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Abstract

The syntactic categories of categorial gram-
mar formalisms are structured units made of
smaller, indivisible primitives, bound together
by the underlying grammar’s category forma-
tion rules. In the trending approach of con-
structive supertagging, neural models are in-
creasingly made aware of the internal category
structure, which in turn enables them to more
reliably predict rare and out-of-vocabulary cat-
egories, with significant implications for gram-
mars previously deemed too complex to find
practical use. In this work, we revisit con-
structive supertagging from a graph-theoretic
perspective, and propose a framework based
on heterogeneous dynamic graph convolutions,
aimed at exploiting the distinctive structure
of a supertagger’s output space. We test our
approach on a number of categorial gram-
mar datasets spanning different languages and
grammar formalisms, achieving substantial
improvements over previous state of the art
scores.

1 Introduction

Their close affinity to logic and lambda calculus
has made categorial grammars a standard tool of
the trade for the formally-inclined NLP practitioner.
Modern flavors of categorial grammar, despite their
(sometimes striking) divergences, share a common
architecture. At its core, a categorial grammar is a
formal system consisting of two parts. First, there
is a lexicon, a mapping that assigns to each word
a set of categories. Categories are quasi-logical
formulas recursively built out of atomic categories
by means of category forming operations. The in-
ventory of category forming operations at the mini-
mum has the ability to express linguistic function-
argument structure. If so desired, the inventory can
be extended with extra operations, e.g. to handle
syntactic phenomena beyond simple concatenation,
or to express additional layers of grammatical infor-
mation. The second component of the grammar is

a small set of inference rules, formulated in terms
of the category forming operations. The inference
rules dictate how categories interact and, through
this interaction, how words combine to form larger
phrases. Parsing thus becomes a process of de-
duction comparable (or equatable, depending on
the grammar’s formal rigor) to program synthesis,
providing a clean and elegant syntax-semantics in-
terface.

In the post-neural era, these two components
allow differentiable implementations. The fixed
lexicon is replaced by supertagging, a process that
contextually decides on the most appropriate su-
pertags (i.e. categories), whereas the choice of
which rules of inference to apply is usually deferred
to a parser further down the processing pipeline.
The highly lexicalized nature of categorial gram-
mars thus shifts the bulk of the weight of a parse
to the supertagging component, as its assignments
and their internal make-up inform and guide the
parser’s decisions.

In this work, we revisit supertagging from a ge-
ometric angle. We first note that the supertagger’s
output space consists of a sequence of trees, which
has as of yet found no explicit representational
treatment. Capitalizing on this insight, we employ a
framework based on heterogeneous dynamic graph
convolutions, and show that such an approach can
yield substantial improvements in predictive accu-
racy across categories both frequently and rarely
encountered during a supertagger’s training phase.

2 Background

The supertagging problem revolves around the de-
sign and training of a function tasked with mapping
a sequence of words {wy, ..., w,} to a sequence
of categories {c1, ..., ¢, }. Existing supertagging
architectures differ in how they implement this
mapping, with each implementation choice boiling
down to (i) which of the temporal and structural
dependencies within and between the input and out-



put are taken into consideration, and (ii) how these
dependencies are materialized.

Earlier work would utilize solely occurrence
counts from a training corpus to independently map
word n-grams to their most likely categories, and
then attempt to filter out implausible sequences via
rule-constrained probabilistic models (Bangalore
and Joshi, 1999). The shift from sparse feature vec-
tors to distributed word representations facilitated
integration with neural networks and improved gen-
eralization on the mapping domain, extending it to
rare and previously unseen words (Lewis and Steed-
man, 2014). Later, the advent of recurrent neural
networks offered a natural means of incorporating
temporal structure, widening the input receptive
field through contextualized word representations
on the one hand (Xu et al., 2015), but also permit-
ting an auto-regressive formulation of the output
generation, whereby the effect of a category assign-
ment could percolate through the remainder of the
output sequence (Vaswani et al., 2016).

