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ABSTRACT

Advanced agentic intelligence is a prerequisite for deploying Large Language
Models in practical, real-world applications. Diverse real-world APIs demand
precise, robust function-calling intelligence, which needs agents to develop these
capabilities through interaction in varied environments. The breadth of function-
calling competence is closely tied to the diversity of environments in which agents
are trained. In this work, we scale up environments as a step towards advancing
general agentic intelligence. This gives rise to two central challenges: (i) how to
scale environments in a principled manner, and (ii) how to effectively train agentic
capabilities from experiences derived through interactions with these environments.
To address these, we design a scalable framework that automatically constructs
heterogeneous environments that are fully simulated, systematically broadening
the space of function-calling scenarios. We further adapt a two-phase agent fine-
tuning strategy: first endowing agents with fundamental agentic capabilities, then
specializing them for domain-specific contexts. Extensive experiments on agentic
benchmarks, τ -bench, τ2-Bench, and ACEBench, demonstrate that our trained
model, AgentScaler, significantly enhances the models’ function-calling capability.

1 INTRODUCTION

Function calling empowers language agents to interface with the real world (Qin et al., 2023;
Chen et al., 2024b; Qin et al., 2024; Schick et al., 2023; Su et al., 2025b). Yet, their progress is
fundamentally constrained by the scarcity of agentic data1, i.e., trajectories generated by autonomous
agents interacting with environments via explicit action executions, namely, tool calls (Zhou et al.,
2023; Liu et al., 2024a). The community has gradually transitioned from the era of raw corpora and
human-curated data to the emerging era of experience (Silver & Sutton, 2025; Wu et al., 2025a; Li
et al., 2025; Tao et al., 2025; Geng et al., 2025). Crucially, language agents must experience these
interactions themselves in a predefined environment, which makes both data collection and reliable
supervision highly challenging.

Several approaches have been attempted to generate synthetic agentic data. Broadly, previous
methods fall into two categories. The first category follows a reverse paradigm, in which user queries
are generated to match each assistant function call observed at every interaction turn (Yin et al.,
2025), though the resulting trajectories may exhibit limited realism. The second category follows
a forward paradigm, which we refer to as simulated agent–human interplay (Chen et al., 2024a;
Liu et al., 2024b; Prabhakar et al., 2025a; Barres et al., 2025; Zeng et al., 2025). Such generated
trajectories, however, may lack naturalness. In this category, a high-level user intent is first formulated
to necessitate agent interaction. Agentic data is then constructed in a top-down manner based on
this intent through human–agent interplay. Yet, the environment is not scalable: the absence of
automated environment construction hinders large-scale deployment and inevitably entails some
degree of manual intervention.

To address these challenges, we pursue the advancement of general agentic intelligence via systematic
environment scaling. Our approach follows a principled two-stage pipeline: (i) fully simulated
environment construction and scaling, responsible for establishing and expanding diverse agentic

1In this paper, the terms “function-calling”, “tool”, “API”, “MCP” are used interchangeably; “agentic data”
refers to trajectories involving such interactions.
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scenarios, and (ii) agent experience learning, which exploits these environments to foster generaliz-
able intelligence.

In designing environment construction and scaling, we follow the principle that the core of an agent
lies in its capacity for environment interaction, with each environment instantiated as a read–write
database (Barres et al., 2025; Zeng et al., 2025). Specifically, we collect a broad spectrum of APIs
and organize them into domains using community detection, where each domain represents an
environment aligned with a specific database structure. Then, we instantiate tools as executable code,
thereby achieving programmatic materialization that enables direct operations on the underlying
database structures. Finally, we sample from the domain-specific tool graph to generate parameters for
the tool sequences and initialize the corresponding database state. We then integrate these components
into an overall user intent, grounding tool executions directly on the database. This design enables
verifiability at both the environment level and the tool-argument response level.

For learning from agent experience, our focus is on training the agent’s ability to perform tool calls
and to respond effectively to users (Ye et al., 2025b; Su et al., 2025a). We begin by performing
simulated human–agent interactions on the constructed agentic tasks (Prabhakar et al., 2025a), thereby
collecting trajectories that serve as the agent’s experience and perform strict filtering. To facilitate the
acquisition of this capability, we adopt a two-stage agent experience learning framework: in stage
1, the agent acquires fundamental tool-calling skills across general domains; in stage 2, it is further
trained within target vertical domains using domain-specific scenarios, enabling smoother and more
context-aligned development of agentic capabilities.

