.com/junwang4/
causal-language-use-in-science

annotated with 4 different levels of causal relation: 192

no relationship (c0), causal (c1), conditional causal 193

(c2), and correlational (c3). 194

3.2 Counterfactual Generation 195

In a low-resource setting, our proposal is that re- 196

searchers should create counterfactuals that push 197

causal sentences across labels so as to improve the 198

robustness of their models. Figure 2 demonstrates 199

the two main strategies to generate counterfactual 200

examples for CSC, namely (1) Causal Negation 201

and (2) Causal Strengthening. We discuss these 202

strategies next4. 203

3.2.1 Causal Negation 204

In this strategy, we negate the direction of causal 205

statements from causal (c1) to no relationship (c0). 206

After obtaining POS tags and root words based 207

on dependency trees5, we performed negations 208

around the root word. Our coding schema (Algo- 209

rithm 1 in the Appendix) inserts negative words like 210

‘no’, ‘not’, ‘nor’ or ‘did not’ to flip the meaning of 211

the sentence. 12 negation linguistic templates were 212

used. Successfully negated sentences are termed 213

as ‘Edit’ sentences. If no matching template was 214

found, the sentence was skipped. Of the 493 orig- 215

inal (causal) sentences from the CSci corpus, 384 216

sentences had available negations. 217

To improve text flow, we used antonyms to re- 218

place negated edits where applicable. We do so by 219

searching for antonyms of the original root word 220

based on WordNet (Miller, 1995) and termed suc- 221

cessful antonym edits as ‘Edit-Alt’. To ensure simi- 222

lar tense was used, we detected the original word’s 223

tense and applied the same tense onto the antonym 224

word using the Pattern package (De Smedt and 225

Daelemans, 2012). An example ‘Edit’ and ‘Edit- 226

Alt’ sentence is shown in Table 1. 227

To select between ‘Edit’ and ‘Edit-Alt’ versions, 228

we calculated the Levenshtein edit distance of the 229

original word versus the antonym. We select ‘Edit- 230

Alt’ only if the edit distance is less than or equal to 231

30% of the length of the longer word, rounded to 232

the nearest integer. This allows us to keep conver- 233

sions like ‘able → unable’ for more natural word 234

flow, but discard bolder and more drastic changes 235

like ‘safe → dangerous’ and ‘had → refused’ that 236

4Our edit schemes, model pipeline, datasets and sup-
plementary materials can be found on Github at https:
//xxx.xxx.xx (Also uploaded under Software)

5We used NLTK (Wagner, 2010) to obtain POS tags in
PennTreeBank format and spaCy (Honnibal et al., 2020) for
dependency tree extraction.
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Conversion Edit Type Sentence

Negation

Original TyG is effective to identify individuals at risk for NAFLD.
Regular (Edit) TyG is not effective to identify individuals at risk for NAFLD.
Regular (Edit-Alt) TyG is ineffective to identify individuals at risk for NAFLD.
Shorten TyG is ineffective
Multiples is ineffective is ineffective is ineffective

Strengthen
Original Moreover, TT genotype may reduce the risk of CAD in diabetic patients.
Regular (Edit) Moreover, TT genotype will reduce the risk of CAD in diabetic patients.

Table 1: Examples of counterfactual causal sentence augments. Notes. Interventions are highlighted in green.
Causal Strengthening can also have Shorten and Multiples edits but is excluded due to space constrains.

