
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS GENERAL AGENTIC INTELLIGENCE VIA
ENVIRONMENT SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Advanced agentic intelligence is a prerequisite for deploying Large Language
Models in practical, real-world applications. Diverse real-world APIs demand
precise, robust function-calling intelligence, which needs agents to develop these
capabilities through interaction in varied environments. The breadth of function-
calling competence is closely tied to the diversity of environments in which agents
are trained. In this work, we scale up environments as a step towards advancing
general agentic intelligence. This gives rise to two central challenges: (i) how to
scale environments in a principled manner, and (ii) how to effectively train agentic
capabilities from experiences derived through interactions with these environments.
To address these, we design a scalable framework that automatically constructs
heterogeneous environments that are fully simulated, systematically broadening
the space of function-calling scenarios. We further adapt a two-phase agent fine-
tuning strategy: first endowing agents with fundamental agentic capabilities, then
specializing them for domain-specific contexts. Extensive experiments on agentic
benchmarks, τ -bench, τ2-Bench, and ACEBench, demonstrate that our trained
model, AgentScaler, significantly enhances the models’ function-calling capability.

1 INTRODUCTION

Function calling empowers language agents to interface with the real world (Qin et al., 2023;
Chen et al., 2024b; Qin et al., 2024; Schick et al., 2023; Su et al., 2025b). Yet, their progress is
fundamentally constrained by the scarcity of agentic data1, i.e., trajectories generated by autonomous
agents interacting with environments via explicit action executions, namely, tool calls (Zhou et al.,
2023; Liu et al., 2024a). The community has gradually transitioned from the era of raw corpora and
human-curated data to the emerging era of experience (Silver & Sutton, 2025; Wu et al., 2025a; Li
et al., 2025; Tao et al., 2025; Geng et al., 2025). Crucially, language agents must experience these
interactions themselves in a predefined environment, which makes both data collection and reliable
supervision highly challenging.

Several approaches have been attempted to generate synthetic agentic data. Broadly, previous
methods fall into two categories. The first category follows a reverse paradigm, in which user queries
are generated to match each assistant function call observed at every interaction turn (Yin et al.,
2025), though the resulting trajectories may exhibit limited realism. The second category follows
a forward paradigm, which we refer to as simulated agent–human interplay (Chen et al., 2024a;
Liu et al., 2024b; Prabhakar et al., 2025a; Barres et al., 2025; Zeng et al., 2025). Such generated
trajectories, however, may lack naturalness. In this category, a high-level user intent is first formulated
to necessitate agent interaction. Agentic data is then constructed in a top-down manner based on
this intent through human–agent interplay. Yet, the environment is not scalable: the absence of
automated environment construction hinders large-scale deployment and inevitably entails some
degree of manual intervention.

To address these challenges, we pursue the advancement of general agentic intelligence via systematic
environment scaling. Our approach follows a principled two-stage pipeline: (i) fully simulated
environment construction and scaling, responsible for establishing and expanding diverse agentic

1In this paper, the terms “function-calling”, “tool”, “API”, “MCP” are used interchangeably; “agentic data”
refers to trajectories involving such interactions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

scenarios, and (ii) agent experience learning, which exploits these environments to foster generaliz-
able intelligence.

In designing environment construction and scaling, we follow the principle that the core of an agent
lies in its capacity for environment interaction, with each environment instantiated as a read–write
database (Barres et al., 2025; Zeng et al., 2025). Specifically, we collect a broad spectrum of APIs
and organize them into domains using community detection, where each domain represents an
environment aligned with a specific database structure. Then, we instantiate tools as executable code,
thereby achieving programmatic materialization that enables direct operations on the underlying
database structures. Finally, we sample from the domain-specific tool graph to generate parameters for
the tool sequences and initialize the corresponding database state. We then integrate these components
into an overall user intent, grounding tool executions directly on the database. This design enables
verifiability at both the environment level and the tool-argument response level.

For learning from agent experience, our focus is on training the agent’s ability to perform tool calls
and to respond effectively to users (Ye et al., 2025b; Su et al., 2025a). We begin by performing
simulated human–agent interactions on the constructed agentic tasks (Prabhakar et al., 2025a), thereby
collecting trajectories that serve as the agent’s experience and perform strict filtering. To facilitate the
acquisition of this capability, we adopt a two-stage agent experience learning framework: in stage
1, the agent acquires fundamental tool-calling skills across general domains; in stage 2, it is further
trained within target vertical domains using domain-specific scenarios, enabling smoother and more
context-aligned development of agentic capabilities.

Extensive experiments on agentic benchmarks, τ -bench (Yao et al., 2024), τ2-Bench (Barres et al.,
2025), and ACEBench (Chen et al., 2025) show the effectiveness of our pipeline and trained models.
Based on the above pipeline, we train our family of AgentScaler models (4B, 8B, 30B-A3B), built
upon the Qwen-3 (Team, 2025b) series. At each comparable scale (4B, 8B), our models achieve state-
of-the-art performance. Notably, AgentScaler-30-A3B sets a new state-of-the-art with significantly
fewer parameters among models with comparable active parameter size, delivering results on par
with existing 1T-parameter models and leading closed-source systems. We also provide a systematic
analysis covering model generalization, stability, and the long-horizon tool-calling challenge, offering
key insights into the development of general agentic intelligence.

