
Geometry-Aware Supertagging with
Heterogeneous Dynamic Convolutions

Anonymous ACL submission

Abstract

The syntactic categories of categorial gram-001
mar formalisms are structured units made of002
smaller, indivisible primitives, bound together003
by the underlying grammar’s category forma-004
tion rules. In the trending approach of con-005
structive supertagging, neural models are in-006
creasingly made aware of the internal category007
structure, which in turn enables them to more008
reliably predict rare and out-of-vocabulary cat-009
egories, with significant implications for gram-010
mars previously deemed too complex to find011
practical use. In this work, we revisit con-012
structive supertagging from a graph-theoretic013
perspective, and propose a framework based014
on heterogeneous dynamic graph convolutions,015
aimed at exploiting the distinctive structure016
of a supertagger’s output space. We test our017
approach on a number of categorial gram-018
mar datasets spanning different languages and019
grammar formalisms, achieving substantial020
improvements over previous state of the art021
scores.022

1 Introduction023

Their close affinity to logic and lambda calculus024

has made categorial grammars a standard tool of025

the trade for the formally-inclined NLP practitioner.026

Modern flavors of categorial grammar, despite their027

(sometimes striking) divergences, share a common028

architecture. At its core, a categorial grammar is a029

formal system consisting of two parts. First, there030

is a lexicon, a mapping that assigns to each word031

a set of categories. Categories are quasi-logical032

formulas recursively built out of atomic categories033

by means of category forming operations. The in-034

ventory of category forming operations at the mini-035

mum has the ability to express linguistic function-036

argument structure. If so desired, the inventory can037

be extended with extra operations, e.g. to handle038

syntactic phenomena beyond simple concatenation,039

or to express additional layers of grammatical infor-040

mation. The second component of the grammar is041

a small set of inference rules, formulated in terms 042

of the category forming operations. The inference 043

rules dictate how categories interact and, through 044

this interaction, how words combine to form larger 045

phrases. Parsing thus becomes a process of de- 046

duction comparable (or equatable, depending on 047

the grammar’s formal rigor) to program synthesis, 048

providing a clean and elegant syntax-semantics in- 049

terface. 050

In the post-neural era, these two components 051

allow differentiable implementations. The fixed 052

lexicon is replaced by supertagging, a process that 053

contextually decides on the most appropriate su- 054

pertags (i.e. categories), whereas the choice of 055

which rules of inference to apply is usually deferred 056

to a parser further down the processing pipeline. 057

The highly lexicalized nature of categorial gram- 058

mars thus shifts the bulk of the weight of a parse 059

to the supertagging component, as its assignments 060

and their internal make-up inform and guide the 061

parser’s decisions. 062

In this work, we revisit supertagging from a ge- 063

ometric angle. We first note that the supertagger’s 064

output space consists of a sequence of trees, which 065

has as of yet found no explicit representational 066

treatment. Capitalizing on this insight, we employ a 067

framework based on heterogeneous dynamic graph 068

convolutions, and show that such an approach can 069

yield substantial improvements in predictive accu- 070

racy across categories both frequently and rarely 071

encountered during a supertagger’s training phase. 072

2 Background 073

The supertagging problem revolves around the de- 074

sign and training of a function tasked with mapping 075

a sequence of words {w1, . . . , wn} to a sequence 076

of categories {c1, . . . , cn}. Existing supertagging 077

architectures differ in how they implement this 078

mapping, with each implementation choice boiling 079

down to (i) which of the temporal and structural 080

dependencies within and between the input and out- 081

1

put are taken into consideration, and (ii) how these082

dependencies are materialized.083

Earlier work would utilize solely occurrence084

counts from a training corpus to independently map085

word n-grams to their most likely categories, and086

then attempt to filter out implausible sequences via087

rule-constrained probabilistic models (Bangalore088

and Joshi, 1999). The shift from sparse feature vec-089

tors to distributed word representations facilitated090

integration with neural networks and improved gen-091

eralization on the mapping domain, extending it to092

rare and previously unseen words (Lewis and Steed-093

man, 2014). Later, the advent of recurrent neural094

networks offered a natural means of incorporating095

temporal structure, widening the input receptive096

field through contextualized word representations097

on the one hand (Xu et al., 2015), but also permit-098

ting an auto-regressive formulation of the output099

generation, whereby the effect of a category assign-100

ment could percolate through the remainder of the101

output sequence (Vaswani et al., 2016).102

More recently, the so-called constructive103

paradigm seeks to explore the previously ignored104

structure “internal” to categories. By inspect-105

ing their formation rules, Kogkalidis et al. (2019)106

equates categories to CFG derivations, and views107

a category sequence as the concatenation of their108

flattened depth-first projections. The goal sequence109

is now incrementally generated on a symbol-by-110

symbol basis using a transformer-based seq2seq111

model; a twist which provides the decoder with112

the means to construct novel categories on de-113

mand, bolstering co-domain generalization. The114

decoder’s global receptive field, however, comes at115

the heavy price of quadratic memory complexity,116

which also bodes poorly with the elongated out-117