were either suggesting causality in the opposite237

direction (rather than no relationship) or outright238

wrong. Finally, after dropping duplicates, we ob-239

tained 381 sentences that represent non-causality.240

We were able to apply 11 out of the 12 linguistic241

templates to generate causal negation for the sen-242

tences in CSci. Most edits fall into the category243

where we negate the root verb or adjective of the244

sentence. Appendix Table A1 shows one randomly245

sampled example per available negation method246

when applied onto the CSci corpus. With respect to247

this table, Appendix Section A.1 briefly discusses248

the grammatical sanity of these sentences. We in-249

spected these randomly sampled counterfactuals to250

verify that sentence flows are natural and desirable.251

3.2.2 Causal Strengthening252

We also increased the strength of causal statements253

from conditional causal (c2) to causal (c1) by ex-254

ploiting modal words. Similar to Negation, we first255

obtain the POS tags and dependency trees for each256

sentence.257

Algorithm 2 in the Appendix outlines the rule-258

based pseudo-code. In general, the 5 linguistic259

templates created converts modals based on the260

dictionary: {‘could’, ‘should’, ‘would’} → ‘would’261

and {‘can’, ‘may’, ‘might’, ‘will’} → ‘will’. When262

modals interact with verbs with lemma ‘be’, we263

replace ‘modal+be’ with ‘was’ instead to convey264

certainty in causal meaning. For special cases when265

modal terms interact with ‘have’ which forms con-266

ditional perfect tense, we convert them into simple267

past tense by replacing ‘modal+have’ with ‘had’.268

When a modal is followed by an adverb (E.g. “can269

possibly”), the adverb is removed to avoid any de-270

viation of the causal meaning from certainty.271

Table A2 shows a randomly sampled example272

per causal strengthening method when applied onto273

the CSci corpus. Of the 213 available sentences,274

we successfully augmented 174 of them.275

3.3 Dataset Processing 276

Duplicates exists in the original CSci corpus and 277

arise when we append the edits with the original 278

sentences. De-duplication based on priority rules 279

discussed in Appendix Section A.2 was applied. 280

Our augmentations would increase the sample 281

size for particular class labels. To combat this, we 282

randomly selected sentences such that the original 283

class distribution is maintained. Our main analysis 284

focuses on randomly sampled datasets to eliminate 285

the concern that the improved performance might 286

result from increased data size or advantageous 287

train set distribution. 6 However, note that the final 288

dataset size is always slightly smaller than the orig- 289

inal baseline due to the de-duplication step. After 290

random sampling, the distribution thus slightly dif- 291

fers. The final sample counts across class labels per 292

augmented dataset are summarized in Appendix Ta- 293

ble A5. 294

3.4 Further Heuristics 295

Later in results Section 4.4.1, we observe that 296

simple edits which highlight the main counterfac- 297

tual phrase to the model helps improve perfor- 298

mance. Although these heuristics result in non- 299

grammatical sentences, we believe these edits ex- 300

plicitly emphasize augmented keywords for the 301

model to learn the local syntactic changes better. 302

Since we still train the model with the original sen- 303

tences (in fact, the majority), the model will not 304

memorise on only non-grammatical examples. 305

An example sentence is detailed in Table 1 with 306

the two augmentation variations as follows: 307

• Shorten: We reduce the sentence length 308

based on target/root word to cover a mini- 309

mally interpretable phrase based on depen- 310

6We want to show that any improvements in our scores are
due to increased variations of examples per class label. These
variations must be meaningful for any improvement in scores.
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dency parser. The final sentence might not be311

a consecutive slice from the original.312

• Multiples: We define a phrase as one313

word before and after the target/root word.314

That is, we define PhraseLength = 3.315

Phrases are then duplicated by a multiple of316

OriginalSentenceLength/PhraseLength317

rounded to the nearest integer. This ensures318

that the final sentence is up to as long as the319

original length. Note that in the ‘edit-alt’320

example of Table 1, ‘is ineffective’ represents321

‘is not effective’. Thus, although the actual322

phrase length is 2, the intended meaning323

is based off the latter phrase that had a324

length of 3. Hence, we maintained a fixed325

PhraseLength for all sentences.326

3.5 Out-of-domain Testing327

We train our models on the CSci corpus and con-328

duct testing on SCITE (Li et al., 2021)7 and AltLex329

(Hidey and McKeown, 2016)8 corpora to show330

that inclusion of meaning counterfactuals during331

model training aids in OOD applications. While the332

CSci corpus is constructed from scientific-based333

PubMed sentences, the SCITE corpus contains gen-334

eral sentences extended from the SemEval 2010335

task 8 dataset. AltLex consists of sentences from336

English Wikipedia. AltLex was built for causal337

relation identification, and therefore, has multiple338

entries per sentence based on different entities and339

relations. We revised the format of the corpus such340

that if a sentence has any one causal relation, the341

sentence is considered causal. Additionally, be-342

cause SCITE and AltLex labels are binary, we cre-343

ated two measures of accuracy. The first, ‘Acc’,344

considers only exact class labels (no relationship345

(c0) and causal (c1)) (i.e. predicting other labels346

are considered wrong). The second, ‘AccGroup’,347

calculates accuracy after grouping [no relationship,348

correlational] into no relationship (c0) and [causal,349

conditional causal] into causal (c1) to align with350

the binary labels. In total, we test on 4439 sen-351

tences from SCITE and 37677 sentences from Al-352

tLex.353

3.6 Modeling354

In each setting, we train and validate using K=5355

folds, with 5 epochs per fold. For loss, we use the356

7https://github.com/Das-Boot/scite
8https://github.com/chridey/AltLex

standard cross-entropy loss for multi-class classi- 357

fication. For OOD testing, we take the majority 358

prediction from the five trained models of the five 359

folds. We explore the results with the following 360

two models: 361

3.6.1 BERT+MLP (MLP) 362

We replicate the best performing model on the CSci 363

corpus (Yu et al., 2019) which is a BioBERT (Lee 364

et al., 2020) plus multi-layer perceptron (MLP) 365

pipeline. The default architecture was: BioBERT 366

embeddings were fed into a single MLP layer that 367

served as the classifier. 368

3.6.2 BERT+MLP+SVM (SVM) 369

Instead of applying LinearSVM based off unigrams 370

and bigrams like the original authors (Yu et al., 371

2019), we believe a fairer comparison would be 372

to use BERT embeddings as inputs into an SVM 373

model. To allow for representation updates, for 374

each sentence (s), the BioBERT encoder is applied. 375

The BERT output (z) runs through two MLP layers 376

(MLP1 and MLP2) to predict class labels. The 377

second layer is ultimately is discarded, and we take 378

the hidden representation (r) as fixed inputs into 379

the SVM classifier after all epochs. The equations 380

below outlines our pipeline, 381

z = BERT (s), z ∈ Rh1 (1) 382

r = MLP1(z), r ∈ Rh2 (2) 383

o = MLP2(r), o ∈ Rc (3) 384

p = SVM(r), p ∈ R1, (4) 385

where, p represents the final predicted label, and 386

h1 = 768, h2 = 24, and c = 4. 387

4 Results & Discussion 388

4.1 Baseline 389

Table 2 reports our performance on the CSci cor- 390

pus. With the MLP baseline model, we were un- 391

able to replicate the reported scores by Yu et al. 392

(2019) of 90.1% accuracy and 88.1% macro F- 393

score. We achieved slightly lower scores of 89.15% 394

and 87.01% respectively. For SVM, our proposed 395

implementation using updated BERT embeddings 396

with a detached head is superior over Yu et al. 397

(2019)’s unigram and bigrams method as we ob- 398

serve significant improvements of accuracy from 399

77.2% to 88.86% and macro F-score from 72.2% 400

to 86.95%. 401

The inclusion of a mixture of edits (Nega- 402

tion*Shorten with Strengthen*Regular) returns the 403

5
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MLP SVMConversion Edit Type F1 Acc F1Orig AccOrig F1 Acc F1Orig AccOrig

Yu et al. (2019) 88.10 90.10 88.10 90.10 72.20 77.20 72.20 77.20
Ours (Base) 87.01 89.15 87.01 89.15 86.95 88.86 86.95 88.86

