

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS GENERAL AGENTIC INTELLIGENCE VIA ENVIRONMENT SCALING

Anonymous authors

Paper under double-blind review

ABSTRACT

Advanced agentic intelligence is a prerequisite for deploying Large Language Models in practical, real-world applications. Diverse real-world APIs demand precise, robust function-calling intelligence, which needs agents to develop these capabilities through interaction in varied *environments*. The breadth of function-calling competence is closely tied to the diversity of environments in which agents are trained. In this work, we scale up environments as a step towards advancing general agentic intelligence. This gives rise to two central challenges: *(i)* how to scale environments in a principled manner, and *(ii)* how to effectively train agentic capabilities from experiences derived through interactions with these environments. To address these, we design a scalable framework that automatically constructs heterogeneous environments that are fully simulated, systematically broadening the space of function-calling scenarios. We further adapt a two-phase agent fine-tuning strategy: first endowing agents with fundamental agentic capabilities, then specializing them for domain-specific contexts. Extensive experiments on agentic benchmarks, τ -bench, τ^2 -Bench, and ACEBench, demonstrate that our trained model, **AgentScaler**, significantly enhances the models' function-calling capability.

1 INTRODUCTION

Function calling empowers language agents to interface with the real world (Qin et al., 2023; Chen et al., 2024b; Qin et al., 2024; Schick et al., 2023; Su et al., 2025b). Yet, their progress is fundamentally constrained by the scarcity of agentic data¹, *i.e.*, trajectories generated by autonomous agents interacting with environments via explicit action executions, namely, tool calls (Zhou et al., 2023; Liu et al., 2024a). The community has gradually transitioned from the era of raw corpora and human-curated data to the emerging **era of experience** (Silver & Sutton, 2025; Wu et al., 2025a; Li et al., 2025; Tao et al., 2025; Geng et al., 2025). Crucially, language agents must experience these interactions themselves in a predefined environment, which makes both data collection and reliable supervision highly challenging.

Several approaches have been attempted to generate synthetic agentic data. Broadly, previous methods fall into two categories. The first category follows a reverse paradigm, in which user queries are generated to match each assistant function call observed at every interaction turn (Yin et al., 2025), though the resulting trajectories may exhibit limited realism. The second category follows a forward paradigm, which we refer to as simulated agent–human interplay (Chen et al., 2024a; Liu et al., 2024b; Prabhakar et al., 2025a; Barres et al., 2025; Zeng et al., 2025). Such generated trajectories, however, may lack naturalness. In this category, a high-level user intent is first formulated to necessitate agent interaction. Agentic data is then constructed in a top-down manner based on this intent through human–agent interplay. Yet, the environment is not scalable: the absence of automated environment construction hinders large-scale deployment and inevitably entails some degree of manual intervention.

To address these challenges, we pursue the advancement of general agentic intelligence via systematic environment scaling. Our approach follows a principled two-stage pipeline: *(i)* **fully simulated environment construction and scaling**, responsible for establishing and expanding diverse agentic

¹In this paper, the terms “function-calling”, “tool”, “API”, “MCP” are used interchangeably; “agentic data” refers to trajectories involving such interactions.

054 scenarios, and (ii) **agent experience learning**, which exploits these environments to foster generalizable
055 intelligence.

056 In designing environment construction and scaling, we follow the principle that the core of an agent
057 lies in its capacity for environment interaction, with each environment instantiated as a read-write
058 database (Barres et al., 2025; Zeng et al., 2025). Specifically, we collect a broad spectrum of APIs
059 and organize them into domains using community detection, where each domain represents an
060 environment aligned with a specific database structure. Then, we instantiate tools as executable code,
061 thereby achieving programmatic materialization that enables direct operations on the underlying
062 database structures. Finally, we sample from the domain-specific tool graph to generate parameters for
063 the tool sequences and initialize the corresponding database state. We then integrate these components
064 into an overall user intent, grounding tool executions directly on the database. This design enables
065 verifiability at both the environment level and the tool-argument response level.

066 For learning from agent experience, our focus is on training the agent’s ability to perform tool calls
067 and to respond effectively to users (Ye et al., 2025b; Su et al., 2025a). We begin by performing
068 simulated human–agent interactions on the constructed agentic tasks (Prabhakar et al., 2025a), thereby
069 collecting trajectories that serve as the agent’s experience and perform strict filtering. To facilitate the
070 acquisition of this capability, we adopt a two-stage agent experience learning framework: in stage
071 1, the agent acquires fundamental tool-calling skills across general domains; in stage 2, it is further
072 trained within target vertical domains using domain-specific scenarios, enabling smoother and more
073 context-aligned development of agentic capabilities.

074 Extensive experiments on agentic benchmarks, τ -bench (Yao et al., 2024), τ^2 -Bench (Barres et al.,
075 2025), and ACEBench (Chen et al., 2025) show the effectiveness of our pipeline and trained models.
076 Based on the above pipeline, we train our family of **AgentScaler** models (4B, 8B, 30B-A3B), built
077 upon the Qwen-3 (Team, 2025b) series. At each comparable scale (4B, 8B), our models achieve state-
078 of-the-art performance. Notably, AgentScaler-30-A3B sets a new state-of-the-art with significantly
079 fewer parameters **among models with comparable active parameter size**, delivering results on par
080 with existing 1T-parameter models and leading closed-source systems. We also provide a systematic
081 analysis covering model generalization, stability, and the long-horizon tool-calling challenge, offering
082 key insights into the development of general agentic intelligence.

