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Abstract

Diffusion-based methods, represented as stochastic differential equations on a continuous-time
domain, have recently proven successful as non-adversarial generative models. Training
such models relies on denoising score matching, which can be seen as multi-scale denoising
autoencoders. Here, we augment the denoising score matching framework to enable represen-
tation learning without any supervised signal. GANs and VAEs learn representations by
directly transforming latent codes to data samples. In contrast, the introduced diffusion-
based representation learning relies on a new formulation of the denoising score matching
objective and thus encodes the information needed for denoising. We illustrate how this
difference allows for manual control of the level of details encoded in the representation.
Using the same approach, we propose to learn an infinite-dimensional latent code that
achieves improvements of state-of-the-art models on semi-supervised image classification. We
also compare the quality of learned representations of diffusion score matching with other
methods like autoencoder and contrastively trained systems through their performances on
downstream tasks.

1 Introduction

Diffusion-based models have recently proven successful for generating images (Sohl-Dickstein et al., 2015;
Song & Ermon, 2020; Song et al., 2020), graphs (Niu et al., 2020), shapes (Cai et al., 2020), and audio (Chen
et al., 2020b; Kong et al., 2021). Two promising approaches apply step-wise perturbations to samples of the
data distribution until the perturbed distribution matches a known prior (Song & Ermon, 2019; Ho et al.,
2020). A model is trained to estimate the reverse process, which transforms samples of the prior to samples
of the data distribution (Saremi et al., 2018). Diffusion models were further refined (Nichol & Dhariwal,
2021; Luhman & Luhman, 2021) and even achieved better image sample quality than GANs (Dhariwal &
Nichol, 2021; Ho et al., 2021; Mehrjou et al., 2017). Further, Song et al. showed that these frameworks are
discrete versions of continuous-time perturbations modeled by stochastic differential equations and proposed
a diffusion-based generative modeling framework on continuous time. Unlike generative models such as
GANSs and various forms of autoencoders, the original form of diffusion models does not come with a fixed
architectural module that captures the representation.

Learning desirable representations has been an integral component of generative models such as GANs and
VAEs (Bengio et al., 2013; Radford et al., 2016; Chen et al., 2016; van den Oord et al., 2017; Donahue &
Simonyan, 2019; Chen et al., 2020a; Scholkopf et al., 2021). Recent works on visual representation learning
achieve impressive performance on the downstream task of classification by applying contrastive learning
(Chen et al., 2020c; Grill et al., 2020; Chen & He, 2020; Caron et al., 2021). However, contrastive learning
requires additional supervision of augmentations that preserve the content of the data, and hence these
approaches are not directly comparable to representations learned through generative systems like Variational
Autoencoders (Kingma & Welling, 2013; Rezende et al., 2014) and the current work which are considered
fully unsupervised. Moreover, training the encoder to output similar representation for different views of
the same image removes information about the applied augmentations, thus the performance benefits are
limited to downstream tasks that do not depend on the augmentation, which has to be known beforehand.
Hence our proposed algorithm does not restrict the learned representations to specific downstream tasks
and solves a more general problem instead. We provide a summary of contrastive learning approaches in
Appendix A. Similar to our approach, Denoising Autoencoders (DAE) (Vincent et al., 2008) can be used to
encode representations that can be manually controlled by adjusting the noise scale (Geras & Sutton, 2015;
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Figure 1: Conditional score matching with a parametrized latent code is representation learning. Denoising
score matching estimates the score at each z;; we add a latent representation z of the clean data xg as
additional input to the score estimator.

Chandra & Sharma, 2014; Zhang & Zhang, 2018). Note that, unlike DAEs, the encoder in our approach does
not receive noisy data as input, but instead extracts features based on the clean images. For example, this
key difference allows DRL to be used to limit the encoding to fine-grained features when focusing on low
noise levels, which is not possible with DAEs.