Negation Regular -1.55 -1.92 -0.19 -0.95 -2.33 -1.99 -1.18 -1.28
Negation Shorten +1.06 +0.89 +0.57 -0.04 +0.95 +1.19 +0.38 +0.18
Negation Multiples +1.46 +1.45 +0.93 +0.49 +1.14 +1.28 +0.60 +0.32

Strengthen Regular +1.75 +1.14 +0.80 +0.84 +0.73 +0.49 -0.28 +0.20
Strengthen Shorten +1.08 +0.91 +0.16 +0.62 +0.86 +1.08 -0.24 +0.71
Strengthen Multiples +0.98 +0.98 -0.05 +0.57 +0.62 +0.82 -0.50 +0.38

Both Shorten, Regular +2.80 +2.33 +1.73 +1.35 +1.45 +1.38 +0.14 +0.19

Table 2: Performance metrics on CSci corpus. Notes. BioBERT models trained on variations of CSci corpus
(Original plus edits), with edits matching existing labels and randomly sampled to match base class distribution.
Results are for test set when trained and predicted over 5-folds. Macro F-score (F1) and accuracy (Acc) are in
percentages. Columns with lowerscript “Orig" are calculated for original sentences only (i.e. performance for
edits is ignored). Rows below “Ours (Base)" report relative changes to it. The best performance per column is
bolded. Precision and Recall scores are available in Appendix Tables A7 and A8.

best performance across all metrics: Accuracy im-404

proves by 1.35% our MLP baseline, achieving405

AccOrig of 90.60% 9. Notice that we find improve-406

ments of accuracy and F-score beyond the original407

reported scores, even though our replicated scores408

were lower. The SVM model also demonstrates409

that the inclusion of edits improves performance.410

Intuitively, we are exposing the model to more411

sentence types of the real world. We are also specif-412

ically choosing sentences near the boundaries of the413

labels (i.e. with minor edits, sentences’ labels can414

change). Therefore, the model is able to learn bet-415

ter in the CSC task. Interestingly, we noticed that416

shorten or multiples edits improved performance417

for negated edits, seemingly more than regular edits418

itself. Section 4.4.1 expands on this finding.419

4.2 Robustness on Edits420

Table 3 highlights how current SOTA models are421

not robust to minimally altered sentences that422

changes in causal direction and strength.423

To conduct the experiment, we randomly split424

the available negated edits (n=381) by half, keeping425

191 negated sentences for training and the remain-426

ing 190 for testing. The 190 original sentences that427

corresponds to the negated test set were removed428

from the original CSci corpus to avoid exposing429

models to highly similar sentences during training430
10. Models trained with this base train set danger-431

9The full original set achieved 90.33% accuracy if we
were to include the subset that is dropped out due to random
sampling. We predict the labels for this dropped-out subset
like an OOD dataset, i.e. taken across 5-folds after training
completes.

10In experiments not shown, the models trained on the full

ously predicted 157 out of 190 test sentences in 432

the opposite direction as causal instead of no re- 433

lationship. A shockingly dismal test accuracy of 434

12.63% was attained at best, and prediction counts 435

are available in Appendix Table A6. 436

Our finding surfaces the problem that the mod- 437

els are likely memorizing on key causal terms in- 438

stead of understanding sentence structure and flow. 439

Therefore, they were unable to discern the nega- 440

tion involved. Inclusion of counterfactual examples 441

help to fill this representation gap. We created aug- 442

mented sets by combining the base train set with 443

the 191 negated train sentences for retraining. Once 444

we exposed the models to these negated examples 445

during training, the same models could predict the 446

right label with up to 73.68% accuracy. 447

We also tested the models’ efficacy on strength- 448

ened sentences converted from conditional causal 449

to causal. Once counterfactual examples were in- 450

cluded in the train set, improvements on test ac- 451

curacy was obtained to a significant, but smaller, 452

extent of +13.79% improvement at best. 453

4.3 Improving Generalization 454

In Table 4, we show that inclusion of edits dur- 455

ing training also helps to improve generalization 456

in cross-domain applications. Although our train 457

dataset is an academic and scientific-based text 458

represented by a BioBERT language model, we 459

original CSci corpus almost certainly wrongly predicts the 190
negated sentences as causal. To prove our point that models
are memorizing causal terms, we removed the overlapping sen-
tences to eliminate the possibility of the models memorizing
similar sentences in train and test set instead.
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Conversion n MLP SVM
Original 190 12.63 10.53
Negation 190 +61.05 +62.63
Original 87 77.01 73.56

Strengthen 87 +11.49 +13.79

Table 3: Accuracy (in percentage) of BioBERT models
trained on a subset of CSci corpus and predicted on a
fully augmented difference set. Notes. The best perfor-
mance per section per column is bolded.