put sequences, leading to a slowed down inference118

speed. Expanding on the idea, Prange et al. (2021)119

explicates the categories’ tree structure, embedding120

symbols based on their tree positions and propa-121

gating contextualized representations through tree122

edges, using either residual dense connections or123

a tree-structured GRU. This adaptation completely124

eliminates the burden of learning how trees are125

constructed, instead allowing the model to focus126

on what trees to construct, leading to drastically127

improved performance. Simultaneously, since the128

decoder is now token-separable, it permits con-129

struction of categories for the entire sentence in130

parallel, speeding up inference and reducing the131

network’s memory footprint. In the process, how-132

ever, it loses the ability to model interactions be- 133

tween auto-regressed nodes belonging to different 134

trees, morally reducing the task once more to se- 135

quence classification (albeit now with a dynamic 136

classifier). 137

Despite their common goal of accounting for 138

syntactic categories in the zipfian tail, there are ten- 139

sion points between the above two approaches. In 140

providing a global history context, the first breaks 141

the input-to-output alignment and hides the catego- 142

rial tree structure. In opting for a tree-wise bottom- 143

up decoding, the second forgets about meaningful 144

inter-tree output-to-output dependencies. In this 145

paper, we seek to resolve these tension points with 146

a novel, unified and grammar-agnostic supertag- 147

ging framework based on heterogeneous dynamic 148

graph convolutions. Our architecture combines 149

the merits of explicit tree structures, strong auto- 150

regressive properties, near-constant decoding time, 151

and a memory complexity that scales with the input, 152

boasting high performance across the full span of 153

the frequency spectrum and surpassing previously 154

established benchmarks on all datasets considered. 155

3 Methodology 156

3.1 Preliminaries 157

We will formulate supertagging as an iterative 158

graph completion process. Our representation 159

format is that of a heterogeneous graph, consist- 160

ing of two types of nodes and edges. Lexical 161

nodes (words) are vectors of dimensionality dw; 162

the sentential structure can be encoded as a set of 163

labeled edges in the cartesian product of words, 164

Ew ∈ Zs×s, such that Ewi,j = j − i is the distance 165

between words j and i in the input sequence. Each 166

lexical item i is associated to a binary branching 167

tree Ti, representing the category assigned to the 168

word in question. We will denote with Ti,k the k-th 169

node of the i-th tree, where enumeration starts from 170

1 for the root, and is inductively defined by follow- 171

ing along the tree’s breadth-first traversal. Tree 172

nodes are represented as vectors of dimensionality 173

dn, the totality of n nodes in the graph then being 174

a matrix N ∈ Rn×dn ; tree edges are converted into 175

a sparse connectivity matrix En ∈ Ns×n, where 176

Eni,ν is k if node ν occurs at position k within tree 177

i, and zero otherwise. We will denote with Ni,t 178

the depth-t neighborhood of a lexical item i as the 179

set of nodes [Ti,2t . . . Ti,2t+1), i.e. the set of nodes 180

that are occupying depth t of tree i. To tell the 181

two kinds of nodes apart, and for reasons that will 182

2

become clear in what is to come, we will refer to183

lexical nodes as states, and tree nodes as just nodes.184

3.2 Breadth-First Parallel Decoding185

Categories being trees, they are amenable to186

breadth-first traversal. A sequence of categories187

can then be viewed as multiple sequences of primi-188

tives, sequence t corresponding to the concatena-189

tion of primitive symbols occurring along all trees190

at depth t. Combined with ancestry information191

and a series of initial seeds (i.e. word vectors), it192

is straightforward to use each sequence as a state-193

tracking vector from which to predict the next se-194

quence of elements, essentially implementing a tree195

unfolding function à la treeRNN. As mentioned196

earlier, this fails to account for “horizontal” interac-197

tions between nodes occupying the same depth, and198

also, as a result, “diagonal” interactions between199

nodes living in different trees, practically reduc-200

ing the task to a separable classification applied201

independently across words. A seemingly innocu-202

ous solution would be to employ a second form203

of recurrence, as in Alvarez-Melis and Jaakkola204

(2017); this would however once more break the205

input-to-output alignment and necessitate explicit206

handling of unoccupied tree positions, while insert-207

ing a multiplicative time complexity factor scaling208

constantly with the input.1 Our approach seeks to209

mitigate this by foregoing horizontal interactions,210

but reinstating intra-tree interactions across depths.211

We do so by repurposing the initial sequence of212

lexical vectors, from input seeds to recurrent state-213

tracking vectors that arbitrate the decoding process214

across both sequence length and tree depth. In the215

absence of a localized tree unfolding function, and216

aiming to properly capture the "regularly irregular"217

structure of the output space, we turn our attention218

towards structure-aware dynamic graph convolu-219

tions.220

In high level terms, the process can be summa-221

rized as an iteration of three alternating stages of222

message passing rounds. Initially, state vectors are223

supplied from an arbitrary encoder network, and a224

fringe consisting of s unlabeled nodes is instanti-225

ated in alignment with the input sequence. From226

then on, and until a fix-point is reached:227

1. Each state vector receives feedback in a many-228

to-one fashion from the last decoded nodes229

lying directly above it (initially none), yield-230

1Consider that at each depth t we would need to iterate
over 2t × s elements.