083 2 ENVIRONMENT BUILD AND SCALING

084
085
086 **Design Principle** There already exist many real-world environments for agent interaction (Qin
087 et al., 2023). However, these real environments suffer from several practical limitations that make
088 them unsuitable for large-scale and stable training. First, many real online APIs are unstable,
089 frequently affected by rate limits, fluctuating QPS capacity, and transient API failures. Such instability
090 prevents agents from receiving consistent tool feedback, which is crucial for effective learning. This
091 limitation has also been highlighted by multiple recent works (Guo et al., 2024; 2025), motivating the
092 development of simulated environments to enable reliable and large-scale agent training. Second,
093 simulated environments can provide deterministic, reproducible, and controllable tool feedback,
094 which real-world environments cannot guarantee. This stability is especially important for training
095 models that rely on precise multi-step tool interactions (Sun et al., 2025; Su et al., 2025b). In
096 essence, any function call can be interpreted as a read-write operation over an underlying
097 environmental database \mathcal{D} (Guo et al., 2025). Specifically, each function $func$ can be assigned an
098 operator type, $op(func) \in \{\text{read}, \text{write}\}$, where read-type function perform queries over \mathcal{D}
099 (e.g., retrieval, inspection, monitoring), while write-type tools induce state transitions in \mathcal{D} (e.g.,
100 modification, generation, actuation). Under this abstraction, a tool response is equivalent to evaluating
101 the induced operator on \mathcal{D} , i.e., $\text{API}(func, \alpha) \equiv op(func)(\alpha; \mathcal{D})$, where the symbol α denotes the
102 input arguments provided to a function call. Furthermore, let \mathcal{T}_d denote the set of tools within domain
103 d . Tools in the same domain typically exhibit structurally similar read–write patterns, which can be
104 captured by a common database schema \mathcal{S}_k . Consequently, the design problem reduces to defining
105 a partition of the tool space into domains $\{\mathcal{T}_1, \dots, \mathcal{T}_M\}$, and assigning to each domain a database
106 schema \mathcal{S}_k , where \mathcal{S}_k specifies the environment for that domain.

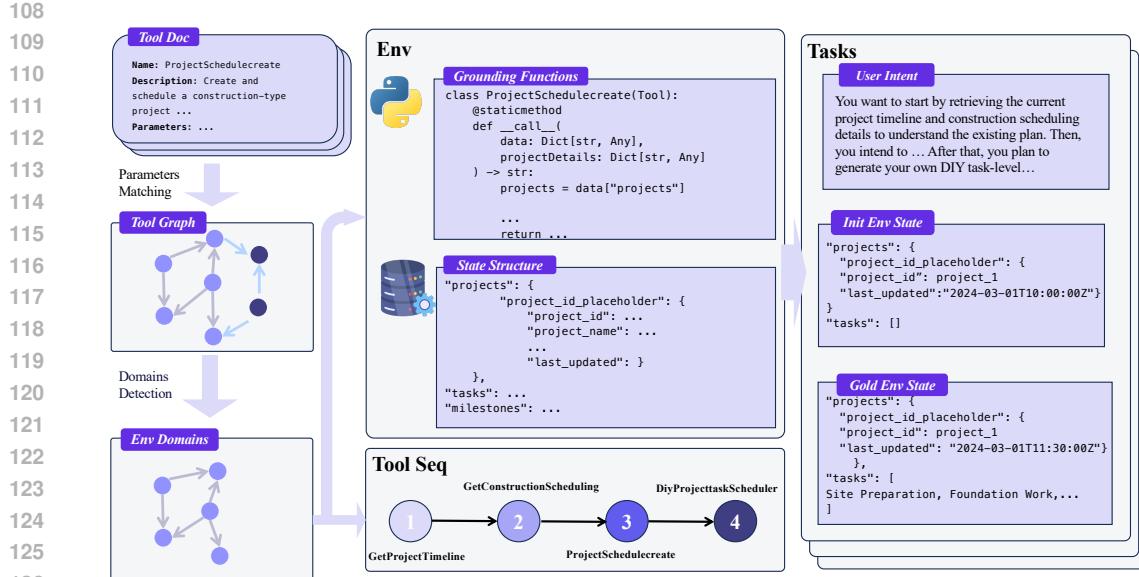


Figure 1: The overview of the environment automatic build, and agentic environment construction. Step 1, a large set of raw tool schemata are matched according to the vector similarity of their parameters, thereby constructing a tool graph; Step 2, use a community partitioning algorithm to divide the set of tools within a domain, then perform random walks to obtain tool sequences; Step 3, construct executable Python functions and a state repository from the tools.

2.1 ENVIRONMENT AUTOMATIC BUILD

Building upon this design principle, we propose a systematic pipeline for leveraging a diverse set of tools as shown in Figure 1. We begin with **scenario collection**, which gathers a large corpus of real-world tools; proceed to **tool dependency graph modeling**, which induces well-structured domain partitions and distributions; and finally employ **function schema programmatic materialization**, which maps tool operations onto database interactions, thereby enabling the construction of the overall environment.

Scenario Collection We collected more than 30,000 APIs from ToolBench (Qin et al., 2023; Guo et al., 2024), API-Gen (Prabhakar et al., 2025b) and online tool repository. After applying rigorous filtering, including the removal of low-quality APIs and subsequent refinement, we rewrite some API descriptions to incorporate explicit input–output specifications (Fang et al., 2025). Building on this, we further constructed tool compositions by systematically exploiting the input–output relationships among APIs. This process ultimately resulted in API pools Θ_F whose size = N (over 30,000), providing a reliable foundation for subsequent experiments and analysis.

Tool Dependency Graph Modeling We construct a tool graph in which nodes are tools and edges encode compositional compatibility induced by function parameters. A tool $func$ consists of a description D_{func} and a list of parameters P_{func} . For a pair of tools, we can extract their respective parameter lists and convert them into vector representations ϕ to compute their cos-similarity. If the similarity exceeds a predefined threshold τ , we consider there to be a dependency relationship between the two tools. Accordingly, we insert an edge E between them in our graph.

$$E = \{(i, j) \mid \text{sim}(\phi(P_{func_i}), \phi(P_{func_j})) > \tau, i \neq j\} \quad (1)$$

Domain partitioning then reduces to a graph clustering problem. We employ Louvain community detection (Blondel et al., 2008) to identify coherent tool communities that serve as domains. For a segmented tool set, since parameter matching relies solely on vectorization and considers only individual parameter information, the overall inter-tool dependencies may be difficult to capture. Therefore, for tools within a given domain, we further employ an LLM to systematically examine the

162 dependencies between each pair of tools, thereby further improving the accuracy of edges in the tool
 163 graph. In total, we obtained M domains (exceeding 1,000).
 164