2 ENVIRONMENT BUILD AND SCALING

Design Principal There already exist many real-world environments for agent interaction (Qin
et al., 2023). However, these real environments suffer from several practical limitations that make
them unsuitable for large-scale and stable training. First, many real online APIs are unstable,
frequently affected by rate limits, fluctuating QPS capacity, and transient API failures. Such instability
prevents agents from receiving consistent tool feedback, which is crucial for effective learning. This
limitation has also been highlighted by multiple recent works (Guo et al., 2024; 2025), motivating the
development of simulated environments to enable reliable and large-scale agent training. Second,
simulated environments can provide deterministic, reproducible, and controllable tool feedback,
which real-world environments cannot guarantee. This stability is especially important for training
models that rely on precise multi-step tool interactions (Sun et al., 2025; Su et al., 2025b). In
essence, any function call can be interpreted as a read–write operation over an underlying
environmental database D (Guo et al., 2025). Specifically, each function func can be assigned an
operator type, op(func) ∈ {read,write}, where read-type function perform queries over D
(e.g., retrieval, inspection, monitoring), while write-type tools induce state transitions in D (e.g.,
modification, generation, actuation). Under this abstraction, a tool response is equivalent to evaluating
the induced operator on D, i.e., API(func, α) ≡ op(func)(α;D), where the symbol α denotes the
input arguments provided to a function call. Furthermore, let Td denote the set of tools within domain
d. Tools in the same domain typically exhibit structurally similar read–write patterns, which can be
captured by a common database schema Sk. Consequently, the design problem reduces to defining
a partition of the tool space into domains {T1 . . . , TM}, and assigning to each domain a database
schema Sk, where Sk specifies the environment for that domain.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1

Gold Env State

Env
Tool Doc

Grounding Functions

State Structure

Parameters
Matching

Tool Graph

Env Domains

Domains
Detection

2 43
GetProjectTimeline

GetConstructionScheduling

ProjectSchedulecreate

DiyProjecttaskScheduler

class ProjectSchedulecreate(Tool):
@staticmethod
def __call__(

data: Dict[str, Any],
projectDetails: Dict[str, Any]

) -> str:
projects = data["projects"]

 ...
 return ...

"projects": {
"project_id_placeholder": {

"project_id": ...
"project_name": ...
...
"last_updated": }

},
"tasks": ...
"milestones": ...

User Intent

Tool Seq

Name: ProjectSchedulecreate
Description: Create and
schedule a construction-type
project ...
Parameters: ...

Init Env State

Tasks

You want to start by retrieving the current
project timeline and construction scheduling
details to understand the existing plan. Then,
you intend to … After that, you plan to
generate your own DIY task-level…

"projects": {
 "project_id_placeholder": {

"project_id”: project_1
"last_updated":"2024-03-01T10:00:00Z"}

}
"tasks": []

"projects": {
"project_id_placeholder": {
"project_id": project_1
"last_updated": "2024-03-01T11:30:00Z"}

},
"tasks": [
Site Preparation, Foundation Work,...
]

Figure 1: The overview of the environment automatic build, and agentic environment construction.
Step 1, a large set of raw tool schemata are matched according to the vector similarity of their
parameters, thereby constructing a tool graph; Step 2, use a community partitioning algorithm to
divide the set of tools within a domain, then perform random walks to obtain tool sequences; Step 3,
construct executable Python functions and a state repository from the tools.

2.1 ENVIRONMENT AUTOMATIC BUILD

Building upon this design principle, we propose a systematic pipeline for leveraging a diverse set of
tools as shown in Figure 1. We begin with scenario collection, which gathers a large corpus of real-
world tools; proceed to tool dependency graph modeling, which induces well-structured domain
partitions and distributions; and finally employ function schema programmatic materialization,
which maps tool operations onto database interactions, thereby enabling the construction of the
overall environment.

Scenario Collection We collected more than 30,000 APIs from ToolBench (Qin et al., 2023; Guo
et al., 2024), API-Gen (Prabhakar et al., 2025b) and online tool repository. After applying rigorous
filtering, including the removal of low-quality APIs and subsequent refinement, we rewrite some API
descriptions to incorporate explicit input–output specifications (Fang et al., 2025). Building on this,
we further constructed tool compositions by systematically exploiting the input–output relationships
among APIs. This process ultimately resulted in API pools ΘF whose size = N (over 30,000),
providing a reliable foundation for subsequent experiments and analysis.

Tool Dependency Graph Modeling We construct a tool graph in which nodes are tools and edges
encode compositional compatibility induced by function parameters. A tool func consists of a
description Dfunc and a list of parameters Pfunc. For a pair of tools, we can extract their respective
parameter lists and convert them into vector representations ϕ to compute their cos-similarity. If
the similarity exceeds a predefined threshold τ , we consider there to be a dependency relationship
between the two tools. Accordingly, we insert an edge E between them in our graph.

E =
{
(i, j) | sim(ϕ(Pfunci), ϕ(Pfuncj)) > τ, i ̸= j

}
(1)

Domain partitioning then reduces to a graph clustering problem. We employ Louvain community
detection (Blondel et al., 2008) to identify coherent tool communities that serve as domains. For
a segmented tool set, since parameter matching relies solely on vectorization and considers only
individual parameter information, the overall inter-tool dependencies may be difficult to capture.
Therefore, for tools within a given domain, we further employ an LLM to systematically examine the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

dependencies between each pair of tools, thereby further improving the accuracy of edges in the tool
graph. In total, we obtained M domains (exceeding 1,000).