More recently, the so-called constructive
paradigm seeks to explore the previously ignored
structure “internal” to categories. By inspect-
ing their formation rules, Kogkalidis et al. (2019)
equates categories to CFG derivations, and views
a category sequence as the concatenation of their
flattened depth-first projections. The goal sequence
is now incrementally generated on a symbol-by-
symbol basis using a transformer-based seq2seq
model; a twist which provides the decoder with
the means to construct novel categories on de-
mand, bolstering co-domain generalization. The
decoder’s global receptive field, however, comes at
the heavy price of quadratic memory complexity,
which also bodes poorly with the elongated out-
put sequences, leading to a slowed down inference
speed. Expanding on the idea, Prange et al. (2021)
explicates the categories’ tree structure, embedding
symbols based on their tree positions and propa-
gating contextualized representations through tree
edges, using either residual dense connections or
a tree-structured GRU. This adaptation completely
eliminates the burden of learning how trees are
constructed, instead allowing the model to focus
on what trees to construct, leading to drastically
improved performance. Simultaneously, since the
decoder is now token-separable, it permits con-
struction of categories for the entire sentence in
parallel, speeding up inference and reducing the
network’s memory footprint. In the process, how-

ever, it loses the ability to model interactions be-
tween auto-regressed nodes belonging to different
trees, morally reducing the task once more to se-
quence classification (albeit now with a dynamic
classifier).

Despite their common goal of accounting for
syntactic categories in the zipfian tail, there are ten-
sion points between the above two approaches. In
providing a global history context, the first breaks
the input-to-output alignment and hides the catego-
rial tree structure. In opting for a tree-wise bottom-
up decoding, the second forgets about meaningful
inter-tree output-to-output dependencies. In this
paper, we seek to resolve these tension points with
a novel, unified and grammar-agnostic supertag-
ging framework based on heterogeneous dynamic
graph convolutions. Our architecture combines
the merits of explicit tree structures, strong auto-
regressive properties, near-constant decoding time,
and a memory complexity that scales with the input,
boasting high performance across the full span of
the frequency spectrum and surpassing previously
established benchmarks on all datasets considered.

3 Methodology

3.1 Preliminaries

We will formulate supertagging as an iterative
graph completion process. Our representation
format is that of a heterogeneous graph, consist-
ing of two types of nodes and edges. Lexical
nodes (words) are vectors of dimensionality d.,;
the sentential structure can be encoded as a set of
labeled edges in the cartesian product of words,
&YW € Z°7°, such that £, = j — 1t is the distance
between words j and ¢ in the input sequence. Each
lexical item ¢ is associated to a binary branching
tree T;, representing the category assigned to the
word in question. We will denote with 7; ;. the k-th
node of the i-th tree, where enumeration starts from
1 for the root, and is inductively defined by follow-
ing along the tree’s breadth-first traversal. Tree
nodes are represented as vectors of dimensionality
dn, the totality of n nodes in the graph then being
amatrix N € R"%%n; tree edges are converted into
a sparse connectivity matrix £” € N%*" where
&', is k if node v occurs at position k within tree
1, and zero otherwise. We will denote with M,t
the depth-¢ neighborhood of a lexical item ¢ as the
set of nodes [T} o: ... T} 9t41), i.e. the set of nodes
that are occupying depth t of tree 7. To tell the
two kinds of nodes apart, and for reasons that will



become clear in what is to come, we will refer to
lexical nodes as states, and tree nodes as just nodes.

3.2 Breadth-First Parallel Decoding

Categories being trees, they are amenable to
breadth-first traversal. A sequence of categories
can then be viewed as multiple sequences of primi-
tives, sequence t corresponding to the concatena-
tion of primitive symbols occurring along all trees
at depth £. Combined with ancestry information
and a series of initial seeds (i.e. word vectors), it
is straightforward to use each sequence as a state-
tracking vector from which to predict the next se-
quence of elements, essentially implementing a tree
unfolding function a la treeRNN. As mentioned
earlier, this fails to account for “horizontal” interac-
tions between nodes occupying the same depth, and
also, as a result, “diagonal” interactions between
nodes living in different trees, practically reduc-
ing the task to a separable classification applied
independently across words. A seemingly innocu-
ous solution would be to employ a second form
of recurrence, as in Alvarez-Melis and Jaakkola
(2017); this would however once more break the
input-to-output alignment and necessitate explicit
handling of unoccupied tree positions, while insert-
ing a multiplicative time complexity factor scaling
constantly with the input.! Our approach seeks to
mitigate this by foregoing horizontal interactions,
but reinstating intra-tree interactions across depths.
We do so by repurposing the initial sequence of
lexical vectors, from input seeds to recurrent state-
tracking vectors that arbitrate the decoding process
across both sequence length and tree depth. In the
absence of a localized tree unfolding function, and
aiming to properly capture the "regularly irregular”
structure of the output space, we turn our attention
towards structure-aware dynamic graph convolu-
tions.