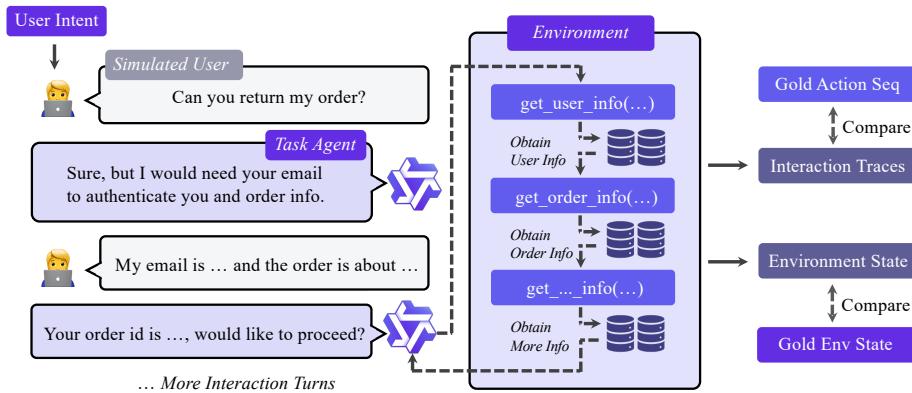
165 **Function Schema Programmatic Materialization** We first leverage the parameters of all tools
 166 within a domain to generate a domain-specific database structure, which serves as the underlying state
 167 for subsequent tool operations. After obtaining the domain-specific tool set and the corresponding
 168 database schema in the previous stage, we can formalize each tool in python code, enabling it to
 169 perform `read-write` operations over the database schema. Interestingly, when generating database
 170 structures and formalizing code within specific domains of τ -bench, we observe through manual
 171 inspection that our outputs exhibit a high degree of consistency with the official implementations
 172 provided by τ -bench (Yao et al., 2024).
 173

2.2 AGENTIC TASK CONSTRUCTION

175 We construct trajectories via forward simulated agent–human interplay, which allows us to fully
 176 simulate the environment, the user, and the agent. The critical step is to synthesize agentic tasks that
 177 elicit human tool usage while ensuring that the resulting trajectories remain **verifiable**. Concretely, we
 178 first initialize an environment state based on the domain-specific database schema, while encouraging
 179 as much diversity as possible in the initial state. Next, we sample logically coherent tool sequences
 180 from the domain’s tool graph, specifically by constructing a directed dependency graph over APIs and
 181 traversing it to obtain valid sequences. Starting from a randomly selected initial node, we conduct a
 182 directed walk until either the maximum execution steps are reached or a node with no outgoing edges
 183 is encountered. This process yields a logically coherent tool sequence. For each step, we generate the
 184 corresponding arguments and perform the actual tool call, grounding the operations directly on the
 185 database and continuously tracking the evolving database state. This procedure enables verifiability
 186 at two complementary granularities: (i) database-level state consistency and (ii) exact matching of
 187 tool sequences.
 188

3 AGENT EXPERIENCE LEARNING

190 We leverage user intent to drive interactions that yield agent experiences, and train the model through
 191 a two-phase process.
 192



207 Figure 2: The agent interacts with the simulated user and changes the environment state through the
 208 generated functions.
 209

3.1 HUMAN–AGENT INTERPLAY FOR EXPERIENCE COLLECTION

210 **Interplay** Motivated by Yao et al. (2024), once we have constructed an agentic task, we proceed
 211 to perform human-agent interplay in the environment. Specifically, we instantiate a simulated user
 212 tasked with fulfilling a given overall intent. The agent then leverages domain-specific tools to address
 213 the user’s needs, continuing the interaction until the simulated user deems the task complete. This
 214

216 setup enables us to conduct **end-to-end simulation**, encompassing user simulation, agent, and
 217 environment, yielding a highly scalable framework. Each completed interaction trace constitutes an
 218 agent experience, which can subsequently be used for training. Importantly, since we possess both
 219 the gold tool sequences and arguments for the overall intent and the final environment state, we can
 220 apply these as supervision signals for experience filtering. All simulated trajectories are generated
 221 using the open-source model *Qwen3-235B-A22B-Thinking*.

222
 223 **Filtering** We adopt a three-stage funnel-based trajectory filtering framework consisting of *validity*
 224 *control*, *environment state alignment*, and *function calling exact match*.

- 225 • *Validity control*, removes invalid interaction trajectories to ensure well-formed alternating
 226 user assistant exchanges. Additionally, we apply an n -gram-based filtering procedure to
 227 eliminate severely repetitive reasoning segments. In such cases, we discard these data points.
- 228 • *Environment state alignment* retains only those trajectories whose final database state
 229 matches the golden state after the interplay, thereby validating the effectiveness of write
 230 operations. The filtering granularity at this stage is the **database/environment level**.
- 231 • *Function calling exact match* serves as the most stringent filtering stage, where the granular-
 232 ity is the **tool sequence**. Since a tool sequence consisting entirely of read operations without
 233 any write operations would cause state-based filtering to fail, we adopt a stricter exact match
 234 approach for filtering in such cases. A trajectory is preserved only if the sequence of invoked
 235 tools and arguments exactly matches the overall intent, ensuring high-fidelity supervision.

236 It is worth noting that we do not filter out trajectories in which tool calls return errors. Thanks to the
 237 aforementioned filtering framework, such trajectories may still accomplish the intended goal despite
 238 intermediate failures. Retaining them in the training data helps improve the robustness of the model.

239 3.2 AGENTIC EXPERIENCE LEARNING

240 **Agentic Fine-tuning** Given agent-human interplay experience trajectory $\mathcal{H} = (h_0, a_1, \dots, a_{n-1}, h_n, a_0)$, where each human instruction is denoted by h_t at t -round interaction,
 241 and each assistant turn a_t is decomposed as $a_t = (\tau_t, \rho_t, y_t)$. Here, τ_t represents the function
 242 call tokens, ρ_t the tool response tokens, and y_t the assistant response tokens. Our training objective
 243 is to optimize only the tool calls and assistant responses, while human instructions h_i and tool
 244 responses ρ_t are excluded from the loss. Formally, given an autoregressive model $p_\theta(x_k | x_{<k})$, we
 245 define the loss as

$$246 \mathcal{L}(\theta) = -\frac{1}{\sum_{k=1}^{|\mathcal{H}|} \mathbb{I}[k_i \in \mathcal{T}]} \sum_{k=1}^{|\mathcal{H}|} \mathbb{I}[x_k \in \mathcal{T}] \cdot \log \pi_\theta(x_i | x_{<k}), \quad (2)$$

247 where x_k denotes the k -th token in the trajectory, π_θ is the model distribution, $\mathbb{I}[\cdot]$ is the indicator
 248 function, \mathcal{T} is the set of tokens belonging to tool calls τ or assistant responses y . In practice, all
 249 tokens in ρ_i and h_i are masked out from supervision but remain visible in the context $x_{<k}$. This
 250 ensures that the model conditions on tool responses and human instructions, while gradients are only
 251 propagated through assistant-generated tool calls and natural-language responses.