The main contributions of this work are

o We present an alternative formulation of the denoising score matching objective, showing that the
objective cannot be reduced to zero.

o We introduce Diffusion-based Representation Learning (DRL), a novel framework for representation
learning in diffusion-based generative models. We show how this framework allows for manual control
of the level of details encoded in the representation through an infinite-dimensional code. We evaluate
the proposed approach on downstream tasks using the learned representations directly as well as using
it as a pre-training step for semi-supervised image classification, thereby improving state-of-the-art
approaches for the latter.

o We evaluate the effect of the initial noise scale and achieve significant improvements in sampling
speed, which is a bottleneck in diffusion-based generative models compared with GANs and VAEs,
without sacrificing image quality.

1.1 Diffusion-based generative modeling

We first give a brief overview of the technical background for the framework of the diffusion-based generative
model as described in Song et al. (2021b). The forward diffusion process of the data is modeled as an SDE
on a continuous-time domain ¢ € [0,7]. Let g € R? denote a sample from the data distribution xq ~ po,
where d is the data dimension. The trajectory (z¢):eo,r) of data samples is a function of time determined by
the diffusion process. The SDE is chosen such that the distribution por(zr|zo) for any sample z¢ ~ py can
be approximated by a known prior distribution. Notice that the subscript 07" of pgr refers to the conditional
distribution of the diffused data at time T given the data at time 0. For simplicity we limit the remainder of
this paper to the so-called Variance Exploding SDE (Song et al., 2021b), that is,
2

dz = f(z,t)dt + g(t) dw := w dw, (1)
where w is the standard Wiener process. The perturbation kernel of this diffusion process has a closed-form
solution being po;(z¢|zo) = N (245 0, [02(t) — 02(0)]I). It was shown by Anderson (1982) that the reverse
diffusion process is the solution to the following SDE:

dz = [f(ajv t) - 92(t)v7; Ingt(x)] dt + g(t) dw, (2)
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Figure 2: Results of proposed DRL models trained on MNIST and CIFAR-10 with point clouds visualizing
the latent representation of test samples, colored according to the digit class. The models are trained with
Top: uniform sampling of ¢ and Bottom: a focus on high noise levels. Samples are generated from a grid of
latent values ranging from -1 to 1.

where W is the standard Wiener process when the time moves backwards. Thus, given the score function
V. log p(z) for all ¢ € [0, T], we can generate samples from the data distribution pg(z). In order to learn the
score function, the simplest objective is Explicit Score Matching (ESM) (Hyvérinen & Dayan, 2005), that is,

E., [[[so(zi,t) — Vo, logpi(a)|3] - (3)

Since the ground-truth score function V., log p:(z;) is generally not known, one can apply denoising score
matching (DSM) (Vincent, 2011), which is defined as the following;:

JtDSAJ(a) :Ezo{Ert|flfo[||30(xtvt) - vl‘t longt(xtka)Hg ]} (4)

The training objective over all ¢ is augmented by Song et al. (2021b) with a time-dependent positive weighting
function A(t), that is, JP5M(9) = E, [A(t)JP5M(#)]. One can also achieve class-conditional generation in
diffusion-based models by training an additional time-dependent classifier p;(y|z;) (Song et al., 2021b)). In
particular, the conditional score for a fixed y can be expressed as the sum of the unconditional score and the
score of the classifier, that is, V,, logpi(at|y) = Vg, log pr(xt) + V, log pe(y|z:). We take motivation from
an alternative way to allow for controllable generation, which, given supervised samples (z,y(z)), uses the
following training objective for each time ¢

TEEM(0) = Euo {Euja 50 (2, £, y(20)) = Vi, Log pos (e|z0) 13 ]} ()
The objective in equation 5 is minimized if and only if the model equals the conditional score function
Vi, log pe(xe|y(xo) = §) for all labels §.
2 Diffusion-based Representation Learning

We begin this section by presenting an alternative formulation of the Denoising Score Matching (DSM)
objective, which shows that this objective cannot be made arbitrarily small. Formally, the formula of the
DSM objective can be rearranged as

TP (0) = Bay {Ba, a, (I Ve, log pot(we]w0) — Va, log pr(ae) |13 + [Is (w1, ) — Vi, log pe(e) 3] }- (6)
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Figure 3: Results of proposed VDRL models trained on MNIST and CIFAR-10 with point clouds visualizing
the latent representation of test samples, colored according to the digit class. The models are trained with
Top: uniform sampling of ¢ and Bottom: a focus on high noise levels. Samples are generated from a grid of
latent values ranging from -2 to 2.