Function Schema Programmatic Materialization We first leverage the parameters of all tools
within a domain to generate a domain-specific database structure, which serves as the underlying state
for subsequent tool operations. After obtaining the domain-specific tool set and the corresponding
database schema in the previous stage, we can formalize each tool in python code, enabling it to
perform read–write operations over the database schema. Interestingly, when generating database
structures and formalizing code within specific domains of τ -bench, we observe through manual
inspection that our outputs exhibit a high degree of consistency with the official implementations
provided by τ -bench (Yao et al., 2024).

2.2 AGENTIC TASK CONSTRUCTION

We construct trajectories via forward simulated agent–human interplay, which allows us to fully
simulate the environment, the user, and the agent. The critical step is to synthesize agentic tasks that
elicit human tool usage while ensuring that the resulting trajectories remain verifiable. Concretely, we
first initialize an environment state based on the domain-specific database schema, while encouraging
as much diversity as possible in the initial state. Next, we sample logically coherent tool sequences
from the domain’s tool graph, specifically by constructing a directed dependency graph over APIs and
traversing it to obtain valid sequences. Starting from a randomly selected initial node, we conduct a
directed walk until either the maximum execution steps are reached or a node with no outgoing edges
is encountered. This process yields a logically coherent tool sequence. For each step, we generate the
corresponding arguments and perform the actual tool call, grounding the operations directly on the
database and continuously tracking the evolving database state. This procedure enables verifiability
at two complementary granularities: (i) database-level state consistency and (ii) exact matching of
tool sequences.

3 AGENT EXPERIENCE LEARNING

We leverage user intent to drive interactions that yield agent experiences, and train the model through
a two-phase process.

🧑💻

User Intent

🧑💻

Gold Action Seq

Interaction Traces

Compare

Environment State

Gold Env State

Compare

… More Interaction Turns

Simulated User

Task Agent

Environment

Can you return my order?

Sure, but I would need your email
to authenticate you and order info.

My email is … and the order is about …

Your order id is …, would like to proceed?

get_user_info(…)

get_order_info(…)

get_..._info(…)

Obtain
User Info

Obtain
Order Info

Obtain
More Info

Figure 2: The agent interacts with the simulated user and changes the environment state through the
generated functions.

3.1 HUMAN–AGENT INTERPLAY FOR EXPERIENCE COLLECTION

Interplay Motivated by Yao et al. (2024), once we have constructed an agentic task, we proceed
to perform human-agent interplay in the environment. Specifically, we instantiate a simulated user
tasked with fulfilling a given overall intent. The agent then leverages domain-specific tools to address
the user’s needs, continuing the interaction until the simulated user deems the task complete. This

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

setup enables us to conduct end-to-end simulation, encompassing user simulation, agent, and
environment, yielding a highly scalable framework. Each completed interaction trace constitutes an
agent experience, which can subsequently be used for training. Importantly, since we possess both
the gold tool sequences and arguments for the overall intent and the final environment state, we can
apply these as supervision signals for experience filtering. All simulated trajectories are generated
using the open-source model Qwen3-235B-A22B-Thinking.

Filtering We adopt a three-stage funnel-based trajectory filtering framework consisting of validity
control, environment state alignment, and function calling exact match.

• Validity control, removes invalid interaction trajectories to ensure well-formed alternating
user assistant exchanges. Additionally, we apply an n-gram-based filtering procedure to
eliminate severely repetitive reasoning segments. In such cases, we discard these data points.

• Environment state alignment retains only those trajectories whose final database state
matches the golden state after the interplay, thereby validating the effectiveness of write
operations. The filtering granularity at this stage is the database/environment level.

• Function calling exact match serves as the most stringent filtering stage, where the granular-
ity is the tool sequence. Since a tool sequence consisting entirely of read operations without
any write operations would cause state-based filtering to fail, we adopt a stricter exact match
approach for filtering in such cases. A trajectory is preserved only if the sequence of invoked
tools and arguments exactly matches the overall intent, ensuring high-fidelity supervision.

It is worth noting that we do not filter out trajectories in which tool calls return errors. Thanks to the
aforementioned filtering framework, such trajectories may still accomplish the intended goal despite
intermediate failures. Retaining them in the training data helps improve the robustness of the model.

3.2 AGENTIC EXPERIENCE LEARNING

Agentic Fine-tuning Given agent-human interplay experience trajectory H =
(h0, a1, . . . , an−1, hn, a0), where each human instruction is denoted by ht at t-round inter-
action, and each assistant turn at is decomposed as at = (τt, ρt, yt). Here, τt represents the function
call tokens, ρt the tool response tokens, and yt the assistant response tokens. Our training objective
is to optimize only the tool calls and assistant responses, while human instructions hi and tool
responses ρt are excluded from the loss. Formally, given an autoregressive model pθ(xk | x<k), we
define the loss as

L(θ) = − 1∑|H|
k=1 I[ki ∈ T]

|H|∑
k=1

I[xk ∈ T] · log πθ (xi | x<k) , (2)

where xk denotes the k-th token in the trajectory, πθ is the model distribution, I[·] is the indicator
function, T is the set of tokens belonging to tool calls τ or assistant responses y. In practice, all
tokens in ρi and hi are masked out from supervision but remain visible in the context x<k. This
ensures that the model conditions on tool responses and human instructions, while gradients are only
propagated through assistant-generated tool calls and natural-language responses.