Extensive experiments on agentic benchmarks, τ -bench (Yao et al., 2024), τ2-Bench (Barres et al.,
2025), and ACEBench (Chen et al., 2025) show the effectiveness of our pipeline and trained models.
Based on the above pipeline, we train our family of AgentScaler models (4B, 8B, 30B-A3B), built
upon the Qwen-3 (Team, 2025b) series. At each comparable scale (4B, 8B), our models achieve state-
of-the-art performance. Notably, AgentScaler-30-A3B sets a new state-of-the-art with significantly
fewer parameters among models with comparable active parameter size, delivering results on par
with existing 1T-parameter models and leading closed-source systems. We also provide a systematic
analysis covering model generalization, stability, and the long-horizon tool-calling challenge, offering
key insights into the development of general agentic intelligence.

2 ENVIRONMENT BUILD AND SCALING

Design Principal There already exist many real-world environments for agent interaction (Qin
et al., 2023). However, these real environments suffer from several practical limitations that make
them unsuitable for large-scale and stable training. First, many real online APIs are unstable,
frequently affected by rate limits, fluctuating QPS capacity, and transient API failures. Such instability
prevents agents from receiving consistent tool feedback, which is crucial for effective learning. This
limitation has also been highlighted by multiple recent works (Guo et al., 2024; 2025), motivating the
development of simulated environments to enable reliable and large-scale agent training. Second,
simulated environments can provide deterministic, reproducible, and controllable tool feedback,
which real-world environments cannot guarantee. This stability is especially important for training
models that rely on precise multi-step tool interactions (Sun et al., 2025; Su et al., 2025b). In
essence, any function call can be interpreted as a read–write operation over an underlying
environmental database D (Guo et al., 2025). Specifically, each function func can be assigned an
operator type, op(func) ∈ {read,write}, where read-type function perform queries over D
(e.g., retrieval, inspection, monitoring), while write-type tools induce state transitions in D (e.g.,
modification, generation, actuation). Under this abstraction, a tool response is equivalent to evaluating
the induced operator on D, i.e., API(func, α) ≡ op(func)(α;D), where the symbol α denotes the
input arguments provided to a function call. Furthermore, let Td denote the set of tools within domain
d. Tools in the same domain typically exhibit structurally similar read–write patterns, which can be
captured by a common database schema Sk. Consequently, the design problem reduces to defining
a partition of the tool space into domains {T1 . . . , TM}, and assigning to each domain a database
schema Sk, where Sk specifies the environment for that domain.
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class ProjectSchedulecreate(Tool):
@staticmethod
def __call__(

data: Dict[str, Any],
projectDetails: Dict[str, Any]

) -> str:
projects = data["projects"]

        ...
        return ...

"projects": {
"project_id_placeholder": {

"project_id": ...
"project_name": ...
...
"last_updated": }

},
"tasks": ...
"milestones": ...

User Intent

Tool Seq

Name: ProjectSchedulecreate
Description: Create and 
schedule a construction-type 
project ...
Parameters: ...

Init Env State

Tasks

You want to start by retrieving the current 
project timeline and construction scheduling 
details to understand the existing plan. Then, 
you intend to … After that, you plan to 
generate your own DIY task-level…

"projects": {
  "project_id_placeholder": {

"project_id”: project_1
"last_updated":"2024-03-01T10:00:00Z"}

}
"tasks": []

"projects": {
"project_id_placeholder": {
"project_id": project_1
"last_updated": "2024-03-01T11:30:00Z"}

},
"tasks": [
Site Preparation, Foundation Work,...
]

Figure 1: The overview of the environment automatic build, and agentic environment construction.
Step 1, a large set of raw tool schemata are matched according to the vector similarity of their
parameters, thereby constructing a tool graph; Step 2, use a community partitioning algorithm to
divide the set of tools within a domain, then perform random walks to obtain tool sequences; Step 3,
construct executable Python functions and a state repository from the tools.