252 **Two-stage Experience Learning** In the first phase, the agent is trained to acquire fundamental
 253 skills for tool usage and user interaction. We focus on general domains where a broad set of
 254 tools and tasks are available, allowing the agent to develop a robust understanding of when and
 255 how to invoke function calls, as well as how to integrate tool outputs into coherent user-facing
 256 responses. This stage emphasizes breadth and generality, ensuring that the agent builds a versatile
 257 foundation of agentic behaviors before domain-specific specialization. In the second phase, the
 258 agent undergoes fine-grained training in vertical domains, where tasks, tools, and user intents exhibit
 259 domain-specific characteristics. In our setting, this stage primarily focuses on the τ -Bench and
 260 τ^2 -Bench. By grounding the learning process in realistic scenarios within a target domain, the
 261 agent refines its ability to select tools, parameterize calls, and produce responses that are accurate,
 262 contextually appropriate, and aligned with domain-specific goals. This specialization ensures a
 263 smoother adaptation of agentic capabilities, enabling the agent to operate effectively in real-world,
 264 task-oriented environments.

270

4 EXPERIMENTS

271

4.1 SETUP

274 **Benchmarks** We evaluate our methods on three established agentic benchmarks: τ -bench, τ^2 -
 275 Bench, and ACEBench-en. For τ -Bench (covering the retail and airline domains) and
 276 τ^2 -Bench (spanning the retail, airline, and telecom domains), we adopt the pass¹ metric
 277 for evaluation and additionally analyze the trend of pass^k, following the protocols in Yao et al. (2024);
 278 Barres et al. (2025).

279 For ACEBench-en, we report results across the Normal, Special, and Agent categories, as well
 280 as the Overall performance, using the accuracy metric.

281 **Baselines** We compare our trained series models against the following types: *closed-sourced*
 282 *large language model*, including Gemini-2.5-pro (Comanici et al., 2025), Claude-Sonnet-4 (An-
 283 thropic, 2025), GPT-o3, GPT-o4-mini (OpenAI, 2025b), and GPT-5 (with thinking) (OpenAI, 2025a);
 284 *open-sourced large language model*: GPT-OSS-120B-A5B (Agarwal et al., 2025), Deepseek-V3.1-
 285 671B-A37B (DeepSeek-AI, 2024), Kimi-K2-1T-A32B (Team et al., 2025), Qwen3-Thinking-235B-
 286 A22B (Team, 2025b), Seed-OSS-36B (Team, 2025a), Qwen-Coder-30B-A3B (Hui et al., 2024), and
 287 xLAM-2 model series (Prabhakar et al., 2025a).

288 **Backbones** We train the AgentScaler model series by training on Qwen3 models (Team, 2025b)
 289 of varying scales. Specifically, AgentScaler-4B and AgentScaler-30B-A3B are trained on Qwen3-
 290 Thinking-4B-2507 and Qwen3-Thinking-30B-A3B-2507, respectively, while AgentScaler-8B is
 291 trained on Qwen3-8B.

293

4.2 EXPERIMENTAL RESULTS

295 Table 1: Main results on τ -Bench, τ^2 -Bench, and ACEBench-en.

Model	τ -bench		τ^2 -Bench			ACEBench-en			
	Retail	Airline	Retail	Airline	Telecom	Normal	Special	Agent	Overall
<i>Closed-Source Large Language Models</i>									
Gemini-2.5-pro	68.7	44.0	67.5	56.0	27.2	76.7	90.0	63.4	78.2
Claude-Sonnet-4	73.9	40.0	67.5	54.0	47.4	79.9	87.3	42.5	76.1
GPT-o3	70.4	52.0	80.2	64.8	58.2	78.3	86.7	63.3	78.2
GPT-o4-mini	70.4	46.0	70.2	56.0	46.5	79.9	84.0	60.0	77.9
GPT-5-think	78.3	44.0	81.1	62.6	96.7	76.7	85.3	32.5	72.2
<i>Open-Source Large Language Models</i>									
GPT-OSS-120B-A5B	67.8	49.2	57.0	38.0	45.6	79.1	84.0	50.8	76.0
Deepseek-V3.1-671B-A37B	66.1	40.0	64.9	46.0	38.5	80.3	62.0	40.8	69.3
Kimi-K2-1T-A32B	73.9	51.2	70.6	56.5	65.8	78.9	81.3	65.0	77.4
Qwen3-Thinking-235B-A22B	67.8	46.0	71.9	58.0	45.6	72.1	84.0	39.1	70.2
Seed-OSS-36B	70.4	46.0	68.4	52.0	41.2	79.1	82.0	58.4	76.7
Qwen-Coder-30B-A3B	68.7	48.0	60.5	42.0	30.7	74.0	41.3	24.1	57.5
xLAM-2-8B-fc-r	58.2	35.2	55.3	48.0	11.4	58.8	0.0	5.0	34.8
xLAM-2-32B-fc-r	64.3	45.0	55.3	52.0	16.7	69.2	24.7	13.4	52.5
xLAM-2-70B-fc-r	67.1	45.2	61.4	56.0	14.0	57.1	5.3	38.4	36.5
Qwen3-Thinking-4B	59.1	52.5	56.1	52.0	28.7	43.3	84.7	11.7	49.5
Qwen3-8B	45.2	25.0	41.2	30.5	23.5	71.4	75.3	29.1	65.9
Qwen3-14B	45.7	31.0	48.0	30.0	26.9	66.9	84.0	44.2	68.0
Qwen3-Thinking-30B-A3B	67.8	48.0	58.8	58.0	26.3	64.7	86.7	42.8	67.2
AgentScaler-4B	64.3	54.0	62.3	56.0	48.2	70.3	76.7	30.8	65.9
AgentScaler-8B	50.4	42.0	58.8	44.0	45.4	69.2	76.7	44.2	67.4
AgentScaler-30B-A3B	70.4	54.0	70.2	60.0	55.3	76.7	82.7	60.0	75.7

318 **Main Results** From Table 1, we observe that closed-source large language models (LLMs) still
 319 maintain a clear performance advantage, consistently achieving the highest scores across most
 320 domains and benchmarks. This demonstrates the strength of industrial-scale training pipelines and
 321 proprietary optimization strategies. Nevertheless, our proposed AgentScaler achieves a remarkable
 322 level of performance given its lightweight parameter scale. Specifically, it surpasses most open-
 323 source baselines with fewer than 1T parameters, establishing a new state-of-the-art across τ -bench,
 τ^2 -Bench, and ACEBench-en.