Two-stage Experience Learning In the first phase, the agent is trained to acquire fundamental
skills for tool usage and user interaction. We focus on general domains where a broad set of
tools and tasks are available, allowing the agent to develop a robust understanding of when and
how to invoke function calls, as well as how to integrate tool outputs into coherent user-facing
responses. This stage emphasizes breadth and generality, ensuring that the agent builds a versatile
foundation of agentic behaviors before domain-specific specialization. In the second phase, the
agent undergoes fine-grained training in vertical domains, where tasks, tools, and user intents exhibit
domain-specific characteristics. In our setting, this stage primarily focuses on the τ -Bench and
τ2-Bench. By grounding the learning process in realistic scenarios within a target domain, the
agent refines its ability to select tools, parameterize calls, and produce responses that are accurate,
contextually appropriate, and aligned with domain-specific goals. This specialization ensures a
smoother adaptation of agentic capabilities, enabling the agent to operate effectively in real-world,
task-oriented environments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 SETUP

Benchmarks We evaluate our methods on three established agentic benchmarks: τ -bench, τ2-
Bench, and ACEBench-en. For τ -Bench (covering the retail and airline domains) and
τ2-Bench (spanning the retail, airline, and telecom domains), we adopt the pass1 metric
for evaluation and additionally analyze the trend of passk, following the protocols in Yao et al. (2024);
Barres et al. (2025).

For ACEBench-en, we report results across the Normal, Special, and Agent categories, as well
as the Overall performance, using the accuracy metric.

Baselines We compare our trained series models against the following types: closed-sourced
large language model, including Gemini-2.5-pro (Comanici et al., 2025), Claude-Sonnet-4 (An-
thropic, 2025), GPT-o3, GPT-o4-mini (OpenAI, 2025b), and GPT-5 (with thinking) (OpenAI, 2025a);
open-sourced large language model: GPT-OSS-120B-A5B (Agarwal et al., 2025), Deepseek-V3.1-
671B-A37B (DeepSeek-AI, 2024), Kimi-K2-1T-A32B (Team et al., 2025), Qwen3-Thinking-235B-
A22B (Team, 2025b), Seed-OSS-36B (Team, 2025a), Qwen-Coder-30B-A3B (Hui et al., 2024), and
xLAM-2 model series (Prabhakar et al., 2025a).

Backbones We train the AgentScaler model series by training on Qwen3 models (Team, 2025b)
of varying scales. Specifically, AgentScaler-4B and AgentScaler-30B-A3B are trained on Qwen3-
Thinking-4B-2507 and Qwen3-Thinking-30B-A3B-2507, respectively, while AgentScaler-8B is
trained on Qwen3-8B.

4.2 EXPERIMENTAL RESULTS

Table 1: Main results on τ -Bench, τ2-Bench, and ACEBench-en.
τ -bench τ2-Bench ACEBench-en

Model Retail Airline Retail Airline Telecom Normal Special Agent Overall

Closed-Source Large Language Models

Gemini-2.5-pro 68.7 44.0 67.5 56.0 27.2 76.7 90.0 63.4 78.2
Claude-Sonnet-4 73.9 40.0 67.5 54.0 47.4 79.9 87.3 42.5 76.1
GPT-o3 70.4 52.0 80.2 64.8 58.2 78.3 86.7 63.3 78.2
GPT-o4-mini 70.4 46.0 70.2 56.0 46.5 79.9 84.0 60.0 77.9
GPT-5-think 78.3 44.0 81.1 62.6 96.7 76.7 85.3 32.5 72.2

Open-Source Large Language Models

GPT-OSS-120B-A5B 67.8 49.2 57.0 38.0 45.6 79.1 84.0 50.8 76.0
Deepseek-V3.1-671B-A37B 66.1 40.0 64.9 46.0 38.5 80.3 62.0 40.8 69.3
Kimi-K2-1T-A32B 73.9 51.2 70.6 56.5 65.8 78.9 81.3 65.0 77.4
Qwen3-Thinking-235B-A22B 67.8 46.0 71.9 58.0 45.6 72.1 84.0 39.1 70.2

Seed-OSS-36B 70.4 46.0 68.4 52.0 41.2 79.1 82.0 58.4 76.7
Qwen-Coder-30B-A3B 68.7 48.0 60.5 42.0 30.7 74.0 41.3 24.1 57.5

xLAM-2-8B-fc-r 58.2 35.2 55.3 48.0 11.4 58.8 0.0 5.0 34.8
xLAM-2-32B-fc-r 64.3 45.0 55.3 52.0 16.7 69.2 24.7 13.4 52.5
xLAM-2-70B-fc-r 67.1 45.2 61.4 56.0 14.0 57.1 5.3 38.4 36.5

