
Convergence Behavior of an Adversarial Weak Supervision Method

Steven An1 Sanjoy Dasgupta1

1Computer Science Department,
University of California, San Diego,

La Jolla, CA 92093, USA

Abstract

Labeling data via rules-of-thumb and minimal la-
bel supervision is central to Weak Supervision, a
paradigm subsuming subareas of machine learn-
ing such as crowdsourced learning and semi-
supervised ensemble learning. By using this la-
beled data to train modern machine learning meth-
ods, the cost of acquiring large amounts of hand
labeled data can be ameliorated. Approaches to
combining the rules-of-thumb falls into two camps,
reflecting different ideologies of statistical estima-
tion. The most common approach, exemplified by
the Dawid-Skene model, is based on probabilis-
tic modeling. The other, developed in the work
of Balsubramani-Freund and others, is adversarial
and game-theoretic. We provide a variety of sta-
tistical results for the adversarial approach under
log-loss: we characterize the form of the solution,
relate it to logistic regression, demonstrate con-
sistency, and give rates of convergence. On the
other hand, we find that probabilistic approaches
for the same model class can fail to be consistent.
Experimental results are provided to corroborate
the theoretical results.

1 INTRODUCTION

We consider a common setting found in Weak Supervision
(WS): suppose we have a fixed set of data points X =
{x1, . . . , xn} whose labels, in Y = {1, 2, . . . , k}, are not
known. We are also given p rules-of-thumb (sometimes
called labeling functions) h(1), . . . , h(p) : X → Y ∪ {?},
where “?” means “abstain”. Given rough estimates of the
accuracies of these rules, how can we use them to make
inferences about the labels of X?

The WS umbrella contains work from several lines of
machine learning including crowdsourced learning, semi-

supervised learning, and programmatic weak supervision.
Methods range from unsupervised to semi-supervised.

In crowdsourced learning, several workers are asked to label
X . They might abstain on some of the points, and thus each
worker’s labeling corresponds to a rule-of-thumb. These
rules can be combined using a purely unsupervised process,
or using a small amount of expertly-labeled data to help
estimate the accuracy of each rule (person).

The field of semi-supervised learning has a long history of
using simple human- or machine-generated rules like

document contains goalie =⇒ label = sports.

In this example, the rule abstains on any document not
containing the word goalie and is only somewhat accu-
rate. The hope is for a collection of such rules, together
with a little labeled data, to be turned into a good classifier.
Early instances of this idea include work in information re-
trieval [Croft and Das, 1990], Yarowsky’s method for word
sense disambiguation [Yarowsky, 1995], and co-training
[Blum and Mitchell, 1998]. More recently, Balsubramani
and Freund [2015b] have suggested using highly accurate
“specialists” that predict on small parts of input space, and
then combining them.

Programmatic weak supervision, exemplified by the
snorkel framework [Ratner et al., 2020], uses user-
defined or automatically generated computer programs
which serve as rules-of-thumb. The combination is usually
unsupervised, but a small amount of labeled data can help.

Methods from these lines of work can make it easier to
produce large labeled data sets, which are key to supervised
learning. There are two broad approaches to combining
rules-of-thumb. The well-studied probabilistic approach as-
sumes that the labeling process conforms to a generative
model and uses this model to determine the most likely label
of each point. We take the Dawid-Skene estimator [1979]
as a representative of this approach. On the other hand, the
game-theoretic or adversarial approach, as developed in
the work of Balsubramani and Freund [2015a] and others,

mailto:<sla001@ucsd.edu>?Subject=[UAI 2024] Rules of Thumb Paper
mailto:<dasgupta@eng.ucsd.edu>?Subject=[UAI 2024] Rules of Thumb Paper

uses estimates of rule accuracies to generate a plausible
set of labelings and chooses predictions that minimize the
maximum possible error under this constraint.

Each approach has potential pitfalls. Probabilistic ap-
proaches can produce poor predictions if the rules-of-thumb
violate the generative assumptions: i.e. under misspecifica-
tion. The adversarial approach, on the other hand, can be
too pessimistic given its preoccupation with mitigating the
worst case. In this paper, we do a statistical analysis of the
adversarial approach and prove various results for it includ-
ing convergence. We find that similar properties do not hold
for the Dawid-Skene probabilistic approach. The results are
discussed through the lens of model and approximation un-
certainty (to be defined later), providing a clearer image of
the approaches. Empirical results corroborate our analysis.

To set the background, suppose that the label y of any point
x ∈ X is given by the conditional probability function
η(ℓ | x) = Pr(y = ℓ | x), where ℓ ∈ Y = {1, 2, . . . , k}.
In some applications, such as object detection, η(ℓ | x)
will place almost all its mass on the single true label. In
other settings, like predicting the course of a disease, there
is inherent uncertainty and η(ℓ | x) will be spread over
several labels ℓ. We will look at methods that estimate the
probabilities of different labels for the given data points
X = {x1, . . . , xn}. That is, the probabilities η = (η(ℓ |
xi) : 1 ≤ i ≤ n, 1 ≤ ℓ ≤ k). Generative approaches such
as Dawid-Skene yield this readily. The solution space is ∆n

k ,
where ∆k denotes the k-probability simplex: we select a
distribution over k labels for each of the n data points.

For the adversarial approach, [Balsubramani and Freund,
2016] provide a framework that accommodates different
loss functions for classification. Although their work focuses
primarily on 0-1 loss, we use the log loss, which is more
appropriate when label probabilities are sought. Given rules-
of-thumb h(1), . . . , h(p), and estimates of their accuracies,
the adversarial approach first defines a set P ⊂ ∆n

k of
plausible labelings; this takes estimation error into account
and thus includes the true η. The goal is then to choose a
model g ∈ ∆n

k whose log-likelihood is maximized even for
the worst-case “true” labeling z ∈ P :

max
g∈∆n

k

min
z∈P

z · log g.

We show that the solution g has several favorable properties.

1. (Maximum entropy) g is the maximum entropy distri-
bution in P .

2. (Form of solution) g belongs to an exponential family
of distributions G that can be defined in terms of the
given rules-of-thumb.

3. (Logistic Regression) The minimax game is shown to
be an instance of regularized logistic regression.

4. (Consistency) As the estimation error for rule accura-
cies goes to zero, g converges to the model g∗ ∈ G that

is closest to η in KL-divergence.

5. (Rates of convergence) We bound the rate at which g
approaches g∗.

6. (Dawid-Skene comparison) For sufficiently good rule
accuracy estimates, g is guaranteed to be closer to η in
KL-divergence than the Dawid-Skene prediction.

7. (Empirical Results) Consistency is demonstrated on
synthetic data and g is compared to the Dawid-Skene
prediction/other SOTA methods on real data.

Interestingly, the Dawid-Skene prediction is in the same
family G. However, we show it’s not always consistent.

2 RELATED WORK

The study of WS is not only about constructing a classi-
fier from rules-of-thumb, but encompasses all aspects of
the process from start to end. Zhang et al. [2022] pro-
vide a good survey discussing the various aspects of a WS
pipeline. The pipeline involves the creation of labeling func-
tions (rules-of-thumb), creating a label model (classifier)
to aggregate the rule predictions, and an end model trained
on the label model’s labeling of the data. These compo-
nents can be separate, but can also be trained end-to-end,
e.g. [Rühling Cachay et al., 2021b]. In our setting, the rules-
of-thumb are fixed, but adding more rules has been studied,
e.g. [Varma and Ré, 2018].

Since rules-of-thumb abstract the feature space, the domains
to which WS is applicable varies widely. E.g. computer
vision [Fu et al., 2019], natural language processing [Yu
et al., 2021], medical applications [Wang et al., 2019].

Our representative for the probabilistic approach, created
by Dawid and Skene [1979], has spawned of a myriad of
models. Indeed, the recent work of Ratner et al. [2016] can
be viewed as a generalization of the Dawid-Skene model
where inter-rule dependencies are modeled. Dawid-Skene
type estimators are well studied theoretically too, e.g. Gao
and Zhou [2013] study the convergence of EM,Li and Yu
[2014] provide finite sample error bounds, and Zhang et al.
[2016] provide a provably good EM initialization.

A good survey of semi-supervised learning can be found in
[Zhu and Goldberg, 2009]; the approaches taken are mostly
probabilistic. A very different, game-theoretic/adversarial
optimization, approach was introduced by [Balsubramani
and Freund, 2015a] for binary classification and complete
(non-abstaining) rules. Their work was generalized to ac-
commodate partial rules in [Balsubramani and Freund,
2015b] and to a variety of different losses [Balsubramani
and Freund, 2016]. In Arachie and Huang [2021], a similar
optimization problem is considered with a focus on experi-
ments. The work of Mazuelas et al. [2020] Mazzetto et al.
[2021] and Mazuelas et al. [2022] give finite sample general-
ization bounds for rules learned under a similar adversarial

framework. In contrast, our bounds are in the transductive
setting rather than the inductive one.

3 SETUP

Our goal is to label n datapoints X = {x1, . . . , xn} whose
labels lie in Y = [k] using p rules of thumb h(1), . . . , h(p)

where h(j) : X → Y ∪ {?} and “?” denotes an abstention.
ηiℓ = Pr(yi = ℓ | xi) is the true probability of class ℓ for xi.
We’ll write that in vector form a la Mazuelas et al. [2020]:

ηi = (ηi1, . . . , ηik) ∈ ∆k and η = (η1, . . . , ηn) ∈ ∆n
k ,

so that η is a vector of length nk. Each rule’s prediction
h(j)(xi) can be written as a vector in {0, 1}k:

h
(j)
i =

{
e⃗ℓ if h(j)(xi) = ℓ ∈ [k]

0⃗k if h(j)(xi) = ?
(1)

e⃗ℓ is the ℓth canonical basis vector in k dimensions. Write

h(j) = (h
(j)
1 , . . . , h(j)

n) ∈ ∆n
k .

Thus h(j)
iℓ is 1 if h(j)(xi) = ℓ and 0 otherwise.

4 AN ADVERSARIAL APPROACH

Suppose we had upper and lower bounds on the accuracies
of each rule h(j)’s predictions on X . E.g. For instance, if
these are based on v labeled instances, then our estimates
are accurate within O(1/

√
v). While there are kn possible

labelings of X , knowing h(j) makes at most v mistakes
implies that only labelings whose Hamming distance is at
most v from h(j) are coherent with that piece of knowledge.
This is a significant decrease. Every additional rule and the
bounds for its mistakes on X further constrains and shrinks
the set of coherent labelings. We will soon see how this
information effectively constrains the true labeling η to lie
in a specific polytope P ⊂ ∆n

k .

If h(j) makes nj ≤ n predictions on X = {x1, . . . , xn},
abstaining on the rest, the expected proportion of correct
predictions is

b∗j :=
1

nj

n∑
i=1

k∑
ℓ=1

ηiℓ1(h(j)(xi) = ℓ) =
1

nj
η · h(j).

b∗j is the empirical accuracy of rule j. If bj is an estimate of
b∗j and ϵj ≥ 0 so large that b∗j ∈ [bj − ϵj , bj + ϵj], we have

bj − ϵj ≤
1

nj
η · h(j) ≤ bj + ϵj . (2)

For instance, bj could be an estimate from labeled data and
ϵj could be from a binomial confidence interval.

Likewise, the empirical fraction of labels that are ℓ is

w∗
ℓ =

1

n

n∑
i=1

ηiℓ =
1

n
η · e⃗nℓ

where e⃗n
ℓ ∈ {0, 1}nk is an n-fold repetition of e⃗ℓ. Like

above, say wℓ is an estimate of w∗
ℓ and ξℓ ≥ 0 so large that

w∗
ℓ ∈ [wℓ − ξℓ, wℓ + ξℓ]. We can then write

wℓ − ξℓ ≤
1

n
η · e⃗n

ℓ ≤ wℓ + ξℓ,

For brevity, take m = p+k, the number of constraints from
rule accuracies and class frequencies. We’ll abuse notation
and let b = (b1, . . . , bp, w1, . . . , wk). Similarly, we’ll say
ϵ = (ϵ1, . . . , ϵp, ξ1, . . . , ξk).

In writing the rule accuracy and class frequency bounds
in matrix form, A ∈ Rm×nk, we construct a polytope of
coherent labelings. Defined row-wise,

a(j) =

{
h(j)/nj when 1 ≤ j ≤ p

e⃗n
j−p/n when p+ 1 ≤ j ≤ p+ k = m.

(3)
With element-wise inequalities, we can write the m inequal-
ities for rule accuracy and class frequency as b− ϵ ≤ Aη ≤
b+ ϵ for b, ϵ ∈ Rm. The polytope of coherent labelings is
defined by those inequalities for b∗, w∗:

P = {z ∈ ∆n
k : b− ϵ ≤ Az ≤ b+ ϵ}. (4)

For any ϵ ≥ 0⃗m, we require the interval [b− ϵ, b+ ϵ] to con-
tain b∗, i.e. ϵ→ 0⃗m implies b→ b∗, because our adversarial
approach requires that the underlying labeling η be in P .

So, given information about the rule accuracies and class
frequencies, the adversary can only choose labelings z ∈ P ,
i.e. labelings coherent with the information. Balsubramani
and Freund [2015a] propose a two player zero-sum mini-
max game where the adversary seeks to maximize loss with
their choice of labeling z ∈ P , while the learner attempts to
minimize it with their prediction g ∈ ∆n

k . While they con-
sider 0-1 loss, we use log loss/cross entropy as the game’s
objective. Said another way, the learner wishes to maximize
log-likelihood while the adversary seeks to minimize it. The
Balsubramani-Freund (BF) model’s game can be written

V = max
g∈∆n

k

min
z∈P

z · log g. (5)

We will see that this is equivalent to a max-entropy type
problem, and can be optimized either via gradient descent
(as proposed by Balsubramani and Freund [2015a]) or via
an off-the-shelf convex program solver.