ing tree-contextual states. 231

2. The updated state vectors exchange messages 232

with one another in a many-to-many fashion, 233

yielding tree-and-sequence-contextual states. 234

3. The final states project class weights to their 235

respective fringe nodes in a one-to-many fash- 236

ion; depending on the arity of the decoded 237

symbols, a next masked fringe is constructed 238

with appropriate node positions and state-to- 239

node edge indices; the process terminates 240

when the next fringe is empty. 241

For a visual example, please refer to Appendix A. 242

3.3 Architecture 243

We now move on to detail the individual blocks 244

that together make up the network’s pipeline. 245

3.3.1 Node Embeddings 246

State vectors are temporally dynamic; they are ini- 247

tially supplied by an external encoder, and are then 248

updated through a repeated sequence of three mes- 249

sage passing rounds, described in the next subsec- 250

tions. Tree node embeddings, on the other hand, 251

are not subject to temporal updates, but instead 252

become dynamically “revealed” by the decoding 253

process. They are computed on the basis of (i) their 254

primitive symbol and (ii) their position within a 255

tree. 256

Primitive symbol embeddings are obtained from 257

a standard embedding table We : S → Rdn that 258

contains a distinct vector for each symbol in the set 259

of primitives S . When it comes to embedding posi- 260

tions, we are presented with a number of options. 261

It would be straightforward to fix a vocabulary of 262

positions, and learn a distinct vector for each. Such 263

an approach would however lack elegance, as it 264

would impose an ad-hoc bound to the shape of 265

trees that can be encoded (contradicting the con- 266

structive paradigm), while also failing to account 267

for the compositional nature of trees. We thus opt 268

for a path-based approach, inspired by and extend- 269

ing the idea of Shiv and Quirk (2019). We note first 270

that paths over binary branching trees form a semi- 271

group, i.e. they consist of two primitives (namely 272

a left and a right path), and an associative non- 273

commutative binary operator that binds two paths 274

together into a single new one. The archetypical ex- 275

ample of a semigroup is matrix multiplication; we 276

therefore instantiate a tensor P ∈ R2×nd×nd encod- 277

ing each of the two path primitives as a linear map 278

over symbol embeddings. From the above we can 279

derive a function p that converts positions to linear 280

3

maps, by performing consecutive matrix multipli-281

cations of the primitive weights, as indexed by the282

reversed binary word of a node’s position; e.g. the283

linear map corresponding to position 1210 = 11002284

would be p(12) = P0P0P1P1 ∈ Rdn×dn . We flat-285

ten the final map by evaluating it against an initial286

seed vector ρ0, corresponding to the tree root.2 To287

stabilize training and avoid vanishing or explod-288

ing weights, we model paths as unitary transfor-289

mations by parameterizing the two matrices of P290

to orthogonality using the exponentiation trick on291

skew-symmetric bases (Bader et al., 2019; Lez-292

cano Casado, 2019). The final embedding for a293

symbol σ occupying position k is then given by the294

element-wise product of its positional and content295

embeddings p(k)(ρ0) ◦ (We(σ)) ∈ Rdn .296

3.3.2 Node Feedback297

We update states with information from the last298

decoded nodes using a heterogeneous message-299

passing scheme based on graph attention net-300

works (Veličković et al., 2018; Brody et al., 2021).301

First, we use a bottleneck layer Wb to down-302

project the state vector into the nodes’ dimen-303

sionality. Then, given a state hti and a neighbor-304

hood Ni,t, we compute a self-loop score α̃i,t =305

wa · (Wb(h
t
i)||0), as well as heterogeneous scores306

α̃i,ν,t = wa · (hti||Nν), for each node ν in the neigh-307

borhood, where wa ∈ R2dn a dot-product weight308

and Wb(h
t
i)||Nν the concatenation of the down-309

sized state vector with node ν’s position-aware em-310

bedding Nν . Scores are passed through a leaky311

rectifier non-linearity before being normalized to312

attention coefficients, from which we obtain the313

updated states as the weighted sum of incoming314

messages (further processed by a shallow network315

Wm) and a residual connection:316

h̃ti =
∑
µ∈Ni,t

αi,ν,tWmNν + αi,th
t
i317

States receiving no node feedback (i.e. states that318

have completed decoding more than one time step319

ago) are thus protected from updates, preserving320

their content. In practice, we compute attention321

coefficients and message vectors independently for322

multiple heads, but omit them from the above equa-323

tions to avoid cluttering the notation.324

2In practice, paths are efficiently computed once per batch
for each unique tree position during training, and stored as
fixed embeddings during inference.

3.3.3 State Feedback 325

At the end of the node feedback stage, we are left 326

with a sequence of locally contextualized states 327

h̃ti. Recall that, owing to our encoding of the 328

sentential structure, states form a fully connected 329

graph, with edges weighted by relative distances 330

between words. We embed these distances into 331

the encoder’s vector space using an embedding ta- 332

ble Wr ∈ R2δ×dw , where δ the maximum allowed 333

distance, a hyper-parameter. Edges escaping the 334

maximum distance threshold are truncated rather 335

than clipped, in order to preserve memory and fa- 336

cilitate training, leading to a natural segmentation 337

of the sentence into (overlapping) chunks. Follow- 338

ing standard practices, we project states into query, 339

key and value vectors (Vaswani et al., 2017), and 340

compute the attention scores between words i and 341

j using relative-position weighted attention (Shaw 342

et al., 2018): 343

ãi,j = d−1/2w (Wqh̃
t
i ◦WrEwi,j) ·Wkh̃

t
j 344

From the normalized attention scores we obtain a 345

new set of aggregated messages: 346

m′i,t =
∑

j∈{0..s}

exp(ãi,j)Wvh̃
t
j∑

k∈{0..s} exp(ãi,k)
347

Same as before, queries, keys, values, edge embed- 348

dings and attention coefficients are distributed over 349

many heads. 350

Aggregated messages are passed through a 351

swish-gated feed-forward layer (Dauphin et al., 352

2017; Shazeer, 2020) to yield the next sequence of 353

state vectors: 354

ht+1
i =W3

(
swish1(W1m

′
i,t) ◦W2m

′
i,t

)
355

where W1,2 are linear maps from the encoder’s 356

dimensionality to an intermediate dimensionality, 357

and vice versa for W3. 358

3.3.4 Node Prediction 359

Finally, from a globally-contextualized state ht+1
i 360

we need to obtain class weights for the entirety 361

of the neighborhood Ni,t+1. We start by down- 362

projecting the state vector into the node’s dimen- 363

sionality using yet another shallow network Wn. 364

The resulting feature vectors are shared across all 365

nodes of the same tree – to discriminate between 366

them, we gate vectors against each node’s posi- 367

tional embedding. From the latter, we obtain class 368

weights by matrix multiplying them against the 369

4

transpose of the symbol embedding table (Press370

and Wolf, 2017):371

weightsi,k =
(
p(k)(ρ0) ◦Wnh

t+1
i

)
W>e372

During inference, the next fringe can be easily373

generated with minimal structure manipulation by374

using the indices of binary decoded symbols to375

extract their positions, multiply those by two (to376

create the positions of their left children), add one377

(to create the positions of their right children) and378

finally interleave the two; in the same vein, the379

new state indices are simply the repetition of their380

respective ancestor indices. We hold on to the po-381

sitional embeddings of the current fringe, as they382

will find use in the ensuing node feedback phase383

unaltered.384

3.3.5 Putting Things Together385

We compose the previously detailed components386

into a single layer, which acts a sequence-wide,387

recurrent-in-depth decoder. We insert skip connec-388

tions between the input and output of the message-389

passing and feed-forward layers (He et al., 2016),390

and subsequently normalize each using root mean391

square normalization (Zhang and Sennrich, 2019).392

4 Experiments393

We employ our supertagging architecture in a range394

of diverse categorial grammar datasets spanning395

different languages and underlying grammar for-396

malisms. In all our experiments, we bind our model397

to a monolingual BERT-style language model used398

as an external encoder, fine-tuned during train-399

ing (Devlin et al., 2018). In order to homogenize400

the tokenization between the one directed by each401

dataset and the one required by the encoder, we402

make use of a simple localized attention aggrega-403

tion scheme. The subword tokens together com-404

prising a single word are independently projected405

to scalar values through a shallow feed-forward406

layer. Scalar values are softmaxed within their lo-407

cal group to yield attention coefficients over their408

respective BERT vectors, which are then summed409

together, in a process reminiscent of a cluster-wide410

attentive pooling (Li et al., 2016). In cases of data-411

level tokenization treating multiple words as a sin-412

gle unit (i.e. assigning one type to what BERT per-413

ceives as many words), we mark all words follow-414

ing the first with a special [MWU] token, signifying415

they need to be merged to the left. This effectively416

adds an extra output symbol to the decoder, which417

is now forced to do double duty as a sequence chun- 418

ker. To avoid sequence misalignments and metric 419

shifts during evaluation, we follow the merges dic- 420

tated by the ground truth labels, and consider the 421

decoder’s output as correct only if all participating 422

predictions match, assuming no implicit chunking 423

oracles. 424

4.1 Datasets 425

We conduct experiments on the two variants of the 426

English CCGBank, the French TLGbank and the 427

Dutch Æthel proofbank. A high-level overview of 428

the datasets is presented in Table 1, and short de- 429

scriptions are provided in the following paragraphs. 430

We refer the reader to the corresponding literature 431

for a more detailed exposition. 432

CCGbank TLGbank Æthel
original rebank

Primitives 37 40 27 60
Zeroary 35 38 19 31
Binary 2 2 8 29

Categories 1323 1619 851 5292
in train 1286 1575 803 4730
depth avg. 1.94 1.96 1.99 1.83
depth max. 6 6 7 35