Qwen3-Thinking-4B 59.1 52.5 56.1 52.0 28.7 43.3 84.7 11.7 49.5
Qwen3-8B 45.2 25.0 41.2 30.5 23.5 71.4 75.3 29.1 65.9
Qwen3-14B 45.7 31.0 48.0 30.0 26.9 66.9 84.0 44.2 68.0
Qwen3-Thinking-30B-A3B 67.8 48.0 58.8 58.0 26.3 64.7 86.7 42.8 67.2

AgentScaler-4B 64.3 54.0 62.3 56.0 48.2 70.3 76.7 30.8 65.9
AgentScaler-8B 50.4 42.0 58.8 44.0 45.4 69.2 76.7 44.2 67.4
AgentScaler-30B-A3B 70.4 54.0 70.2 60.0 55.3 76.7 82.7 60.0 75.7

Main Results From Table 1, we observe that closed-source large language models (LLMs) still
maintain a clear performance advantage, consistently achieving the highest scores across most
domains and benchmarks. This demonstrates the strength of industrial-scale training pipelines and
proprietary optimization strategies. Nevertheless, our proposed AgentScaler achieves a remarkable
level of performance given its lightweight parameter scale. Specifically, it surpasses most open-
source baselines with fewer than 1T parameters, establishing a new state-of-the-art across τ -bench,
τ2-Bench, and ACEBench-en.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Normal Agent Overall40

50

60

70

80

90

Sc
or

e

Qwen3-Thinking-30B-A3B
Stage 1
Stage 2

Figure 3: Performance comparison on the Normal,
Agent, and Overall subsets of ACEBench-en for two-
stage training models.

Notably, AgentScaler-4B achieves per-
formance on par with 30B-parameter
models despite using the fewest parame-
ters, highlighting the agentic potential of
compact LLMs. Moreover, AgentScaler-
30B-A3B delivers results that are compa-
rable to trillion-parameter open-source
models and, in several domains, ap-
proach those of closed-source counter-
parts. These findings highlight the effi-
ciency of our approach: agentic capabil-
ities can be effectively learned and de-
ployed even in relatively compact mod-
els, enabling competitive performance
without relying on massive parameter counts. This advantage makes AgentScaler particularly well-
suited for practical deployment in resource-constrained or latency-sensitive scenarios.

Ablation Study We further conduct an ablation analysis to examine the effect of the proposed two-
stage agent experience learning framework on ACEBench-en. As shown in Figure 3, both Stage 1 and
Stage 2 training substantially improve performance over the base model (Qwen3-Thinking-30B-A3B)
across all subsets. And through multi-steps agent training in Stage 2, the model’s score on the agent
set has further improved, and the overall score has also increased. These results validate the design of
the two-phase training pipeline: general foundation learning is critical for establishing tool-usage
competence, and subsequent domain-specialization further consolidates and contextualizes these
capabilities.

5 ANALYSIS

Table 2: The results on ACEBench-zh.
Model ACEBench-zh

Normal Special Agent Overall

Qwen3-Thinking-4B 34.7 85.3 6.7 43.9
AgentScaler-4B 70.8+36.1 70.0-15.3 38.4+31.7 65.6+21.7

Qwen3-8B 80.3 72.7 35.0 71.3
AgentScaler-8B 75.2-5.1 79.3+6.6 58.4+23.4 73.7+2.4

Qwen3-Thinking-30B-A3B 73.4 86.7 55.8 74.2
AgentScaler-30B-A3B 85.3+11.9 83.3-3.4 64.1+8.3 81.5+7.3

Our synthetic data approach en-
ables efficient knowledge transfer and
strong robustness and generalization.
We further evaluate our models on
ACEBench-zh, which represents an out-
of-distribution (OOD) scenario relative
to the training setup. The observed drops,
AgentScaler-4B on special, AgentScaler-
8B on normal, and AgentScaler-30B-
A3B on special, are likely attributable
to these OOD effects. As shown in Ta-
ble 2, the AgentScaler models consistently outperform their Qwen baselines across all scales in
terms of overall score. In particular, AgentScaler-30B-A3B achieves the best overall score of 81.5,
demonstrating strong improvements in both the Normal and Agent subsets, while maintaining com-
petitive performance on the Special subset. Notably, the small Qwen3-4B model demonstrated a
remarkable improvement in agentic capabilities after the two-stage training, with its score surging
from 6.7 to 38.4 and substantial gain of 21.7 points in the overall score. This offers valuable insights
into effectively training compact models for complex function calling tasks in real-world applica-
tions. Our evaluation setup does include domain- and format-level OOD generalization, not only
cross-lingual robustness. First, ACEBench-en can be also seen an OOD evaluation for our system.
The environments we construct use APIs sourced from ToolBench and API-Gen, which are not
overlapping with the tool domains or schema structures in ACEBench-en. Therefore, ACEBench-en
evaluates the model’s ability to generalize to unseen tool domains, rather than only testing in-domain
performance. Second, the tool-calling format itself is out-of-distribution. Our training is performed
in the Qwen3-Hermes tool-calling format, while ACEBench adopts its own custom parser format.
Achieving strong performance under the ACEBench-en parsing and tool-calling rules demonstrates
format-level generalization, showing that the model is not overfitted to a single schema or interac-
tion protocol. Third, ACEBench-zh provides an additional cross-lingual generalization test, further
validating robustness across languages.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4
35

40

45

50

55

60

65

70

75

Sc
or

e
70.2

54.4

46.5

41.2

58.8

45.6

42.1
40.4

Retail

1 2 3 4
20

30

40

50

60
60.0

46.0

38.0

24.0

58.0

46.0

40.0

34.0

Airline

1 2 3 4

10

20

30

40

50

60 55.3

43.9

30.7

22.8
26.3

17.5
15.8

12.3

Telecom

1 2 3 4

30

40

50

60

62.5

48.6

38.5

30.6

45.3

34.1
30.9

27.7

Weighted Overall

Pass^K

Ours Qwen3-Thinking-30B-A3B

Figure 4: Passˆk metric results across all domains in the τ2-Bench.