5 STATISTICAL ANALYSIS OF BF

5.1 LEARNER’S PREDICTION IS MAXIMUM
ENTROPY MODEL IN P

The learner’s optimal prediction gbf from the minimax game
in Equation 5 turns out to be the maximum entropy distri-
bution in the polytope P of labelings consistent with the
accuracy and class frequency bounds. (Strictly speaking ob-
jects in ∆n

k contain n distributions, each over k objects, but
we call such objects distributions for brevity.)

Theorem 1. The minimax game in Equation 5 can be equiv-
alently written as follows.

V = max
g∈∆n

k

min
z∈P

z ·log g = min
z∈P

max
g∈∆n

k

z ·log g = min
z∈P

z ·log z

The first expression defines a learner prediction gbf , the
second defines an adversarial labeling z∗. Then, gbf = z∗

and they are the maximum entropy distribution in P , the
optimal solution to the right-most expression.

The general steps are to commute the min and max via
Von Neumann’s minimax theorem, apply Gibb’s inequality
repeatedly, and show the second and third problems have
the same Lagrange dual. All proofs are found in the Ap-
pendix. For a more general treatment of minimax games
and maximum entropy, see [Grünwald and Dawid, 2004].

5.2 CHARACTERIZING THE BF SOLUTION

We now show an easily optimizable dual of the sum of
max entropies problem from Theorem 1. This exposes the
functional form of gbf . To be terse, for θ ∈ Rm, we will use
a(θ) as shorthand for A⊤θ = θ1a

(1) + · · ·+ θma(m) where
a(j) is row j of A. Also, recall giℓ is the learner’s prediction
for class ℓ on xi and A, b, ϵ together fully specify polytope
P (Equation 4).

Theorem 2. The learner’s optimal prediction g for the game

V = max
g∈∆n

k

min
z∈P

z · log g is giℓ =
exp(a

(σ′−σ)
iℓ)∑

ℓ′ exp(a
(σ′−σ)
iℓ′)

.

σ, σ′ are gotten from optimizing the dual problem

V = V (b, ϵ) = max
σ,σ′≥0⃗m

[
(σ′ − σ) · b− (σ′ + σ) · ϵ

−
n∑

i=1

log
(k∑

ℓ=1

exp(a
(σ′−σ)
iℓ)

)]
.

The dual problem is concave in 2p + 2k variables σ, σ′

and can easily be solved with gradient descent or a convex
program solver.

5.3 BF SOLUTION LIES IN AN EXPONENTIAL
FAMILY

With matrix A ∈ Rm×nk, we can define a family of condi-
tional probability distributions parameterized by θ ∈ Rm:

g
(θ)
iℓ ∝ exp

(m∑
j=1

θja
(j)
iℓ

)
= exp(a

(θ)
iℓ). (6)

The family G = {g(θ) : θ ∈ Rm} has the characteristic
exponential family form. We can treat g(θ) as a vector in
∆n

k . If we take the optimal σ′, σ from Theorem 2 and define
θbf = σ′ − σ, the learner’s best-play gbf is g(θ

bf).

5.4 BF IS A FORM OF LOGISTIC REGRESSION

Since BF is a maximum entropy problem, we can relate it to
multi-class logistic regression (MLR) with ℓ1 regularization.
This connection was previously observed by Mohri et al.
[2018] (Chapter 13 Section 7) and Mazuelas et al. [2022].

To start, we briefly review the formulation for MLR. Sup-
pose we have datapoint features xi ∈ Rd and their label
distributions ηi ∈ ∆k for i ∈ [n]. For each xi, the goal is
to predict each class’ probability (elements of ηi) by using
different weighted combinations of xi. Formally, we wish
to learn wℓ ∈ Rd for every ℓ ∈ [k] such that

glriℓ =
exp(w⊤

ℓ xi)∑k
ℓ′=1 exp(w

⊤
ℓ′xi)

approximates ηiℓ.

If wℓ serves as row ℓ of a weight matrix W ∈ Rk×d, the
prediction for datapoint xi is the softmax of elements in
the vector Wxi. To learn W , one minimizes cross entropy,
which can be regularized with coefficient C:

min
W∈Rk×d

[
−η⊤ log glr + C

k∑
ℓ=1

∥wℓ∥1

]

To connect the BF problem to the above, it suffices to show
two things. First is that the prediction gbf can be written
as the softmax of a weight matrix times datapoint features.
Second, the dual objective in Theorem 2 can be turned into
a cross entropy term plus ℓ1 type regularization.

For the first point, consider g = g(θ) ∈ G where θ ∈ Rm.
Looking at the ith datapoint, define Ai ∈ Rm×k to be
columns k(i − 1) + 1, . . . , ki of matrix A. Ai contains
the one-hot encoding of the rule predictions on xi and all
canonical basis vectors in k dimensions (Equation 3). Then,
gi is the softmax of A⊤

i θ (Equation 6). Observe that the
weights θ are in vector rather than matrix form. We show
in the appendix how to rewrite A⊤

i θ so that it is equal to a
weight matrix Tθ ∈ Rk×mk times feature vector x̂i ∈ Rkm

(taking elements from Ai).

Now, rather than have one regularization coefficient C, BF
actually has 2m, two for each weight in θ ∈ Rm. This
is because weight θj will have a different regularization
coefficient depending on whether it’s positive or negative.
So, let θj = σ′

j − σj with σ′
j , σj being the positive and

negative parts of θj respectively. We’ll now see what those
regularization coefficients are.

Lemma 3. BF is a logistic regression type classifier. Fix
A, η, b, ϵ, which fixes b∗ = Aη, P , and the BF prediction
gbf = g(θ

bf). The BF dual problem from Theorem 2 can be
rewritten as

− V (b, ϵ) = min
θ∈Rm

[
− η⊤ log g(θ)

+ (b∗ − (b− ϵ)) · σ′ + (b+ ϵ− b∗) · σ︸ ︷︷ ︸
regularization

]
.

The optimal weights θ from above equals θbf . Moreover,
for every i ∈ [n], BF’s prediction gbfi for datapoint i is the
softmax of Tθx̂i, a weight matrix times a “feature” vector.

The proof is deferred to the Appendix where we’ll also show
how to convert any MLR problem into an instance of BF.

For regular ℓ1 regularization, we would see the term

C∥θ∥1 = C

m∑
j=1

|θj | =
m∑
j=1

[
Cσ′

j + Cσj

]
in the objective because |θj | = σ′

j + σj . Since b∗ ∈
[b− ϵ, b+ ϵ] by assumption, our 2m regularization coeffi-
cients are all non-negative. In the Appendix, we’ll see σj

is associated with constraint a(j)z ≤ bj + ϵj , the jth up-
per bound constraint in P (Equation 4). σj’s regularization
coefficient bj + ϵj − b∗j depends on how poor the upper
bound bj + ϵj is for the empirical accuracy b∗j . Similarly,
σ′
j is associated with the constraint bj − ϵj ≤ a(j)z and

its regularization coefficient b∗j − (bj − ϵj) measures how
poorly bj − ϵj lower bounds b∗j .

To finish this section, note that for MLR, if the datapoint
features number in d, i.e. xi ∈ Rd, one learns kd weights
since W ∈ Rk×d. For BF, since x̂i ∈ Rkm, there will be
km = k(p + k) so called “datapoint features”. However,
only m = p+ k weights will be learned as Tθ ∈ Rk×mk is
completely characterized by m values.

5.5 MODEL AND APPROXIMATION
UNCERTAINTY

To eventually draw the link between the loss of the BF and
Dawid-Skene (DS) prediction, we will need a more granular
notion of loss or uncertainty. While the ultimate goal is to
infer the labels of X , the best one can in general hope for
is to infer η, the label distribution for each datapoint. The

loss one incurs from predicting η rather than the true labels
is irreducible and called aleatoric uncertainty. On the other
hand, the loss in estimating η is nominally reducible and
called epistemic uncertainty, denoted E .

The sources of E are twofold and depend on the method
chosen to estimate η. When a method is chosen, the set of
predictions for that method is fixed. For BF as the chosen
method, its set of predictions is G. If η ̸∈ G, then one im-
mediately incurs loss for choosing a method that cannot
predict η. That quantity is the model uncertainty or Emod.
If d(·, ·) measures distance between µ, ν ∈ ∆n

k , the model
uncertainty is Emod = ming∈G d(η, g). That distance is de-
fined later. If we suppose the best approximator to η with
respect to d(·, ·) is unique, the failure of a method to pro-
duce the best approximator g∗ := argming∈G d(η, g) for η
is regarded as approximation uncertainty Eappr. Approxi-
mation uncertainty can be from poor estimates of rule ac-
curacies/class frequencies or be pathological to the method.
If the model produces prediction g, then Eappr = d(g∗, g).
To summarize, E = Emod + Eappr and for appropriately
chosen d(·, ·),

E = d(η, g), Emod = d(η, g∗), Eappr = d(g∗, g).

For example, a sufficiently deep neural network is a univer-
sal approximator, i.e. Emod = 0 because it can predict any
continuous function. Any epistemic uncertainty would be
from the approximation uncertainty, e.g. from small training
sets, optimization difficulties. See the Appendix and espe-
cially [Hüllermeier and Waegeman, 2021] for a more subtle
and complete discussion of these concepts.

5.6 A PYTHAGOREAN THEOREM FOR G

In the previous section, we considered d(η, g∗), d(g∗, g),
corresponding to model and approximation uncertainty re-
spectively. By using KL divergence as our distance, a suffi-
ciently nice g∗ can simplify the sum of those terms by way
of a Pythagorean theorem. For µ, ν ∈ ∆n

k , we define

d(µ, ν) =

n∑
i=1

KL(µi, νi).

If µ = η and ν = g, d(η, g) sums the KL divergence of
our prediction gi ∈ ∆k for point xi against the underlying
conditional label distribution ηi ∈ ∆k for each datapoint in
X . Now, if g∗ as a labeling produces the same rule accura-
cies and class frequencies as η (namely Ag∗ = Aη), then
d(η, g∗) + d(g∗, g) equals a single d(·, ·) term.

Lemma 4. Pick any θ, θ′ ∈ Rm and write g = g(θ), g′ =
g(θ

′). If g satisfies Ag = Aη, then

d(η, g′) = d(η, g) + d(g, g′).

y

h(1)(x) h(2)(x) h(p)(x). . .

Figure 1: Dawid-Skene Graphical Model

5.7 BF’S CONSISTENCY AND ITS RATE OF
CONVERGENCE

The Pythagorean theorem just shown allows us to decom-
pose the BF prediction’s (or learner’s best play’s) loss
d(η, gbf) into model and approximation uncertainty. We
will see that the best approximator to η in G with respect
to KL divergence, i.e. the minimizer to d(η, ·), is unique.
Hence, we can define g∗ = g(θ

∗) := argming∈G d(η, g).
We can show that Ag∗ = Aη (see Appendix) and use
Lemma 4 to get the following.

Lemma 5.

d(η, gbf)︸ ︷︷ ︸
Ebf

= d(η, g∗)︸ ︷︷ ︸
Emod
bf

+ d(g∗, gbf)︸ ︷︷ ︸
Eappr
bf

.

In the following, we upper-bound Eapprbf by a linear func-
tion of ϵ, the widths of the interval containing b∗. Moreover,
we will see that Eapprbf → 0 as ϵ → 0⃗m, meaning the loss
of BF’s prediction gbf tends to the smallest possible loss,
i.e. the model uncertainty. If a method’s approximation un-
certainty can be brought down to 0 for every problem, we
call it consistent. Therefore, we conclude BF is consistent.

Theorem 6. The g ∈ G minimizing d(η, g) is unique. Call
it g∗. When ϵ = 0⃗m, the learner’s prediction gotten from
solving V (b∗, 0⃗m) is exactly g∗.

In bounding Eapprbf , we have the rate of convergence for
gbf → g∗ as ϵ→ 0⃗m in terms of ϵ and g∗’s weights θ∗.

Theorem 7. For fixed g∗ and | · | acting element-wise,

d(g(θ
∗), gbf) ≤ 2ϵ⊤|θ∗| ≤ 2∥ϵ∥∞∥θ∗∥1 = O(∥ϵ∥∞)

6 A PROBABILISTIC APPROACH

To estimate the probability of labels, the DS model posits an
underlying generative model. By fitting the parameters of
this model, one is able to obtain estimates of label probabil-
ities for every datapoint. The model assumed is simple: for
a datapoint and its label (x, y) ∈ X × Y , rule predictions
h(1)(x), . . . , h(p)(x) are conditionally independent given
label y (see Figure 1).

The parameters of the DS model are the underlying class
frequencies Pr(y = ℓ) and p confusion matrices. Each
rule h(j) is parameterized by its underlying row stochastic
confusion matrix Bj = bjℓℓ′ ∈ [0, 1]k×k where

bjℓℓ′ = Pr(h(j)(x) = ℓ′ | y = ℓ).

Since the rule predictions are conditionally independent
given the label, the true posterior label probability is

Pr(y | h(j)(x), j ∈ [p]) =
Pr
(
y, h(j)(x), j ∈ [p]

)
Pr
(
h(j)(x), j ∈ [p]

)
=

Pr (y)
∏p

j=1 Pr
(
h(j)(x) | y

)∑k
ℓ=1 Pr (y = ℓ)

∏p
j=1 Pr

(
h(j)(x) | y = ℓ

) . (7)

Note that when anything other than the underlying probabili-
ties are substituted in the bottom expression, the last equality
does not hold. In practice, one estimates the confusion ma-
trices and class frequencies, e.g. by EM, and plugs them in
the right hand side in lieu of their empirical counterparts.