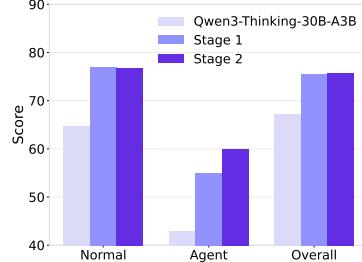
324 Notably, **AgentScaler-4B** achieves per-
 325 formance on par with 30B-parameter
 326 models despite using the fewest parame-
 327 ters, highlighting the agentic potential of
 328 compact LLMs. Moreover, **AgentScaler-
 329 30B-A3B** delivers results that are compa-
 330 rable to trillion-parameter open-source
 331 models and, in several domains, ap-
 332 proach those of closed-source counter-
 333 parts. These findings highlight the effi-
 334 ciency of our approach: agentic capabili-
 335 ties can be effectively learned and de-
 336 ployed even in relatively compact mod-
 337 els, enabling competitive performance
 338 without relying on massive parameter counts. This advantage makes AgentScaler particularly well-
 339 suited for practical deployment in resource-constrained or latency-sensitive scenarios.
 340

341 **Ablation Study** We further conduct an ablation analysis to examine the effect of the proposed two-
 342 stage agent experience learning framework on ACEBench-en. As shown in Figure 3, both Stage 1 and
 343 Stage 2 training substantially improve performance over the base model (Qwen3-Thinking-30B-A3B)
 344 across all subsets. And through multi-steps agent training in Stage 2, the model’s score on the agent
 345 set has further improved, and the overall score has also increased. These results validate the design of
 346 the two-phase training pipeline: general foundation learning is critical for establishing tool-usage
 347 competence, and subsequent domain-specialization further consolidates and contextualizes these
 348 capabilities.

349 5 ANALYSIS

352 Our synthetic data approach en- 353 ables efficient knowledge transfer and 354 strong robustness and generalization.

355 We further evaluate our models on
 356 ACEBench-zh, which represents an out-
 357 of-distribution (OOD) scenario relative
 358 to the training setup. The observed drops,
 359 **AgentScaler-4B** on special, **AgentScaler-
 360 8B** on normal, and **AgentScaler-30B-
 361 A3B** on special, are likely attributable
 362 to these OOD effects. As shown in Ta-
 363 ble 2, the AgentScaler models consistently outperform their Qwen baselines across all scales in
 364 terms of overall score. In particular, **AgentScaler-30B-A3B** achieves the best overall score of 81.5,
 365 demonstrating strong improvements in both the Normal and Agent subsets, while maintaining com-
 366 petitive performance on the Special subset. Notably, the small Qwen3-4B model demonstrated a
 367 remarkable improvement in agentic capabilities after the two-stage training, with its score surging
 368 from 6.7 to 38.4 and substantial gain of 21.7 points in the overall score. This offers valuable insights
 369 into effectively training compact models for complex function calling tasks in real-world applica-
 370 tions. Our evaluation setup does include domain- and format-level OOD generalization, not only
 371 cross-lingual robustness. First, ACEBench-en can be also seen an OOD evaluation for our system.
 372 The environments we construct use APIs sourced from ToolBench and API-Gen, which are not
 373 overlapping with the tool domains or schema structures in ACEBench-en. Therefore, ACEBench-en
 374 evaluates the model’s ability to generalize to unseen tool domains, rather than only testing in-domain
 375 performance. Second, the tool-calling format itself is out-of-distribution. Our training is performed
 376 in the Qwen3-Hermes tool-calling format, while ACEBench adopts its own custom parser format.
 377 Achieving strong performance under the ACEBench-en parsing and tool-calling rules demonstrates
 378 format-level generalization, showing that the model is not overfitted to a single schema or interac-
 379 tion protocol. Third, ACEBench-zh provides an additional cross-lingual generalization test, further
 380 validating robustness across languages.



350 Figure 3: Performance comparison on the Normal,
 351 Agent, and Overall subsets of ACEBench-en for two-
 352 stage training models.

353 Table 2: The results on ACEBench-zh.

Model	Normal	Special	Agent	Overall
Qwen3-Thinking-4B	34.7	85.3	6.7	43.9
AgentScaler-4B	70.8 ^{+36.1}	70.0 ^{+15.3}	38.4 ^{+31.7}	65.6 ^{+21.7}
Qwen3-8B	80.3	72.7	35.0	71.3
AgentScaler-8B	75.2 ^{+3.1}	79.3 ^{+6.6}	58.4 ^{+23.4}	73.7 ^{+2.4}
Qwen3-Thinking-30B-A3B	73.4	86.7	55.8	74.2
AgentScaler-30B-A3B	85.3 ^{+11.9}	83.3 ^{+3.4}	64.1 ^{+8.3}	81.5 ^{+7.3}

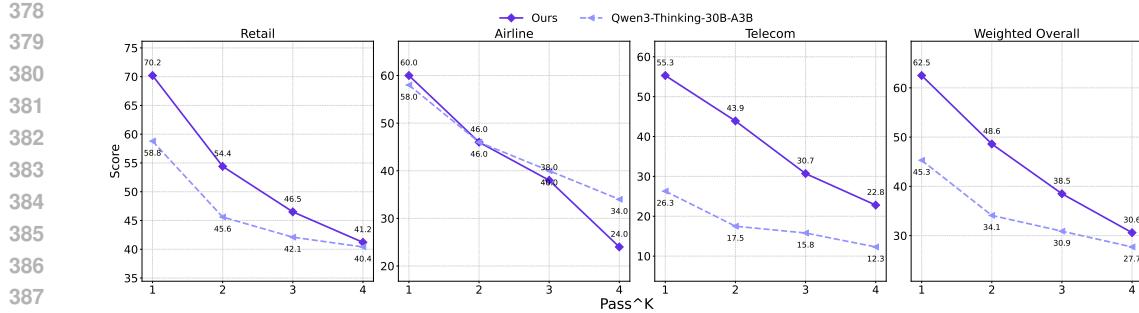


Figure 4: Pass^k metric results across all domains in the τ^2 -Bench.
Tool Call Complexity vs. Accuracy (Retail vs. Airline)