0 2 4 6 8 10 12 14 16 18
Number of Tool Calls

0%

20%

40%

60%

80%

100%

120%

Ta
sk

 A
cc

ur
ac

y

Tool Call Complexity vs. Accuracy (Retail vs. Airline)

82%
78%

54%

90%

80%82%

40%

57%

0%

100%100%

0%

100%

67%
70%

33%

0% 0%

33%33%

67%

50%

0% 0%

100%
Retail Domain
Airline Domain
Retail Trend (dashed)
Airline Trend (dotted)
Small Sample Size
Large Sample Size

Figure 5: Accuracy by tool call count on τ -bench.

AgentScaler shows the strong consistency, stability. To assess the stability of AgentScaler, Fig-
ure 4 reports the passˆk metric on the τ2-Bench, which denotes the accuracy achieved when the
model correctly answers the same question in all k independent trials. According to the experi-
mental results, the weighted overall score of AgentScaler-30B-A3B consistently surpasses that of
Qwen3-Thinking-30B-A3B across all evaluated passˆk settings, indicating a substantial performance
advantage of our model over Qwen3-Thinking-30B-A3B. Moreover, a clear downward trend in scores
is observed as k increases, suggesting that the stability of existing LLMs remains a considerable
challenge.

Long-horizon tool calling remains a fundamental challenge for agentic models. To further
analyze the model’s long-horizon tool-calling capability, we constructed a scatter plot on the τ -
bench dataset showing the relationship between the number of tool calls in each trajectory and the
corresponding trajectory accuracy, with a dashed line indicating the trend. As illustrated in Figure 5,
there exists a clear negative correlation between the number of tool calls and task accuracy. Our
AgentScaler models exhibit this trend as well, underscoring that handling extended tool-use chains is
still an open problem that we plan to address in future work.

Scaling Law of Environments. We conduct a preliminary verification of scaling laws during
the continued pre-training stage. Specifically, when incorporating our dataset into the continued
pre-training phase, the Qwen3-30B-A3B-Thinking model achieved a 2.8-point improvement on
ACEBench-en.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 RELATED WORK

6.1 TOOL-USE ENVIRONMENTS

The construction of tool-use environments primarily involves three approaches: real-world environ-
ments, LLM–simulated environment, and Simulated Environments based on a state config. Using
real-world environments (Qin et al., 2023; Song et al., 2023; Mastouri et al., 2025; Wu et al., 2025b)
to invoke actual tools yields the most authentic feedback and enhances the model’s robustness in
practical applications. However, this requires frequent calls to MCP services, resulting in high costs
and significant time overhead. Moreover, maintaining a highly available and stable MCP service
is often difficult, posing major challenges for agentic data generation and online RL training of
models.Many works use LLM-generated responses to simulate environments as a source of tool
responses (Qin et al., 2024; Lu et al., 2024; Sun et al., 2025). By leveraging strong or fine-tuned
LLMs, these approaches generate plausible responses given a tool call. However, such methods
struggle with issues like hallucination and inconsistent response variability. To address the limi-
tations of the above two approaches, some recent work (Ye et al., 2025b; Yao et al., 2024; Barres
et al., 2025; Prabhakar et al., 2025b; Ye et al., 2025a) proposes building an offline tool execution
environment for LLM training and evaluation. On one hand, offline environments avoid calling
real tools, significantly reducing response generation cost and latency. On the other hand, mocked
tool usage in such environments can still interact with real databases or state files through actual
execution. However, these methods are more commonly applied in LLM evaluation rather than
training, as constructing a reliable tool suite and a high-fidelity execution environment typically
requires substantial manual effort. Furthermore, it is difficult to automatically validate the quality
of such environments without human involvement, making scalability a significant challenge. Our
approach enables domain scalability through sampling from a toolgraph, and eliminates the need for
human intervention via a rigorous, rule-based validation pipeline. This makes scalable construction
of tool execution environments feasible.