2.1 ENVIRONMENT AUTOMATIC BUILD

Building upon this design principle, we propose a systematic pipeline for leveraging a diverse set of
tools as shown in Figure 1. We begin with scenario collection, which gathers a large corpus of real-
world tools; proceed to tool dependency graph modeling, which induces well-structured domain
partitions and distributions; and finally employ function schema programmatic materialization,
which maps tool operations onto database interactions, thereby enabling the construction of the
overall environment.

Scenario Collection We collected more than 30,000 APIs from ToolBench (Qin et al., 2023; Guo
et al., 2024), API-Gen (Prabhakar et al., 2025b) and online tool repository. After applying rigorous
filtering, including the removal of low-quality APIs and subsequent refinement, we rewrite some API
descriptions to incorporate explicit input–output specifications (Fang et al., 2025). Building on this,
we further constructed tool compositions by systematically exploiting the input–output relationships
among APIs. This process ultimately resulted in API pools ΘF whose size = N (over 30,000),
providing a reliable foundation for subsequent experiments and analysis.

Tool Dependency Graph Modeling We construct a tool graph in which nodes are tools and edges
encode compositional compatibility induced by function parameters. A tool func consists of a
description Dfunc and a list of parameters Pfunc. For a pair of tools, we can extract their respective
parameter lists and convert them into vector representations ϕ to compute their cos-similarity. If
the similarity exceeds a predefined threshold τ , we consider there to be a dependency relationship
between the two tools. Accordingly, we insert an edge E between them in our graph.

E =
{
(i, j) | sim(ϕ(Pfunci), ϕ(Pfuncj )) > τ, i ̸= j

}
(1)

Domain partitioning then reduces to a graph clustering problem. We employ Louvain community
detection (Blondel et al., 2008) to identify coherent tool communities that serve as domains. For
a segmented tool set, since parameter matching relies solely on vectorization and considers only
individual parameter information, the overall inter-tool dependencies may be difficult to capture.
Therefore, for tools within a given domain, we further employ an LLM to systematically examine the
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dependencies between each pair of tools, thereby further improving the accuracy of edges in the tool
graph. In total, we obtained M domains (exceeding 1,000).

Function Schema Programmatic Materialization We first leverage the parameters of all tools
within a domain to generate a domain-specific database structure, which serves as the underlying state
for subsequent tool operations. After obtaining the domain-specific tool set and the corresponding
database schema in the previous stage, we can formalize each tool in python code, enabling it to
perform read–write operations over the database schema. Interestingly, when generating database
structures and formalizing code within specific domains of τ -bench, we observe through manual
inspection that our outputs exhibit a high degree of consistency with the official implementations
provided by τ -bench (Yao et al., 2024).

2.2 AGENTIC TASK CONSTRUCTION

We construct trajectories via forward simulated agent–human interplay, which allows us to fully
simulate the environment, the user, and the agent. The critical step is to synthesize agentic tasks that
elicit human tool usage while ensuring that the resulting trajectories remain verifiable. Concretely, we
first initialize an environment state based on the domain-specific database schema, while encouraging
as much diversity as possible in the initial state. Next, we sample logically coherent tool sequences
from the domain’s tool graph, specifically by constructing a directed dependency graph over APIs and
traversing it to obtain valid sequences. Starting from a randomly selected initial node, we conduct a
directed walk until either the maximum execution steps are reached or a node with no outgoing edges
is encountered. This process yields a logically coherent tool sequence. For each step, we generate the
corresponding arguments and perform the actual tool call, grounding the operations directly on the
database and continuously tracking the evolving database state. This procedure enables verifiability
at two complementary granularities: (i) database-level state consistency and (ii) exact matching of
tool sequences.

3 AGENT EXPERIENCE LEARNING

We leverage user intent to drive interactions that yield agent experiences, and train the model through
a two-phase process.

🧑💻

User Intent

🧑💻

Gold Action Seq

Interaction Traces

Compare

Environment State

Gold Env State

Compare

… More Interaction Turns

Simulated User

Task Agent

Environment

Can you return my order?

Sure, but I would need your email 
to authenticate you and order info.

My email is … and the order is about …

Your order id is …, would like to proceed?

get_user_info(…)

get_order_info(…)

get_..._info(…)

Obtain 
User Info

Obtain 
Order Info

Obtain 
More Info

Figure 2: The agent interacts with the simulated user and changes the environment state through the
generated functions.