The above formulation holds, because the DSM objective in equation 4 is minimized when Va; : sp(x,t) =
V., log pi(x4), and differs from ESM in equation 3 only by a constant (Vincent, 2011). Hence, the constant is
equal to the minimum achievable value of the DSM objective. A detailed proof is included in the Appendix B.

It is noteworthy that the first term in the right-hand side of the equation 6 does not depend on the learned
score function of x; for every t € [0,T]. Rather, it is influenced by the diffusion process that generates x;
from x(. This observation has not been emphasized previously, probably because it has no direct effect on the
learning of the score function, which is handled by the second term in the equation 6. However, the additional
constant has major implications for finding other hyperparameters such as the function A(¢) and the choice of
o(t) in the forward SDE. To the best of our knowledge, there is no known theoretical justification for the
values of o(t). While these hyperparameters could be optimized in ESM using gradient-based learning, this
ability is severely limited by the non-vanishing constant in equation 6.

Even though the non-vanishing constant in the denoising score matching objective presents a burden in
multiple ways such as hyperparameter search and model evaluation, it provides an opportunity for latent
representation learning, which will be described in the following sections.

2.1 Learning latent representations

Since supervised data is limited and rarely available, we propose to learn a labeling function y(zg) at the
same time as optimizing the conditional score matching objective in equation 5. In particular, we represent
the labeling function as a trainable encoder Ey : R? — R®, where Ey4(x0) maps the data sample x¢ to its
corresponding code in the c-dimensional latent space. The code is then used as additional input to the score
model. Formally, the proposed learning objective for Diffusion-based Representation Learning (DRL) is the
following:

TPRE(9, ¢) = Etwg.a,[MNO)llso (2, t, By (20)) — Vi, log pot (e z0) [13] (7)

To get a better idea of the above objective, we provide an intuition for the role of E4(x¢) in the input of the
model. The model sq(-,-,-) : R x R x R® — R? is a vector-valued function whose output points to different
directions based on the value of its third argument. In fact, Ey(zo) selects the direction that best recovers
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Figure 4: Comparing the performance of the proposed diffusion-based representations (DRL and VDRL)
with the baselines that include autoencoder (AE), variational autoencoder (VAE), simple contrastive learning
(simCLR) and its handicapped variant (simCLR-Gauss) which exclude domain-specific data augmentation
from the original simCLR algorithm.

xo from z;. Hence, when optimizing over ¢, the encoder learns to extract the information from zy in a
reduced-dimensional space that helps recover zg by denoising ;.

We show in the following that equation 7 is a valid representation learning objective. The score of the
perturbation kernel V., log po:(x¢|xg) is a function of only ¢, x; and xg. Thus, the objective can be reduced
to zero if all information about x( is contained in the latent representation Ey(z9). When Eg(zo) has no
mutual information with xg, the objective can only be reduced up to the constant in equation 6. Hence,
our proposed formulation takes advantage of the non-zero lower-bound of equation 6, which can only vanish
when the encoder Ey(-) properly distills information from the unperturbed data into a latent code, which
is an additional input to the score model. These properties show that equation 7 is a valid objective for
representation learning.

Our proposed representation learning objective enjoys the continuous nature of SDEs, a property that is not
available in many previous representation learning methods (Radford et al., 2016; Chen et al., 2016; Locatello
et al., 2019). In DRL, the encoder is trained to represent the information needed to denoise x¢ for different
levels of noise o(t). We hypothesize that by adjusting the weighting function A(t), we can manually control
the granularity of the features encoded in the representation and provide empirical evidence as support. Note
that t — T is associated with higher levels of noise and the mutual information of x; and x( starts to vanish.
In this case, denoising requires all information about zy to be contained in the code. In contrast, t — 0
corresponds to low noise levels and hence x; contains coarse-grained features of xy and only fine-grained
properties may have been washed out. Hence, the encoded representation learns to keep the information
needed to recover these fine-grained details. We provide empirical evidence to support this hypothesis in
Section 3.