We present results involving the one-coin DS model
(OCDS), where each rule is a biased coin. While bj is an
estimate of b∗j in other parts of the paper, take bj to mean
Pr(h(j)(x) = y) in this section only. I.e. bj is the under-
lying bias (resp. accuracy) of coin (resp. rule) j. Diagonal
elements of the confusion matrix bjℓℓ equal bj , while all off
diagonal elements bjℓℓ′ equal (1− bj)/(k − 1).

While OCDS is one of the simplest generative models, it
is representative. The more complex probabilistic models
have similar characteristics in terms of consistency. The
comparison of those more complex probabilistic models to
BF is taken up in the experiments.

7 RELATION AND COMPARISON TO
ADVERSARIAL APPROACH

7.1 DS PREDICTION IN SAME EXPONENTIAL
FAMILY

If gds is a OCDS prediction, then Equation 7 gives its form:

gdsiℓ ∝ wℓ

p∏
j=1

b
1(h(j)(xi)=yi)
j

(
1− bj
k − 1

)1(h(j)(xi)̸∈{yi,?})

.

This is the result of running OCDS’ E step from its EM
algorithm with class frequencies w ∈ ∆k and rule accu-
racies b ∈ [0, 1]m. Note that if a rule j abstains on xi,
i.e. h(j)(xi) = ?, then it makes no contribution to the pre-
diction on xi. Now, we can exhibit weights θds such that
g(θ

ds) = gds from above. This means that gds ∈ G. The
next fact was observed by Li and Yu [2014] in Corollary 9.

Lemma 8 (OCDS Weights). Suppose 0 < wℓ, bj < 1 for
ℓ ∈ [k], j ∈ [p] and gds is the OCDS prediction as above. If

θds ∈ Rm is defined as

θdsj = log

(
enj

bj(k − 1)

1− bj

)
and θdsp+ℓ = log(enwℓ)

for j ∈ [p] and ℓ ∈ [k], then g(θ
ds) = gds.

Since G is essentially parameterized by all real weights, we
have to avoid weights that are infinite – hence the restriction
on w, b. Therefore, G doesn’t contain all OCDS predictions.

Lemma 9 (Informal). G contains all one-coin DS predic-
tions constructed by class frequencies wℓ and rule accura-
cies bj each not equal to 0 or 1.

7.2 COMPARING BF WITH DS

Suppose we took an arbitrary OCDS prediction gds. This
could be from EM after convergence, a single E step given
estimates of the accuracies/class frequencies, etc. To con-
tinue our discussion, we need to know what OCDS esti-
mates the rule accuracies and class frequencies to be. For
gds, performing the M step (essentially Agds) gives those
quantities. Call those estimates bds = (bds1 , . . . , bdsp) and
wds = (wds

1 , . . . , wds
k) respectively. Also, recall that the

rule accuracy/class frequency estimates given to BF are b,
w respectively while b∗, w∗ denote the empirical values.

To compare BF to OCDS, we will also decompose OCDS’
epistemic uncertainty into model and approximation uncer-
tainty. Let gds∗ be the OCDS prediction formed by using
the empirical rule accuracies and class frequencies (i.e. do
one E step with b∗, w∗). While G doesn’t contain all OCDS
predictions, it’s sufficiently large so that BF and OCDS have
the same model uncertainty.

Lemma 10.

d(η, gds)︸ ︷︷ ︸
Eds

= d(η, g∗)︸ ︷︷ ︸
Emod
ds

+ d(g∗, gds)︸ ︷︷ ︸
Eappr
ds

Eapprds = d(η, gds∗)− d(η, g∗)︸ ︷︷ ︸
Eappr
ds,1

+ d(η, gds)− d(η, gds∗)︸ ︷︷ ︸
Eappr
ds,2

The first equality follows from our Pythagorean theorem
(Lemma 5). One easily sees by substitution that the second
equality is true. By definition, Eapprds,1 ≥ 0. Moreover, it only
depends on A, η (because b∗, w∗ are from Aη). Thus, as
soon as the rules predictions and true label distribution are
fixed (i.e. A and η are fixed), Eapprds,1 is fixed. Eapprds,2 essen-
tially measures how well bds, wds estimate b∗, w∗. While
possibly negative, it tends to 0 as bds → b∗ and wds → w∗.
(Its exact form in terms of those quantities is shown in the
Appendix.) In the experiments, we show how the individual
contributions of Eapprds,1 and Eapprds,2 can vary for real datasets.

Before comparing BF and OCDS’ predictions, we first dis-
cuss OCDS’ consistency. For OCDS to be consistent, we
need to be able to bring Eapprds down to 0 for every problem.
To be concrete, we cannot talk about OCDS’ consistency in
a vacuum. The OCDS generative assumption only defines
the functional form of the posterior label probability (in
terms of the underlying class frequencies/rule accuracies,
Equation 7). In other words, the OCDS generative assump-
tion only defines the model uncertainty. To get a prediction,
one has to estimate those underlying quantities, e.g. by run-
ning EM. Thus, we have to talk about the consistency of
OCDS alongside an algorithm. In this paper, we focus our
attention on the consistency of OCDS paired with EM.

OCDS with EM is not consistent because we exhibit a prob-
lem (A, η) in the Appendix where EM never converges to
g∗. Note that since g∗ is unique (Theorem 6), we only have
to check convergence at that point. Essentially, if EM starts
at g∗ for that problem, then an M step followed by an E
step results in gds∗ ̸= g∗. This is because applying the
M step to g∗ gives b∗, w∗ – we show in the appendix that
Ag∗ = Aη = b∗. The E step with those quantities is gds∗

by definition.

Lemma 11. OCDS with EM is inconsistent because there
exists a problem where EM doesn’t converge at g∗.

For the BF prediction to be better than OCDS’, we need
d(η, gbf) ≤ d(η, gds). Using our loss decompositions, we
want to know when Emod

bf + Eapprbf ≤ Emod
ds + Eapprds . Since

Lemmata 5, 10 show Emod
bf = Emod

ds , we present a sufficient
condition for Eapprbf ≤ Eapprds to hold.

Lemma 12. Fix OCDS prediction gds. If ϵ (for BF) is s.t.

∥ϵ∥∞ ≤
d(η, gds∗)− d(η, g∗) + d(η, gds)− d(η, gds∗)

2∥θ∗∥1
,

then d(η, gbf) ≤ d(η, gds).

Proof Sketch. By Theorem 7, Eapprbf ≤ 2∥ϵ∥∞∥θ∗∥1. By
Lemma 10, Eapprds = d(η, gds∗) − d(η, g∗) + d(η, gds) −
d(η, gds∗). Substitute into Eapprbf ≤ Eapprds and rearrange.

Because Eapprds = d(g∗, gds) ≥ 0, the upper bound is non-
negative, showing the existence of a ball that ϵ has to lie in
for BF to have a better prediction than OCDS. We note that
this bound is very conservative and is not useful in practice
except for very small ϵ.

8 EXPERIMENTAL RESULTS

We now provide experimental results comparing BF
to one coin DS, but also other SOTA Weak Super-
vision (WS) methods on 10 real datasets. Visualiza-

Table 1: Dataset Statistics

Name, Dataset Source, Rule Source # Rules (p) # Train (n) # Valid

AwA [Xian et al., 2019], [Mazzetto et al., 2021] 36 1372 172
Basketball [Fu et al., 2020], [Fu et al., 2020] 4 17970 1064
Cancer [Wolberg et al., 1995], [Arachie and Huang, 2018] 3 171 227
Cardio [de Campos and Bernardes, 2010], [Arachie and Huang, 2018] 3 289 385
Domain [Peng et al., 2019], [Mazzetto et al., 2021] 5 2587 323
IMDB [Maas et al., 2011], [Ren et al., 2020] 8 20000 2500
OBS [Rajab, 2017], [Arachie and Huang, 2018] 3 239 317
SMS [Almeida and Hidalgo, 2012], [Awasthi et al., 2020] 73 4571 500
Yelp [Zhang et al., 2015], [Ren et al., 2020] 8 30400 3800
Youtube [Alberto and Lochter, 2017], [Snorkel AI Inc., 2022] 10 1586 120

Table 2: Comparison of BF Against Other WS Methods Using Average Log Loss

Method AwA Basketball Cancer Cardio Domain IMDB OBS SMS Yelp Youtube

MV 0.31 2.40 14.87 0.66 5.48 6.39 8.73 0.79 5.90 1.27
OCDS 0.24 3.75 4.46 13.74 22.32 2.91 6.28 0.78 1.73 17.63

DP 0.42 1.31 6.14 7.01 9.21 0.68 3.98 0.53 2.61 0.72
EBCC 0.13 0.45 4.25 0.90 1.80 0.73 2.23 0.43 0.81 0.69

HyperLM 0.21 1.31 6.93 0.60 1.29 0.62 2.66 0.68 0.60 0.42

AMCL CC 0.14 1.26 14.86 0.42 5.42 1.46 8.73 0.69 0.85 0.70
BF 0.13 0.39 0.68 0.20 1.12 0.59 0.61 0.42 0.64 0.50

1
nd(η, g

∗) 0.01 0.32 0.65 0.13 1.01 0.57 0.59 0.25 0.54 0.21

Table 3: Comparison of BF Against Other WS Methods Using Average 0-1 Loss and Average Brier Score

Method AwA Basketball Cancer Cardio Domain IMDB OBS SMS Yelp Youtube
0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS

MV 1.31 0.15 24.54 0.31 52.05 0.95 34.95 0.35 45.73 0.62 29.40 0.47 27.62 0.54 31.92 0.32 31.84 0.49 18.79 0.23
OCDS 2.11 0.04 11.29 0.23 52.05 1.02 39.79 0.80 80.17 1.60 49.81 0.95 27.62 0.55 9.67 0.18 46.74 0.72 52.40 1.05

DP 3.15 0.06 11.29 0.23 50.88 1.01 39.79 0.80 72.51 1.36 30.48 0.45 27.62 0.55 32.19 0.36 46.78 0.71 34.75 0.40
EBCC 1.57 0.03 36.33 0.29 52.05 1.03 39.79 0.62 48.23 0.74 28.26 0.45 27.62 0.55 8.16 0.25 36.02 0.51 52.40 0.50

HyperLM 2.55 0.10 36.36 0.45 52.05 0.94 7.96 0.31 41.98 0.65 27.74 0.41 27.62 0.45 53.73 0.50 32.92 0.41 20.37 0.26

AMCL CC 2.00 0.06 12.14 0.23 49.18 0.93 3.11 0.06 36.82 0.54 31.74 0.46 27.62 0.54 45.04 0.49 37.39 0.48 38.88 0.47
BF 3.67 0.06 11.40 0.22 40.47 0.49 3.11 0.08 36.75 0.55 29.33 0.41 27.62 0.42 13.50 0.25 34.42 0.45 24.34 0.33

g∗ 0.58 0.01 11.27 0.19 36.26 0.46 3.11 0.06 37.26 0.51 28.74 0.38 27.62 0.40 8.09 0.14 26.54 0.36 7.31 0.12

100 120 140 160
Labeled Points

0.00

0.05

0.10

0.15

0.20

0.25
Lo

g
Lo

ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)

d(, g*)

d(, gds *)

d(, gds)

Figure 2: BF/OCDS loss breakdowns on the AwA dataset
where Eapprds,1 = d(η, gds∗) − d(η, g∗) is large. The green
section (below solid line) is loss incurred by any prediction
in G.

100 150 200 250 300
Labeled Points

0.0

0.2

0.4

0.6

0.8

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)

d(, g*)d(, gds *)

d(, gds)

Figure 3: BF/OCDS loss breakdowns on the SMS dataset
where Eapprds,1 is small.

tions of BF and OCDS’ model and approximation un-
certainty are given, along with a synthetic experiment
demonstrating BF’s consistency. See the supplemen-
tary material or https://github.com/stevenan5/
balsubramani-freund-uai-2024 for the code and
the Appendix for the complete experimental results.

The other WS methods compared are Majority Vote (MV),
Data Programming (DP) [Ratner et al., 2016], a popular
generative WS method, EBCC [Li et al., 2019], a Bayesian
method, HyperLM [Wu et al., 2023], a Graph NN method,
and AMCL ‘Convex Combination’ [Mazzetto et al., 2021],
another adversarial WS method. All but BF and AMCL CC
are implemented in WRENCH [Zhang et al., 2021]. We con-
sider 10 real datasets from varying domains. See Table 1 for
the dataset/rule sources and some relevant statistics. Apart
from Domain with k = 5 classes, all other datasets had
k = 2 classes. Unless provided, validation sets are from
random splits with split sizes following the cited authors.
We evaluate how well each method labels the training set.

102 103 104 105

Points

10 6

10 4

10 2

KL
 D

iv
er

ge
nc

e

Mean KL Div.
Max/Min KL Div.

Figure 4: Convergence of g∗ to η on a synthetic dataset as n
increases.

BF, DP, EBCC, AMCL CC are each run 10 times due to
randomness in their methodology. For BF and AMCL CC,
the randomness is from the sampling of 100 labeled data-
points from the validation set. For BF, the raw estimates of
rule accuracies and class frequencies (our b) are bounded
via the Wilson score interval (following Brown et al. [2001])
with confidence 0.95 to obtain ϵ. OCDS’ EM algorithm is
initialized with the majority vote labeling and is run until
convergence, while DP and EBCC are run with the default
hyperparameters supplied in WRENCH.