3.1 HUMAN–AGENT INTERPLAY FOR EXPERIENCE COLLECTION

Interplay Motivated by Yao et al. (2024), once we have constructed an agentic task, we proceed
to perform human-agent interplay in the environment. Specifically, we instantiate a simulated user
tasked with fulfilling a given overall intent. The agent then leverages domain-specific tools to address
the user’s needs, continuing the interaction until the simulated user deems the task complete. This

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

setup enables us to conduct end-to-end simulation, encompassing user simulation, agent, and
environment, yielding a highly scalable framework. Each completed interaction trace constitutes an
agent experience, which can subsequently be used for training. Importantly, since we possess both
the gold tool sequences and arguments for the overall intent and the final environment state, we can
apply these as supervision signals for experience filtering. All simulated trajectories are generated
using the open-source model Qwen3-235B-A22B-Thinking.

Filtering We adopt a three-stage funnel-based trajectory filtering framework consisting of validity
control, environment state alignment, and function calling exact match.

• Validity control, removes invalid interaction trajectories to ensure well-formed alternating
user assistant exchanges. Additionally, we apply an n-gram-based filtering procedure to
eliminate severely repetitive reasoning segments. In such cases, we discard these data points.

• Environment state alignment retains only those trajectories whose final database state
matches the golden state after the interplay, thereby validating the effectiveness of write
operations. The filtering granularity at this stage is the database/environment level.

• Function calling exact match serves as the most stringent filtering stage, where the granular-
ity is the tool sequence. Since a tool sequence consisting entirely of read operations without
any write operations would cause state-based filtering to fail, we adopt a stricter exact match
approach for filtering in such cases. A trajectory is preserved only if the sequence of invoked
tools and arguments exactly matches the overall intent, ensuring high-fidelity supervision.

It is worth noting that we do not filter out trajectories in which tool calls return errors. Thanks to the
aforementioned filtering framework, such trajectories may still accomplish the intended goal despite
intermediate failures. Retaining them in the training data helps improve the robustness of the model.

3.2 AGENTIC EXPERIENCE LEARNING

Agentic Fine-tuning Given agent-human interplay experience trajectory H =
(h0, a1, . . . , an−1, hn, a0), where each human instruction is denoted by ht at t-round inter-
action, and each assistant turn at is decomposed as at = (τt, ρt, yt). Here, τt represents the function
call tokens, ρt the tool response tokens, and yt the assistant response tokens. Our training objective
is to optimize only the tool calls and assistant responses, while human instructions hi and tool
responses ρt are excluded from the loss. Formally, given an autoregressive model pθ(xk | x<k), we
define the loss as

L(θ) = − 1∑|H|
k=1 I[ki ∈ T ]

|H|∑
k=1

I[xk ∈ T ] · log πθ (xi | x<k) , (2)

where xk denotes the k-th token in the trajectory, πθ is the model distribution, I[·] is the indicator
function, T is the set of tokens belonging to tool calls τ or assistant responses y. In practice, all
tokens in ρi and hi are masked out from supervision but remain visible in the context x<k. This
ensures that the model conditions on tool responses and human instructions, while gradients are only
propagated through assistant-generated tool calls and natural-language responses.

Two-stage Experience Learning In the first phase, the agent is trained to acquire fundamental
skills for tool usage and user interaction. We focus on general domains where a broad set of
tools and tasks are available, allowing the agent to develop a robust understanding of when and
how to invoke function calls, as well as how to integrate tool outputs into coherent user-facing
responses. This stage emphasizes breadth and generality, ensuring that the agent builds a versatile
foundation of agentic behaviors before domain-specific specialization. In the second phase, the
agent undergoes fine-grained training in vertical domains, where tasks, tools, and user intents exhibit
domain-specific characteristics. In our setting, this stage primarily focuses on the τ -Bench and
τ2-Bench. By grounding the learning process in realistic scenarios within a target domain, the
agent refines its ability to select tools, parameterize calls, and produce responses that are accurate,
contextually appropriate, and aligned with domain-specific goals. This specialization ensures a
smoother adaptation of agentic capabilities, enabling the agent to operate effectively in real-world,
task-oriented environments.
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4 EXPERIMENTS

4.1 SETUP

Benchmarks We evaluate our methods on three established agentic benchmarks: τ -bench, τ2-
Bench, and ACEBench-en. For τ -Bench (covering the retail and airline domains) and
τ2-Bench (spanning the retail, airline, and telecom domains), we adopt the pass1 metric
for evaluation and additionally analyze the trend of passk, following the protocols in Yao et al. (2024);
Barres et al. (2025).