Test Sentences 2407 2407 1571 5766
length avg. 23.00 24.27 27.58 16.61

Test Tokens 55371 56395 44302 98467
Frequent (100+) 54825 55690 43289 95253
Uncommon (10-99) 442 563 833 2213
Rare (1-9) 75 107 149 678
Unseen (OOV) 22 27 31 323

Table 1: Bird’s eye view of datasets employed and rele-
vant statistics. Test tokens are binned according to their
corresponding categories’ occurrence count in the re-
spective dataset’s training set. Token counts are mea-
sured before pre-processing. Unique primitives for the
type-logical datasets are counted after binarization.

CCGBank The English CCGbank (origi- 433

nal) (Hockenmaier and Steedman, 2007) and its 434

refined version (rebank) (Honnibal et al., 2010) are 435

resources of Combinatory Categorial Grammar 436

(CCG) derivations obtained from the Penn 437

Treebank (Taylor et al., 2003). CCG (Steedman 438

and Baldridge, 2011) builds lexical categories with 439

the aid of two binary slash operators, capturing 440

forward and backward function application. Some 441

additional rules lent from combinatory logic (Curry 442

et al., 1958) permit constrained forms of type rais- 443

ing and function composition, allowing categories 444

to remain relatively short and uncomplicated 445

while keeping parsing complexity in check. The 446

key difference between the two versions lies in 447

5

their tokenization and the plurality of categories448

assigned, the latter containing more assignments449

and a more fine-grained set of syntactic primitives,450

which in turn make it a slightly more challenging451

evaluation benchmark.452

French TLGbank The French type-logical tree-453

bank (Moot, 2015) is a collection of proofs ex-454

tracted from the French treebank (Abeillé et al.,455

2003). The theory underlying the resource is that456

of Multi-Modal Typelogical Grammars (Moortgat,457

1996); annotations are deliberately made compat-458

ible with Displacement Calculus (Morrill et al.,459

2011) and First-Order Linear Logic (Moot and Pi-460

azza, 2001) at the cost of a small increase in lexical461

sparsity. In short, the vocabulary of operators is462

extended with two modalities that find use in licens-463

ing or restricting the applicability of rules related464

to non-local syntactic phenomena. To adapt their465

representation to our framework, we cast unary466

operators into pseudo-binaries by inserting an arti-467

ficial terminal tree in a fixed slot within them. Due468

to the absence of predetermined train/dev/test splits,469

we randomize them with a fixed seed at a 80/10/10470

ratio and keep them constant between repetitions.471

Æthel Our last experimental test bed is472

Æthel (Kogkalidis et al., 2020a), a dataset of473

type-logical proofs for written Dutch sentences,474

automatically extracted from the Lassy-Small475

corpus (Noord et al., 2013). Æthel is geared476

towards semantic parsing, which means categories477

employ linear implication (as their single binary478

operator. An additional layer of dependency infor-479

mation is realized via unary modalities, now lifted480

to classes of operators distinguishing complement481

and adjunct roles. The grammar assigns concrete482

instances of polymorphic coordinator types, as483

a result containing more and sparser categories484

(some of which distinctively tall); considering also485

its larger vocabulary of primitives, it makes for a486

good stress test for our approach. We experiment487

with the latest available version of the dataset488

(version 0.9.dev1 at the time of writing). Same489

as before, we impose a regular tree structure,490

this time by merging adjunct (resp. complement)491

markers with the subsequent (resp. preceding)492

binary operator, which makes for an unambiguous493

and invertible representational translation.494

4.2 Implementation495

We implement our model using PyTorch Geomet-496

ric (Fey and Lenssen, 2019), which provides a high-497

level interface to efficient low-level protocols, fa- 498

cilitating fast and pad-free graph manipulations. 499

We share a single hyper-parameter setup across all 500

experiments, obtained after a minimal logarithmic 501

search over sensible initial values. Specifically, we 502

set the node dimensionality dn to 128 with 4 hetero- 503

geneous attention heads and the state dimensional- 504

ity dw to 768 with 8 homogeneous attention heads. 505

We train using AdamW (Loshchilov and Hutter, 506

2018) with a batch size of 16, weight decay of 507

10−2, and a learning rate of 10−4, scaled by a linear 508

warmup and cosine decay schedule over 25 epochs. 509

During training we provide strict teacher forcing 510

and apply feature and edge dropout at 20% chance. 511

Our loss signal is derived as the label-smoothed 512

negative log-likelihood between the network’s pre- 513

diction and the ground truth label (Müller et al., 514

2019). We procure pretrained base-sized BERT 515

variants from the transformers library (Wolf et al., 516

2020): RoBERTa for English (Liu et al., 2019), 517

BERTje for Dutch (de Vries et al., 2019) and 518

CamemBERT for French (Martin et al., 2020), 519

which we fine-tune during training, scaling their 520

learning rate by 10% compared to the decoder. 521

4.3 Results 522

We perform model selection on the basis of vali- 523

dation accuracy, and gather the corresponding test 524

scores according to the frequency bins of Table 1. 525

Table 2 presents our results compared to relevant 526

published literature. Evidently, our model sur- 527

passes established benchmarks in terms of overall 528

accuracy, matching or surpassing the performance 529

of both traditional supertaggers on common cate- 530

gories and constructive ones on the tail end of the 531

frequency distribution. 532

We observe that the relative gains appear to scale 533

with respect to the task’s complexity. In the original 534

version of the CCGbank, our model is only slightly 535

superior to the next best performing model (in turn 536

only marginally superior to the token-based clas- 537

sification baseline), whereas in the rebank version 538

the absolute difference is one order of magnitude 539

wider. The effect is even further pronounced for 540

the harder type-logical datasets, which are char- 541

acterized by a longer tail, leading to performance 542

comparable to CCGbank’s for the French TLGbank 543

(despite it being significantly smaller and sparser), 544

and a 10% absolute performance leap for Æthel 545

(despite its unusually tall and complex types). We 546

attribute this to increased returns from performance 547

6

accuracy (%)

model overall frequent uncommon rare unseen
CCG (original)
Symbol Sequential LSTM /w n-gram oracles (Liu et al., 2021) 95.99 96.40 65.83 8.65!