Table 2 shows the average log loss 1
nd(η, g) of each method

while Table 3 shows the average 0-1 loss and average
Brier score. Bold entries are indistinguishable via two-tailed
paired t-test with p = 0.05. For Table 2, we see that BF’s
prediction has low log loss, beating out other methods on
most datasets. Also included is the BF/OCDS model un-
certainty 1

nd(η, g
∗). We can get g∗ by taking η to be the

ground truth labels and solving V (b∗, 0⃗m) a la Theorem 6.
The values for 1

nd(η, g
∗) being smaller than the values of

1
nd(η, g

bf) (the row above), is evidence for BF’s consis-
tency (i.e. BF can give the best estimator g∗). For Table 3,
we see that the loss for the BF prediction gbf is reasonable
with respect to average 0-1 loss and average Brier score
despite being chosen to guard against worst case log loss.

Figures 2, 3 show how OCDS’ loss breaks down when we
judge how well EM approximates the empirical rule accu-
racies and class frequencies. For every quantity of labeled
points, BF is run 10 times and the min/mean/max BF approx-
imation uncertainties are plotted. (Since we can compute
d(η, gbf) and d(η, g∗), we know Eapprbf via Lemma 5.) To
compute d(η, gds∗) = Eapprds,1 + d(η, g∗), we plug in the
empirical rule accuracies b∗/class frequencies w∗ into the
OCDS prediction – i.e. do one E step with those quantities.
Note that to maintain consistency with Table 2, we plot the
average loss rather than absolute loss. E.g. we write d(η, g∗)
when we’ve actually plotted 1

nd(η, g
∗). For AwA, d(η, gds∗)

https://github.com/stevenan5/balsubramani-freund-uai-2024
https://github.com/stevenan5/balsubramani-freund-uai-2024

(dashed line) is essentially the same as the BF loss. Com-
pare that to SMS, where that same quantity is very close to
the model uncertainty d(η, g∗), meaning OCDS’ reducible
error mainly comes from Eapprds,2 , or poor estimates of the
rule accuracies and class frequencies from EM.

Finally, we generated 10 binary label datasets with 3 rules
and 105 datapoints under the one-coin DS assumption. The
label distribution was drawn from Dirichlet(1, 1) while
each rule’s accuracy was drawn from Beta(2, 4/3). For
each dataset, BF was run on the first 102, 103, 104, 105 dat-
apoints, being given the empirical rule accuracies and class
frequencies each time. We measure 1

nd(η, g
∗), the average

KL divergence between the BF prediction and the under-
lying generative distribution η. This is done to empirically
demonstrate our notion of consistency under a simple gen-
erative setting. Indeed, it’s easy to show by inspection that
gds∗ → η as n → ∞. It turns out that g∗ → η as n → ∞
too. To be clear, we have abused notation – for each n, we
can get gds∗, g∗ via one E step/running BF respectively. We
want to remind the reader that the OCDS model generates a
hard label for each datapoint. Thus, the empirical rule accu-
racies/class frequencies (for fixed n) do not match their un-
derlying values. Since the BF prediction g∗ will induce the
empirical rule accuracies/class frequencies, i.e. Ag∗ = b∗,
not equal to the underlying rule accuracies/class frequencies,
g∗ ̸= η even though η ∈ G. Figure 4 shows a log-log scale
graph of min/average/max of 1

nd(η, g
∗) versus the number

of datapoints. We see that the average KL divergence to the
underlying distribution decreases exponentially fast.

9 DISCUSSION

The theoretical and empirical results presented in this paper
point toward the viability of adversarial weak supervision
methods in general. Multiple theoretical results are pre-
sented in support while experimental results demonstrate
real world performance.

First, we show the close relationship of BF with ℓ1 regular-
ized multi-class logistic regression.

Second, in showing that BF and OCDS have the same model
uncertainty, we not only reduce the problem of their com-
parison to comparing their approximation uncertainties, but
we ensured a fair comparison. I.e. neither model had an ad-
vantage out the gate by being more expressive than the other.
By comparing approximation uncertainties, we deduced the
existence of a region of ϵ’s where BF’s performance is no
worse than OCDS (Lemma 12). Moreover, BF’s approxi-
mation uncertainty only depends on how well the empirical
rule accuracies/class frequencies are estimated (Theorem 7)
while OCDS’ approximation uncertainty has a term that
depends on the problem specification. This means BF is
consistent while OCDS with EM is not (Lemma 11).

Third, for adversarial methods to be viable in practice, it’s

necessary (but not sufficient) that they be competitive or
outperform unsupervised methods when given labeled data.
With just 100 labeled points to estimate the rule accura-
cies and class frequencies, we observed results for BF that
are promising. A natural open question is whether one can
reduce the dependence of a method like BF on labeled data.

We also saw two scenarios involving BF’s consistency in
the experiments. First, we provided evidence of Theorem 6
in the last row of Table 2. That theorem shows how to com-
pute g∗, the best approximator to η. As predicted, d(η, g∗)
was shown to be smaller than d(η, gbf) for every dataset.
Not only that, having g∗ allowed the discussion of BF and
OCDS’ approximation uncertainty on real datasets (via Lem-
mas 5, 10). Second, we saw how g∗ → η as n → ∞ in a
setting with an underlying generative model. I.e. BF was
not too pessimistic in a favorable scenario.

To conclude, we want to touch on model and approximation
uncertainty in other WS methods, especially for the pur-
poses of introducing clarity. For example, although BF and
DP [Ratner et al., 2016] receive the same rules-of-thumb,
DP can have lower model uncertainty because it consid-
ers other factors, expanding its expressivity. Moreover, the
interplay between the two types of uncertainty is unclear:
Rühling Cachay et al. [2021a] showed that adding too many
factors for DP caused the quality of the resulting prediction
to decrease, i.e. the extra approximation uncertainty over-
shadowed the drop in model uncertainty. These notions of
uncertainty come into play when one is allowed to add rules-
of-thumb (e.g. [Varma and Ré, 2018]) or acquire labeled
data to better estimate model parameters. For example, the
approximation uncertainty of BF with 100 labeled points on
IMDB, OBS (Table 2) is very low. Thus, the main source
of loss is high model uncertainty, i.e. g∗ far from η, so one
shouldn’t acquire more labeled data to lower approximation
uncertainty.

Acknowledgements

We thank the National Science Foundation for support un-
der grant IIS-2211386, Santiago Mazuelas for bringing the
connection to logistic regression to our attention, Verónica
Álvarez for helping to curate the datasets used, and the
anonymous reviewers for their time and their suggestions,
which have undoubtedly improved the paper.

References

Tulio Casagrande Alberto and Johannes Von Lochter.
YouTube Spam Collection. UCI Machine Learning
Repository, 2017. DOI: https://doi.org/10.24432/C58885.

Tiago Almeida and Jos Hidalgo. SMS Spam Collec-
tion. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C5CC84.

Chidubem Arachie and Bert Huang. Adversarial Labeling
for Learning Without Labels. CoRR, abs/1805.08877,
2018.

Chidubem Arachie and Bert Huang. A General Framework
for Adversarial Label Learning. Journal of Machine
Learning Research, 22(118):1–33, 2021.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, and
Sunita Sarawagi. Learning from Rules Generalizing La-
beled Exemplars. In International Conference on Learn-
ing Representations, 2020.

Akshay Balsubramani and Yoav Freund. Optimally Combin-
ing Classifiers Using Unlabeled Data. In Peter Grünwald,
Elad Hazan, and Satyen Kale, editors, Proceedings of The
28th Conference on Learning Theory, volume 40 of Pro-
ceedings of Machine Learning Research, pages 211–225,
Paris, France, 03–06 Jul 2015a. PMLR.

Akshay Balsubramani and Yoav Freund. Scalable Semi-
Supervised Aggregation of Classifiers. In Proceedings
of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 1, NIPS’15, page
1351–1359, Cambridge, MA, USA, 2015b. MIT Press.

Akshay Balsubramani and Yoav Freund. Optimal Binary
Classifier Aggregation for General Losses. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems,
volume 29, pages 5032–5039. Curran Associates, Inc.,
2016.

Avrim Blum and Tom Mitchell. Combining Labeled and
Unlabeled Data With Co-Training. In Proceedings of
the Workshop on Computational Learning Theory, pages
92–100, 1998.

Stephen Boyd and Lieven Vandenberghe. Convex Op-
timization. Cambridge University Press, 2004. doi:
10.1017/CBO9780511804441.

Lawrence D. Brown, T. Tony Cai, and Anirban Das-
Gupta. Interval Estimation for a Binomial Proportion.
Statist. Sci., 16(2):101–133, 05 2001. doi: 10.1214/ss/
1009213286.

William Bruce Croft and Raj Das. Experiments With Query
Acquisition and Use in Document Retrieval Systems. In

Proceedings of the 13th International Conference on Re-
search and Development in Information Retrieval, pages
349–368, 1990.

Alexander Philip Dawid and Allan M. Skene. Maximum
Likelihood Estimation of Observer Error-Rates Using the
EM Algorithm. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 28(1):20–28, 1979. ISSN
00359254, 14679876.

Diogo Ayres de Campos and João Bernardes. Cardiotocog-
raphy. UCI Machine Learning Repository, 2010. DOI:
https://doi.org/10.24432/C51S4N.

Steven Diamond and Stephen Boyd. CVXPY: A Python-
embedded Modeling Language for Convex Optimiza-
tion. Journal of Machine Learning Research, 17(83):
1–5, 2016.

Daniel Y. Fu, Will Crichton, James Hong, Xinwei Yao,
Haotian Zhang, Anh Truong, Avanika Narayan, Ma-
neesh Agrawala, Christopher Ré, and Kayvon Fatahalian.
Rekall: Specifying Video Events using Compositions of
Spatiotemporal Labels. CoRR, abs/1910.02993, 2019.

Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M.
Hooper, Kayvon Fatahalian, and Christopher Ré. Fast
and Three-rious: Speeding up Weak Supervision with
Triplet Methods. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org,
2020.

Chao Gao and Dengyong Zhou. Minimax Optimal Conver-
gence Rates for Estimating Ground Truth from Crowd-
sourced Labels, 2013.

Peter D. Grünwald and Alexander Philip Dawid. Game
Theory, Maximum Entropy, Minimum Discrepancy and
Robust Bayesian Decision Theory. The Annals of Statis-
tics, 32(4):1367–1433, 2004. ISSN 00905364.

LLC Gurobi Optimization. Gurobi Optimizer Reference
Manual, 2021.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and
Epistemic Uncertainty in Machine Learning: An Intro-
duction to Concepts and Methods. Machine Learning,
110(3):457–506, Mar 2021. ISSN 1573-0565. doi:
10.1007/s10994-021-05946-3.

Hongwei Li and Bin Yu. Error Rate Bounds and Iterative
Weighted Majority Voting for Crowdsourcing, 2014.

Yuan Li, Benjamin I. P. Rubinstein, and Trevor Cohn. Ex-
ploiting Worker Correlation for Label Aggregation in
Crowdsourcing. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
3886–3895. PMLR, 09–15 Jun 2019.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. Learning
Word Vectors for Sentiment Analysis. In Proceedings of
the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies - Vol-
ume 1, HLT ’11, page 142–150, USA, 2011. Association
for Computational Linguistics. ISBN 9781932432879.

Santiago Mazuelas, Andrea Zanoni, and Aritz Pérez. Mini-
max Classification with 0-1 Loss and Performance Guar-
antees. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 302–312.
Curran Associates, Inc., 2020.

Santiago Mazuelas, Yuan Shen, and Aritz Pérez. Gener-
alized Maximum Entropy for Supervised Classification.
IEEE Transactions on Information Theory, 68(4):2530–
2550, 2022. doi: 10.1109/TIT.2022.3143764.

Alessio Mazzetto, Cyrus Cousins, Dylan Sam, Stephen H.
Bach, and Eli Upfal. Adversarial Multi Class Learning
Under Weak Supervision with Performance Guarantees.
In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 7534–7543. PMLR, 18–24 Jul 2021.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Tal-
walkar. Foundations of Machine Learning. The MIT
Press, 2nd edition, 2018. ISBN 0262039400.

MOSEK ApS. MOSEK Optimizer API for Python. Release
9.3.20, 2022. URL https://docs.mosek.com/9.
3/pythonapi.pdf.

Hukukane Nikaidô. On von Neumann’s Minimax Theorem.
Pacific J. Math, 4(1):65–72, 1954.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment Matching for Multi-
Source Domain Adaptation. In 2019 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
1406–1415, Los Alamitos, CA, USA, nov 2019. IEEE
Computer Society. doi: 10.1109/ICCV.2019.00149.

Adel Rajab. Burst Header Packet (BHP) flooding
attack on Optical Burst Switching (OBS) Network.
UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C51C81.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Ja-
son Fries, Sen Wu, and Christopher Ré. Snorkel: Rapid
Training Data Creation with Weak Supervision. The
VLDB Journal, 29(2):709–730, May 2020. ISSN 0949-
877X. doi: 10.1007/s00778-019-00552-1.

Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Sel-
sam, and Christopher Ré. Data Programming: Creating

Large Training Sets, Quickly. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29,
pages 3567–3575. Curran Associates, Inc., 2016.

Wendi Ren, Yinghao Li, Hanting Su, David Kartchner,
Cassie Mitchell, and Chao Zhang. Denoising Multi-
Source Weak Supervision for Neural Text Classifica-
tion. In Trevor Cohn, Yulan He, and Yang Liu, editors,
Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 3739–3754, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.334.

Salva Rühling Cachay, Benedikt Boecking, and Artur
Dubrawski. Dependency Structure Misspecification in
Multi-Source Weak Supervision Models. ICLR Workshop
on Weakly Supervised Learning, 2021a.

Salva Rühling Cachay, Benedikt Boecking, and Artur
Dubrawski. End-to-End Weak Supervision. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 1845–1857. Cur-
ran Associates, Inc., 2021b.