show that when we apply the same model to the460

general-based SCITE and Wikipedia-based AltLex461

corpora, inclusion of edits improved classification462

performance. We were unable to find improve-463

ments in generalisation for MLP model on SCITE464

dataset, which could be due to our limited edit465

schemes. However, for AltLex, there are consis-466

tent improvements for almost all types of edits467

across both models. The mixture of edits (Nega-468

tion*Shorten with Strengthen*Regular) again re-469

ports the best generalisation outcomes by showing470

improvements in accuracy (up to +0.94%) across471

all models and datasets, except a negligibly small472

reduction (-0.02%) for MLP model when tested on473

SCITE.474

4.4 Ablations475

4.4.1 Need for Heuristical Edits476

Earlier in Table 2, we noted that models exposed477

to Negation*Regular edits are unable to learn the478

boundaries effectively: AccOrig fell by 0.95% and479

1.28% for the MLP and SVM models respectively480

from our baselines. However, when we perform481

simple heuristics like Shorten, accuracy could im-482

prove to -0.04% (neglible reduction) and +0.18%483

for MLP and SVM respectively.484

We study the net change in classification counts485

per model per label in Table 5 to explore this phe-486

nomenon. Given class labels i and j predicted by487

a model and our baseline respectively, we report488

the model’s NetChangei = Righti−Wrongi =489 ∑
j 6=i n(i=true)j −

∑
i 6=j ni(j=true), where i, j =490

c0, c1, c2, c3 and n refers to the number of observa-491

tions. Righti (Wrongi) is the number of observa-492

tions where a model predicts correctly (wrongly)493

for class label i but baseline predicts wrongly (cor-494

rectly). When either MLP or SVM model is trained495

with the augmented Negation*Regular dataset, the496

model becomes confused and predicts poorly for497

causal (c0) and no relationship (c0) classes. Once498

the edits were presented in the shortened form, this 499

situation improves. This short exploration points 500

us to believe exposing sample-curated features is 501

needed in our low-resource setting. Highlighting 502

the model to the short spans of (non-)causality 503

helps point out the exact borders we want the mod- 504

els to become sensitive to. 505

Interestingly, we observe improvements in classi- 506

fication for labels we did not edit (c3) in the major- 507

ity of settings. This highlights the possibility that 508

exposing models to minimally perturbed sentences 509

around label boundaries could improve comprehen- 510

sion beyond the introduced edits. 511

4.4.2 Capturing Causal Strengths 512

By capitalizing on CSci’s labels, our methodology 513

allows us to expose causal strengths in SCITE and 514

AltLex corpora beyond the original binary labels. 515

For SCITE, the baseline MLP model originally la- 516

beled five sentences as conditional causal. Apply- 517

ing the model trained with Strengthen*Regular ed- 518

its, we observed that four remained as conditional 519

causal (c2) while one of the sentence11 correctly 520

switched label to causal (c1). For the baseline 521

SVM model, seven sentences were tagged as c2, of 522

which four remained, and the same one as MLP’s 523

converted to c1. One12 correctly switched to no re- 524

lationship (c0) as labeled, while the last sentence13 525

converted to correlational (c3), which is surpris- 526

ing because we did not edit any sentences to or 527

from class c3. Unfortunately, the authors of SCITE 528

tagged this sentence as causal, which means this 529

is considered to be mislabeled. However, the sen- 530

tence contains signals like ‘corresponds to’, which 531

should be correlational, not causal. 532

We believe the model might be picking up on 533

what makes something conditional causal versus 534

all other labels (not just comparing to the one 535

we edit to). Our short qualitative analysis again 536

supports the earlier quantitative study that expos- 537

ing models to meaningfully augmented sentences 538

across labels could improve classification even for 539

other uninvolved labels. 540

11“In the present recession, which has been triggered by a
collapse in land prices, land-value taxation would reverse the
collapse - not by re-inflating a temporary speculative bubble,
but by inducing investment in infrastructure that permanently
enhances the utility of the land."

12“The glass tealight holder appears to float inside the metal
spiral as it spins in the gentle breeze."

13“The increase of the signal might correspond to formation
of the high-density excitons, while the reduction of the signal
originates from the relaxation."
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SCITE AltLex
MLP SVM MLP SVMConversion Edit Type

Acc AccGroup Acc AccGroup Acc AccGroup Acc AccGroup

Ours (Base) 86.28 85.83 85.04 84.50 85.57 84.64 85.91 84.68
Negation Regular -1.46 -1.67 -0.36 -0.41 -0.22 -0.44 +0.18 +0.41
Negation Shorten -0.20 -0.27 +0.02 +0.02 +0.61 +0.54 +0.74 +1.05
Negation Multiples -0.18 -0.16 -0.38 -0.38 +0.89 +0.95 +1.19 +1.58

Strengthen Regular -0.27 -0.14 +1.01 +1.10 +0.51 +0.69 +0.54 +0.84
Strengthen Shorten -3.40 -3.36 -0.11 -0.05 +0.30 +0.37 +0.99 +1.38
Strengthen Multiples -1.31 -1.28 -0.90 -0.90 +0.88 +0.99 +0.07 +0.29

Both Shorten, Regular -0.02 -0.05 +0.79 +0.63 +0.94 +0.84 +0.31 +0.41

Table 4: Performance metrics of on OOD datasets. Notes. BioBERT models trained on variations of CSci corpus
(Original plus edits), with edits matching existing labels and randomly sampled to match base class distribution.
Results are for out-of-domain SCITE and AltLex corpus taking mode class predicted over 5-folds. Accuracies are
reported in percentages. Columns ‘Acc’ considers only exact class labels, while ‘AccGroup’ calculates accuracy
after converting the four labels to form the binary labels. Rows below “Ours (Base)" report relative changes to it.
The best performance per column is bolded.

Conversion Edit Type MLP SVM
c0 c1 c2 c3 Total c0 c1 c2 c3 Total

Negation Regular -13 -18 +10 0 -21 -9 -21 +1 -2 -31
Negation Shorten -15 +9 +9 +2 +5 -4 +7 +1 +6 +10
Negation Multiples -5 +9 +5 +9 +18 -1 +8 +3 +3 +13

Strengthen Regular -7 +12 +10 +9 +24 +1 +1 +5 -4 +3
Strengthen Shorten -7 +11 +6 +6 +16 0 +8 +3 +5 +16
Strengthen Multiples -14 +13 +7 +10 +16 -12 +11 +6 +3 +8

Both Shorten, Regular +2 +20 +10 +9 +41 -2 +12 +1 -4 +7

Table 5: Net change in correct classification counts on CSci corpus compared to “Ours (Base)” for original. Notes.
Recall that Negation is the conversion of c1 →c0; Strengthen is the conversion of c2 →c1;