In high level terms, the process can be summa-
rized as an iteration of three alternating stages of
message passing rounds. Initially, state vectors are
supplied from an arbitrary encoder network, and a
fringe consisting of s unlabeled nodes is instanti-
ated in alignment with the input sequence. From
then on, and until a fix-point is reached:

1. Each state vector receives feedback in a many-

to-one fashion from the last decoded nodes
lying directly above it (initially none), yield-

!Consider that at each depth ¢ we would need to iterate
over 2¢ x s elements.

ing tree-contextual states.

2. The updated state vectors exchange messages
with one another in a many-to-many fashion,
yielding tree-and-sequence-contextual states.

3. The final states project class weights to their
respective fringe nodes in a one-to-many fash-
ion; depending on the arity of the decoded
symbols, a next masked fringe is constructed
with appropriate node positions and state-to-
node edge indices; the process terminates
when the next fringe is empty.

For a visual example, please refer to Appendix A.

3.3 Architecture

We now move on to detail the individual blocks
that together make up the network’s pipeline.

3.3.1 Node Embeddings

State vectors are temporally dynamic; they are ini-
tially supplied by an external encoder, and are then
updated through a repeated sequence of three mes-
sage passing rounds, described in the next subsec-
tions. Tree node embeddings, on the other hand,
are not subject to temporal updates, but instead
become dynamically “revealed” by the decoding
process. They are computed on the basis of (i) their
primitive symbol and (ii) their position within a
tree.

Primitive symbol embeddings are obtained from
a standard embedding table W, : S — R%" that
contains a distinct vector for each symbol in the set
of primitives S. When it comes to embedding posi-
tions, we are presented with a number of options.
It would be straightforward to fix a vocabulary of
positions, and learn a distinct vector for each. Such
an approach would however lack elegance, as it
would impose an ad-hoc bound to the shape of
trees that can be encoded (contradicting the con-
structive paradigm), while also failing to account
for the compositional nature of trees. We thus opt
for a path-based approach, inspired by and extend-
ing the idea of Shiv and Quirk (2019). We note first
that paths over binary branching trees form a semi-
group, i.e. they consist of two primitives (namely
a left and a right path), and an associative non-
commutative binary operator that binds two paths
together into a single new one. The archetypical ex-
ample of a semigroup is matrix multiplication; we
therefore instantiate a tensor P € R2X"4X"d encod-
ing each of the two path primitives as a linear map
over symbol embeddings. From the above we can
derive a function p that converts positions to linear



maps, by performing consecutive matrix multipli-
cations of the primitive weights, as indexed by the
reversed binary word of a node’s position; e.g. the
linear map corresponding to position 129 = 11004
would be p(12) = PyPyP1 P, € R¥*dn We flat-
ten the final map by evaluating it against an initial
seed vector pg, corresponding to the tree root.” To
stabilize training and avoid vanishing or explod-
ing weights, we model paths as unitary transfor-
mations by parameterizing the two matrices of P
to orthogonality using the exponentiation trick on
skew-symmetric bases (Bader et al., 2019; Lez-
cano Casado, 2019). The final embedding for a
symbol ¢ occupying position k is then given by the
element-wise product of its positional and content
embeddings p(k)(po) o (We(o)) € R,