For ACEBench-en, we report results across the Normal, Special, and Agent categories, as well
as the Overall performance, using the accuracy metric.

Baselines We compare our trained series models against the following types: closed-sourced
large language model, including Gemini-2.5-pro (Comanici et al., 2025), Claude-Sonnet-4 (An-
thropic, 2025), GPT-o3, GPT-o4-mini (OpenAI, 2025b), and GPT-5 (with thinking) (OpenAI, 2025a);
open-sourced large language model: GPT-OSS-120B-A5B (Agarwal et al., 2025), Deepseek-V3.1-
671B-A37B (DeepSeek-AI, 2024), Kimi-K2-1T-A32B (Team et al., 2025), Qwen3-Thinking-235B-
A22B (Team, 2025b), Seed-OSS-36B (Team, 2025a), Qwen-Coder-30B-A3B (Hui et al., 2024), and
xLAM-2 model series (Prabhakar et al., 2025a).

Backbones We train the AgentScaler model series by training on Qwen3 models (Team, 2025b)
of varying scales. Specifically, AgentScaler-4B and AgentScaler-30B-A3B are trained on Qwen3-
Thinking-4B-2507 and Qwen3-Thinking-30B-A3B-2507, respectively, while AgentScaler-8B is
trained on Qwen3-8B.

4.2 EXPERIMENTAL RESULTS

Table 1: Main results on τ -Bench, τ2-Bench, and ACEBench-en.
τ -bench τ2-Bench ACEBench-en

Model Retail Airline Retail Airline Telecom Normal Special Agent Overall

Closed-Source Large Language Models

Gemini-2.5-pro 68.7 44.0 67.5 56.0 27.2 76.7 90.0 63.4 78.2
Claude-Sonnet-4 73.9 40.0 67.5 54.0 47.4 79.9 87.3 42.5 76.1
GPT-o3 70.4 52.0 80.2 64.8 58.2 78.3 86.7 63.3 78.2
GPT-o4-mini 70.4 46.0 70.2 56.0 46.5 79.9 84.0 60.0 77.9
GPT-5-think 78.3 44.0 81.1 62.6 96.7 76.7 85.3 32.5 72.2

Open-Source Large Language Models

GPT-OSS-120B-A5B 67.8 49.2 57.0 38.0 45.6 79.1 84.0 50.8 76.0
Deepseek-V3.1-671B-A37B 66.1 40.0 64.9 46.0 38.5 80.3 62.0 40.8 69.3
Kimi-K2-1T-A32B 73.9 51.2 70.6 56.5 65.8 78.9 81.3 65.0 77.4
Qwen3-Thinking-235B-A22B 67.8 46.0 71.9 58.0 45.6 72.1 84.0 39.1 70.2

Seed-OSS-36B 70.4 46.0 68.4 52.0 41.2 79.1 82.0 58.4 76.7
Qwen-Coder-30B-A3B 68.7 48.0 60.5 42.0 30.7 74.0 41.3 24.1 57.5

xLAM-2-8B-fc-r 58.2 35.2 55.3 48.0 11.4 58.8 0.0 5.0 34.8
xLAM-2-32B-fc-r 64.3 45.0 55.3 52.0 16.7 69.2 24.7 13.4 52.5
xLAM-2-70B-fc-r 67.1 45.2 61.4 56.0 14.0 57.1 5.3 38.4 36.5

Qwen3-Thinking-4B 59.1 52.5 56.1 52.0 28.7 43.3 84.7 11.7 49.5
Qwen3-8B 45.2 25.0 41.2 30.5 23.5 71.4 75.3 29.1 65.9
Qwen3-14B 45.7 31.0 48.0 30.0 26.9 66.9 84.0 44.2 68.0
Qwen3-Thinking-30B-A3B 67.8 48.0 58.8 58.0 26.3 64.7 86.7 42.8 67.2