4.4.3 Other Experiments541

We also explored other popular methodologies that542

did not produce consistent and significant improve-543

ments from baseline. These include, i) creating544

more edit types (using masking, synonyms and545

paraphrasers), ii) extending to a five-way classi-546

fication problem (by labelling negated edits as a547

new class label, different from no relationship (c0)),548

and iii) experimenting on contrastive learning loss549

functions. Appendix Section A.3 details these ex-550

periments further for interested readers.551

5 Conclusion and Future Work552

We explored the task of CSC in a low-resource553

setting. Following recent literature, we generated554

counterfactual sentences via rule-based edits that555

change sentences’ causal direction and strength.556

We show that SOTA CSC models worryingly mis-557

classifies on such augmented sentences. We demon-558

strate that inclusion of our edits during training can559

help to improve classification performance both on560

original and edit sentences, and within and outside561

of the corpus’ domain. However, we find that sim- 562

ple edits, such as negation, might be insufficient to 563

teach effective decision boundaries given limited 564

data size. We thus propose heuristic edit schemes 565

and find performance improvements across both 566

training and OOD contexts too. 567

Moving forward, we plan to replicate our find- 568

ings on more datasets to further demonstrate our 569

augmentation scheme’s widespread applicability. 570

Yu et al. (2020)’s recent corpus based on scientific 571

press statements annotated with the four class la- 572

bels of causality as per our set up is a promising 573

option. Additionally, causality is hard as one has to 574

distinguish between causal effects as factual events 575

of real-world or at the level of “meta-causality" 576

(Andersson et al., 2020). In our work, we did not 577

go beyond the “correctness" of the claims. Ground- 578

ing the claims to world knowledge is an important 579

future work. Lastly, we wish to find alternative 580

models which can learn directly from original plus 581

regular edits without the need for heuristics. 582
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A Appendix799

A.1 Negation Examples800

Appendix Table A1 shows one randomly sampled801

example per available negation method when ap-802

plied onto the CSci corpus. As shown, most ex-803

amples fall into ‘VB_3.1’, ‘VB_5.1’, ‘JJ_1.3’ and804

‘VB_1.2’ types, for which the templates in Algo-805

rithm 1 work well for14. For rarer method types,806

like ‘VB_2.1’, the templates seem to work poorly.807

Further investigation shows that the error arose808

from the POS tagging step: “Both" was tagged as809

a VB but should have been a DT or CC, for which,810

we have no template for at the moment, so the ex-811

ample would have been correctly skipped. As for812

‘VB_4.1’, the negated example is unnatural but not813

grammatically wrong.814

A.2 De-duplication815

After appending original sentences with edits, we816

conduct de-duplication. Appendix Table A3 shows817

problematic duplicates that had differing labels.818

The original CSci corpus contained 7 duplicate819

sentences instances which were removed. 6 of them820

were exact duplicates (same label, same sentence),821

while the last 1 (sentence S/N 1) was duplicated822

with different labels (c0 and c2). We manually823

changed this to keep only the c0 label. The total824

data size thus reduces from n=3061 to n=3054. We825

also take this chance to highlight concerns that826

some sentences in CSci were labelled contrary to827

how we understood them.828

Subsequent duplicates were handled via rule-829

based removal. The motivation was to ensure iden-830

tical sentences do not have different labels which831

adds noise to our training. Our assumption is that832

if an edit was performed but remained identical833

to the original, the original must have been misla-834

belled sentence. We note that our rule-based de-835

duplication cannot accommodate multi-label cases,836

as there was one sentence (S/N 4) that correctly837

reflected both c0 and c1 labels in different parts of838

the sentence, but due to de-duplication, we only839

kept the c0 label.840

A.3 Other Experiments841

Other experiments conducted but did not produce842

significant improvements are mentioned here.843

14We highlight the main POS tags used and mentioned: VB
(verbs, e.g. ‘eating’), JJ (adjective, e.g. ‘big’), IN (preposition
or subordinating conjunction, e.g. ‘by’), DT (determiner, e.g.
‘he’), CC (coordinating conjunction, e.g. ‘and’), MD (modal,
‘should’).

Other Edit Types Three were explored: 844

• Mask: Based on POS, all nouns are replaced 845

by the token “[MASK]". 846

• Synonyms: Using WordNet synonyms, we 847

skip common words15 and randomly replace 848

up to 5 words. Synonyms match tense and plu- 849

rarity of original words using Pattern package, 850

which is imperfect. 851

• T5Para: We run the sentence through a pre- 852

trained T5-paraphraser model16. 853

Appendix Table A4 shows an example sentence 854

with the above edits for the same causal sen- 855

tence of Table 1. With the SVM model, only 856

Strengthen*Synonyms appended with original 857

increased accuracy on CSci by 1.01% while 858

Strengthen*T5Para increased accuracy by 0.39%. 859

However, these findings could not be replicated 860

across to the MLP model nor for Negation. 861

Extending to a Five-way Classification In our 862

main set up, we focused on edits that matched the 863

original labels and are randomly sampled such that 864

the unified train set matches base class distribution 865

for fairer comparison to baseline. Current nega- 866

tions are labelled no relationship (c0). However, 867

to the extent that we believe negated causal state- 868

ments deserve a class of their own, we also explore 869

the event when negations are labelled with a new 870

level not causal (c4) instead. Based on the set up 871

for Table 3, we obtained even higher improvements 872

in accuracy of +70.53% and +74.74% for the MLP 873

and SVM model respectively. This could be due 874

to the clearer distinction of a not causal sentence 875

structure compared to if we were to combine them 876

with other no relationship statements. When we ex- 877

tended the MLP and SVM model to work with such 878

a five-way classification set up, we did observe im- 879

provements in AccOrig for shorten, multiples and 880

synonyms versions of edits. However, because we 881

cannot truly balance the dataset (random sampling 882

does not apply here because we have a whole new 883

class), we cannot be certain if the improvements 884

were due to the larger dataset or the model picking 885

up on the boundaries. Furthermore, the improve- 886

ments did not generalize on our OOD set ups. 887

15We do not try to find synonyms for common words with
these POS types: ’DT’,’IN’, ’EX’, ’CC’, ’MD’, ’WP’, ’WD’,
’WR’, ’UH’, ’RP’, ’SY’, ’PO’