Snorkel AI Inc. Snorkel tutorials. https://github.
com/snorkel-team/snorkel-tutorials,
2022.

Paroma Varma and Christopher Ré. Snuba: Automating
Weak Supervision to Label Training Data. Proceedings
VLDB Endowment, 12(3):223–236, November 2018.

Yanshan Wang, Sunghwan Sohn, Sijia Liu, Feichen Shen,
Liwei Wang, Elizabeth J. Atkinson, Shreyasee Amin, and
Hongfang Liu. A Clinical Text Classification Paradigm
Using Weak Supervision and Deep Representation. BMC
Medical Informatics and Decision Making, 19, 2019.

William Wolberg, Olvi Mangasarian, and William Nick
Street. Breast Cancer Wisconsin (Diagnostic).
UCI Machine Learning Repository, 1995. DOI:
https://doi.org/10.24432/C5DW2B.

Renzhi Wu, Shen-En Chen, Jieyu Zhang, and Xu Chu.
Learning Hyper Label Model for Programmatic Weak
Supervision. In The Eleventh International Conference
on Learning Representations, 2023.

Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and
Zeynep Akata. Zero-Shot Learning—A Comprehensive
Evaluation of the Good, the Bad and the Ugly. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 41(09):2251–2265, sep 2019. ISSN 1939-3539.
doi: 10.1109/TPAMI.2018.2857768.

David Yarowsky. Unsupervised Word Sense Disambigua-
tion Rivaling Supervised Methods. In Proceedings of

https://docs.mosek.com/9.3/pythonapi.pdf
https://docs.mosek.com/9.3/pythonapi.pdf
https://github.com/snorkel-team/snorkel-tutorials
https://github.com/snorkel-team/snorkel-tutorials

the 33rd Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, 1995.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo
Zhao, and Chao Zhang. Fine-Tuning Pre-trained Lan-
guage Model with Weak Supervision: A Contrastive-
Regularized Self-Training Approach. In Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell,
Tanmoy Chakraborty, and Yichao Zhou, editors, Proceed-
ings of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 1063–1077. Association for Com-
putational Linguistics, 2021.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming
Yang, Mao Yang, and Alexander Ratner. WRENCH: A
Comprehensive Benchmark for Weak Supervision. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2021.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and
Alexander Ratner. A Survey on Programmatic Weak
Supervision, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-
level Convolutional Networks for Text Classification.
In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.,
2015.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I.
Jordan. Spectral Methods Meet EM: A Provably Opti-
mal Algorithm for Crowdsourcing. Journal of Machine
Learning Research, 17(102):1–44, 2016.

Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-
Supervised Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2009.

Convergence Behavior of an Adversarial Weak Supervision Method
(Appendix)

Steven An1 Sanjoy Dasgupta1

1Computer Science Department,

University of California, San Diego,

La Jolla, CA 92093, USA

A APPENDIX OVERVIEW

Here, we provide the missing proofs along with the remaining experimental results. We’ll recap the Balsubramani-Freund
(BF) model (with log loss) and the Dawid-Skene (DS) model (specifically the one-coin variant).

After the model recap, the order of results is as follows.

• Section C, statement and proof of Theorems 1 and 2, derivations of the optimal learner play and adversary labeling.

• Section D, discussion on the set of BF predictions.

• Section E, statement and proof of Lemma 3, BF’s relationship to logistic regression.

• Section F, statement and proof of Lemma 4, a Pythagorean theorem.

• Section G, a discussion of model and approximation uncertainty.

• Section H, statement and proof of Lemma 5, BF’s loss decomposition.

• Section I, statement and proof of an error bound for BF, with major steps fleshed out in subsequent subsections. Also
the proof of Theorem 7.

– Subsection I.1, exhibition of reference BF program, a prerequisite to sensitivity analysis result.

– Subsection I.2, relevant background and proof of sensitivity analysis result used.

– Subsection I.3, simplification of terms in sensitivity analysis result.

• Section J, statement and proof of Theorem 6, BF’s consistency. I.e. the learner’s prediction being the best approximator
for η when ϵ = 0⃗m.

• Section K, statement and proof of Lemma 9, showing that the exponential family G only contains DS predictions which
doesn’t use parameters that are 0 or 1.

• Section L, statement and proof of Lemma 10, the DS loss decomposition.

• Section M, statement and proof of Lemma 12.

• Section N, construction and analysis of a set of problems where DS is in general inconsistent (Lemma 11).

• Section O, the complete experimental results.

B MODEL RECAP

In this section, we recap the two models we consider.

mailto:<sla001@ucsd.edu>?Subject=[UAI 2024] Rules of Thumb Paper
mailto:<dasgupta@eng.ucsd.edu>?Subject=[UAI 2024] Rules of Thumb Paper

y

h(1)(x) h(2)(x) h(p)(x). . .

Figure 5: Dawid-Skene Graphical Model

Input :Predictions and unlabeled points
Output :Posterior distributions g ∈ ∆n

k

Initialize g using simple majority vote;
while g has not converged do

// Maximization Step
for j ∈ [p] do

bj ← 1
nj

∑n
i=1

∑k
ℓ=1 giℓ1(h

(j)(xi) = ℓ);
end
for ℓ ∈ [k] do

wℓ ←
∑n

i=1 giℓ/n;
end
// Expectation Step
for i ∈ [n], ℓ ∈ [k] do

ĝiℓ ← wℓ

∏p
j=1(bj)

1(h(j)(xi)=ℓ)
(

1−bj
k−1

)1(h(j)(xi) ̸=ℓ)

;

end
for i ∈ [n], ℓ ∈ [k] do

giℓ ← ĝiℓ/(
∑k

ℓ′=1 ĝiℓ′);
end

end
return g;

Algorithm 1: One Coin Dawid-Skene EM

B.1 NOTATION RECAP

Before going forward, we quickly review the notation. We have n datapoints X = {x1, . . . , xn} ⊂ Xn with labels in
Y = [k]. There are p rules of thumb in the ensemble, the jth rule is denoted h(j) : X → Y ∪ {?}. The ? denotes abstention.

In general, we will be dealing with n distributions, each over k elements, denoted by the set ∆n
k . The ground truth η is a

vector in ∆n
k . ηi ∈ ∆k is a distribution over k elements where

ηi = (ηi1, . . . , ηik) where ηiℓ = Pr (y = ℓ | xi) so that η = (η1, . . . , ηn).

We will also consider the empirical distribution Prn (·), which assigns probability mass 1/n to every datapoint xi.

B.2 DS MODEL

To estimate the probability of labels, the DS model posits an underlying generative model. By fitting the parameters of
this model, one is able to obtain estimates of label probabilities for every datapoint. The model assumed is simple: for a
datapoint and its label (x, y) ∈ X × Y , rule predictions h(1)(x), . . . , h(p)(x) are conditionally independent given label y
(see Figure 1).

The parameters of the DS model are the underlying class frequencies Pr(y = ℓ) and p confusion matrices. Each rule h(j) is

parameterized by a row stochastic confusion matrix Bj = bjℓℓ′ ∈ [0, 1]k×k where

bjℓℓ′ = Pr(h(j)(x) = ℓ′ | y = ℓ).

Since the rule predictions are conditionally independent given the label, the true posterior probability of the label is

Pr(y | h(j)(x), j ∈ [p]) =
Pr
(
y, h(j)(x), j ∈ [p]

)
Pr
(
h(j)(x), j ∈ [p]

) =
Pr (y)

∏p
j=1 Pr

(
h(j)(x) | y

)∑k
ℓ=1 Pr (y = ℓ)

∏p
j=1 Pr

(
h(j)(x) | y = ℓ

) . (8)

In practice, one estimates the confusion matrix entries and class frequencies, e.g. by EM, and plugs them in the right hand
side in lieu of their empirical counterparts.

For the one-coin DS model (OCDS), each rule is a biased coin. Whether or not it makes the correct prediction is independent
of the class and is the result of a coin flip. Call the bias (or accuracy) for rule h(j) bj . The confusion matrix can be defined as
follows.

bjℓℓ′ =

{
bj if ℓ = ℓ′

1−bj
k−1 otherwise.

We present the EM algorithm for the OCDS model in Algorithm 1. Recall that nj is the number of predictions rule h(j)

makes on X .

B.3 BF MODEL

If we could upper and lower bound the relevant parameters (class frequencies, accuracies) from the DS model, we can shrink
the possible labelings for the datapoints the adversary can choose. For element-wise inequality, we mean the adversary is
restricted to

P = {z ∈ ∆n
k : b− ϵ ≤ Az ≤ b+ ϵ}

where b is our estimate for b∗ := Aη and ϵ so large that b∗j ∈ [bj − ϵj , bj + ϵj] for each j. While we consider A as defined
in the main paper, this could be generalized. Then, the learner and adversary can play a zero-sum minimax game, where the
learner aims to maximize log-likelihood, while the adversary seeks to minimize it. That is,

V = max
g∈∆n

k

min
z∈P

z · log g.

Our goal is to upper bound −V , and with such a bound we can prove our claimed results.

For completeness, we restate the definition of A. Write each rule’s prediction h(j)(xi) as a vector in {0, 1}k, as follows:

h
(j)
i =

{
e⃗ℓ if h(j)(xi) = ℓ ∈ [k]

0⃗k if h(j)(xi) = ?

Here e⃗ℓ is the k-dimensional coordinate vector that is 0 except for a 1 at position ℓ, and 0⃗k is the k-dimensional zero vector.
We write all of h(j)’s predictions in vector form (abusing notation),

h(j) = (h
(j)
1 , . . . , h(j)

n) ∈ ∆n
k .

Thus h(j)
iℓ is 1 if h(j)(xi) = ℓ and 0 otherwise. Let nj denote the number of points (out of n possible) where rule h(j) makes

a prediction.

Letting a(j) be the jth row of matrix A ∈ Rm×kn where m = p+ k,

a(j) =

{
h(j)/nj when 1 ≤ j ≤ p

e⃗n
j−p/n when p+ 1 ≤ j ≤ p+ k = m.

e⃗n
ℓ is the ℓth canonical basis vector in k dimensions, repeated n times.

C PROOF OF THEOREMS 1 AND 2

We prove Theorem 1 by finding the dual of the two problems mentioned. Theorem 2 immediately follows from our
derivations in service of Theorem 1.

Theorem 13 (Theorem 1). The minimax game in Equation 5 can equivalently written as follows.

V = max
g∈∆n

k

min
z∈P

z · log g = min
z∈P

max
g∈∆n

k

z · log g = min
z∈P

z · log z

The first expression defines a learner prediction gbf , the second defines an adversarial labeling z∗. Then, gbf = z∗ and they
are the maximum entropy distribution in P , the optimal solution to the right-most expression.

Proof. The first equality is by definition. For the second equality, Von Neumann’s minimax theorem [Nikaidô, 1954] allows
the commutation of the max and min for the second equality – the objective is concave in g when z is fixed, convex in
z when g fixed, and the respective sets containing g, z are convex and compact. The third equality follows from Gibb’s
inequality: for the prediction/label distribution of datapoint xi, the objective is

∑k
ℓ=1 ziℓ log giℓ, which is maximized exactly

when giℓ equals ziℓ for all ℓ ∈ [k].

To show that the learner and adversary’s labelings are equal at optimality, we derive their forms in terms of Lagrange
multipliers, and show that the dual problems where the Lagrange multipliers come from are one and the same. To figure out
what gbf is, we find the dual of minz∈P z · log g and then perform the maximization over g. This is done in Lemma 14. In
going from the second to third expression in the claim, we have already performed the inner maximization over g. It suffices
to find the dual of the sum of max entropies problem. This is done in Lemma 15. One sees that the functional form and dual
problem are the same.

Lemma 14. The learner’s optimal prediction g for game

V = max
g∈∆n

k

min
z∈P

z · log g is giℓ =
exp(a

(σ′−σ)
iℓ)∑k

ℓ′=1 exp(a
(σ′−σ)
iℓ′)

.

σ, σ′ are gotten from optimizing the dual problem

V = V (b, ϵ) = max
σ,σ′≥0⃗m

[
(σ′ − σ) · b− (σ′ + σ) · ϵ−

n∑
i=1

log
(k∑

ℓ=1

exp(a
(σ′−σ)
iℓ)

)]
.

Proof. We find the Lagrange dual of the inner minimization problem first, then do the outer maximization over g. Let’s
associate Lagrange multiplier σ with Az ≤ b+ ϵ and σ′ with −Az ≤ −b+ ϵ. Observe that

min
z∈P

z · log g = max
σ,σ′≥0⃗m

min
z∈∆n

k

[z · log g + σ · (Az − b− ϵ) + σ′ · (−Az + b− ϵ)]

= max
σ,σ′≥0⃗m

min
z∈∆n

k

[
z · (log g −A⊤σ′ +A⊤σ) + σ · (−b− ϵ) + σ′ · (b− ϵ)

]
= max

σ,σ′≥0⃗m

[
n∑

i=1

min(log gi − a
(σ′−σ)
i) + (σ′ − σ)⊤b− (σ′ + σ)⊤ϵ

]
where the minimum and logarithm functions each act element-wise. This means that

max
g∈∆n

k

min
z∈P

z · log g = max
g∈∆n

k

max
σ,σ′≥0⃗m

[
n∑

i=1

min(log gi − a
(σ′−σ)
i) + (σ′ − σ)⊤b− (σ′ + σ)⊤ϵ

]
.

We can commute the maximums, and then consider how to maximize just one of the summands. That is sufficient because
each of the summands is one out of the n distributions in g. For simplicity, write a

(σ′−σ)
i as ai.

