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Abstract

In this paper, a new method for automatic MR image inhomogeneity correction is proposed.
This method, based on deep learning, uses unsupervised learning to estimate the bias
corrected images minimizing a cost function based on the entropy of the corrupted image,
the derivative of the estimated bias field and corrected image statistics. The proposed
method has been compared with the state-of-the-art method N4 providing improved results.
Keywords: Unsupervised, Deep Learning, MRI

1. Introduction

In magnetic resonance imaging, the presence of signal intensity inhomogeneity, often referred
to as the bias field artifact, poses a notable challenge. Originating from imperfections
in radiofrequency coils and specific interactions within the imaged object, this artifact
manifests as a low-frequency variation in signal intensity across MR images. While it
may not significantly impact qualitative diagnoses, its influence on automated quantitative
methods, particularly registration and segmentation, is of considerable importance.

Addressing this artifact involves both prospective and retrospective strategies. Prospec-
tive methods aim to prevent inhomogeneity during the acquisition process, primarily focus-
ing on mitigating machine imperfections. In contrast, retrospective methods, which have
undergone more extensive development, do not require special acquisition protocols and can
effectively handle both machine and patient-induced inhomogeneities. These retrospective
methods can be further categorized into segmentation-based approaches, where the bias
field is estimated during segmentation, and direct data methods that work directly with the
image data.

Various approaches have been proposed to tackle intensity inhomogeneity, among which
SPM and histogram-based methods are noteworthy. SPM, (Ashburner and Friston, 2000),
addresses intensity inhomogeneity by modeling the bias field using a combination of Dis-
crete Cosine Transform basis functions. The parameters of these basis functions are adjusted
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through the minimization of the negative log-likelihood of the data, which is equivalent to
optimizing image entropy. However, limitations highlighted b (Arnold et al., 2001) pointed
out that entropy minimization tends to favor a uniformly zero bias field, resulting in a single
bin image. This issue was subsequently addressed in SPM2 (Ashburner, 2002) by utilizing
log-transformed image intensities for entropy calculation. On the other hand, histogram-
based methods, such as the pioneering work by Brechbuhler et al. (1996) and the widely
recognized N3 method (Sled et al., 1998), leverage statistical properties of image histograms
to correct intensity biases. Brechbuhler et al. (1996) estimated the bias field using Legendre
polynomial basis functions and the minimization of a cost function based on the means and
variances of the tissues in the corrected image, while the N3 method sharpens the image
histogram through Gaussian deconvolution and smoothens the bias field estimation using a
B-Spline based regularization. These approaches showcase the diverse strategies employed
to mitigate intensity inhomogeneity, each with its strengths and considerations. Significant
strides have been made in the realm of bias field correction for medical images, with notable
advancements introduced by Mangin (2000), Likar et al. (2001) and Manjon et al. (2007).
Manjon et al. proposed an innovative method employing a coarse-to-fine strategy and a joint
intensity-gradient entropy cost function, effectively addressing issues of regularization. Likar
et al. (2001) and Mangin (2000) proposed solutions involving constraints on restored image
mean values, providing valuable alternatives in mitigating entropy minimization-related
challenges. Despite these advancements, the N4 (Nonparametric Non-uniform Intensity
Normalization) method has emerged as a predominant and widely adopted approach in
current practices. Serving as an extension of the N3 algorithm, N4, introduced by Tustison
(Tustison et al., 2010), employs nonparametric techniques for robust bias field correction
in medical images, particularly in MRI. Its iterative approach in estimating and correct-
ing non-uniform intensity has proven highly effective, offering robustness in addressing bias
fields of varying amplitudes. The method’s adaptability and reliability have positioned it as
a go-to choice in contemporary medical image analysis, underscoring its impact and practi-
cality in addressing the multifaceted challenges associated with bias field correction in the
field of medical imaging. More recently, some deep learning approaches have been proposed
for the inhomogeneity correction problem. Among them, ABCnet (Chen et al., 2021) pro-
poses a 3D adversarial bias correction network for infant brain MR images, incorporating
manual corrections and leveraging GANs for enhanced efficiency and intensity uniformity.
Another approach (Xu et al., 2022), utilizes deep separable convolutional neural networks
with local feature images, integrating residual learning and batch normalization. This paper
presents an innovative unsupervised bias correction method based on deep learning: The
Unsupervised Bias field Corrector (UBC). The method, explained in the following sections,
employs unsupervised training based on an entropy and gradient related loss, demonstrating
excellent both time efficiency and accuracy results.