AgentScaler-4B 64.3 54.0 62.3 56.0 48.2 70.3 76.7 30.8 65.9
AgentScaler-8B 50.4 42.0 58.8 44.0 45.4 69.2 76.7 44.2 67.4
AgentScaler-30B-A3B 70.4 54.0 70.2 60.0 55.3 76.7 82.7 60.0 75.7

Main Results From Table 1, we observe that closed-source large language models (LLMs) still
maintain a clear performance advantage, consistently achieving the highest scores across most
domains and benchmarks. This demonstrates the strength of industrial-scale training pipelines and
proprietary optimization strategies. Nevertheless, our proposed AgentScaler achieves a remarkable
level of performance given its lightweight parameter scale. Specifically, it surpasses most open-
source baselines with fewer than 1T parameters, establishing a new state-of-the-art across τ -bench,
τ2-Bench, and ACEBench-en.
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Figure 3: Performance comparison on the Normal,
Agent, and Overall subsets of ACEBench-en for two-
stage training models.

Notably, AgentScaler-4B achieves per-
formance on par with 30B-parameter
models despite using the fewest parame-
ters, highlighting the agentic potential of
compact LLMs. Moreover, AgentScaler-
30B-A3B delivers results that are compa-
rable to trillion-parameter open-source
models and, in several domains, ap-
proach those of closed-source counter-
parts. These findings highlight the effi-
ciency of our approach: agentic capabil-
ities can be effectively learned and de-
ployed even in relatively compact mod-
els, enabling competitive performance
without relying on massive parameter counts. This advantage makes AgentScaler particularly well-
suited for practical deployment in resource-constrained or latency-sensitive scenarios.

Ablation Study We further conduct an ablation analysis to examine the effect of the proposed two-
stage agent experience learning framework on ACEBench-en. As shown in Figure 3, both Stage 1 and
Stage 2 training substantially improve performance over the base model (Qwen3-Thinking-30B-A3B)
across all subsets. And through multi-steps agent training in Stage 2, the model’s score on the agent
set has further improved, and the overall score has also increased. These results validate the design of
the two-phase training pipeline: general foundation learning is critical for establishing tool-usage
competence, and subsequent domain-specialization further consolidates and contextualizes these
capabilities.

5 ANALYSIS

Table 2: The results on ACEBench-zh.
Model ACEBench-zh

Normal Special Agent Overall

Qwen3-Thinking-4B 34.7 85.3 6.7 43.9
AgentScaler-4B 70.8+36.1 70.0-15.3 38.4+31.7 65.6+21.7

Qwen3-8B 80.3 72.7 35.0 71.3
AgentScaler-8B 75.2-5.1 79.3+6.6 58.4+23.4 73.7+2.4

Qwen3-Thinking-30B-A3B 73.4 86.7 55.8 74.2
AgentScaler-30B-A3B 85.3+11.9 83.3-3.4 64.1+8.3 81.5+7.3

Our synthetic data approach en-
ables efficient knowledge transfer and
strong robustness and generalization.
We further evaluate our models on
ACEBench-zh, which represents an out-
of-distribution (OOD) scenario relative
to the training setup. The observed drops,
AgentScaler-4B on special, AgentScaler-
8B on normal, and AgentScaler-30B-
A3B on special, are likely attributable
to these OOD effects. As shown in Ta-
ble 2, the AgentScaler models consistently outperform their Qwen baselines across all scales in
terms of overall score. In particular, AgentScaler-30B-A3B achieves the best overall score of 81.5,
demonstrating strong improvements in both the Normal and Agent subsets, while maintaining com-
petitive performance on the Special subset. Notably, the small Qwen3-4B model demonstrated a
remarkable improvement in agentic capabilities after the two-stage training, with its score surging
from 6.7 to 38.4 and substantial gain of 21.7 points in the overall score. This offers valuable insights
into effectively training compact models for complex function calling tasks in real-world applica-
tions. Our evaluation setup does include domain- and format-level OOD generalization, not only
cross-lingual robustness. First, ACEBench-en can be also seen an OOD evaluation for our system.
The environments we construct use APIs sourced from ToolBench and API-Gen, which are not
overlapping with the tool domains or schema structures in ACEBench-en. Therefore, ACEBench-en
evaluates the model’s ability to generalize to unseen tool domains, rather than only testing in-domain
performance. Second, the tool-calling format itself is out-of-distribution. Our training is performed
in the Qwen3-Hermes tool-calling format, while ACEBench adopts its own custom parser format.
Achieving strong performance under the ACEBench-en parsing and tool-calling rules demonstrates
format-level generalization, showing that the model is not overfitted to a single schema or interac-
tion protocol. Third, ACEBench-zh provides an additional cross-lingual generalization test, further
validating robustness across languages.
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AgentScaler shows the strong consistency, stability. To assess the stability of AgentScaler, Fig-
ure 4 reports the passˆk metric on the τ2-Bench, which denotes the accuracy achieved when the
model correctly answers the same question in all k independent trials. According to the experi-
mental results, the weighted overall score of AgentScaler-30B-A3B consistently surpasses that of
Qwen3-Thinking-30B-A3B across all evaluated passˆk settings, indicating a substantial performance
advantage of our model over Qwen3-Thinking-30B-A3B. Moreover, a clear downward trend in scores
is observed as k increases, suggesting that the stability of existing LLMs remains a considerable
challenge.