3.3.2 Node Feedback

We update states with information from the last
decoded nodes using a heterogeneous message-
passing scheme based on graph attention net-
works (Velickovic et al., 2018; Brody et al., 2021).
First, we use a bottleneck layer W} to down-
project the state vector into the nodes’ dimen-
sionality. Then, given a state h! and a neighbor-
hood J\/i,t, we compute a self-loop score &;; =
wq - (Wy(ht)]|0), as well as heterogeneous scores
Gyt =wq - (h|N,), for each node v in the neigh-
borhood, where w, € R?% a dot-product weight
and Wy(ht)||N, the concatenation of the down-
sized state vector with node ©/’s position-aware em-
bedding N,. Scores are passed through a leaky
rectifier non-linearity before being normalized to
attention coefficients, from which we obtain the
updated states as the weighted sum of incoming
messages (further processed by a shallow network
W.») and a residual connection:

7t E t
hZ — ai7y7thNy + ai,thi
HEN; ¢

States receiving no node feedback (i.e. states that
have completed decoding more than one time step
ago) are thus protected from updates, preserving
their content. In practice, we compute attention
coefficients and message vectors independently for
multiple heads, but omit them from the above equa-
tions to avoid cluttering the notation.

*In practice, paths are efficiently computed once per batch
for each unique tree position during training, and stored as
fixed embeddings during inference.

3.3.3 State Feedback

At the end of the node feedback stage, we are left
with a sequence of locally contextualized states
isz Recall that, owing to our encoding of the
sentential structure, states form a fully connected
graph, with edges weighted by relative distances
between words. We embed these distances into
the encoder’s vector space using an embedding ta-
ble W, € R¥*dw_where § the maximum allowed
distance, a hyper-parameter. Edges escaping the
maximum distance threshold are truncated rather
than clipped, in order to preserve memory and fa-
cilitate training, leading to a natural segmentation
of the sentence into (overlapping) chunks. Follow-
ing standard practices, we project states into query,
key and value vectors (Vaswani et al., 2017), and
compute the attention scores between words ¢ and
J using relative-position weighted attention (Shaw
et al., 2018):

a; ;= dyt? (Wht o W, EY) - Wih!

From the normalized attention scores we obtain a
new set of aggregated messages:

exp(di,j)Wvﬁz-
Zke{o..s} exp(aik)

m; ¢ =
je{0..s}

Same as before, queries, keys, values, edge embed-
dings and attention coefficients are distributed over
many heads.

Aggregated messages are passed through a
swish-gated feed-forward layer (Dauphin et al.,
2017; Shazeer, 2020) to yield the next sequence of
state vectors:

h?rl = W3 (SWiShl(Wlm;7t) © W2m;',t)

where W7 2 are linear maps from the encoder’s
dimensionality to an intermediate dimensionality,
and vice versa for Ws.

3.3.4 Node Prediction

Finally, from a globally-contextualized state
we need to obtain class weights for the entirety
of the neighborhood N ;1. We start by down-
projecting the state vector into the node’s dimen-
sionality using yet another shallow network W,.
The resulting feature vectors are shared across all
nodes of the same tree — to discriminate between
them, we gate vectors against each node’s posi-
tional embedding. From the latter, we obtain class
weights by matrix multiplying them against the

t+1
h’i



transpose of the symbol embedding table (Press
and Wolf, 2017):

weights; j, = (p(k)(po) © Wyhi ™) W,

During inference, the next fringe can be easily
generated with minimal structure manipulation by
using the indices of binary decoded symbols to
extract their positions, multiply those by two (to
create the positions of their left children), add one
(to create the positions of their right children) and
finally interleave the two; in the same vein, the
new state indices are simply the repetition of their
respective ancestor indices. We hold on to the po-
sitional embeddings of the current fringe, as they
will find use in the ensuing node feedback phase
unaltered.

3.3.5 Putting Things Together

We compose the previously detailed components
into a single layer, which acts a sequence-wide,
recurrent-in-depth decoder. We insert skip connec-
tions between the input and output of the message-
passing and feed-forward layers (He et al., 2016),
and subsequently normalize each using root mean
square normalization (Zhang and Sennrich, 2019).