We claim that the optimal g is such that log gi − ai = Mi1k for some Mi ∈ R, i.e. it has the same value each of the k
positions. We’ll show this by contradiction. Suppose g′i is optimal and is such that log g′i− ai has different values at different
positions. The goal is to maximize the minimum element of vector f := log g′i − ai. We’ll show that if not all elements of
that vector are equal, then it’s possible to increase the minimum.

Without loss of generality, suppose that fℓ, ℓ ∈ [k] is a non-decreasing sequence with the added condition that f1 < f2. The
case where the minimum element of f appearing multiple times is an easy generalization of the below argument. Define
ξ = 0.5(f2 − f1), which is strictly positive by assumption. Now, for ℓ′ ≥ 2, define γℓ′ as the strictly positive value such that

log (g′iℓ′ − γℓ′)− aiℓ′ = f2 − ξ =
1

2
(f2 + f1) > f1.

If we create a new distribution g′′iℓ′ = giℓ′ − γℓ′ (for the same ℓ′ as above), we’ll have
∑k

ℓ′=2 γℓ′ extra probability mass.
Thus, if we give that extra mass to the first position, we have

log

(
g′i1 +

k∑
ℓ′=1

γℓ′

)
− ai1 > log(g′iℓ)− ai1 = f1.

Fully written out, the new distribution g′′i ∈ ∆k is defined as follows:

g′′iℓ =

{
g′iℓ − γℓ for ℓ ≥ 2

g′iℓ +
∑k

ℓ′=1 γℓ′ otherwise.

From our previous argument, we know that for all ℓ ∈ [k],

log(g′′iℓ)− aiℓ > f1

meaning g′i was not the optimal choice of distribution.

Now, we solve for Mi. For every ℓ ∈ [k],

log gi − ai = Mi1⃗k implies giℓ = exp(Mi + aiℓ).

Now since gi is a distribution over k elements,

k∑
ℓ=1

giℓ =

k∑
ℓ=1

exp(Mi + aiℓ) = 1 ⇒ Mi = − log

(
k∑

ℓ=1

exp(aiℓ)

)

We are able to immediately derive our claims. First, lets plug Mi back into our expression for giℓ. We have

giℓ =
exp(a

(σ′−σ)
iℓ)∑k

ℓ′=1 exp(a
(σ′−σ)
iℓ′)

.

Now, by substituting Mi for min(log gi − ai), the maximization problem is

max
σ,σ′≥0⃗m

[
(σ′ − σ)⊤b− (σ′ + σ)⊤ϵ−

n∑
i=1

log

(
k∑

ℓ=1

exp(a
(σ′−σ)
iℓ)

)]
.

Lemma 15. The adversary’s optimal labeling z for the game

V = min
z∈P

max
g∈∆n

k

z · log g is ziℓ =
exp(a

(σ′−σ)
iℓ)∑

ℓ′ exp(a
(σ′−σ)
iℓ′)

.

σ, σ′ are gotten from optimizing the dual problem

V = V (b, ϵ) = max
σ,σ′≥0⃗m

[
(σ′⊤ − σ)⊤b− (σ′ + σ)⊤ϵ−

n∑
i=1

log
(k∑

ℓ=1

exp(a
(σ′−σ)
iℓ)

)]
.

Proof. We have argued in the proof of Theorem 1 that the inner maximum to our problem can be dispensed with. In this
case, g = z. Thus, we just need to find the Lagrange dual of

min
z∈P

z · log z where P = {z ∈ ∆n
k : b− ϵ ≤ Az ≤ b+ ϵ}.

Define matrix D ∈ {0, 1}n×nk which is the block identity matrix in n dimensions, except rather than having a scalar in
each entry, one has a row vector of length k (that’s either all 0’s or 1’s). Namely, Dz = 1⃗n, the vector of n 1’s – D adds up
blocks of k elements of the vector z, which are defined to be distributions. The Lagrangian is then

L(z, σ, σ′, ξ) := z · log z + σ · (Az − b− ϵ) + σ′ · (−Az + b− ϵ) + ξ · (Dz − 1⃗n).

σ, σ′ ≥ 0 are for the constraints Az ≤ b+ ϵ and b− ϵ ≤ Az respectively, while ξ ∈ Rn is for the constraint that each block
of k elements in z adds to 1 (Dz = 1⃗n). There is no need for a constraint on the non-negativity of z as the functional form
of z is always non-negative.

To find the Langrange dual, we need to minimize over z. If we gather all the z’s together, we get

min
z∈Rnk

[
z ·
(
log z +A⊤σ −A⊤σ′ +D⊤ξ

)
+ σ · (−b− ϵ) + σ′ · (b− ϵ)− ξ · 1⃗n

]
.

Differentiating with respect to z gives

log z + 1⃗nk +A⊤σ −A⊤σ′ +D⊤ξ.

Setting to 0⃗nk gives the optimal z∗, which we write with exponential function acting element-wise:

z∗ = exp(−1⃗nk −A⊤σ +A⊤σ′ −D⊤ξ) = exp(−1⃗nk + a(σ
′−σ) −D⊤ξ)

where we used a(θ) = A⊤θ after grouping to get the term A⊤(σ′ − σ). Plugging z∗ in for z, we can write the Lagrangian as

L(z∗, σ, σ′, ξ) = − exp(−1⃗nk + a(σ
′−σ) −D⊤ξ) · 1⃗nk + σ · (−b− ϵ) + σ′ · (b− ϵ)− ξ · 1⃗n

In the dual program, we will need to maximize over all Lagrange multipliers. Indeed, we can maximize over ξ analytically.
We will solve for ξ1, but the argument will work for an arbitrary element of ξ. First, note that D⊤ξ is a vector of length
nk such that the first k elements are ξ1, the next k elements are ξ2, etc. Therefore, in the first k elements of the vector of
exponential values, D⊤ξ simplifies to ξ1. Also, note that in the way that our notation is defined, a(θ)1 is the length k vector
denoting the first k elements of the vector a(θ). Observe then that

∂

∂ξ1
L(z∗, σ, σ′, ξ) =

k∑
ℓ=1

exp(−1 + a
(σ′−σ)
1ℓ − ξ1)− 1.

Setting this equal to 0, one can see that

ξ∗1 = −1 + log

(
k∑

ℓ=1

exp
(
a
(σ′−σ)
1ℓ

))
.

From what we have said, we can plug in ξ∗1 to get the form of z∗1 in terms of σ and σ′.

z∗1 = exp
(
−1⃗k + a

(σ′−σ)
1 − ξ11⃗k

)
=

exp
(
a
(σ′−σ)
1

)
∑k

ℓ=1 exp
(
a
(σ′−σ)
1ℓ

)
where the division is element-wise. This gives us our result on the prediction form of the learner, as we know its prediction
matches the adversary’s labeling.

If we now look at the Lagrangian (after plugging in the optimal ξ), we see that the first term evaluates to −n because we are
summing over n softmaxes, i.e.

− exp(−1⃗nk + a(σ
′−σ) −D⊤ξ) · 1⃗nk = −

n∑
i=1

k∑
ℓ=1

exp
(
a
(σ′−σ)
iℓ

)
∑k

ℓ′=1 exp
(
a
(σ′−σ)
iℓ′

) = −
n∑

i=1

1.

One easily sees that

−
n∑

i=1

ξi = −
n∑

i=1

[
−1 + log

(
k∑

ℓ=1

exp
(
a
(σ′−σ)
iℓ

))]
= n−

n∑
i=1

log

(
k∑

ℓ=1

exp
(
a
(σ′−σ)
iℓ

))
.

This means that our dual function is[
σ · (−b− ϵ) + σ′ · (b− ϵ)−

n∑
i=1

log

(
k∑

ℓ=1

exp
(
a
(σ′−σ)
iℓ

))]
.

Maximizing over σ, σ′ both being non-negative in every element gives us our claim.

D EXPONENTIAL FAMILY OF BF PREDICTIONS

The matrix A ∈ Rm×nk used in the BF program defines a family of conditional probability distributions parameterized by
θ ∈ Rm, a vector of real weights. We write such a distribution as

g
(θ)
iℓ ∝ exp

(m∑
j=1

θja
(j)
iℓ

)
= exp(a

(θ)
iℓ).

The set of these predictions where θ is allowed to range is

Gbf := {g(θ) : θ ∈ Rm},

which is an exponential family of distributions. (Note that g(θ) ∈ ∆n
k .) Indeed, the BF predictions from Theorem 2 take this

form – just take θ = σ′ − σ.

E BF AND LOGISTIC REGRESSION (LEMMA 3)

Now, we turn to showing the relationship between BF and logistic regression.

We consider multiclass logistic regression for k classes trained on X , the dataset of n points. Say that each datapoint xi ∈ X
has d dimensions, i.e. xi ∈ Rd. Rather than have hard labels for points in X , we will allow the labels to be probability
distributions, ηi ∈ ∆k specifically. To estimate ηi, each class will get a score and the softmax of those scores will be taken.
To get class ℓ’s score, the datapoint features xi will be weighted by vector wℓ ∈ Rd and summed together via w⊤

ℓ xi. (We’re
abusing notation here because wℓ will later represent a class frequency). The logistic regression prediction for datapoint xi

and class ℓ is

glriℓ =
exp(w⊤

ℓ xi)∑k
ℓ′=1 exp(w

⊤
ℓ′xi)

which estimates ηiℓ.

In vector form, the class scores are Wxi, where W is a k × d matrix, row ℓ being wℓ. In words, the logistic regression
prediction form is the softmax of a weight matrix times feature vector. Recalling that logistic regression minimizes cross
entropy loss, the optimization problem is

min
W∈Rk×d

η⊤ log glr

To relate BF to logistic regression, we need to do two things. First is to convert the formulation of the BF constraints so that
the prediction form matches the logistic regression form. Second is to show that the dual form of the BF problem can be
converted into regularized cross entropy. At the end of this section we will show how to convert an instance of a multi-class
logistic regression problem into a BF problem.

Recall that A is matrix in Rm×nk. Say Ai is the m× k matrix for datapoint xi, consisting of columns k(i− 1) + 1 to ki.
The k scores that BF gives to datapoint i with weights θ is A⊤

i θ. We want to exhibit weight matrix Tθ and datapoint features
x̂i such that A⊤

i θ = Tθx̂i.

The idea is to flatten Ai into a vector while inflating θ into a matrix of the correct size. x̂i will take its elements from Ai.
Specifically x̂i ∈ Rmk will be Ai flattened in row major order. Each block of k elements in x̂i is a row of Ai. (We write ai,j
to mean the element of A at row i, column j – no relation to i, j in the rest of the appendix.)

x̂i = (a1,k(i−1)+1, a1,k(i−1)+2, . . . , a1,ki, . . . , am,k(i−1)+1, . . . , am,ki)
⊤

For the weights in matrix form, let Ik be the identity matrix in k dimensions. Call our weight matrix Tθ ∈ Rk×mk where

Tθ = (θ1Ik, θ2Ik, . . . , θmIk).

Lemma 16. For any datapoint index i and fixed weight vector θ, define x̂i and Tθ as above.

A⊤
i θ = Tθx̂i.

This means that the BF prediction can be written as the softmax of a weight matrix times feature vector, just like in logistic
regression.

Proof. Say aij is the (i, j)th element of matrix A. Then,

(A⊤
i θ)ℓ =

m∑
j=1

θjaj,k(i−1)+ℓ.

The new prediction for class ℓ on datapoint i is

(Tθx̂i)ℓ =

m∑
j=1

k∑
ℓ′=1

1(ℓ′ = ℓ)θjaj,k(i−1)+ℓ′ =

m∑
j=1

θjaj,k(i−1)+ℓ

which matches our expression above. This means that A⊤
i θ = Tθx̂i. So,

g
(θ)
iℓ =

exp(a
(θ)
iℓ)∑k

ℓ′=1 exp(a
(θ)
iℓ′)

=
exp((Tθx̂i)ℓ)∑k

ℓ′=1 exp((Tθx̂i)ℓ′)

Now, we can rewrite the BF dual program so it looks like ℓ1 regularized logistic regression. The regularization is different in
that there isn’t one regularization constant, but twice the number of weights being learned. Moreover, we learn m weights
for mk features, whereas regular multi-class logistic regression would learn mk2 weights for the same amount of features.

Lemma 17 (Lemma 3). Fix A, η, b, ϵ so that b∗ = Aη and the BF prediction gbf from Lemma 14 are fixed. The BF dual
from that problem is equivalent to ℓ1 regularized multi-class logistic regression where each weight gets two regularization
coefficients, depending on its sign. Let θ ∈ Rm and σ′

j , σj be the positive and negative parts of θj respectively.

−V (b, ϵ) = min
θ∈Rm

[
−η⊤ log g(θ)︸ ︷︷ ︸

cross entropy

+σ′⊤(b∗ − (b− ϵ)) + σ⊤(b− b∗ + ϵ)︸ ︷︷ ︸
regularization

]
.

Moreover, the optimal g(θ) from above equals gbf and can be written as a logistic regression style prediction.

Proof. We start by rewriting the BF program for fixed A, b, ϵ, η (Theorem 2).

V (b, ϵ) = max
σ,σ′≥0⃗m

[
(σ′ − σ) · b− (σ′ + σ) · ϵ−

n∑
i=1

log
(k∑

ℓ=1

exp(a
(σ′−σ)
iℓ)

)]
.