2. Material and methods

The acquired MR image model to describe MRI bias corrupted data is a multiplicative field
plus some additive noise:

Y =XB +n. (1)
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where Y is the observed voxel intensity, B the corresponding value of the bias field supposed
to be smooth, X the true emitted intensity and n is a Rician distributed additive noise.
Inhomogeneity correction thus consists of dividing Y by an estimation of B by using the
common assumption that this bias field is positive and slow varying. The method proposed
in this paper has been developed using 2 public MR datasets:

e OASIS (N=374): These T1 MR images are sourced from the Open Access Series of
Imaging Studies (OASIS) database (http://www.oasis-brains.org).

e IXI (N=580): The images from the Information eXtraction from Images (IXI) database
(http://brain-development.org/ixi-dataset) consist of normal subjects T'1 images scanned
at 1.5T and 3T.

The training set was composed of 914 T1 MR images (354 from OASIS and 560 from IXI)
and the test set was composed of 40 images (20 IXI images and 20 OASIS). The images
were normalized by dividing by the mean value.

3. Neural Network Architecture

The architecture of a deep learning model plays a pivotal role in its ability to comprehend
and process complex patterns within data. The proposed architecture consists of an encoder
part, focused on capturing image features and a decoder part centered on the estimation
of the bias field. In the encoder, four convolutional layers (with ReLU activation and
3x3x3 kernel size) are used, each one with its pooled output (stride=2). The inclusion
of batch normalization enhances stability. This convolutional sequence commences with
16 filters, progressively doubling, quadrupling, and octupling in subsequent layers—16, 32,
64, and reaching a crescendo with 128 filters. The progressive increase in filter counts in
successive convolutional blocks enhances the model’s capacity to discern nuanced features
within the 3D images. Strided convolutions with a factor of 2 in the encoder layers facilitate
downsampling, reducing spatial dimensions while preserving essential features. At the end
of the encoder a positive definite tensor of 1x7x7x7x1 elements is obtained representing
the control points of the estimated bias field. To estimate the bias field, this tensor is
interpolated through an upsampling layer to match the size of the input tensor. Finally,
to obtain the corrected input tensor the estimated bias field is multiplied by it (note that
for stability we multiply by the inverse of the bias field instead of dividing it to avoid zero
division instability). To evaluate the quality of the corrected image a histogram estimation
layer is used. This custom layer uses a kernel density estimation (KDE) approach to estimate
the image entropy loss. Other auxiliary losses are used to regularize the estimated bias field
(Figure 1 shows a visual representation of the proposed architecture).

In summary, our architecture stands as a solution for 3D medical image bias correction,
integrating advanced convolutional techniques, normalization strategies, and specialized
layers to ensure accurate bias field estimation and high-quality image correction.
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Figure 1: Proposed UBC bias correction architecture applied to a T1 input

4. Training

As this method works at native MR image space, the first step is to resample the input
image to a fixed size of 100x100x100 voxels. The estimated bias field is interpolated back
to the size of the native space with a minimum loss of accuracy due to the inherent low
frequency content of the bias field. Input images were normalized by dividing them by their
mean. KDE layer uses a gaussian function with a standard deviation of 1 and 200 bins.

As seen in the introduction section, the reduction of image entropy has been largely
used as a metric to estimate bias fields. The main assumption is that homogeneous brain
tissues generate sharper peaks in the histogram which is related to the entropy reduction
through a more homogeneous intensity order. However, such an approach solely can result
in a single bin histogram which is the minimum entropy solution. To avoid this issue, some
regularization is needed. In our training, we used a mix of 4 specific loss functions, each
tailored for a particular role in guiding the bias correction task.