4 [Experiments

We employ our supertagging architecture in a range
of diverse categorial grammar datasets spanning
different languages and underlying grammar for-
malisms. In all our experiments, we bind our model
to a monolingual BERT-style language model used
as an external encoder, fine-tuned during train-
ing (Devlin et al., 2018). In order to homogenize
the tokenization between the one directed by each
dataset and the one required by the encoder, we
make use of a simple localized attention aggrega-
tion scheme. The subword tokens together com-
prising a single word are independently projected
to scalar values through a shallow feed-forward
layer. Scalar values are softmaxed within their lo-
cal group to yield attention coefficients over their
respective BERT vectors, which are then summed
together, in a process reminiscent of a cluster-wide
attentive pooling (Li et al., 2016). In cases of data-
level tokenization treating multiple words as a sin-
gle unit (i.e. assigning one type to what BERT per-
ceives as many words), we mark all words follow-
ing the first with a special [MWU] token, signifying
they need to be merged to the left. This effectively
adds an extra output symbol to the decoder, which

is now forced to do double duty as a sequence chun-
ker. To avoid sequence misalignments and metric
shifts during evaluation, we follow the merges dic-
tated by the ground truth labels, and consider the
decoder’s output as correct only if all participating
predictions match, assuming no implicit chunking
oracles.

4.1 Datasets

We conduct experiments on the two variants of the
English CCGBank, the French TLGbank and the
Dutch Athel proofbank. A high-level overview of
the datasets is presented in Table 1, and short de-
scriptions are provided in the following paragraphs.
We refer the reader to the corresponding literature
for a more detailed exposition.

CCGbank TLGbank Athel
original rebank
Primitives 37 40 27 60
Zeroary 35 38 19 31
Binary 2 2 8 29
Categories 1323 1619 851 5292
in train 1286 1575 803 4730
depth avg. 1.94 1.96 1.99 1.83
depth max. 6 6 7 35
Test Sentences 2407 2407 1571 5766
length avg. 23.00 24.27 27.58 16.61
Test Tokens 55371 56395 44302 98467
Frequent (100+) 54825 55690 43289 95253
Uncommon (10-99) 442 563 833 2213
Rare (1-9) 75 107 149 678
Unseen (OOV) 22 27 31 323

Table 1: Bird’s eye view of datasets employed and rele-
vant statistics. Test tokens are binned according to their
corresponding categories’ occurrence count in the re-
spective dataset’s training set. Token counts are mea-
sured before pre-processing. Unique primitives for the
type-logical datasets are counted after binarization.

CCGBank The English CCGbank (origi-
nal) (Hockenmaier and Steedman, 2007) and its
refined version (rebank) (Honnibal et al., 2010) are
resources of Combinatory Categorial Grammar
(CCG) derivations obtained from the Penn
Treebank (Taylor et al., 2003). CCG (Steedman
and Baldridge, 2011) builds lexical categories with
the aid of two binary slash operators, capturing
forward and backward function application. Some
additional rules lent from combinatory logic (Curry
et al., 1958) permit constrained forms of type rais-
ing and function composition, allowing categories
to remain relatively short and uncomplicated
while keeping parsing complexity in check. The
key difference between the two versions lies in



their tokenization and the plurality of categories
assigned, the latter containing more assignments
and a more fine-grained set of syntactic primitives,
which in turn make it a slightly more challenging
evaluation benchmark.

French TLGbank The French type-logical tree-
bank (Moot, 2015) is a collection of proofs ex-
tracted from the French treebank (Abeill€ et al.,
2003). The theory underlying the resource is that
of Multi-Modal Typelogical Grammars (Moortgat,
1996); annotations are deliberately made compat-
ible with Displacement Calculus (Morrill et al.,
2011) and First-Order Linear Logic (Moot and Pi-
azza, 2001) at the cost of a small increase in lexical
sparsity. In short, the vocabulary of operators is
extended with two modalities that find use in licens-
ing or restricting the applicability of rules related
to non-local syntactic phenomena. To adapt their
representation to our framework, we cast unary
operators into pseudo-binaries by inserting an arti-
ficial terminal tree in a fixed slot within them. Due
to the absence of predetermined train/dev/test splits,
we randomize them with a fixed seed at a 80/10/10
ratio and keep them constant between repetitions.