It is noteworthy that Fy4 does not need to be a deterministic function and can be a probabilistic map similar
to the encoder of VAEs. In principle, it can be viewed as an information channel that controls the amount
of information that the diffusion model receives from the initial point of the diffusion process. With this
perspective, any deterministic or stochastic function that can manipulate I(x:,zg), the mutual information
between xy and x;, can be used. This opens up the room for stochastic encoders similar to VAEs which we
call Variational Diffusion-based Representation Learning (VDRL). The formal objective of VDRL is

TYPRED, §) = Bty a0 [Banr, (2100) MO0 (21,1, 2) = Vo, log por(we|z0) 3]

+ D (Eg(Z|20)|IN(Z; 0, 1)] (8)

2.2 Infinite-dimensional representation of data

We now present an alternative version of DRL where the representation is a function of time. Instead of
emphasizing on different noise levels by weighting the training objective, as done in the previous section, we
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LaplaceNet LaplaceNet Ours Ours Ours

Pretraining None None DRL DRL VDRL
Mixup No Yes No Yes No

Dataset #labels

CIFAR-10 100 73.68 75.29 74.31 64.67 81.63

500 91.31 92.53 92.70 92.31 92.79

1000 92.59 93.13 93.24 93.42 93.60

2000 94.00 93.96 94.18 93.91 93.96

4000 94.73 94.97 94.75 95.22 95.00

CIFAR-100 1000 55.58 55.24 55.85 55.74 56.47

4000 67.07 67.25 67.22 67.47 67.54

10000 73.19 72.84 73.31 73.66 73.50

20000 75.80 76.07 76.46 76.88 76.64

MinilmageNet 4000 58.40 58.84 58.95 59.29 59.14

10000 66.65 66.80 67.31 66.63 67.46

Table 1: Comparison of classifier accuracy in % for different pretraining settings. Scores better than the
SOTA model (LaplaceNet) are in bold. "DRL" pretraining is our proposed representation learning, and
"VDRL" the respective version which uses a probabilistic encoder.

can provide the time t as input to the encoder. Formally, the new objective is

Etoo.0.[ANt)llso (2, t, By (0, 1)) — Va, log pot (x¢|20) |13] (9)

where E4(z0) in equation 7 is replaced by Ey(zo,t). Intuitively, it allows the encoder to extract the necessary
information of x(y required to denoise x; for any noise level. This leads to richer representation learning since
normally in autoencoders or other static representation learning methods, the input data zo € R? is mapped
to a single point z € R¢ in the latent space. In contrast, we propose a richer representation where the input
x( is mapped to a curve in R instead of a single point. Hence, the learned latent code is produced by the
map o — (Eg(2o,t))iejo,r) Where the infinite-dimensional object (Eg(wo,t))tcjo,7] is the encoding for zo.

Proposition 1. For any downstream task, the infinite-dimensional code (Eg(20,t)):eo,1) learned using the
objective in equation 9 is at least as good as finite-dimensional static codes learned by the reconstruction of .

Proof sketch. The score matching objective can be seen as a reconstruction objective of xy conditioned on
;. The terminal time T is chosen large enough so that x7 is independent of xg, hence the objective for
t =T is equal to a reconstruction objective without conditioning. Therefore, there exists a ¢t € [0, T] where
the learned representation Ey4(x¢,t) is the same representation learned by the reconstruction objective of a
vanilla autoencoder. The full proof for Proposition 1 can be found in the Appendix C

A downstream task can leverage this rich encoding in various ways, including the use of either the static
code for a fixed ¢, or the use of the whole trajectory (Eg(wo,t))icjo,r) as input. We posit the conjecture
that the proposed rich representation is helpful for downstream tasks when used for pretraining, where the
value of t could either be a model selection parameter or be jointly optimized with other parameters during
training. We leave investigations along these directions as important future work. We show the performance
of the proposed model on downstream tasks in Section 3.1 and also evaluate it on semi-supervised image
classification in Section 3.2.