Symbol Sequential LSTM (Bhargava and Penn, 2020) 96.00 – – – ∼5
Cross-View Training (Clark et al., 2018) 96.10 – – – n/a
Recursive Tree Addressing (Prange et al., 2021) 96.09 96.44 68.10 37.40 3.03
BERT Token Classification (Prange et al., 2021) 96.22 96.58 70.29 23.17 n/a
Attentive Convolutions (Tian et al., 2020) 96.25 96.64 71.04 n/a n/a

Heterogeneous Dynamic Convolutions (this work) 96.29±0.04 96.61±0.04 72.06±0.72 34.45±1.58 4.55±2.87

CCG (rebank)
Symbol Sequential Transformer† (Kogkalidis et al., 2019) 90.68 91.10 63.65 34.58 7.41
Symbol Sequential LSTM† (Bhargava and Penn, 2020) 93.92 94.39 65.48 19.00 0.00
TreeGRU (Prange et al., 2021) 94.62 95.10 64.24 25.55 2.47
Recursive Tree Addressing (Prange et al., 2021) 94.70 95.11 68.86 36.76 4.94
Token Classification (Prange et al., 2021) 94.83 95.27 68.68 23.99 n/a

Heterogeneous Dynamic Convolutions (this work) 95.07±0.04 95.45±0.04 71.40±1.15 37.19±1.81 3.70±0.00

French TLGbank
ELMo & LSTM Classification (Moot, 2019) 93.20 95.10 75.19 25.85 n/a
BERT Token Classification‡ 95.93 96.44 81.39 47.45 n/a

Heterogeneous Dynamic Convolutions (this work) 95.92±0.01 96.40±0.01 81.48±0.97 55.37±1.00 7.26±2.67

Æthel
Symbol Sequential Transformerb (Kogkalidis et al., 2020b) 83.67 84.55 64.70 50.58 24.55
BERT Token Classification‡ 93.52 94.83 71.85 38.06 n/a

Heterogeneous Dynamic Convolutions (this work) 93.67±0.04 94.72±0.13 73.45±0.46 53.83±1.14 15.79±1.32

!Accuracy over both bins, with a frequency-truncated training set (authors claim no difference when using the full set).
†Numbers from Prange et al. (2021).
‡Our replication.
bModel trained and evaluated on an older dataset version and tree sequences spanning less than 140 nodes in total.

Table 2: Model performance across datasets and compared to recent studies. Numbers are taken from the papers
cited unless otherwise noted. For our model, we report averages and standard deviations over 6 runs. Bold face
fonts indicate (within standard deviation of) highest performance.

in the rare and uncommon bins; there is a syner-548

gistic effect between the larger population of these549

bins pronouncing even minor improvements, and550

acquisition of rarer categories apparently benefit-551

ing from the plurality of their respective bins in a552

self-regularizing manner.553

Finally, to investigate the relative impact of each554

network component, we conduct an ablation study555

where message passing components are removed556

from their network in their entirety. Removing the557

state feedback component collapses the network558

into a token-wise separable recurrence, akin to a559

graph-featured RNN without a hidden-to-hidden560

affine map. Removing the node feedback com-561

ponent turns the network into a Universal Trans-562

former (Dehghani et al., 2018) composed with a563

dynamically adaptive classification head. Remov-564

ing both is equatable to a 1-to-many contextualized565

token classification that is structurally unfolded in566

depth. Our results, presented in Table 3, verify first567

a positive contribution from both components, indi-568

-sf -nf -sf-nf
CCG (original) -0.05 -0.01 -0.08
CCG (rebank) -0.12 -0.04 -0.07
French TLGbank -0.13 -0.14 -0.23
Æthel -0.24 -0.12 -0.37

Table 3: Absolute difference in overall accuracy when
removing the state and node feedback components (av-
erages of 3 repetitions).