We will need b∗ = Aη, so we rewrite the (dual) function as

(σ′ − σ)⊤b∗ − σ′⊤(b∗ − b+ ϵ)− σ⊤(b− b∗ + ϵ)−
n∑

i=1

log
(k∑

ℓ=1

exp(a
(σ′−σ)
iℓ)

)

If we take θ to mean σ′ − σ, we recall this statement from the proof of Lemma 4:

log g
(θ)
iℓ = log

exp(a
(θ)
iℓ)∑k

ℓ′=1 exp(a
(θ)
iℓ′)

By using Aη = b∗ and θ = σ′ − σ, the BF dual function can be written as

η⊤A⊤θ −
n∑

i=1

log
(k∑

ℓ=1

exp(a
(θ)
iℓ)
)
− σ′⊤(b∗ − b+ ϵ)− σ⊤(b− b∗ + ϵ)

which becomes

n∑
i=1

k∑
ℓ=1

ηiℓ

(
log(exp(a

(θ)
iℓ))− log

(k∑
ℓ′=1

exp((A⊤θ)iℓ′)

))
− σ′⊤(b∗ − b+ ϵ)− σ⊤(b− b∗ + ϵ)

because
∑k

ℓ=1 ηiℓ = 1. Observe the term inside the outermost parentheses is just log g(θ)iℓ . Reintroducing the maximization,

V (b, ϵ) = max
θ∈Rm

[
η⊤ log g(θ) − σ′⊤(b∗ − b+ ϵ)− σ⊤(b− b∗ + ϵ)

]
which is

−V (b, ϵ) = min
θ∈Rm

[
− η⊤ log g(θ) + σ′⊤(b∗ − b+ ϵ) + σ⊤(b− b∗ + ϵ)

]
.

We now want to argue that this is a logistic regression problem. Clearly, we’re minimizing cross entropy with η. We
argue that the last two terms are equivalent to ℓ1 regularization. The usual regularization term would look like C∥θ∥1 for
some C ≥ 0. This is equal to

∑m
j=1 C|θj | =

∑m
j=1 C(σ′

j + σj), a weighted sum of non-negative values. This is because
|θj | = σ′

j +σj as σ′
j is the positive part of θj while σj is the negative part. The construction of P assumes b∗ ∈ [b− ϵ, b+ ϵ]

so that one can check that the coefficients for σ′, σ are non-negative. Therefore, the last two terms in the stated objective act
like ℓ1 regularization. To finish, we use the fact that the BF prediction g(θ) can be written in the logistic regression style,
Lemma 16.

We can also go from a ℓ1 regularized logistic regression loss to a BF problem. The matrix A will be defined in terms of the
datapoint features while b will be an expected value of the features. This means that b will not necessarily lie in the unit
interval. This specification of constraints is very similar to the “uncertainty sets” proposed by Mazuelas et al. [2020].

Lemma 18. Suppose one’s goal was to minimize a ℓ1 regularized logistic regression loss function written as below. Then,
the minimization of that loss function is equivalent to solving a BF problem.

min
wℓ∈Rd,ℓ∈[k]

[
−

n∑
i=1

k∑
ℓ=1

ηiℓ log
exp(w⊤

ℓ xi)∑k
ℓ′=1 exp(w

′⊤
ℓ xi)

+ C

k∑
ℓ=1

∥wℓ∥1

]

The constraint matrix A will have size dk × nk where d is the dimension of xi. In block matrix form (where the blocks
are scaled identity matrices), the block in row c column i of A is (xi)cIk. That is, the cth feature of datapoint xi times the
identity matrix in k dimensions. The constraints for BF are z ∈ ∆n

k and

b∗ − C1⃗dk ≤ Az ≤ b∗ + C1⃗dk where b∗k(c−1)+ℓ =

n∑
i=1

(xi)cηiℓ.

Proof. To prove this, we essentially work backwards from the result above. We need to specify a matrix A and we also need
ϵ.

We first go from the regularization coefficient C to a choice of b and ϵ. Note that in the above proof, the regularization
constants had either b− b∗ or b∗ − b. These two values can be different. However, since we only have a single value C, we
will choose b = b∗ and ϵ = C.

We will need A to be of size dk × nk because for multi-class logistic regression, one learns dk weights. Like above, we
define Ai ∈ Rdk×k, the part of the constraint matrix for datapoint xi. (The Ai’s are concatenated horizontally to form A.)
Then,

Ai =


(xi)1Ik
(xi)2Ik

...
(xi)dIk

 .

To see that this is correct, we write the logistic regression weights as a dk length vector w.

ŵ = (w11, w21, . . . , wk1, w12, w22, . . . , wk2, . . . , w1d, . . . , wkd)
⊤

Basically, the k weight vectors are interleaved. For index i of ŵ, the element comes from the weight vector for class i
mod k. Concretely, ŵk(c−1)+ℓ = wℓc, the cth element of class ℓ’s weight vector. We will now show that (A⊤

i ŵ)ℓ = w⊤
ℓ xi.

(A⊤
i ŵ)ℓ =

d∑
c=1

k∑
ℓ′=1

1(ℓ′ = ℓ)(xi)cŵk(c−1)+ℓ′ =

d∑
c=1

(xi)cŵk(c−1)+ℓ

However, by virtue of the definition of ŵ, we see that that last sum is exactly w⊤
ℓ xi.

To conclude the proof, we just need to specify b∗. b∗ will be equal to Aη, so we compute element k(c− 1) + ℓ of that vector.

b∗k(c−1)+ℓ = (Aη)k(c−1)+ℓ =

n∑
i=1

k∑
ℓ′=1

1(ℓ = ℓ′)(xi)cηiℓ′ =

n∑
i=1

(xi)cηiℓ.

F PYTHAGOREAN THEOREM (LEMMA 4)

Lemma 19 (Lemma 4). Pick any θ, θ′ ∈ Rm and write g = g(θ) and g′ = g(θ
′). If Ag = Aη, then

d(η, g′) = d(η, g) + d(g, g′).

Proof. We begin with

d(η, g′)− d(η, g) =

n∑
i=1

k∑
ℓ=1

ηiℓ log
ηiℓ
g′iℓ
−

n∑
i=1

k∑
ℓ=1

ηiℓ log
ηiℓ
giℓ

=

n∑
i=1

k∑
ℓ=1

ηiℓ log
giℓ
g′iℓ

.

For g = g(θ), we have

log giℓ = log
exp(a

(θ)
iℓ)∑k

ℓ′=1 exp(a
(θ)
iℓ′)

= a
(θ)
iℓ − logZ

(θ)
i ,

where Z
(θ)
i is a shorthand for

∑k
ℓ′=1 exp(a

(θ)
iℓ′). Thus

d(η, g′)− d(η, g) =

n∑
i=1

k∑
ℓ=1

ηiℓ

(
a
(θ)
iℓ − logZ

(θ)
i − a

(θ′)
iℓ + logZ

(θ′)
i

)
= η · a(θ) − η · a(θ

′) +

n∑
i=1

(logZ
(θ′)
i − logZ

(θ)
i)

Now, by assumption Ag = Aη. This means that for any θ ∈ Rm, θ · Ag = θ · Aη. Written another way, for the same θ,
η · a(θ) = g · a(θ), whereupon

d(η, g′)− d(η, g) = g · a(θ) − g · a(θ
′) +

n∑
i=1

(logZ
(θ′)
i − logZ

(θ)
i)

=

n∑
i=1

k∑
ℓ=1

giℓ

(
a
(θ)
iℓ − logZ

(θ)
i − a

(θ′)
iℓ + logZ

(θ′)
i

)
=

n∑
i=1

k∑
ℓ=1

giℓ log
giℓ
g′iℓ

= d(g, g′).

G MODEL AND APPROXIMATION UNCERTAINTY

For both BF and one-coin DS (with EM), their respective models use quantities that are estimated. For BF, it’s given
estimates of the rule accuracies and class frequencies, while for OCDS, EM estimates those same quantities. We would like
to know how much of each method’s error results from the fact that it is receiving estimated quantities in comparison to error
that’s unavoidable to the method. We will say the set of unlabeled datapoints X is fixed, along with the rules h(1), . . . , h(p),
their predictions on X , and true label probabilities η.

Formally, abuse notation and say that all possible predictions a method can make lies in the set G ⊆ ∆n
k . By choosing

a method (read: by choosing BF/OCDS), one is choosing G. Thus, the unavoidable error from choosing that method is
ming∈G d(η, g). That quantity is referred to as the model uncertainty or Emod. Now, in general, the method doesn’t output
the best approximator from the set of possible predictions to η due to a variety of factors. These could be how the method
is initialized, how the hyperparameters are set, etc. Suppose that the best approximator to η is unique. This will be what
happens with our choice of d(·, ·) (Theorem 27). If the method predicts g, then the excess error from predicting g over
g∗ = argming∈G d(η, g) is d(g∗, g). We call this the approximation uncertainty or Eappr.

Taken together, these form a learner’s epistemic uncertainty. Epistemic as in these sources of uncertainty are from our lack
of knowledge. For model uncertainty, it would be sufficient to choose a method such that it can exactly predict η. Then,
one would have no model uncertainty. Of course this is extremely non-trivial if you wish to choose a method with limited
expressivity. Indeed, one could pick a method that was a universal approximator. For approximation uncertainty, one can in
theory give the method the perfect hyperparameters, initialization, or stop it early. For example, the method might do a form
of gradient descent and only stops after convergence. However, it may be optimal to take the method’s prediction before
convergence. In other words, one has approximation uncertainty when they do not know the best way to use the method to
make it output g∗. If we call the epistemic uncertainty E , the model uncertainty Emod, and the approximation uncertainty
Eappr, we have

E = Emod︸ ︷︷ ︸
d(η,g∗)

+ Eappr︸ ︷︷ ︸
d(g∗,g)

.

Just predicting η is not the end all. In the end, we are interested in the labels of points x1, . . . , xn. However, if the true label
for a datapoint is a distribution there is uncertainty on what the actual label is. For example, we may have some information
about someone who smokes. Since not all smokers get cancer, there is uncertainty about whether they will get cancer. In that
sense there is a distribution over the two outcomes representing whether they get cancer. This kind of uncertainty about the
label is aleatoric.

Aleatoric uncertainty is not reducible and does not concern us. However, epistemic uncertainty is (in theory) reducible
and we are concerned with this quantity. Indeed, our discussion here is in line with the ideas found in [Hüllermeier and
Waegeman, 2021]. The main difference is that they suggest that the hypothesis space (our G) should be fixed to be able to
discuss aleatoric and epistemic uncertainty without ambiguity. However, we are allowing the hypothesis space (G) to change
with the model. So, if the reader is unsatisfied with how we use the terms “aleatoric”, “epistemic”, “model”, “approximation”
uncertainty, then they may refer to the mathematical quantities we have associated each of those terms with.

We now go through two examples and explain what the model and approximation uncertainties are. A method with all
its epistemic uncertainty coming from the model uncertainty is majority vote. It only ever makes 1 prediction gmv, i.e. G
contains 1 point. Therefore, gmv is the best approximator for η. There is no approximation uncertainty because the method
does not estimate anything. Now, suppose we considered weighted majority vote. For simplicity, say that none of the rules
abstain and that the weights form a distribution. In other words, we take a convex combination of the rule predictions.
Here, one can compute the optimal convex combination such that the resulting prediction gwmv∗ is closest to η. The
distance between the two is the model uncertainty. However, one may not be able to compute the optimal combination.
The approximation uncertainty is the distance from some weighted majority vote prediction gwmv to the optimal weighted
majority vote prediction gwmv∗.

We now want to disambiguate and be very clear. Because we have chosen d(·, ·) to be KL divergence (of the sum thereof),
the Pythagorean theorem we showed in Section F makes it so E = d(η, g) when Emod = d(η, g∗) and Eappr = d(g∗, g). If
one wants to choose another d(µ, ν) : ∆n

k ×∆n
k → R, one may need to write

Eappr = d(η, g)− d(η, g∗).

Now, because we decompose the error of BF and OCDS into model and approximation uncertainty, we are able to easily
compare the two. We’ll see that BF and OCDS have the same model uncertainty, meaning the comparison between the two
models is fair. I.e. the unavoidable prediction loss for predictions from each model is the same. Contrast that to recent work
in the literature with models that add rules-of-thumb in the process of creating labels for datapoints in X , e.g. Varma and Ré
[2018]. There, the model uncertainty is being reduced and a naive comparison to a method that doesn’t add rules-of-thumb
would be unfair.

H BF LOSS DECOMPOSITION (LEMMA 5)

We’re ready now to decompose the loss of any BF prediction. We’ll show that the optimal approximator g∗ to η satisfies the
property needed to apply the Pythagorean theorem we just proved (Lemma 4) later.

Lemma 20 (Lemma 5).
d(η, gbf)︸ ︷︷ ︸

Ebf

= d(η, g∗)︸ ︷︷ ︸
Emod
bf

+ d(g∗, gbf)︸ ︷︷ ︸
Eappr
bf

.

Proof. By Corollary 28, we know that Aη = Ag∗. So, in Lemma 4, choose g′ to be the BF prediction gbf and g to be g∗.
The result is immediate.

I THE BF BOUND AND PROOF OF THEOREM 7

We now present an error bound for the BF program we have stated. This bound is used to show that BF dominates DS when
ϵ = 0⃗m, lets us compare BF and DS when ϵ is not all zeros, and gives rates of convergence for consistency. The proof is
presented with just the major steps needed to get the bound. In the following sections, each of the major steps are proved.

Theorem 21. Let gbf be the prediction from BF when it’s given P = {z ∈ ∆n
k : b− ϵ ≤ Az ≤ b+ ϵ}. Also, fix an arbitrary

prediction gref = g(θ
ref) ∈ Gbf and call it the reference prediction. Then,

d(η, gbf) ≤ −V (b, ϵ) + η · log η ≤ d(η, gref) + 2ϵ⊤|θref | ≤ d(η, gref) + 2∥ϵ∥∞
∥∥θref∥∥

1
.