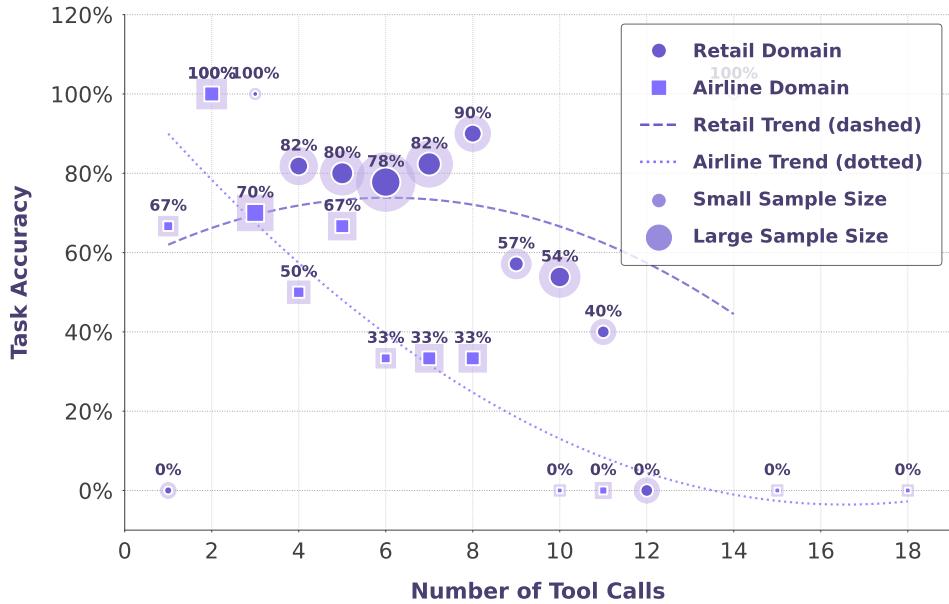


Figure 5: Accuracy by tool call count on τ -bench.

AgentScaler shows the strong consistency, stability. To assess the stability of AgentScaler, Figure 4 reports the pass^k metric on the τ^2 -Bench, which denotes the accuracy achieved when the model correctly answers the same question in all k independent trials. According to the experimental results, the weighted overall score of AgentScaler-30B-A3B consistently surpasses that of Qwen3-Thinking-30B-A3B across all evaluated pass^k settings, indicating a substantial performance advantage of our model over Qwen3-Thinking-30B-A3B. Moreover, a clear downward trend in scores is observed as k increases, suggesting that the stability of existing LLMs remains a considerable challenge.

Long-horizon tool calling remains a fundamental challenge for agentic models. To further analyze the model’s long-horizon tool-calling capability, we constructed a scatter plot on the τ -bench dataset showing the relationship between the number of tool calls in each trajectory and the corresponding trajectory accuracy, with a dashed line indicating the trend. As illustrated in Figure 5, there exists a clear negative correlation between the number of tool calls and task accuracy. Our AgentScaler models exhibit this trend as well, underscoring that handling extended tool-use chains is still an open problem that we plan to address in future work.

Scaling Law of Environments. We conduct a preliminary verification of scaling laws during the continued pre-training stage. Specifically, when incorporating our dataset into the continued pre-training phase, the Qwen3-30B-A3B-Thinking model achieved a 2.8-point improvement on ACEBench-en.

432

6 RELATED WORK

433

6.1 TOOL-USE ENVIRONMENTS

434 The construction of tool-use environments primarily involves three approaches: real-world environments, LLM-simulated environment, and Simulated Environments based on a state config. Using
 435 real-world environments (Qin et al., 2023; Song et al., 2023; Mastouri et al., 2025; Wu et al., 2025b)
 436 to invoke actual tools yields the most authentic feedback and enhances the model’s robustness in
 437 practical applications. However, this requires frequent calls to MCP services, resulting in high costs
 438 and significant time overhead. Moreover, maintaining a highly available and stable MCP service
 439 is often difficult, posing major challenges for agentic data generation and online RL training of
 440 models. Many works use LLM-generated responses to simulate environments as a source of tool
 441 responses (Qin et al., 2024; Lu et al., 2024; Sun et al., 2025). By leveraging strong or fine-tuned
 442 LLMs, these approaches generate plausible responses given a tool call. However, such methods
 443 struggle with issues like hallucination and inconsistent response variability. To address the limi-
 444 tations of the above two approaches, some recent work (Ye et al., 2025b; Yao et al., 2024; Barres
 445 et al., 2025; Prabhakar et al., 2025b; Ye et al., 2025a) proposes building an offline tool execution
 446 environment for LLM training and evaluation. On one hand, offline environments avoid calling
 447 real tools, significantly reducing response generation cost and latency. On the other hand, mocked
 448 tool usage in such environments can still interact with real databases or state files through actual
 449 execution. However, these methods are more commonly applied in LLM evaluation rather than
 450 training, as constructing a reliable tool suite and a high-fidelity execution environment typically
 451 requires substantial manual effort. Furthermore, it is difficult to automatically validate the quality
 452 of such environments without human involvement, making scalability a significant challenge. Our
 453 approach enables domain scalability through sampling from a toolgraph, and eliminates the need for
 454 human intervention via a rigorous, rule-based validation pipeline. This makes scalable construction
 455 of tool execution environments feasible.

456

6.2 TOOL LEARNING

457 To enhance the agentic capabilities and tool-calling abilities of models, many works have attempted to
 458 improve tool utilization through various approaches. For instance, xLAMs (Prabhakar et al., 2025b;
 459 Zhang et al., 2024) and ToolAce (Liu et al., 2024a) leverage large-scale agentic data synthesis pipelines
 460 to generate high-quality training data and thereby boost model performance. DiaTool-DPO (Jung
 461 et al., 2025) employs DPO to enable models to learn from multi-turn positive and negative trajectories.
 462 Meanwhile, Tool-RL (Qian et al., 2025), Tool-N1 (Zhang et al., 2025) utilize reinforcement learning
 463 (RL) algorithms to enhance both the tool-calling proficiency and generalization ability of models,
 464 further pushing the performance boundaries beyond supervised fine-tuning. Overall, whether relying
 465 on agentic data synthesis or online interaction with environments via RL training, a stable, reliable,
 466 and scalable execution environment is essential. For example, Kimi-K2 (Team et al., 2025) uses a
 467 tool simulator during Agentic Data Synthesis to obtain observations for multi-turn trajectories. Our
 468 method not only leverages accurately simulated tool environments to collect trajectories but also
 469 introduces verifiable environmental state changes, making each simulation response more reliable.
 470 Furthermore, we propose a state change based environment validation strategy, enabling a robust
 471 filtering mechanism for large-scale agentic data synthesis.