3 Results

For all experiments, we use the same function o(t),t € [0,1] as in Song et al. (2021b), which is o(t) =
Omin (Omax/ amin)t, where o, = 0.01 and 0. = 50. Further, we use a 2d latent space for all qualitative
experiments (Section 3.3) and 128 dimensional latent space for the downstream tasks (Section 3.1) and
semi-supervised image classification (Section 3.2). We also set A(t) = o%(t), which has been shown to yield the
KL-Divergence objective (Song et al., 2021a). Our goal is not to produce state-of-the-art image quality, rather
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showcase the representation learning method. Because of that and also limited computational resources,
we did not carry out an extensive hyperparameter sweep (check Appendix D for details). Note that all
experiments were conducted on a single RTX8000 GPU, taking up to 30 hours of wall-clock time, which only
amounts to 15% of the iterations proposed in Song et al. (2021b).

3.1 Downstream Classification

We directly evaluate the representations learned by different algorithms on downstream classification tasks
for CIFAR10, CIFAR100, and Mini-ImageNet datasets. The representation is first learned using the proposed
diffusion-based method. Then, the encoder (either deterministic or probabilistic) is frozen and a single-layered
neural network is trained on top of it for the downstream prediction task. For the baselines, we consider an
Autoencoder (AE), a Variational Autoencoder (VAE), and a handicapped Contrastive Learning (SimCLR-~
Gauss explained below) setup to compare with the proposed methods (DRL and VDRL). Figure 4 shows that
DRL and VDRL outperform autoencoder-styled baselines as well as the handicapped contrastive learning
baseline.

Handicapped simCLR— To obtain a fair comparison, we restricted the transformations used by the simCLR
method to the additive pixel-wise Gaussian noise (SimCLR-Gauss). The original simCLR expectedly
outperforms the other methods because it uses the privileged information injected by the employed data
augmentation methods. For example, random cropping is an inductive bias that reflects the spatial regularity
of the images. Even though it is possible to strengthen our method and autoencoder-based baselines such as
VAEs with such augmentation-based strategies, we restricted all baselines to the generic setting without this
inductive bias and leave the domain-specific improvements for future work.

It is seen that the DRL and VDRL methods significantly outperform the baselines on all the datasets at a
number of different time-steps t. We further evaluate the infinite-dimensional representation on few-shot
image classification using the representation at different timescales as input. The detailed results are shown
in Appendix E. In summary, the representations of DRL and VDRL achieve significant improvements as
compared to an autoencoder or VAE for several values of ¢ .

Overall the results align with the theoretical argument of Proposition 1 that the rich representation of DRL is
at least as good as the static code learned using a reconstruction objective. It further shows that in practice,
the infinite-dimensional code is superior to the static (finite-dimensional) representation for downstream
applications such as image classification by a significant margin.

3.2 Semi-Supervised Image Classification

The current state-of-the-art model for many semi-supervised image classification benchmarks is LaplaceNet
(Sellars et al., 2021). It alternates between assigning pseudo-labels to samples and supervised training of a
classifier. The key idea is to assign pseudo-labels by minimizing the graphical Laplacian of the prediction
matrix, where similarities of data samples are calculated on a hidden layer representation in the classifier.
Note that LaplaceNet applies mizup (Zhang et al., 2017) that changes the input distribution of the classifier.
We evaluate our method with and without mixup on CIFAR-10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky
et al., b) and MinilmageNet (Vinyals et al., 2016).

In the following, we evaluate the infinite-dimensional representation (Eg(xo,t))se[o,7] On semi-supervised
image classification, where we use DRL and VDRL as pretraining for the LaplaceNet classifier. Table 1
depicts the classifier accuracy on test data for different pretraining settings. Details for architecture and
hyperparameters are described in Appendix G.

Our proposed pretraining using DRL significantly improves the baseline and often surpasses the state-of-
the-art performance of LaplaceNet. Most notable are the results of DRL and VDRL without mixup, which
achieve high accuracies without being specifically tailored to the downstream task of classification. Note
that pretraining the classifier as part of an autoencoder did not yield any improvements (Table 4 in the
Appendix). Combining DRL with mixup yields inconsistent improvements, results are reported in Table
5 of the Appendix. In addition, DRL pretraining achieves much better performances when only limited
computational resources are available (Tables 2, 3 in the Appendix).