6.2 TOOL LEARNING

To enhance the agentic capabilities and tool-calling abilities of models, many works have attempted to
improve tool utilization through various approaches. For instance, xLAMs (Prabhakar et al., 2025b;
Zhang et al., 2024) and ToolAce (Liu et al., 2024a) leverage large-scale agentic data synthesis pipelines
to generate high-quality training data and thereby boost model performance. DiaTool-DPO (Jung
et al., 2025) employs DPO to enable models to learn from multi-turn positive and negative trajectories.
Meanwhile, Tool-RL (Qian et al., 2025), Tool-N1 (Zhang et al., 2025) utilize reinforcement learning
(RL) algorithms to enhance both the tool-calling proficiency and generalization ability of models,
further pushing the performance boundaries beyond supervised fine-tuning. Overall, whether relying
on agentic data synthesis or online interaction with environments via RL training, a stable, reliable,
and scalable execution environment is essential. For example, Kimi-K2 (Team et al., 2025) uses a
tool simulator during Agentic Data Synthesis to obtain observations for multi-turn trajectories. Our
method not only leverages accurately simulated tool environments to collect trajectories but also
introduces verifiable environmental state changes, making each simulation response more reliable.
Furthermore, we propose a state change based environment validation strategy, enabling a robust
filtering mechanism for large-scale agentic data synthesis.

7 CONCLUSION

In this work, we presented a principled pipeline for advancing general agentic intelligence through sys-
tematic environment scaling and agent experience learning. By programmatically materializing tools
as executable code and grounding them in database-structured environments, our approach enables
large-scale construction of verifiable trajectories. Building on these environments, we introduced a
two-stage agent experience learning framework that first equips agents with fundamental tool-usage
capabilities and then specializes them for domain-specific contexts. Extensive experiments on three
representative benchmarks, τ -bench, τ2-Bench, and ACEBench, demonstrate the effectiveness of our
pipeline. Notably, our AgentScaler family achieves state-of-the-art performance among open-source
models under 1T parameters, and in several cases reaches parity with much larger or closed-source
counterparts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Looking ahead, we believe our work highlights the importance of scalable environment construction
and verifiable agentic experience for fostering robust and generalizable language agents. Future
directions include integrating reinforcement learning on top of our fully simulated environments and
extending our pipeline to broader modalities and real-world deployment scenarios.

LIMITATION

Although our proposed framework has demonstrated promising results, several limitations remain,
which point to ongoing efforts and potential directions for future work.

Reinforcement-Learning Integration Although the current system relies solely on two-stage
supervised fine-tuning, the simulator we have built offers deterministic, low-latency feedback that is
ideal for reinforcement-learning optimization. In future iterations we plan to add an RL stage using
policy gradient methods, to refine the agent’s long-horizon decision-making and further improve its
emergent, agentic capabilities.

Model Scale Another limitation of our current work lies in the model scale. Our method has so
far only been validated on a 30B-scale architecture, without extension to larger models exceeding
200B or even trillion-parameter scales. While prior work (Belcak et al., 2025) emphasizes that “small
language models are the future of agentic AI,” we share the view that training agentic capabilities
in relatively smaller models is particularly meaningful. Such models are easier to deploy on edge
devices, enable broader applicability across diverse scenarios, and offer faster response times.

ETHICS STATEMENT

This study strictly adheres to established ethical guidelines at every stage. During the tool-collection
phase, all code, models, and utilities were obtained exclusively from publicly available, open-source
repositories or officially documented APIs released under permissive licenses. No proprietary or
restricted software was employed. Furthermore, every data point used in the experiments was
synthetically generated through algorithmic means. Crucially, no personally identifiable information
was collected, accessed, or produced at any time.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a thorough description of data construction, training procedures,
and evaluation details. Section 2 presents a step-by-step account of how we automatically build
the agent environment with an LLM. Section 3 exhaustively covers the collection and filtering of
trajectory data, and elaborates on the two-stage training pipeline that yields our final agent model.
The evaluation setting and fine-grained metrics can be found in Appendix B.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Anthropic. System card: Claude opus 4 & claude sonnet 4, 2025. URL https://www-cdn.
anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. tau2-bench: Evaluating
conversational agents in a dual-control environment. arXiv preprint arXiv:2506.07982, 2025.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai. arXiv preprint
arXiv:2506.02153, 2025.

10

https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang,
Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool usage? arXiv
preprint arXiv:2501.12851, 2025.

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang,
Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms via compositional
instruction tuning. arXiv preprint arXiv:2410.12952, 2024a.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881, 2024b.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Runnan Fang, Xiaobin Wang, Yuan Liang, Shuofei Qiao, Jialong Wu, Zekun Xi, Ningyu Zhang,
Yong Jiang, Pengjun Xie, Fei Huang, et al. Synworld: Virtual scenario synthesis for agentic action
knowledge refinement. arXiv preprint arXiv:2504.03561, 2025.

Xinyu Geng, Peng Xia, Zhen Zhang, Xinyu Wang, Qiuchen Wang, Ruixue Ding, Chenxi Wang,
Jialong Wu, Yida Zhao, Kuan Li, et al. Webwatcher: Breaking new frontiers of vision-language
deep research agent. arXiv preprint arXiv:2508.05748, 2025.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
large language models. arXiv preprint arXiv:2403.07714, 2024.

Zhicheng Guo, Sijie Cheng, Yuchen Niu, Hao Wang, Sicheng Zhou, Wenbing Huang, and Yang
Liu. Stabletoolbench-mirrorapi: Modeling tool environments as mirrors of 7,000+ real-world apis.
arXiv preprint arXiv:2503.20527, 2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Sunghee Jung, Donghun Lee, Shinbok Lee, Gaeun Seo, Daniel Lee, Byeongil Ko, Junrae Cho,
Kihyun Kim, Eunggyun Kim, and Myeongcheol Shin. Diatool-dpo: Multi-turn direct preference
optimization for tool-augmented large language models. arXiv preprint arXiv:2504.02882, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
agent. arXiv preprint arXiv:2507.02592, 2025.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024a.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
function-calling datasets. Advances in Neural Information Processing Systems, 37:54463–54482,
2024b.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
benchmark for llm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

Meriem Mastouri, Emna Ksontini, and Wael Kessentini. Making rest apis agent-ready: From openapi
to model context protocol servers for tool-augmented llms. arXiv preprint arXiv:2507.16044,
2025.