cating the importance of both information sharing 569

axes. In three out of the four datasets, the rela- 570

tive gains of incorporating state feedback outweigh 571

those of node feedback, and are most pronounced 572

in the case of Æthel, likely due to its positionally 573

agnostic types. With the exception of CCGrebank, 574

relinquishing both kinds of feedback largely under- 575

performs having either one, experimentally affirm- 576

ing their compatibility. 577

5 Related Work 578

Our work bears semblance and owes credit to vari- 579

ous contemporary lines of work. From the architec- 580

7

tural angle, we perceive our work as an application-581

specific offspring of weight-tied architectures, dy-582

namic graph convolutions and structure-aware self-583

attention networks. The depth recurrence of our de-584

coder is inspired by weight-tied architectures (De-585

hghani et al., 2018; Bai et al., 2019) and their graph-586

oriented variants (Li et al., 2016), which model neu-587

ral computation as the fix-point iteration of a single588

layer against a structured input, thus allowing for a589

dynamically adaptive computation “depth” – albeit590

with a constant parameter count. Analogously to591

structure-aware self-attention networks (Zhu et al.,592

2019; Cai and Lam, 2020) and graph attentive net-593

works (Veličković et al., 2018; Yun et al., 2019;594

Ying et al., 2021; Brody et al., 2021), our decoder595

employs standard query/key and fully-connected596

attention mechanisms injected with structurally bi-597

ased representations, either at the edge or at the598

node level. Finally, akin to dynamic graph ap-599

proaches (Liao et al., 2019; Pareja et al., 2020),600

our decoder forms a closed loop system that autore-601

gressively generates its own input, in the process602

becoming exposed to subgraph structures that dras-603

tically differ between time steps.604

From the application angle, our proposal is a re-605

finement of and a continuation to recent advances606

in categorial grammar supertagging. Similar to607

the transition from words to subword units (Sen-608

nrich et al., 2016), constructive supertaggers seek609

to bolster generalization by disassembling syntac-610

tic categories into smaller indivisible units, thereby611

incorporating structure at a finer granularity scale.612

The original approach of Kogkalidis et al. (2019),613

later adopted by Bhargava and Penn (2020), em-614

ployed seq2seq models to directly translate an in-615

put text to a flattened projection of a categorial616

sequence, demonstrating that the correct prediction617

of categories unseen during training is indeed feasi-618

ble. Prange et al. (2021) improved upon the process619

through the explicit accounting of the tree structure620

embedded within categorial types, while Liu et al.621

(2021) explored the orthogonal approach of em-622

ploying a transition-based “parser” over individual623

categories. Outside the constructive paradigm, Tian624

et al. (2020) employed graph convolutions over sen-625

tential edges built from static, lexicon-based prefer-626

ences. Our approach is a bridge between prior627

works; our modeling choice of structure-aware628

graph convolutions boasts the merits of explicit629

sentential and tree-structured edges, a structurally630

constrained, valid-by-construction output space,631

favorable memory and time complexities, partial 632

auto-regressive context flows, end-to-end differ- 633

entiability with no vocabulary requirements, and 634

minimal rule-based structure manipulation. 635

6 Conclusion 636

We have proposed a novel supertagging method- 637

ology, where both the linear order of the output 638

sequence and the tree-like structure of its elements 639

is made explicit. To represent the different infor- 640

mation sources and their disparate sizes and scales, 641

we turned to heterogeneous graph attention net- 642

works. To capture the auto-regressive dependen- 643

cies between different trees, we formulated the task 644

as a dynamic graph completion process, aligning 645

each subsequent temporal step with a higher or- 646

der tree node neighborhood and predicting them in 647

parallel across the entire sequence. We tested our 648

methodology on four different datasets spanning 649

three languages and as many grammar formalisms, 650

establishing new state of the art scores in the pro- 651

cess. Through our ablation studies, we showed 652

the importance of incorporating both intra- and in- 653

ter-tree context flows, to which we attribute our 654

system’s performance. 655

Other than architectural adjustment and opti- 656

mizations, several interesting ideas present them- 657

selves as promising research avenues. First, it is 658

worthwhile to consider adaptations of our frame- 659

work to either allow an efficient integration of more 660

“exotic” context pathways, e.g. sibling node interac- 661

tions, or alter the graph’s decoding order altogether. 662

On a related note, for formalisms faithful to the 663

linear logic roots of categorial grammars, it seems 664

reasonable to anticipate that the goal graph can 665

be compactified by collapsing primitive nodes of 666

opposite polarity according to their interactions, 667

unifying the tasks of supertagging and parsing with 668

a single end-to-end framework. Finally, and de- 669

spite its success, our methodology is not without 670

limitations. Crucially (and like all decoders that 671

perform multiple assignments concurrently) our 672

model trades inference speed for an incompatibil- 673

ity with local greedy algorithms like beam search 674

– finding ways to reconcile the two is a pressing 675

matter. 676

Practice aside, our results pose further evidence 677

that lexical sparsity, historically deemed the cate- 678

gorial grammar’s curse, might well just require a 679

change of perspective to tame and deploy as the 680

answer to the very problem it poses. 681

8

References682

Anne Abeillé, Lionel Clément, and François Toussenel.683
2003. Building a treebank for French. In Treebanks,684
pages 165–187. Springer.685

David Alvarez-Melis and Tommi S. Jaakkola. 2017.686
Tree-structured decoding with doubly-recurrent neu-687
ral networks. In 5th International Conference688
on Learning Representations, ICLR 2017, Toulon,689
France, April 24-26, 2017, Conference Track Pro-690
ceedings. OpenReview.net.691

Philipp Bader, Sergio Blanes, and Fernando Casas.692
2019. Computing the matrix exponential with an693
optimized Taylor polynomial approximation. Math-694
ematics, 7(12):1174.695

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019.696
Deep equilibrium models. Advances in Neural In-697
formation Processing Systems, 32.698

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-699
pertagging: An approach to almost parsing. Compu-700
tational Linguistics, 25(2):237–265.701

Aditya Bhargava and Gerald Penn. 2020. Supertag-702
ging with CCG primitives. In Proceedings of the703
5th Workshop on Representation Learning for NLP,704
pages 194–204, Online. Association for Computa-705
tional Linguistics.706

Shaked Brody, Uri Alon, and Eran Yahav. 2021. How707
attentive are graph attention networks? arXiv708
preprint arXiv:2105.14491.709

Deng Cai and Wai Lam. 2020. Graph transformer710
for graph-to-sequence learning. In Proceedings of711
the AAAI Conference on Artificial Intelligence, vol-712
ume 34, pages 7464–7471.713

Kevin Clark, Minh-Thang Luong, Christopher D. Man-714
ning, and Quoc Le. 2018. Semi-supervised se-715
quence modeling with cross-view training. In Pro-716
ceedings of the 2018 Conference on Empirical Meth-717
ods in Natural Language Processing, pages 1914–718
1925, Brussels, Belgium. Association for Computa-719
tional Linguistics.720

Haskell Brooks Curry, Robert Feys, William Craig,721
J Roger Hindley, and Jonathan P Seldin. 1958. Com-722
binatory Logic, volume 1. North-Holland Amster-723
dam.724

Yann N Dauphin, Angela Fan, Michael Auli, and725
David Grangier. 2017. Language modeling with726
gated convolutional networks. In Proceedings727
of the 34th International Conference on Machine728
Learning-Volume 70, pages 933–941.729

Wietse de Vries, Andreas van Cranenburgh, Arianna730
Bisazza, Tommaso Caselli, Gertjan van Noord, and731
Malvina Nissim. 2019. BERTje: A Dutch BERT732
model. arXiv preprint arXiv:1912.09582.733

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, 734
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Univer- 735
sal transformers. In International Conference on 736
Learning Representations. 737

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 738
Kristina Toutanova. 2018. BERT: Pre-training of 739
deep bidirectional transformers for language under- 740
standing. arXiv preprint arXiv:1810.04805. 741

Matthias Fey and Jan E. Lenssen. 2019. Fast graph 742
representation learning with PyTorch Geometric. In 743
ICLR Workshop on Representation Learning on 744
Graphs and Manifolds. 745