Athel Our last experimental test bed is
Athel (Kogkalidis et al., 2020a), a dataset of
type-logical proofs for written Dutch sentences,
automatically extracted from the Lassy-Small
corpus (Noord et al., 2013). Athel is geared
towards semantic parsing, which means categories
employ linear implication —o as their single binary
operator. An additional layer of dependency infor-
mation is realized via unary modalities, now lifted
to classes of operators distinguishing complement
and adjunct roles. The grammar assigns concrete
instances of polymorphic coordinator types, as
a result containing more and sparser categories
(some of which distinctively tall); considering also
its larger vocabulary of primitives, it makes for a
good stress test for our approach. We experiment
with the latest available version of the dataset
(version 0. 9.devl at the time of writing). Same
as before, we impose a regular tree structure,
this time by merging adjunct (resp. complement)
markers with the subsequent (resp. preceding)
binary operator, which makes for an unambiguous
and invertible representational translation.

4.2 Implementation

We implement our model using PyTorch Geomet-
ric (Fey and Lenssen, 2019), which provides a high-

level interface to efficient low-level protocols, fa-
cilitating fast and pad-free graph manipulations.
We share a single hyper-parameter setup across all
experiments, obtained after a minimal logarithmic
search over sensible initial values. Specifically, we
set the node dimensionality d,, to 128 with 4 hetero-
geneous attention heads and the state dimensional-
ity dy, to 768 with 8 homogeneous attention heads.
We train using AdamW (Loshchilov and Hutter,
2018) with a batch size of 16, weight decay of
1072, and a learning rate of 10~%, scaled by a linear
warmup and cosine decay schedule over 25 epochs.
During training we provide strict teacher forcing
and apply feature and edge dropout at 20% chance.
Our loss signal is derived as the label-smoothed
negative log-likelihood between the network’s pre-
diction and the ground truth label (Miiller et al.,
2019). We procure pretrained base-sized BERT
variants from the transformers library (Wolf et al.,
2020): RoBERTa for English (Liu et al., 2019),
BERTje for Dutch (de Vries et al.,, 2019) and
CamemBERT for French (Martin et al., 2020),
which we fine-tune during training, scaling their
learning rate by 10% compared to the decoder.

4.3 Results

We perform model selection on the basis of vali-
dation accuracy, and gather the corresponding test
scores according to the frequency bins of Table 1.
Table 2 presents our results compared to relevant
published literature. Evidently, our model sur-
passes established benchmarks in terms of overall
accuracy, matching or surpassing the performance
of both traditional supertaggers on common cate-
gories and constructive ones on the tail end of the
frequency distribution.

We observe that the relative gains appear to scale
with respect to the task’s complexity. In the original
version of the CCGbank, our model is only slightly
superior to the next best performing model (in turn
only marginally superior to the token-based clas-
sification baseline), whereas in the rebank version
the absolute difference is one order of magnitude
wider. The effect is even further pronounced for
the harder type-logical datasets, which are char-
acterized by a longer tail, leading to performance
comparable to CCGbank’s for the French TLGbank
(despite it being significantly smaller and sparser),
and a 10% absolute performance leap for Athel
(despite its unusually tall and complex types). We
attribute this to increased returns from performance



accuracy (%)

model overall frequent uncommon  rare unseen

CCG (original)

Symbol Sequential LSTM /w n-gram oracles (Liu et al., 2021) 95.99 96.40 65.83 8.65'
Symbol Sequential LSTM (Bhargava and Penn, 2020) 96.00 - - - ~5
Cross-View Training (Clark et al., 2018) 96.10 - - - n/a
Recursive Tree Addressing (Prange et al., 2021) 96.09 96.44 68.10 37.40 3.03
BERT Token Classification (Prange et al., 2021) 96.22 96.58 70.29 23.17 n/a
Attentive Convolutions (Tian et al., 2020) 96.25 96.64 71.04 n/a n/a

Heterogeneous Dynamic Convolutions (this work)

CCG (rebank)
Symbol Sequential Transformer’ (Kogkalidis et al., 2019)

Symbol Sequential LSTM" (Bhargava and Penn, 2020)
TreeGRU (Prange et al., 2021)

Recursive Tree Addressing (Prange et al., 2021)

Token Classification (Prange et al., 2021)

Heterogeneous Dynamic Convolutions (this work)

French TLGbank
ELMo & LSTM Classification (Moot, 2019)