Long-horizon tool calling remains a fundamental challenge for agentic models. To further
analyze the model’s long-horizon tool-calling capability, we constructed a scatter plot on the τ -
bench dataset showing the relationship between the number of tool calls in each trajectory and the
corresponding trajectory accuracy, with a dashed line indicating the trend. As illustrated in Figure 5,
there exists a clear negative correlation between the number of tool calls and task accuracy. Our
AgentScaler models exhibit this trend as well, underscoring that handling extended tool-use chains is
still an open problem that we plan to address in future work.

Scaling Law of Environments. We conduct a preliminary verification of scaling laws during
the continued pre-training stage. Specifically, when incorporating our dataset into the continued
pre-training phase, the Qwen3-30B-A3B-Thinking model achieved a 2.8-point improvement on
ACEBench-en.
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6 RELATED WORK

6.1 TOOL-USE ENVIRONMENTS

The construction of tool-use environments primarily involves three approaches: real-world environ-
ments, LLM–simulated environment, and Simulated Environments based on a state config. Using
real-world environments (Qin et al., 2023; Song et al., 2023; Mastouri et al., 2025; Wu et al., 2025b)
to invoke actual tools yields the most authentic feedback and enhances the model’s robustness in
practical applications. However, this requires frequent calls to MCP services, resulting in high costs
and significant time overhead. Moreover, maintaining a highly available and stable MCP service
is often difficult, posing major challenges for agentic data generation and online RL training of
models.Many works use LLM-generated responses to simulate environments as a source of tool
responses (Qin et al., 2024; Lu et al., 2024; Sun et al., 2025). By leveraging strong or fine-tuned
LLMs, these approaches generate plausible responses given a tool call. However, such methods
struggle with issues like hallucination and inconsistent response variability. To address the limi-
tations of the above two approaches, some recent work (Ye et al., 2025b; Yao et al., 2024; Barres
et al., 2025; Prabhakar et al., 2025b; Ye et al., 2025a) proposes building an offline tool execution
environment for LLM training and evaluation. On one hand, offline environments avoid calling
real tools, significantly reducing response generation cost and latency. On the other hand, mocked
tool usage in such environments can still interact with real databases or state files through actual
execution. However, these methods are more commonly applied in LLM evaluation rather than
training, as constructing a reliable tool suite and a high-fidelity execution environment typically
requires substantial manual effort. Furthermore, it is difficult to automatically validate the quality
of such environments without human involvement, making scalability a significant challenge. Our
approach enables domain scalability through sampling from a toolgraph, and eliminates the need for
human intervention via a rigorous, rule-based validation pipeline. This makes scalable construction
of tool execution environments feasible.