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 746
Sun. 2016. Deep residual learning for image recog- 747
nition. In Proceedings of the IEEE conference on 748
computer vision and pattern recognition, pages 770– 749
778. 750

Julia Hockenmaier and Mark Steedman. 2007. CCG- 751
bank: a corpus of CCG derivations and dependency 752
structures extracted from the Penn Treebank. Com- 753
putational Linguistics, 33(3):355–396. 754

Matthew Honnibal, James R Curran, and Johan Bos. 755
2010. Rebanking CCGbank for improved np inter- 756
pretation. In Proceedings of the 48th annual meet- 757
ing of the association for computational linguistics, 758
pages 207–215. 759

Konstantinos Kogkalidis, Michael Moortgat, and Te- 760
jaswini Deoskar. 2019. Constructive type-logical su- 761
pertagging with self-attention networks. In Proceed- 762
ings of the 4th Workshop on Representation Learn- 763
ing for NLP (RepL4NLP-2019), pages 113–123, Flo- 764
rence, Italy. Association for Computational Linguis- 765
tics. 766

Konstantinos Kogkalidis, Michael Moortgat, and 767
Richard Moot. 2020a. ÆTHEL: Automatically ex- 768
tracted typelogical derivations for Dutch. In Pro- 769
ceedings of the 12th Language Resources and Eval- 770
uation Conference, pages 5257–5266, Marseille, 771
France. European Language Resources Association. 772

Konstantinos Kogkalidis, Michael Moortgat, and 773
Richard Moot. 2020b. Neural proof nets. In Pro- 774
ceedings of the 24th Conference on Computational 775
Natural Language Learning, pages 26–40, Online. 776
Association for Computational Linguistics. 777

Mike Lewis and Mark Steedman. 2014. Improved 778
CCG parsing with semi-supervised supertagging. 779
Transactions of the Association for Computational 780
Linguistics, 2:327–338. 781

Mario Lezcano Casado. 2019. Trivializations for 782
gradient-based optimization on manifolds. Ad- 783
vances in Neural Information Processing Systems, 784
32. 785

Yujia Li, Richard Zemel, Marc Brockschmidt, and 786
Daniel Tarlow. 2016. Gated graph sequence neural 787
networks. In Proceedings of ICLR’16. 788

9

https://openreview.net/forum?id=HkYhZDqxg
https://openreview.net/forum?id=HkYhZDqxg
https://openreview.net/forum?id=HkYhZDqxg
https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/W19-4314
https://doi.org/10.18653/v1/W19-4314
https://doi.org/10.18653/v1/W19-4314
https://aclanthology.org/2020.lrec-1.647
https://aclanthology.org/2020.lrec-1.647
https://aclanthology.org/2020.lrec-1.647
https://doi.org/10.18653/v1/2020.conll-1.3
https://doi.org/10.1162/tacl_a_00186
https://doi.org/10.1162/tacl_a_00186
https://doi.org/10.1162/tacl_a_00186

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang,789
Will Hamilton, David K Duvenaud, Raquel Urtasun,790
and Richard Zemel. 2019. Efficient graph genera-791
tion with graph recurrent attention networks. Ad-792
vances in Neural Information Processing Systems,793
32.794

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-795
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,796
Luke Zettlemoyer, and Veselin Stoyanov. 2019.797
RoBERTa: A robustly optimized BERT pretraining798
approach. arXiv preprint arXiv:1907.11692.799

Yufang Liu, Tao Ji, Yuanbin Wu, and Man Lan. 2021.800
Generating CCG categories. In Proceedings of801
the AAAI Conference on Artificial Intelligence, vol-802
ume 35, pages 13443–13451.803

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight804
decay regularization in adam.805

Louis Martin, Benjamin Muller, Pedro Javier Or-806
tiz Suárez, Yoann Dupont, Laurent Romary, Éric807
de la Clergerie, Djamé Seddah, and Benoît Sagot.808
2020. CamemBERT: a tasty French language model.809
In Proceedings of the 58th Annual Meeting of the810
Association for Computational Linguistics, pages811
7203–7219, Online. Association for Computational812
Linguistics.813

Michael Moortgat. 1996. Multimodal linguistic infer-814
ence. JoLLI, 5(3/4):349–385.815

Richard Moot. 2015. A type-logical treebank for816
French. Journal of Language Modelling Vol,817
3(1):229–264.818

Richard Moot. 2019. Reconciling vectors with proofs819
for natural language processing. Compositional-820
ity in formal and distributional models of natu-821
ral language semantics, 26th Workshop on Logic,822
Language, Information and Computation (WoLLIC823
2019). Retrieved from https://richardmoot.824
github.io/Slides/WoLLIC2019.pdf.825

Richard Moot and Mario Piazza. 2001. Linguis-826
tic applications of first order intuitionistic linear827
logic. Journal of Logic, Language and Information,828
10(2):211–232.829

Glyn Morrill, Oriol Valentín, and Mario Fadda. 2011.830
The displacement calculus. Journal of Logic, Lan-831
guage and Information, 20(1):1–48.832

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-833
ton. 2019. When does label smoothing help? Ad-834
vances in neural information processing systems, 32.835

Gertjan van Noord, Gosse Bouma, Frank Van Eynde,836
Daniël de Kok, Jelmer van der Linde, Ineke Schu-837
urman, Erik Tjong Kim Sang, and Vincent Van-838
deghinste. 2013. Large scale syntactic annotation839
of written Dutch: Lassy. In Essential Speech and840
Language Technology for Dutch, pages 147–164.841
Springer.842

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei 843
Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim 844
Kaler, Tao Schardl, and Charles Leiserson. 2020. 845
EvolveGCN: Evolving graph convolutional net- 846
works for dynamic graphs. In Proceedings of 847
the AAAI Conference on Artificial Intelligence, vol- 848
ume 34, pages 5363–5370. 849

Jakob Prange, Nathan Schneider, and Vivek Srikumar. 850
2021. Supertagging the long tail with tree-structured 851
decoding of complex categories. Transactions of the 852
Association for Computational Linguistics, 9:243– 853
260. 854

Ofir Press and Lior Wolf. 2017. Using the output em- 855
bedding to improve language models. In Proceed- 856
ings of the 15th Conference of the European Chap- 857
ter of the Association for Computational Linguistics: 858
Volume 2, Short Papers, pages 157–163, Valencia, 859
Spain. Association for Computational Linguistics. 860