Under review as submission to TMLR

(a) tinit = 0.5 (b) tinit = 0.6 (¢) tinit = 0.7 (d) tinit = 0.8 (e) tinit = 0.9 (f) tinit = 1.0

Figure 5: Generated image samples for different values of ¢;,;; using the Gaussian prior.
3.3 Qualitative Results

We first train a DRL model with L;-regularization on the latent code on MNIST (LeCun & Cortes, 2010) and
CIFAR-10. Figure 2 (top) shows samples from a grid over the latent space and a point cloud visualization
of the latent values z = Ey4(xo). For MNIST, we can see that the value of z; controls the stroke width,
while zo weakly indicates the class. The latent code of CIFAR-10 samples mostly encodes information about
the background color, which is weakly correlated to the class. The use of a probabilistic encoder (VDRL)
leads to similar representations, as seen in Fig. 3 (top). We further want to point out that the generative
process using the reverse SDE involves randomness and thus generates different samples for a single latent
representation. The diversity of samples however steadily decreases with the dimensionality of the latent
space, shown in Figure 7 of the Appendix.

Next, we analyze the behavior of the representation when adjusting the weighting function A(t) to focus on
higher noise levels, which can be done by changing the sampling distribution of ¢. To this end, we sample
t € [0, 1] such that o(t) is uniformly sampled from the interval [omin, Omax] = [0.01,50]. Figure 2 (bottom)
shows the resulting representation of DRL and Figure 3 (bottom) for the VDRL results. As expected, the
latent representation for MNIST encodes information about classes rather than fine-grained features such as
stroke width. This validates our hypothesis of Section 2.1 that we can control the granularity of features
encoded in the latent space. For CIFAR-10, the model again only encodes information about the background,
which contains the most information about the image class. A detailed analysis of class separation in the
extreme case of training on single timescales is included in Appendix H.

Overall, the difference in the latent codes for varying A(¢) shows that we can control the granularity encoded
in the representation of DRL. This ability provides a significant advantage when there exists some prior
information about the level of detail that we intend to encode in the target representation. We further
illustrate how the representation encodes information for the task of denoising in the Appendix (Fig. 6).

We also provide further analysis into the impact of noise scales on generation in Appendix I.

4 Conclusion

We presented Diffusion-based Representation Learning (DRL), a new objective for representation learning
based on conditional denoising score matching. In doing so, we turned the original non-vanishing objective
function into one that can be reduced arbitrarily close to zero by the learned representation. We showed
that the proposed method learns interpretable features in the latent space. In contrast to some of the
previous approaches that required specialized architectural changes or data manipulations, denoising score
matching comes with a natural ability to control the granularity of features encoded in the representation.
We demonstrated that the encoder can learn to separate classes when focusing on higher noise levels and
encodes fine-grained features such as stroke-width when mainly trained on smaller noise variance. In addition,
we proposed an infinite-dimensional representation and demonstrated its effectiveness for downstream tasks
such as few-shot classification. Using the representation learning as pretraining for a classifier, we were able
to improve the results of LaplaceNet, a state-of-the-art model on semi-supervised image classification.

Starting from a different origin but conceptually close, contrastive learning as a self-supervised approach could
be compared with our representation learning method. We should emphasize that there are fundamental
differences both at theoretical and algorithmic levels between contrastive learning and our diffusion-based
method. The generation of positive and negative examples in contrastive learning requires the domain
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knowledge of the applicable invariances. This knowledge might be hard to obtain in scientific domains such
as genomics where the knowledge of invariance amounts to the knowledge of the underlying biology which in
many cases is not known. However, our diffusion-based representation uses the natural diffusion process that
is employed in score-based models as a continuous obfuscation of the information content. Moreover, unlike
the loss function of the contrastive-based methods that are specifically designed to learn the invariances of
manually augmented data, our method uses the same loss function that is used to learn the score function for
generative models. The representation is learned based on a generic information-theoretic concept which
is an encoder (information channel) that controls how much information of the input has to be passed to
the score function at each step of the diffusion process. We also provided theoretical motivation for this
information channel. The algorithm cannot ignore this source of information because it is the only way to
reduce a non-negative loss arbitrarily close to zero.
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