The first is the entropy loss which is directly estimated from the histogram layer output.
To restrict the solutions space, a global statistics loss is used which penalizes that the
standard deviation of the corrected image differs too much from the original one and forces
the output image to have a mean value of one (same as the input). To enforce the low
frequency content of the estimated bias field the expectation of local gradients was used
as loss function. This loss penalizes high local derivatives of the estimated bias field and
plays a crucial role in promoting smooth transitions within the bias fields, contributing to
a visually coherent correction. By prioritizing gradient smoothness, the model ensures a
more natural and faithful representation of the underlying anatomy. Finally, the last loss
is the entropy of the local gradients of the corrected image. In Manjén et al. (2007), the
minimization of the joint intensity-gradient entropy was used but in architecture we had to
separate the intensity and gradient entropy losses due to memory constraints.

Balancing the loss functions (Equation (2)) was achieved through experimental assign-
ment of weights, acting as a crucial mechanism during training. This ensures each loss
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contributes optimally without overpowering others, preventing biases that could distort the
inherent characteristics of the images.

loss=XA -H(Y)+Xa- HV(Y))+ X3 - VB+ Ay - (|lop — 0y]) (2)

During training data augmentation was used consisting in random flipping the volumes
along the 3 dimensions.

5. Experiments and results

In this section, we present a summary of the experimental outcomes aimed at identifying the
optimal network. The experiments were conducted using Tensorflow 2.10 on a RTX 3060
GPU with 12GB operating on Windows 10, each network tested underwent training for 500
epochs, equivalent to a day of processing, ensuring convergence. The evaluation of the re-
sulting networks was carried out on a test dataset comprising 40 cases. Adam optimizer was
used in the experiments using mixed precision settings. Several architectures were tested,
mainly varying the number of control points of the bias field (3x3x3,5x5x5,7x7x7,9x9x9,
and 11x11x11 control points were tested) as this is directly related to the smoothness of the
obtained bias field. As a result, we selected the 7x7x7 architecture as it asd the one that
obtained the best results. Regarding the loss balancing, the best results were obtained for
)\1:27)\2:1,)\3:1811(1)\4:1.

To assess our model’s effectiveness, we employed the coefficient of joint variation (CJV)
metric (Manjén et al., 2007). To calculate the coefficient of joint variation for both gray and
white matter, segmentation maps were obtained using vol2Brain method (Manjén et al.,
2022). The coefficient of variation (CV) of GM and WM tissues was also used. The objective
was to minimize the pixel-wise variation within each type of tissue. This evaluation method
provides a comprehensive measure of our model’s performance, emphasizing the reduction
of variation between pixels within both gray and white matter and tissue mean contrast.

In an attempt to enhance results, two additional steps were used at test time. The
first one is known as Test Time Data Augmentation (TTDA) and consists of evaluating the
bias field after applying a flip operation, one for each axis, to the input image and later
inverting them and averaging the predictions. The second, given the fact that the method
is unsupervised, was to perform additional training steps using only the input image to be
corrected (fine tuning). We call this step TTT (Test Time Training).

The results of the proposed method for the different configurations is summarized at
Table 1. As can be noted, both TTDA and TTT improved the results of the origin method
at the expense of increasing the temporal cost.

Table 1: Test results of the proposed method.

Method cJv CV(WM) CV(GM) | Time (s)
Original 0.8565 & 0.2135  0.1195 4 0.0229  0.2020 4 0.0262 -

UBC 0.7697 + 0.0819  0.0920 £ 0.0205 0.1789 & 0.0312 | 0.26 4+ 0.25
UBC+TTDA 0.7686 £ 0.0816  0.0920 £ 0.0204 0.1787 £+ 0.0311 | 0.40 % 0.26

UBC+TTDA+TTT 0.7616 £0.0808 0.0923 +£0.0221 0.1790 £ 0.0322 | 17.02 £ 0.48
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We compared the proposed method with the state-of-the-art N4 method as implemented
in the SimpleITK library. Results are summarized in Table 2. The proposed method
improved the N4 method while being 5 times faster. Although the differences of the proposed
method and N4 are not statistically significant it seems to be more robust than N4 producing
lower minimum and maximum CJV values. Besides, if we don’t use the TTT step, the
proposed method is 222 times faster with similar results than N4.

Table 2: Comparison with N4 method. Mean and standard deviation of CJV metric is used.