Rico Sennrich, Barry Haddow, and Alexandra Birch. 861
2016. Neural machine translation of rare words 862
with subword units. In Proceedings of the 54th An- 863
nual Meeting of the Association for Computational 864
Linguistics (Volume 1: Long Papers), pages 1715– 865
1725, Berlin, Germany. Association for Computa- 866
tional Linguistics. 867

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 868
2018. Self-attention with relative position represen- 869
tations. In Proceedings of the 2018 Conference of 870
the North American Chapter of the Association for 871
Computational Linguistics: Human Language Tech- 872
nologies, Volume 2 (Short Papers), pages 464–468, 873
New Orleans, Louisiana. Association for Computa- 874
tional Linguistics. 875

Noam Shazeer. 2020. GLU variants improve trans- 876
former. arXiv preprint arXiv:2002.05202. 877

Vighnesh Shiv and Chris Quirk. 2019. Novel posi- 878
tional encodings to enable tree-based transformers. 879
Advances in Neural Information Processing Systems, 880
32. 881

Mark Steedman and Jason Baldridge. 2011. Combi- 882
natory categorial grammar. In Robert Borsley and 883
Kersti Börjars, editors, Non-Transformational Syn- 884
tax: Formal and Explicit Models of Grammar, pages 885
181–224. Wiley-Blackwell. 886

Ann Taylor, Mitchell Marcus, and Beatrice Santorini. 887
2003. The Penn treebank: an overview. Treebanks, 888
pages 5–22. 889

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Su- 890
pertagging Combinatory Categorial Grammar with 891
attentive graph convolutional networks. In Proceed- 892
ings of the 2020 Conference on Empirical Methods 893
in Natural Language Processing (EMNLP), pages 894
6037–6044, Online. Association for Computational 895
Linguistics. 896

10

https://doi.org/10.18653/v1/2020.acl-main.645
https://richardmoot.github.io/Slides/WoLLIC2019.pdf
https://richardmoot.github.io/Slides/WoLLIC2019.pdf
https://richardmoot.github.io/Slides/WoLLIC2019.pdf
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.1162/tacl_a_00364
https://aclanthology.org/E17-2025
https://aclanthology.org/E17-2025
https://aclanthology.org/E17-2025
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan897
Musa. 2016. Supertagging with LSTMs. In Pro-898
ceedings of the 2016 Conference of the North Amer-899
ican Chapter of the Association for Computational900
Linguistics: Human Language Technologies, pages901
232–237, San Diego, California. Association for902
Computational Linguistics.903

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob904
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz905
Kaiser, and Illia Polosukhin. 2017. Attention is all906
you need. Advances in neural information process-907
ing systems, 30.908

Petar Veličković, Guillem Cucurull, Arantxa Casanova,909
Adriana Romero, Pietro Liò, and Yoshua Bengio.910
2018. Graph attention networks. In International911
Conference on Learning Representations.912

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien913
Chaumond, Clement Delangue, Anthony Moi, Pier-914
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-915
icz, Joe Davison, Sam Shleifer, Patrick von Platen,916
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,917
Teven Le Scao, Sylvain Gugger, Mariama Drame,918
Quentin Lhoest, and Alexander Rush. 2020. Trans-919
formers: State-of-the-art natural language process-920
ing. In Proceedings of the 2020 Conference on Em-921
pirical Methods in Natural Language Processing:922
System Demonstrations, pages 38–45, Online. Asso-923
ciation for Computational Linguistics.924

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.925
CCG supertagging with a recurrent neural network.926
In Proceedings of the 53rd Annual Meeting of the927
Association for Computational Linguistics and the928
7th International Joint Conference on Natural Lan-929
guage Processing (Volume 2: Short Papers), pages930
250–255, Beijing, China. Association for Computa-931
tional Linguistics.932

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin933
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-934
Yan Liu. 2021. Do transformers really perform935
badly for graph representation? Advances in Neu-936
ral Information Processing Systems, 34.937

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo938
Kang, and Hyunwoo J Kim. 2019. Graph trans-939
former networks. Advances in neural information940
processing systems, 32.941

Biao Zhang and Rico Sennrich. 2019. Root mean942
square layer normalization. Advances in Neural In-943
formation Processing Systems, 32.944

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min945
Zhang, and Guodong Zhou. 2019. Modeling graph946
structure in transformer for better AMR-to-text gen-947
eration. In Proceedings of the 2019 Conference on948
Empirical Methods in Natural Language Processing949
and the 9th International Joint Conference on Natu-950
ral Language Processing (EMNLP-IJCNLP), pages951
5459–5468, Hong Kong, China. Association for952
Computational Linguistics.953

954

11

https://doi.org/10.18653/v1/N16-1027
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.3115/v1/P15-2041
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548

A Visualization of the decoding process955

h1
i−1

Ti−1,1

h1
i

Ti,1

Ti,2 Ti,3

h1
i+1

Ti+1,1

Ti+1,2 Ti+1,3

.

(a) State vectors independently receive auto-regressive feedback from their last decoded respective fringe in a many-to-one
fashion.

h̃1
i−1

Ti−1,1

h̃1
i

Ti,1

Ti,2 Ti,3

h̃1
i+1

Ti+1,1

Ti+1,2 Ti+1,3

.

(b) The tree-contextual states exchange messages with one another in a many-to-many fashion.

h2
i−1

Ti−1,1

h2
i

Ti,1

Ti,2 Ti,3

Ti,6 Ti,7

h2
i+1

Ti+1,1

Ti+1,2 Ti+1,3

.

(c) The final states project class weights to their respective fringe nodes in a one-to-many fashion; depending on the arity of the
decoded symbols, a next masked fringe is constructed.

Figure 1: Visualization of one step of the decoding process for an (abstract) example sequence, focusing on the
central tree Ti and starting from the partially decoded output at step 1. Node content is intentionally left unspecified
so as not to add grammar-specific overhead, but tree structure is assumed fixed and given by binary nodes Ti,1 Ti,3
Ti,7 and Ti+1,1 (rest zeroary). The computations prescribed by each subfigure take place in parallel across all
nodes, trees & sentences in the batch.

12

	Introduction
	Background
	Methodology
	Preliminaries
	Breadth-First Parallel Decoding
	Architecture
	Node Embeddings
	Node Feedback
	State Feedback
	Node Prediction
	Putting Things Together

	Experiments
	Datasets
	Implementation
	Results

	Related Work
	Conclusion
	Visualization of the decoding process