472

7 CONCLUSION

473 In this work, we presented a principled pipeline for advancing general agentic intelligence through sys-
 474 tematic environment scaling and agent experience learning. By programmatically materializing tools
 475 as executable code and grounding them in database-structured environments, our approach enables
 476 large-scale construction of verifiable trajectories. Building on these environments, we introduced a
 477 two-stage agent experience learning framework that first equips agents with fundamental tool-usage
 478 capabilities and then specializes them for domain-specific contexts. Extensive experiments on three
 479 representative benchmarks, τ -bench, τ^2 -Bench, and ACEBench, demonstrate the effectiveness of our
 480 pipeline. Notably, our AgentScaler family achieves state-of-the-art performance among open-source
 481 models under 1T parameters, and in several cases reaches parity with much larger or closed-source
 482 counterparts.

486 Looking ahead, we believe our work highlights the importance of scalable environment construction
 487 and verifiable agentic experience for fostering robust and generalizable language agents. Future
 488 directions include integrating reinforcement learning on top of our fully simulated environments and
 489 extending our pipeline to broader modalities and real-world deployment scenarios.
 490

491 **LIMITATION**
 492

493 Although our proposed framework has demonstrated promising results, several limitations remain,
 494 which point to ongoing efforts and potential directions for future work.
 495

496 **Reinforcement-Learning Integration** Although the current system relies solely on two-stage
 497 supervised fine-tuning, the simulator we have built offers deterministic, low-latency feedback that is
 498 ideal for reinforcement-learning optimization. In future iterations we plan to add an RL stage using
 499 policy gradient methods, to refine the agent’s long-horizon decision-making and further improve its
 500 emergent, agentic capabilities.
 501

502 **Model Scale** Another limitation of our current work lies in the model scale. Our method has so
 503 far only been validated on a 30B-scale architecture, without extension to larger models exceeding
 504 200B or even trillion-parameter scales. While prior work (Belcak et al., 2025) emphasizes that “small
 505 language models are the future of agentic AI,” we share the view that training agentic capabilities
 506 in relatively smaller models is particularly meaningful. Such models are easier to deploy on edge
 507 devices, enable broader applicability across diverse scenarios, and offer faster response times.
 508

509 **ETHICS STATEMENT**
 510

511 This study strictly adheres to established ethical guidelines at every stage. During the tool-collection
 512 phase, all code, models, and utilities were obtained exclusively from publicly available, open-source
 513 repositories or officially documented APIs released under permissive licenses. No proprietary or
 514 restricted software was employed. Furthermore, every data point used in the experiments was
 515 synthetically generated through algorithmic means. Crucially, no personally identifiable information
 516 was collected, accessed, or produced at any time.
 517

518 **REPRODUCIBILITY STATEMENT**
 519

520 To ensure reproducibility, we provide a thorough description of data construction, training procedures,
 521 and evaluation details. Section 2 presents a step-by-step account of how we automatically build
 522 the agent environment with an LLM. Section 3 exhaustively covers the collection and filtering of
 523 trajectory data, and elaborates on the two-stage training pipeline that yields our final agent model.
 524 The evaluation setting and fine-grained metrics can be found in Appendix B.
 525

526 **REFERENCES**
 527

528 Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
 529 Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. *arXiv*
 530 *preprint arXiv:2508.10925*, 2025.
 531

532 Anthropic. System card: Claude opus 4 & claude sonnet 4, 2025. URL <https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf>.
 533

534 Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. tau2-bench: Evaluating
 535 conversational agents in a dual-control environment. *arXiv preprint arXiv:2506.07982*, 2025.
 536

537 Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
 538 line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai. *arXiv preprint*
 539 *arXiv:2506.02153*, 2025.

540 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
 541 of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008
 542 (10):P10008, 2008.

543

544 Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang,
 545 Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool usage? *arXiv*
 546 *preprint arXiv:2501.12851*, 2025.

547

548 Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang,
 549 Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms via compositional
 550 instruction tuning. *arXiv preprint arXiv:2410.12952*, 2024a.

551

552 Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
 553 Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
 554 models. *arXiv preprint arXiv:2403.12881*, 2024b.

555

556 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 557 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 558 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

559

560 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

561

562 Runnan Fang, Xiaobin Wang, Yuan Liang, Shuofei Qiao, Jialong Wu, Zekun Xi, Ningyu Zhang,
 563 Yong Jiang, Pengjun Xie, Fei Huang, et al. Synworld: Virtual scenario synthesis for agentic action
 564 knowledge refinement. *arXiv preprint arXiv:2504.03561*, 2025.

565

566 Xinyu Geng, Peng Xia, Zhen Zhang, Xinyu Wang, Qiuchen Wang, Ruixue Ding, Chenxi Wang,
 567 Jialong Wu, Yida Zhao, Kuan Li, et al. Webwatcher: Breaking new frontiers of vision-language
 568 deep research agent. *arXiv preprint arXiv:2508.05748*, 2025.

569

570 Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
 571 Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
 572 large language models. *arXiv preprint arXiv:2403.07714*, 2024.

573

574 Zhicheng Guo, Sijie Cheng, Yuchen Niu, Hao Wang, Sicheng Zhou, Wenbing Huang, and Yang
 575 Liu. Stabletoolbench-mirrorapi: Modeling tool environments as mirrors of 7,000+ real-world apis.
arXiv preprint arXiv:2503.20527, 2025.

576

577 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 578 Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 579 2024.

580

581 Sunghee Jung, Donghun Lee, Shinbok Lee, Gaeun Seo, Daniel Lee, Byeongil Ko, Junrae Cho,
 582 Kihyun Kim, Eunggyun Kim, and Myeongcheol Shin. Diatool-dpo: Multi-turn direct preference
 583 optimization for tool-augmented large language models. *arXiv preprint arXiv:2504.02882*, 2025.