16https://huggingface.co/
ramsrigouthamg/t5_paraphraser
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Other Training Setups In addition to standard888

cross-entropy based supervised learning, we also889

explored contrastive learning schemes. In particu-890

lar, we trained with Supervised Contrastive Loss891

(SupCon) (Khosla et al., 2020; Chen et al., 2020)892

and Triplet Margin Loss (Paszke et al., 2019). In893

the contrastive setup, we introduced counterfac-894

tuals as the negative examples for each anchor895

sentence. For positive samples, we used shorten,896

synonyms, and T5Para augmentation strategies on897

the original anchor sentence. However, the re-898

sults did not provide performance improvements899

in either CSci or OOD datasets, which highlights900

the challenge of building a generalized scheme of901

counterfactual generations. Exploring avenues in902

contrastive-learning remains a critical future work.903

A.4 Reproducibility Checklist904

We include additional details about our main exper-905

iment not highlighted in other parts of the paper.906

• Computing Infrastructure: Tesla V100907

SXM2 32 GB908

• MLP Hyperparameters: “atten-909

tion_probs_dropout_prob": 0.1, “hidden_act":910

“gelu", “hidden_dropout_prob": 0.1, “hid-911

den_size": 768, “initializer_range": 0.02,912

“intermediate_size": 3072, “layer_norm_eps":913

1e-12, “max_position_embeddings":914

512, “num_attention_heads": 12,915

“num_hidden_layers": 12, “type_vocab_size":916

2, “vocab_size": 28996917

• SVM Hyperparameters: kernel: “linear",918

“C": 1e-2919

• Average Runtime: For 5 epochs and 5 folds,920

our baseline MLP model takes approximately921

22 minutes 51 seconds to train and validate.922

A.5 Additional figures and tables923
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Algorithm 1: NegationRules – Causal negation scheme
Input: edit_id, text_ids, text, pos, sentid2tid, max_try=2, curr_try=0
Output: text,method, edit_id

1 curr_try ← curr_try + 1
2 curr_pos, curr_word← pos[edit_id], text[edit_id]
3 prev_pos, prev_word← pos[edit_id− 1], text[edit_id− 1] if valid else None
4 next_pos, next_word← pos[edit_id+ 1], text[edit_id+ 1] if valid else None
5 while curr_try <= max_try do
6 if curr_pos = V B then
7 if curr_word = AuxilliaryType then
8 if edit_id = max(text_ids) then
9 Insert *not* in front of curr_word // Method “VB_1.1’

10 else if next_word = DeterminerType then
11 Replace next_word with *no* // Method ‘VB_1.2’

12 edit_id← edit_id+ 1

13 else if next_word = NounType then
14 Insert *not* behind of curr_word // Method ‘VB_1.3’

15 else if next_pos = V B then
16 Insert *no* behind of curr_word // Method ‘VB_1.4’

17 else if edit_id = min(text_ids) then
18 Replace curr_word with *Not* + lowercased curr_word // Method ‘VB_2.1’

19 else if prev_word = NounType then
20 Replace curr_word with *did not* + lemma(curr_word) // Method ‘VB_3.1’

21 else if edit_id = max(text_ids) then
22 Insert *not* in front of curr_word // Method ‘VB_4.1’

23 else if prev_word = AuxilliaryType next_pos = IN |TO then
24 Insert *not* in front of curr_word // Method ‘VB_5.1’

25 else if curr_pos = NN then
26 Get head_id of head word of curr_word based on dependency tree

text,method, edit_id← NegationRules(head_id, text_ids, text, pos, sentid2tid,
curr_try)

27 else if curr_pos = JJ then
28 if edit_id = max(text_ids) then
29 Insert *not* in front of curr_word // Method ‘JJ_1.1’

30 else if next_word = PositiveConjuctionType then
31 Insert *not* in front of curr_word // Method ‘JJ_1.2’

32 Replace next_word with *nor* else
33 Insert *not* in front of curr_word // Method ‘JJ_1.3’

34 else if curr_pos = IN then
35 Insert *not* in front of curr_word // Method ‘IN_1.1’

36 Define method as method name if applicable edit occurs
37 return text,method, edit_id
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Method Regular (Edit) Regular (Edit-Alt) n
VB_1.2 Eyes with better vision at baseline had no

more favorable prognosis, whereas eyes with
initial macular detachment, intraoperative ia-
trogenic break, or heavy SO showed more un-
favorable outcomes.

Eyes with better vision at baseline abstained
a more favorable prognosis, whereas eyes with
initial macular detachment, intraoperative ia-
trogenic break, or heavy SO showed more un-
favorable outcomes.

35

VB_1.3 Age, female sex, BMI, non-HDL cholesterol,
and polyps are not independent determinants
for gallstone formation.

Age, female sex, BMI, non-HDL cholesterol,
and polyps differ independent determinants
for gallstone formation.

12

VB_1.4 Both general and central adiposity have no
causal effects on CHD and type 2 diabetes
mellitus.

Both general and central adiposity refuse
causal effects on CHD and type 2 diabetes
mellitus.

2

VB_2.1 Not "both a low-fat vegan diet and a diet
based on ADA guidelines improved glycemic
and lipid control in type 2 diabetic patients."