BERT Token Classification®
Heterogeneous Dynamic Convolutions (this work)
thel

Symbol Sequential Transformer™ (Kogkalidis et al., 2020b)
BERT Token Classification*

Heterogeneous Dynamic Convolutions (this work)

96.291+004 96.61+004 72.06072 34.45+1158 4.55+287

90.68 91.10 63.65 34.58 741
93.92 94.39 65.48 19.00 0.00
94.62 95.10 64.24 25.55 247
94.70 95.11 68.86 36.76 4.94
94.83 95.27 68.68 23.99 n/a

95.07+0.04 95.45+0.04 71.40+1.15 37.19+181 3.70+0.00

93.20 95.10 75.19 25.85 n/a
95.93 96.44 81.39 47.45 n/a

95.9210.01 96.40+0.01 81.48+097 55.37+100 7.26+267

83.67 84.55 64.70 50.58 24.55
93.52 94.83 71.85 38.06 n/a

93.67+0.04 94.72+0.13 73.45+0.46 53.83+1.14 15.79+1.32

'Accuracy over both bins, with a frequency-truncated training set (authors claim no difference when using the full set).

_T_Numbers from Prange et al. (2021).
Our replication.

*Model trained and evaluated on an older dataset version and tree sequences spanning less than 140 nodes in total.

Table 2: Model performance across datasets and compared to recent studies. Numbers are taken from the papers
cited unless otherwise noted. For our model, we report averages and standard deviations over 6 runs. Bold face
fonts indicate (within standard deviation of) highest performance.

in the rare and uncommon bins; there is a syner-
gistic effect between the larger population of these
bins pronouncing even minor improvements, and
acquisition of rarer categories apparently benefit-
ing from the plurality of their respective bins in a
self-regularizing manner.

Finally, to investigate the relative impact of each
network component, we conduct an ablation study
where message passing components are removed
from their network in their entirety. Removing the
state feedback component collapses the network
into a token-wise separable recurrence, akin to a
graph-featured RNN without a hidden-to-hidden
affine map. Removing the node feedback com-
ponent turns the network into a Universal Trans-
former (Dehghani et al., 2018) composed with a
dynamically adaptive classification head. Remov-
ing both is equatable to a 1-to-many contextualized
token classification that is structurally unfolded in
depth. Our results, presented in Table 3, verify first
a positive contribution from both components, indi-

-sf -nf -sf-nf
CCG (original) -0.05 -0.01 -0.08
CCG (rebank) -0.12  -0.04 -0.07
French TLGbank -0.13 -0.14 -0.23
Athel -0.24  -0.12 -0.37

Table 3: Absolute difference in overall accuracy when
removing the state and node feedback components (av-
erages of 3 repetitions).

cating the importance of both information sharing
axes. In three out of the four datasets, the rela-
tive gains of incorporating state feedback outweigh
those of node feedback, and are most pronounced
in the case of Zthel, likely due to its positionally
agnostic types. With the exception of CCGrebank,
relinquishing both kinds of feedback largely under-
performs having either one, experimentally affirm-
ing their compatibility.

5 Related Work

Our work bears semblance and owes credit to vari-
ous contemporary lines of work. From the architec-



tural angle, we perceive our work as an application-
specific offspring of weight-tied architectures, dy-
namic graph convolutions and structure-aware self-
attention networks. The depth recurrence of our de-
coder is inspired by weight-tied architectures (De-
hghani et al., 2018; Bai et al., 2019) and their graph-
oriented variants (Li et al., 2016), which model neu-
ral computation as the fix-point iteration of a single
layer against a structured input, thus allowing for a
dynamically adaptive computation “depth” — albeit
with a constant parameter count. Analogously to
structure-aware self-attention networks (Zhu et al.,
2019; Cai and Lam, 2020) and graph attentive net-
works (Velickovi¢ et al., 2018; Yun et al., 2019;
Ying et al., 2021; Brody et al., 2021), our decoder
employs standard query/key and fully-connected
attention mechanisms injected with structurally bi-
ased representations, either at the edge or at the
node level. Finally, akin to dynamic graph ap-
proaches (Liao et al., 2019; Pareja et al., 2020),
our decoder forms a closed loop system that autore-
gressively generates its own input, in the process
becoming exposed to subgraph structures that dras-
tically differ between time steps.