6.2 TOOL LEARNING

To enhance the agentic capabilities and tool-calling abilities of models, many works have attempted to
improve tool utilization through various approaches. For instance, xLAMs (Prabhakar et al., 2025b;
Zhang et al., 2024) and ToolAce (Liu et al., 2024a) leverage large-scale agentic data synthesis pipelines
to generate high-quality training data and thereby boost model performance. DiaTool-DPO (Jung
et al., 2025) employs DPO to enable models to learn from multi-turn positive and negative trajectories.
Meanwhile, Tool-RL (Qian et al., 2025), Tool-N1 (Zhang et al., 2025) utilize reinforcement learning
(RL) algorithms to enhance both the tool-calling proficiency and generalization ability of models,
further pushing the performance boundaries beyond supervised fine-tuning. Overall, whether relying
on agentic data synthesis or online interaction with environments via RL training, a stable, reliable,
and scalable execution environment is essential. For example, Kimi-K2 (Team et al., 2025) uses a
tool simulator during Agentic Data Synthesis to obtain observations for multi-turn trajectories. Our
method not only leverages accurately simulated tool environments to collect trajectories but also
introduces verifiable environmental state changes, making each simulation response more reliable.
Furthermore, we propose a state change based environment validation strategy, enabling a robust
filtering mechanism for large-scale agentic data synthesis.

7 CONCLUSION

In this work, we presented a principled pipeline for advancing general agentic intelligence through sys-
tematic environment scaling and agent experience learning. By programmatically materializing tools
as executable code and grounding them in database-structured environments, our approach enables
large-scale construction of verifiable trajectories. Building on these environments, we introduced a
two-stage agent experience learning framework that first equips agents with fundamental tool-usage
capabilities and then specializes them for domain-specific contexts. Extensive experiments on three
representative benchmarks, τ -bench, τ2-Bench, and ACEBench, demonstrate the effectiveness of our
pipeline. Notably, our AgentScaler family achieves state-of-the-art performance among open-source
models under 1T parameters, and in several cases reaches parity with much larger or closed-source
counterparts.
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Looking ahead, we believe our work highlights the importance of scalable environment construction
and verifiable agentic experience for fostering robust and generalizable language agents. Future
directions include integrating reinforcement learning on top of our fully simulated environments and
extending our pipeline to broader modalities and real-world deployment scenarios.

LIMITATION

Although our proposed framework has demonstrated promising results, several limitations remain,
which point to ongoing efforts and potential directions for future work.

Reinforcement-Learning Integration Although the current system relies solely on two-stage
supervised fine-tuning, the simulator we have built offers deterministic, low-latency feedback that is
ideal for reinforcement-learning optimization. In future iterations we plan to add an RL stage using
policy gradient methods, to refine the agent’s long-horizon decision-making and further improve its
emergent, agentic capabilities.

Model Scale Another limitation of our current work lies in the model scale. Our method has so
far only been validated on a 30B-scale architecture, without extension to larger models exceeding
200B or even trillion-parameter scales. While prior work (Belcak et al., 2025) emphasizes that “small
language models are the future of agentic AI,” we share the view that training agentic capabilities
in relatively smaller models is particularly meaningful. Such models are easier to deploy on edge
devices, enable broader applicability across diverse scenarios, and offer faster response times.

ETHICS STATEMENT

This study strictly adheres to established ethical guidelines at every stage. During the tool-collection
phase, all code, models, and utilities were obtained exclusively from publicly available, open-source
repositories or officially documented APIs released under permissive licenses. No proprietary or
restricted software was employed. Furthermore, every data point used in the experiments was
synthetically generated through algorithmic means. Crucially, no personally identifiable information
was collected, accessed, or produced at any time.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a thorough description of data construction, training procedures,
and evaluation details. Section 2 presents a step-by-step account of how we automatically build
the agent environment with an LLM. Section 3 exhaustively covers the collection and filtering of
trajectory data, and elaborates on the two-stage training pipeline that yields our final agent model.
The evaluation setting and fine-grained metrics can be found in Appendix B.
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B EXPERIMENT SETTINGS

During the agentic experience learning stage, all models in the AgentScaler series — including 4B,
8B, and 30B-A3B — were trained for three epochs with a batch size of 128. The model context length
was set to 32768. Subsequently, we directly used the model from the final checkpoint. Additionally,
the learning rate was set to 7e-6, and a warm-up strategy was employed.

During the evaluation stage, we strictly followed all the official guidelines of the benchmarks. All
baseline models were assessed using the benchmarks’ default configurations. For the AgentScaler
series of models, we set the temperature parameter to 0.6, the top-p value to 0.95, and the top-k value
to 20. Moreover, to speed up model inference, we deployed the model using vLLM (Kwon et al.,
2023).
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