Method CJvV CV(WM) CV(GM) Time (s)
Original 0.8565 £0.2135 0.1195 +0.0229 0.2020 £ 0.0262 -
UBC+TTDA+TTT 0.7616 +0.0808 0.0923 £+ 0.0221 0.1790 4 0.0322 | 17.02 £ 0.51
N4 0.7646 £ 0.0838 0.0947 £ 0.0253 0.1800 £ 0.0345 | 89.25 £ 27.66

A visual example of the output of the proposed and N4 methods is illustrated in Figure 2.
As can be observed, both N4 and UBC produce sharper histograms but UBC produces taller
peaks representing a lower dispersion of image intensities.
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Figure 2: Comparison between Original MRI, N4 and UBC corrected images. The estimated
bias fields and the histogram of each image are also shown.

To demonstrate the generality of the proposed unsupervised method, we also trained
our method using T2 weighted images. Specifically, we used 556 images for training and 20
for testing from the IXI dataset. Results can be checked in Table 3. As can be noted, the
proposed method slightly improves the N4 method while being much faster.
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Table 3: Comparison between UBC method and N4 method for T2 images.

Method CIV CV(WM) CV(GM) | Time (s)
Original 1.5308 + 0.1438  0.2643 + 0.0241  0.3128 + 0.0335 -
UBC+TTDA  1.4874 +0.1414 0.2413 +0.0294 0.3082 4 0.0397 | 0.42 % 0.34
N4 1.4917 +0.1412  0.2453 +0.0316  0.3074 = 0.0403 | 20.04 & 11.00

6. Discussion

In this paper, we present an unsupervised deep learning based MRI inhomogeneity correc-
tion method. The outcomes delineated in the preceding section underscore the significant
advancements achieved through the presented methodology. Not only do these results high-
light a substantial decrease in brightness variability among pixels belonging to the same tis-
sue, but they also emphasize the capacity to attain this improvement without compromising
the authenticity of the original image features. This preservation ensures that the image
remains true to its initial characteristics, avoiding any form of distortion. The demonstrated
success in minimizing bias and preserving image fidelity positions the proposed approach
as a robust and effective solution in the domain of bias correction being competitive with
conventional methods.

The proposed method, called UBC, is based on a simple, yet effective, architecture that
encodes image features and produces an estimate of the inverse bias field minimizing a
loss function based on features of the output image and the estimated bias field. In fact,
although entropy minimization has been used in the past for MRI bias correction, this is,
as far as we know, the first time that this metric is used in the context of a deep network
for this task.

Incorporating test-time steps, TTDA and TTT, improved the results, enhancing our bias
correction methodology. These additions have demonstrated their effectiveness in refining
correction outcomes, contributing to consistently excellent results. Our approach slightly
outperforms the conventional N4 bias correction method (although the difference is not
statistically significant) and it is far more efficient.

We have trained our method using only T1 and T2 MR images to demonstrate its
effectiveness. We are aware that the N4 method is by default a more general method than
the proposed method. In the future, we will train UBC with all sorts of MR images (FLAIR,
etc.) to get a more general solution.

7. Conclussion

The approach presented in this paper constitutes an innovative non-supervised method
for bias correction, an area that has seen limited exploration. This novel non-supervised
technique for MRI bias correction introduces a fresh perspective, showcasing its capability
to outperform commonly used methods. This advancement is particularly significant as it
demonstrates the feasibility of constructing a network that achieves highly effective results
solely based on training input images, without relying on previous methods. The novelty
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lies in the ability to devise a model that excels in bias correction without the need for
additional information or dependence on traditional methodologies.

This novel non-supervised bias correction method not only demonstrates remarkable ef-
ficacy, being competitive with conventional approaches, but also distinguishes itself with ex-
ceptional efficiency. Notably, the model’s capacity to yield superior results is complemented
by its rapid processing time, enhancing its accessibility. This combination of effectiveness
and efficiency positions the method as a promising advancement in MRI bias correction,
showcasing its potential to significantly impact the field.

The Unsupervised Deep Bias Correction (UBC) method emerges as a swift and highly
effective approach, capable of yielding outstanding results in a short timeframe. Its rapid yet
precise correction of bias in MRI images positions it as a valuable tool for various applica-
tions, particularly in tissue segmentation processes. The robust performance demonstrated
by UBC opens up avenues for future research in the realm of MRI image analysis. Its
effectiveness and precision position it as a promising tool to improve the quality of data in
medical imaging studies. This, in turn, facilitates more accurate tissue segmentation and
contributes to advancements in MRI research.
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