From the application angle, our proposal is a re-
finement of and a continuation to recent advances
in categorial grammar supertagging. Similar to
the transition from words to subword units (Sen-
nrich et al., 2016), constructive supertaggers seek
to bolster generalization by disassembling syntac-
tic categories into smaller indivisible units, thereby
incorporating structure at a finer granularity scale.
The original approach of Kogkalidis et al. (2019),
later adopted by Bhargava and Penn (2020), em-
ployed seq2seq models to directly translate an in-
put text to a flattened projection of a categorial
sequence, demonstrating that the correct prediction
of categories unseen during training is indeed feasi-
ble. Prange et al. (2021) improved upon the process
through the explicit accounting of the tree structure
embedded within categorial types, while Liu et al.
(2021) explored the orthogonal approach of em-
ploying a transition-based “parser”” over individual
categories. Outside the constructive paradigm, Tian
et al. (2020) employed graph convolutions over sen-
tential edges built from static, lexicon-based prefer-
ences. Our approach is a bridge between prior
works; our modeling choice of structure-aware
graph convolutions boasts the merits of explicit
sentential and tree-structured edges, a structurally
constrained, valid-by-construction output space,

favorable memory and time complexities, partial
auto-regressive context flows, end-to-end differ-
entiability with no vocabulary requirements, and
minimal rule-based structure manipulation.

6 Conclusion

We have proposed a novel supertagging method-
ology, where both the linear order of the output
sequence and the tree-like structure of its elements
is made explicit. To represent the different infor-
mation sources and their disparate sizes and scales,
we turned to heterogeneous graph attention net-
works. To capture the auto-regressive dependen-
cies between different trees, we formulated the task
as a dynamic graph completion process, aligning
each subsequent temporal step with a higher or-
der tree node neighborhood and predicting them in
parallel across the entire sequence. We tested our
methodology on four different datasets spanning
three languages and as many grammar formalisms,
establishing new state of the art scores in the pro-
cess. Through our ablation studies, we showed
the importance of incorporating both intra- and in-
ter-tree context flows, to which we attribute our
system’s performance.

Other than architectural adjustment and opti-
mizations, several interesting ideas present them-
selves as promising research avenues. First, it is
worthwhile to consider adaptations of our frame-
work to either allow an efficient integration of more
“exotic” context pathways, e.g. sibling node interac-
tions, or alter the graph’s decoding order altogether.
On a related note, for formalisms faithful to the
linear logic roots of categorial grammars, it seems
reasonable to anticipate that the goal graph can
be compactified by collapsing primitive nodes of
opposite polarity according to their interactions,
unifying the tasks of supertagging and parsing with
a single end-to-end framework. Finally, and de-
spite its success, our methodology is not without
limitations. Crucially (and like all decoders that
perform multiple assignments concurrently) our
model trades inference speed for an incompatibil-
ity with local greedy algorithms like beam search
— finding ways to reconcile the two is a pressing
matter.

Practice aside, our results pose further evidence
that lexical sparsity, historically deemed the cate-
gorial grammar’s curse, might well just require a
change of perspective to tame and deploy as the
answer to the very problem it poses.
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A Visualization of the decoding process

— [

\ /
7+12 7+15

-

hi_, 7+1

(a) State vectors independently receive auto-regressive feedback from their last decoded respective fringe in a many-to-one

fashion.
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(b) The tree-contextual states exchange messages with one another in a many-to-many fashion.
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(c) The final states project class weights to their respective fringe nodes in a one-to-many fashion; depending on the arity of the
decoded symbols, a next masked fringe is constructed.

Figure 1: Visualization of one step of the decoding process for an (abstract) example sequence, focusing on the
central tree 7; and starting from the partially decoded output at step 1. Node content is intentionally left unspecified
so as not to add grammar-specific overhead, but tree structure is assumed fixed and given by binary nodes T 1 T; 3
T;7 and T; 11 (rest zeroary). The computations prescribed by each subfigure take place in parallel across all
nodes, trees & sentences in the batch.
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