- 1

VB_3.1 Collectively, these findings did not indicate
that energy-matched high intensity and moder-
ate intensity exercise are effective at decreas-
ing IHL and NAFLD risk that is not contin-
gent upon reductions in abdominal adiposity
or body mass.

Collectively, these findings contraindicate
that energy-matched high intensity and moder-
ate intensity exercise are effective at decreas-
ing IHL and NAFLD risk that is not contin-
gent upon reductions in abdominal adiposity
or body mass.

174

VB_4.1 The benefits of exercise for reducing risk of
chronic disease, including CVD, are well not
known.

- 1

VB_5.1 A higher BMI and a greater prevalence of co-
morbidities had not driven patients to seek
a more radical solution for their obesity, i.e.,
surgery.

A higher BMI and a greater prevalence of
comorbidities had attract patients to seek a
more radical solution for their obesity, i.e.,
surgery.

81

JJ_1.1 The effects of TRT on cardiovascular risk
markers were not ambiguous.

- 6

JJ_1.2 Results are not encouraging nor demon-
strate that exercise was popular and conveyed
benefit to participants.

Results are discouraging and disprove that
exercise was popular and conveyed benefit to
participants.

15

JJ_1.3 While LSG weakens the LES immediately, it
does not predictably not affect postoperative
GERD symptoms; therefore, distensibility is
not the only factor affecting development of
postoperative GERD, confirming the multifac-
torial nature of post-LSG GERD.

While LSG weakens the LES immediately, it
does not predictably impede postoperative
GERD symptoms; therefore, distensibility is
not the only factor affecting development of
postoperative GERD, confirming the multifac-
torial nature of post-LSG GERD.

53

IN_1.1 Although further investigation of long-term
and prospective studies is not needed, we
identified four variables as predisposing fac-
tors for higher major amputation in diabetic
patients through meta-analysis.

- 1

Table A1: Example negated causal sentences per method Notes. “Method” refers to negation method label as per
Algorithm 1. “Regular (Edit)” refers to direct negation from this Algorithm. “Regular (Edit-Alt)” refers to alternate
intervention using same negation location, but based off antonyms from WordNet, if available. Interventions,
excluding lemmatisation or case-changes, are highlighted in green. “n” is the number of successful conversions
applicable in CSci corpus.
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Algorithm 2: StrengthenRules – Causal strengthening scheme
Input: edit_id, text_ids, text, pos, sentid2tid, curr_try=0
Output: text,method, edit_id

1 Initialise ModalDict
2 curr_try ← curr_try + 1
3 curr_pos, curr_word← pos[edit_id], text[edit_id]
4 next_pos, next_word← pos[edit_id+ 1], text[edit_id+ 1] if valid else None
5 nnext_pos, nnext_word← pos[edit_id+ 2], text[edit_id+ 2] if valid else None
6 while curr_try <= max_try do
7 if lemma(next_word) = ‘be‘ then
8 Replace curr_word with *was* // Method ‘MOD_1.2’

9 Replace next_word with empty string
10 else if lemma(next_word) = ‘have‘ then
11 if lemma(nnext_word) = ‘be‘ then
12 Replace curr_word with *was* // Method ‘MOD_3.2’

13 Replace next_word and nnext_word with empty string
14 else
15 Replace curr_word with *had* // Method ‘MOD_3.1’

16 Replace next_word with empty string

17 else if curr_pos = MD & next_pos = RB then
18 Replace curr_word with ModalDict[curr_word] // Method ‘MOD_4.1’

19 Replace next_word with empty string
20 else
21 Replace curr_word with ModalDict[curr_word] // Method ‘MOD_1.1’

22 Define method as method name if applicable edit occurs
23 return text,method, edit_id

Method Regular (Edit) n
MOD_1.1 Physical therapy in conjunction with nutritional therapy ���may will help prevent weakness

in HSCT recipients.
98

MOD_2.1 The rs7044343 polymorphism ��
��could be was involved in regulating the production of

IL-33.
42

MOD_3.1 Increased titers of cows milk antibody before anti-TG2A and celiac disease indicates that
subjects with celiac disease ���

���might have had increased intestinal permeability in early life.
21

MOD_4.1 Physical rehabilitation aimed at improving exercise tolerance ((((
((can possibly will improve

the long-term prognosis after operations for lung cancer.
13

Table A2: Example strengthened conditional causal sentences per method. Notes. “Method” refers to strength-
ening method label as per Algorithm 2, resulting in augments as per “Regular (Edit)”. Interventions, excluding
lemmatisation or case-changes, are highlighted in green. Words removed from original version are striked out and
highlighted in red. “n” is the number of successful conversions applicable in CSci corpus.
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LabelS/N Sentence
c0 c1 c2 c3

Conversion

1 None the less, both artificially sweetened beverages and fruit
juice were unlikely to be healthy alternatives to sugar sweetened
beverages for the prevention of type 2 diabetes.

1 1 Original

2 There was no effect on lumen volume, fibro-fatty and necrotic
tissue volumes.

1 1 Negation

3 There are no indications that endogenous and exogenous gonadal
hormones affect the radiation dose-response relationship.

1 1 Negation

4 In two randomized trials comparing the PCSK9 inhibitor boco-
cizumab with placebo, bococizumab had no benefit with respect
to major adverse cardiovascular events in the trial involving lower-
risk patients but did have a significant benefit in the trial involving
higher-risk patients.

1 1 Negation

5 Altering margin policies to follow either SSO-ASTRO or ABS
guidelines would result in a modest reduction in the national re-
excision rate.

1 1 Strengthen

6 Adding an allowance for accumulation of thyroidal iodine stores
would produce an EAR of 72 ÃŽÂ¼g and a recommended dietary
allowance of 80 ÃŽÂ¼g.