OpenAI. Introducing gpt-5, 2025a. URL https://openai.com/index/
introducing-gpt-5/.

OpenAI. Introducing openai o3 and o4-mini, 2025b. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for
multi-turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025a.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for
multi-turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025b.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur,
and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958, 2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
Zhou, Yufei Huang, Chaojun Xiao, et al. Tool learning with foundation models. ACM Computing
Surveys, 57(4):1–40, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang,
Cheng Li, Ke Wang, Rong Yao, et al. Restgpt: Connecting large language models with real-world
restful apis. arXiv preprint arXiv:2306.06624, 2023.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025a.

Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan
Li, Jialong Wu, Xuanzhong Chen, et al. Scaling agents via continual pre-training. arXiv preprint
arXiv:2509.13310, 2025b.

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
searching. arXiv preprint arXiv:2505.04588, 2025.

12

https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via
information-seeking formalization. arXiv preprint arXiv:2507.15061, 2025.

ByteDance Seed Team. Seed-oss open-source models. https://github.com/
ByteDance-Seed/seed-oss, 2025a.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Qwen Team. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information seeking
agency. arXiv preprint arXiv:2505.22648, 2025a.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal. arXiv
preprint arXiv:2501.07572, 2025b.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Junjie Ye, Zhengyin Du, Xuesong Yao, Weijian Lin, Yufei Xu, Zehui Chen, Zaiyuan Wang, Sining
Zhu, Zhiheng Xi, Siyu Yuan, Tao Gui, Qi Zhang, Xuanjing Huang, and Jiecao Chen. ToolHop: A
query-driven benchmark for evaluating large language models in multi-hop tool use. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2995–3021, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.150. URL https://aclanthology.
org/2025.acl-long.150/.

Junjie Ye, Changhao Jiang, Zhengyin Du, Yufei Xu, Xuesong Yao, Zhiheng Xi, Xiaoran Fan,
Qi Zhang, Xuanjing Huang, and Jiecao Chen. Feedback-driven tool-use improvements in large
language models via automated build environments. arXiv preprint arXiv:2508.08791, 2025b.

Fan Yin, Zifeng Wang, I Hsu, Jun Yan, Ke Jiang, Yanfei Chen, Jindong Gu, Long T Le, Kai-Wei
Chang, Chen-Yu Lee, et al. Magnet: Multi-turn tool-use data synthesis and distillation via graph
translation. arXiv preprint arXiv:2503.07826, 2025.

Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, Wu Ning, Yutai Hou, Xu Huang, Bing Qin, and
Ting Liu. Boosting tool use of large language models via iterative reinforced fine-tuning. arXiv
e-prints, pp. arXiv–2501, 2025.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower ai
agent systems. arXiv preprint arXiv:2409.03215, 2024.

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Exploring tool-using language models
with reinforced reasoning. arXiv preprint arXiv:2505.00024, 2025.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
autonomous language agents. arXiv preprint arXiv:2309.07870, 2023.

A THE USE OF LARGE LANGUAGE MODEL

We affirm that Large Language Models are employed solely as an assisted tool to refine wording
and sentence structure during our paper writing process. Their use in the experiments is strictly for
scientific research purposes, and all such usage has been explicitly documented in our Experimental
Settings and Reproducibility Statement. No other reliance on LLMs is involved in this work.

13

https://github.com/ByteDance-Seed/seed-oss
https://github.com/ByteDance-Seed/seed-oss
https://arxiv.org/abs/2505.09388
https://aclanthology.org/2025.acl-long.150/
https://aclanthology.org/2025.acl-long.150/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B EXPERIMENT SETTINGS

During the agentic experience learning stage, all models in the AgentScaler series — including 4B,
8B, and 30B-A3B — were trained for three epochs with a batch size of 128. The model context length
was set to 32768. Subsequently, we directly used the model from the final checkpoint. Additionally,
the learning rate was set to 7e-6, and a warm-up strategy was employed.

During the evaluation stage, we strictly followed all the official guidelines of the benchmarks. All
baseline models were assessed using the benchmarks’ default configurations. For the AgentScaler
series of models, we set the temperature parameter to 0.6, the top-p value to 0.95, and the top-k value
to 20. Moreover, to speed up model inference, we deployed the model using vLLM (Kwon et al.,
2023).

14

	Introduction
	Environment Build and Scaling
	Environment Automatic Build
	Agentic Task Construction

	Agent Experience Learning
	Human–Agent Interplay for Experience Collection
	Agentic Experience Learning

	Experiments
	Setup
	Experimental Results

	Analysis
	Related Work
	Tool-Use Environments
	Tool Learning

	Conclusion
	THE USE OF LARGE LANGUAGE MODEL
	Experiment Settings