584

585 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 586 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 587 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 Systems Principles*, 2023.

588

589 Kuan Li, Zhongwang Zhang, Hufeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
 590 Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 591 agent. *arXiv preprint arXiv:2507.02592*, 2025.

592

593 Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
 Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024a.

594 Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
 595 Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
 596 function-calling datasets. *Advances in Neural Information Processing Systems*, 37:54463–54482,
 597 2024b.

598 Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
 599 Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
 600 benchmark for llm tool use capabilities. *arXiv preprint arXiv:2408.04682*, 2024.

602 Meriem Mastouri, Emna Ksontini, and Wael Kessentini. Making rest apis agent-ready: From openapi
 603 to model context protocol servers for tool-augmented llms. *arXiv preprint arXiv:2507.16044*,
 604 2025.

606 OpenAI. Introducing gpt-5, 2025a. URL <https://openai.com/index/introducing-gpt-5/>.

608 OpenAI. Introducing openai o3 and o4-mini, 2025b. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

611 Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
 612 Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for
 613 multi-turn data generation via simulated agent-human interplay. *arXiv preprint arXiv:2504.03601*,
 614 2025a.

615 Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
 616 Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for
 617 multi-turn data generation via simulated agent-human interplay. *arXiv preprint arXiv:2504.03601*,
 618 2025b.

619 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur,
 620 and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*, 2025.

622 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 623 Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
 624 apis. *arXiv preprint arXiv:2307.16789*, 2023.

626 Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
 627 Zhou, Yufei Huang, Chaojun Xiao, et al. Tool learning with foundation models. *ACM Computing
 628 Surveys*, 57(4):1–40, 2024.

629 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambrø, Luke
 630 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
 631 themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551,
 632 2023.

633 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 1, 2025.

635 Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang,
 636 Cheng Li, Ke Wang, Rong Yao, et al. Restgpt: Connecting large language models with real-world
 637 restful apis. *arXiv preprint arXiv:2306.06624*, 2023.

639 Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Ari̇k. Learn-by-
 640 interact: A data-centric framework for self-adaptive agents in realistic environments. *arXiv
 641 preprint arXiv:2501.10893*, 2025a.

642 Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan
 643 Li, Jialong Wu, Xuanzhong Chen, et al. Scaling agents via continual pre-training. *arXiv preprint
 644 arXiv:2509.13310*, 2025b.

646 Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
 647 Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
 648 searching. *arXiv preprint arXiv:2505.04588*, 2025.

648 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
 649 Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via
 650 information-seeking formalization. *arXiv preprint arXiv:2507.15061*, 2025.

651
 652 ByteDance Seed Team. Seed-oss open-source models. <https://github.com/ByteDance-Seed/seed-oss>, 2025a.

653
 654 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
 655 Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv preprint*
 656 *arXiv:2507.20534*, 2025.

657 Qwen Team. Qwen3 technical report, 2025b. URL <https://arxiv.org/abs/2505.09388>.

658
 659 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 660 Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information seeking
 661 agency. *arXiv preprint arXiv:2505.22648*, 2025a.

662 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
 663 Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal. *arXiv*
 664 *preprint arXiv:2501.07572*, 2025b.

665
 666 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
 667 tool-agent-user interaction in real-world domains. *arXiv preprint arXiv:2406.12045*, 2024.

668 Junjie Ye, Zhengyin Du, Xuesong Yao, Weijian Lin, Yufei Xu, Zehui Chen, Zaiyuan Wang, Sining
 669 Zhu, Zhiheng Xi, Siyu Yuan, Tao Gui, Qi Zhang, Xuanjing Huang, and Jiecao Chen. ToolHop: A
 670 query-driven benchmark for evaluating large language models in multi-hop tool use. In Wanxiang
 671 Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
 672 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 673 pp. 2995–3021, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN
 674 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.150. URL <https://aclanthology.org/2025.acl-long.150/>.

675
 676 Junjie Ye, Changhao Jiang, Zhengyin Du, Yufei Xu, Xuesong Yao, Zhiheng Xi, Xiaoran Fan,
 677 Qi Zhang, Xuanjing Huang, and Jiecao Chen. Feedback-driven tool-use improvements in large
 678 language models via automated build environments. *arXiv preprint arXiv:2508.08791*, 2025b.

679 Fan Yin, Zifeng Wang, I Hsu, Jun Yan, Ke Jiang, Yanfei Chen, Jindong Gu, Long T Le, Kai-Wei
 680 Chang, Chen-Yu Lee, et al. Magnet: Multi-turn tool-use data synthesis and distillation via graph
 681 translation. *arXiv preprint arXiv:2503.07826*, 2025.

682 Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, Wu Ning, Yutai Hou, Xu Huang, Bing Qin, and
 683 Ting Liu. Boosting tool use of large language models via iterative reinforced fine-tuning. *arXiv*
 684 *e-prints*, pp. arXiv–2501, 2025.

685
 686 Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
 687 Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower ai
 688 agent systems. *arXiv preprint arXiv:2409.03215*, 2024.

689 Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
 690 Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Exploring tool-using language models
 691 with reinforced reasoning. *arXiv preprint arXiv:2505.00024*, 2025.

692 Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
 693 Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
 694 autonomous language agents. *arXiv preprint arXiv:2309.07870*, 2023.

695
 696
 697 **A THE USE OF LARGE LANGUAGE MODEL**

698
 699 We affirm that Large Language Models are employed solely as an assisted tool to refine wording
 700 and sentence structure during our paper writing process. Their use in the experiments is strictly for
 701 scientific research purposes, and all such usage has been explicitly documented in our Experimental
 Settings and Reproducibility Statement. No other reliance on LLMs is involved in this work.

702 **B EXPERIMENT SETTINGS**
703704 During the agentic experience learning stage, all models in the AgentScaler series — including 4B,
705 8B, and 30B-A3B — were trained for three epochs with a batch size of 128. The model context length
706 was set to 32768. Subsequently, we directly used the model from the final checkpoint. Additionally,
707 the learning rate was set to 7e-6, and a warm-up strategy was employed.708 During the evaluation stage, we strictly followed all the official guidelines of the benchmarks. All
709 baseline models were assessed using the benchmarks’ default configurations. For the AgentScaler
710 series of models, we set the temperature parameter to 0.6, the top-p value to 0.95, and the top-k value
711 to 20. Moreover, to speed up model inference, we deployed the model using vLLM (Kwon et al.,
712 2023).713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755