1 1 Strengthen

7 " In a randomized controlled trial of 230 infants with genetic risk
factors for celiac disease, we did not find evidence that weaning
to a diet of extensively hydrolyzed formula compared with cows
milk-based formula would decrease the risk for celiac disease later
in life.

1 1 Strengthen

Table A3: Sentences that had duplicates with differing labels. Notes. Rule-based de-duplication was performed,
with the final label kept highlighted in green. “Conversion” refers to the augmented edit dataset that when we
merge with the original, the duplicate appears. Do note that Sentence S/N 7, to us, should be labelled as no
relationship (c0), but was labelled as conditional causal (c2) by original authors.

Conversion Edit Type Sentence

Negation

Original TyG is effective to identify individuals at risk for NAFLD.
Regular (Edit) TyG is not effective to identify individuals at risk for NAFLD.
Regular (Edit-Alt) TyG is ineffective to identify individuals at risk for NAFLD.
Shorten TyG is ineffective
Multiples is ineffective is ineffective is ineffective
Mask [MASK] is ineffective to identify [MASK] at [MASK] for [MASK]
Synonyms TyG exists inefficient to describe someone at take chances for NAFLD.
T5Paraphraser Ineffective for identifying individuals at risk for NAFLD.

Table A4: Extended examples of counterfactual causal sentence augments Notes. Interventions are highlighted in
green.

Conversion Edit Type n_c0 n_c1 n_c2 n_c3 n
Original (Yu et al., 2019) 1356 494 213 998 3061

Negation Regular 1356 491 212 995 3054
Negation Shorten 1356 491 212 995 3054
Negation Multiples 1356 491 212 995 3054

Strengthen Regular 1353 494 209 995 3051
Strengthen Shorten 1353 494 209 995 3051
Strengthen Multiples 1353 494 209 995 3051

Both Shorten, Regular 1356 494 209 995 3054

Table A5: Number of sentences per class label after appending edits with base corpus, de-duplication and random
sampling.

16



Conversion True Label c0 c1 c2 c3 Total
Negation c0 24 157 5 4 190

Strengthen c1 3 67 16 1 87

Table A6: Number of sentences predicted per class label for augmented dataset when trained on only original CSci
corpus. Notes. Counts correspond to accuracy scores reported in Rows 1 and 3 of Table 3.

Conversion Edit Type P R F1 Acc POrig ROrig F1Orig AccOrig

Yu et al. (2019) 87.80 88.60 88.10 90.10 87.80 88.60 88.10 90.10
Ours (Base) 86.02 88.13 87.01 89.15 86.02 88.13 87.01 89.15

Negation Regular -1.81 -1.20 -1.55 -1.92 +0.29 -0.71 -0.19 -0.95
Negation Shorten +0.76 +1.45 +1.06 +0.89 +0.46 +0.78 +0.57 -0.04
Negation Multiples +1.47 +1.44 +1.46 +1.45 +1.05 +0.81 +0.93 +0.49

Strengthen Regular +1.96 +1.51 +1.75 +1.14 +0.98 +0.58 +0.80 +0.84
Strengthen Shorten +1.54 +0.54 +1.08 +0.91 +0.52 -0.29 +0.16 +0.62
Strengthen Multiples +1.51 +0.38 +0.98 +0.98 +0.53 -0.70 -0.05 +0.57

Both Shorten, Regular +2.98 +2.57 +2.80 +2.33 +1.90 +1.54 +1.73 +1.35

Table A7: Performance metrics of BERT+MLP on CSci corpus. Notes. BioBERT models trained on variations of
CSci corpus (Original plus edits), with edits matching existing labels and randomly sampled to match base class
distribution. Results are for test set when trained and predicted over 5-folds. Precision (P), Recall (R), macro
F-score (F1) and accuracy (Acc) are reported in percentages. Columns with lowerscript “Orig" are calculated for
base items only (i.e. performance for edits is ignored). Rows below “Ours (Base)" report relative changes to it.
The best performance per column is bolded.

Conversion Edit Type P R F1 Acc POrig ROrig F1Orig AccOrig

Yu et al. (2019) 73.90 71.10 72.20 77.20 73.90 71.10 72.20 77.20
Ours (Base) 86.28 87.70 86.95 88.86 86.28 87.70 86.95 88.86

Negation Regular -2.72 -1.85 -2.33 -1.99 -0.89 -1.44 -1.18 -1.28
Negation Shorten +0.60 +1.36 +0.95 +1.19 +0.16 +0.67 +0.38 +0.18
Negation Multiples +1.18 +1.12 +1.14 +1.28 +0.68 +0.53 +0.60 +0.32

Strengthen Regular +0.97 +0.44 +0.73 +0.49 -0.14 -0.46 -0.28 +0.20
Strengthen Shorten +1.19 +0.54 +0.86 +1.08 +0.17 -0.65 -0.24 +0.71
Strengthen Multiples +0.92 +0.26 +0.62 +0.82 -0.21 -0.84 -0.50 +0.38

Both Shorten, Regular +1.25 +1.69 +1.45 +1.38 +0.00 +0.32 +0.14 +0.19

Table A8: Performance metrics of BERT+MLP+SVM on CSci corpus. Notes. Yu et al.’s SVM method does not
use BERT inputs. Our BioBERT models are trained on variations of CSci corpus (Original plus edits), with edits
matching existing labels and randomly sampled to match base class distribution. Results are for test set when
trained and predicted over 5-folds. Precision (P), Recall (R), macro F-score (F1) and accuracy (Acc) are reported
in percentages. Columns with lowerscript “Orig" are calculated for base items only (i.e. performance for edits is
ignored). Rows below “Ours (Base)" report relative changes to it. The best performance per column is bolded.
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