From this result, we can write the upper bound in terms of model and approximation uncertainty. Let g∗ = g(θ
∗) :=

argming∈Gbf
d(η, g). By definition, g∗ ∈ Gbf . By also recalling that d(η, gbf) = d(η, g∗) + d(g∗, gbf) (Lemma 20), we

get the following.

Corollary 22 (Theorem 7). Suppose we had the same assumptions as the above theorem. Then,

d(η, gbf) ≤ d(η, g∗) + 2ϵ⊤|θ∗| ≤ d(η, g∗) + 2∥ϵ∥∞∥θ∗∥1

and both 2ϵ⊤|θ∗|, 2∥ϵ∥∞∥θ∗∥1 serve as upper bounds to BF’s approximation uncertainty d(g∗, gbf) = Eapprbf .

Proof of Theorem 21. We’ll first argue why to bound d(η, gbf), it’s sufficient to upper bound −V (b, ϵ). Recall from
Lemma 15

−V (b, ϵ) = −min
z∈P

max
g∈∆n

k

z⊤ log g = max
z∈P

min
g∈∆n

k

−z⊤ log g = max
z∈P
−z⊤ log gbf .

It’s clear that the right hand term is larger than or equal to −η⊤ log gbf , so, −V (b, ϵ) + η · log η ≥ d(η, gbf). Indeed,
−V (b, ϵ) can have its value be computed from a convex program.

We use a sensitivity analysis result to upper bound that convex program’s optimal objective value. The program whose
objective value we wish to bound is the arbitrary program. E.g. the convex program whose optimal value is −V (b, ϵ) is the
arbitrary program. In essense, the result says that if there’s another convex program (call it the reference program) with
sufficiently similar constraints to the arbitrary program, we can bound the arbitrary program’s objective by the reference
program’s objective plus a weighted sum of the reference program’s optimal Lagrange multipliers. We will construct a
reference program from our chosen reference prediction gref and denote its optimal Lagrange multipliers by σref and σ′ref .
The polytope constraint in the reference program will involve the same matrix A, but will have the constraints Az ≤ b̂ and
−Az ≤ −b̂. One can ignore what b̂ is for now. Before we present the bound, define ϵ+ = b+ ϵ− b∗, the total overestimate
of b∗ and ϵ− = b∗ − b+ ϵ, the total underestimate of the same quantity. Corollary 25 states

−η log gbf ≤ −g(θ
ref) · log g(θ

ref) + (σ′ref − σref)⊤(̂b− b∗) + ϵ+⊤σref + ϵ−⊤σ′ref .

Now, what remains is for us to simplify the terms in the upper bound. Note that by definition, θref = σ′ref − σref .
Lemma 26 states that

θref⊤(̂b− b∗) = (g(θ
ref) − η)⊤ log g(θ

ref).

This means that we can simplify our above bound to

−η log gbf ≤ −g(θ
ref) · log g(θ

ref) + (g(θ
ref) − η)⊤ log g(θ

ref) + ϵ+⊤σref + ϵ−⊤σ′ref

= −η · log g(θ
ref) + ϵ+⊤σref + ϵ−⊤σ′ref .

To continue, observe that by definition, b∗ ∈ [b − ϵ, b + ϵ]. This means that for every element j, |bj − b∗j | ≤ ϵj . So,
ϵ+, ϵ− ≤ 2ϵ. Thus if we take | · | to be element-wise absolute value,

ϵ+⊤σref + ϵ−⊤σ′ref ≤ 2ϵ · |θref | ≤ 2∥ϵ∥∞∥θref∥1.

We get the first inequality because we will construct the reference weights σref , σ′ref so that for any element j, only one of
σref
j and σ′ref

j will be non-zero. Putting everything we have so far together, we have

−η · log gbf ≤ −V (b, ϵ) ≤ −η · log g(θ
ref) + 2ϵ · |θref | ≤ −η · log g(θ

ref) + 2∥ϵ∥∞∥θref∥1.

Adding η · log η to each of the four sections of the inequality gives us our claim.

I.1 REFERENCE PROGRAM

We now construct a BF program where an arbitrary g = g(θ) ∈ Gbf is the optimal solution. This is equivalent to fixing a
vector θ ∈ Rm.

Theorem 23. Suppose we had some fixed but arbitrary g = g(θ) ∈ Gbf and define b̂ = Ag(θ). Also, define our Lagrange
multipliers

σi =

{
−θi if θi < 0

0 otherwise
and σ′

i =

{
θi if θi ≥ 0

0 otherwise.

Then, g and σ, σ′ are jointly optimal for the maximum entropy problem

min
z∈P

z · log z where P = {z ∈ ∆n
k : b̂ ≤ Az ≤ b̂}.

Proof. We state the KKT conditions and show that they are satisfied. The convex program in question is

min
Az−b̂≤0

−Az+b̂≤0

Dz=1⃗n

z · log z.

Say we associate (like in the proof of Theorem 2) the Lagrange multipliers ξ with constraint Dz − 1⃗n = 0⃗n. Before stating
the KKT conditions concretely, note that by construction, Slater’s condition is satisfied because we have all affine constraints
and the feasible region is non-empty (see Boyd and Vandenberghe [2004], Section 5.2.3). To show that a pair of primal and
dual variables z, σ, and σ′ are jointly optimal, it is necessary and sufficient to satisfy

Az − b̂ ≤ 0

−Az + b̂ ≤ 0

Dz − 1⃗n = 0

σ ≥ 0

σ′ ≥ 0

σi(Az − b̂)i = 0 i = 1, . . .

σ′
i(−Az + b̂)i = 0 i = 1, . . .

∇z

[
z · log z + σ⊤(Az − b̂) + σ′⊤(−Az + b̂) + ξ⊤(Dz − 1⃗n)

]
= 0.

Of course, we will be considering z = g(θ). The first three requirements are met by construction. To see that the third
requirement is met, note that by construction, g(θ) ∈ ∆n

k , meaning that every k elements sum to one, which is what
Dz = 1⃗n requires. Also, we have constructed σ and σ′ to be non-negative. Now, since Az = b̂, the complementary slackness
conditions are trivially satisfied. To see that the zero gradient condition is satisfied, note that in solving for the functional
form of the learner’s prediction (or adversary’s labeling), we took the gradient of the Lagrangian and set the gradient equal
to 0 and solved for z. In us choosing σds, we use the functional form of z, so we automatically satisfy the zero gradient
condition. Therefore, all of the KKT conditions are satisfied.

I.2 SENSITIVITY ANALYSIS OF AN ARBITRARY BF PROGRAM

We now want to write an arbitrary BF program as an instance of the reference program with perturbed constraints. This will
allow us to bound −V (b, ϵ). Define our perturbed problem as follows.

V ∗(̂b, u1, u2) := min
Az−b̂≤u1

−Az+b̂≤u2

Dz−1⃗n=0⃗n

z · log z.

If u1 = u2 = 0, i.e. V ∗(̂b, 0, 0), then we get our reference program. Recall that we have defined ϵ+ = b + ϵ − b∗ and
ϵ− = b∗ − b+ ϵ. So, if we choose

u1 = −b̂+ b∗ + ϵ+ and u2 = b̂− b∗ + ϵ−,

we have
V ∗(̂b,−b̂+ b∗ + ϵ+, b̂− b∗ + ϵ−) = min

Az−b̂≤−b̂+b∗+ϵ+

−Az+b̂≤b̂−b∗+ϵ−

Dz−1⃗n=0⃗n

z · log z = V (b, ϵ)

which is the arbitrary BF program whose optimal value we have discussed beforehand. In the proof of Theorem 21, we saw
that −V (b, ϵ) ≥ −η⊤ log gbf . So, getting a lower bound for V ∗(̂b, u1, u2) (with appropriately chosen u1, u2) would give an
upper bound for −V (b, ϵ).

Boyd and Vandenberghe [2004] provide a global sensitivity result (Section 5.6.2). We state the result for our program
without proof. Indeed, the requirement for the following result is that the reference or unperturbed program satisfy Slater’s
condition, which we have argued for in Section I.1. We associate σref with the upper bound for Az, i.e. Az − b̂ ≤ 0, while
σ′ref is associated with −Az + b̂ ≤ 0.

Theorem 24 (Boyd and Vandenberghe [2004] Section 5.6.2, Equation 5.57). If σ and σ′ are dual optimal for the unperturbed
(or reference) problem, then for all u1 and u2, we have

V ∗(̂b, u1, u2) ≥ V ∗(̂b, 0, 0)− σref⊤u1 − σ′ref⊤u2.

The result we use in the proof of the BF bound follows from plugging in our choices for u1 and u2 and rearranging.

Corollary 25.

−η log gbf ≤ −g(σ
ref) · log g(σ

ref) + (σ′ref − σref)⊤(̂b− b∗) + ϵ+⊤σref + ϵ−⊤σ′ref

Proof. First, reverse the direction of the inequality in Theorem 24.

−V ∗(̂b, u1, u2) ≤ −V ∗(̂b, 0, 0) + σref⊤u1 + σ′ref⊤u2.

Plugging in
u1 = −b̂+ b∗ + ϵ+ and u2 = b̂− b∗ + ϵ−

as chosen above gives
−gbf · log gbf ≤ −gref · log gref + σref⊤u1 + σ′ref⊤u2.

because by construction, V (̂b, u1, u2) = gbf · log gbf and V ∗(̂b, 0, 0) = V (̂b, 0) = gref · log gref . Explicitly expanding
u1, u2 gives

−η · log gbf ≤ −gref · log gref + (σ′ref − σref)⊤(̂b− b∗) + ϵ+⊤σref + ϵ−⊤σ′ref

where we recall that in Theorem 21, we showed that −η · log gbf ≤ −gbf · log gbf .

I.3 SIMPLIFICATION OF TERMS IN SENSITIVITY ANALYSIS

We wish to now simplify the term (σ′ref−σref)⊤(̂b−b∗). Recall that by construction of σref and σ′ref that σ′ref−σref =

θref . So, we analyze θref⊤(̂b− b∗).

Lemma 26.
θref⊤(̂b− b∗) = (g(θ

ref) − η)⊤ log g(θ
ref).

Proof. Observe that by definition and construction respectively, b∗ = Aη and b̂ = Ag(θ
ref). Therefore, the left hand side of

our claim can be written as

θref⊤(̂b− b∗) = θref⊤(A(g(θ
ref) − η)) = (g(θ

ref) − η)⊤A⊤θref .

But by definition, that’s equal to

(g(θ
ref) − η)⊤a(θ

ref) =

n∑
i=1

k∑
ℓ=1

(g
(θref)
iℓ − ηiℓ)a

(θref)
iℓ .

Since g
(θref)
i and ηi are each distributions (in ∆k), for any constant, especially

Z
(θref)
i := log

(k∑
ℓ=1

a
(θref)
iℓ

)
, we have

k∑
ℓ=1

(g
(θref)
iℓ − ηiℓ)Z

(θref)
i = 0.

Using this, we can subtract 0 to our above sum to get

n∑
i=1

k∑
ℓ=1

(g
(θref)
iℓ − ηiℓ) log(exp(a

(θref)
iℓ))−

n∑
i=1

k∑
ℓ=1

(g
(θref)
iℓ − ηiℓ)Z

(θref)
i

=

n∑
i=1

k∑
ℓ=1

(g
(θref)
iℓ − ηiℓ) log

(
exp(a

(θref)
iℓ)

Z
(θref)
i

)

But, the term inside the logarithm is exactly g
(θref)
iℓ and our claim is proved.

J PROOF OF THEOREM 6

Theorem 27 (Theorem 6). There is only one best approximator to η in G, i.e. argming∈G d(η, g) has only one element.
Call that best approximator g∗ = g(θ

∗) ∈ G. When ϵ = 0⃗m, the learner’s prediction gotten from solving V (b∗, 0⃗m), call it
gbf∗, is exactly g∗.

Proof. We begin by stating Theorem 21 with ϵ = 0⃗m. For any g ∈ Gbf ,

d(η, gbf∗) ≤ d(η, g).

This implies that
gbf∗ ∈ argmin

g∈G
d(η, g).

To show all claims, we need to show that gbf∗ is the only element in the set of best approximators to η. Since gbf∗ is the
optimal solution to V (b∗, 0⃗m), it follows that Agbf∗ = b∗ = Aη. Now, suppose for contradiction that there existed another
g(θ

′) ∈ G where g(θ
′) ̸= g∗ and

g(θ
′) ∈ argmin

g∈G
d(η, g).

That is, there are two different best approximators to η from G. This means that d(η, gbf∗) = d(η, g(θ
′)). Since gbf∗ ∈ G

and Agbf∗ = Aη, we can use the Pythagorean theorem (Lemma 19) to see that

d(η, g(θ
′)) = d(η, gbf∗) + d(gbf∗, g(θ

′)).

But from what we have just said, we have

0 = d(gbf∗, g(θ
′)) =

n∑
i=1

k∑
ℓ=1

gbf∗⊤iℓ log

(
gbf∗iℓ

g
(θ′)
iℓ

)

It suffices to show that the only way this equality can hold is when g(θ
′) = gbf∗ element-wise. This would contradict our

assumption that gbf∗ ̸= g(θ
′).

To derive the contradiction, divide the RHS by
∑n

i=1

∑k
ℓ=1 g

bf∗
iℓ = n to get

− 1

n

n∑
i=1

k∑
ℓ=1

gbf∗⊤iℓ log

(
g
(θ′)
iℓ

gbf∗iℓ

)
.

Observe that − log(·) is a convex function. Therefore, by Jensen’s inequality,

− 1

n

n∑
i=1

k∑
ℓ=1

gbf∗⊤iℓ log

(
g
(θ′)
iℓ

gbf∗iℓ

)
≥ − 1

n

n∑
i=1

k∑
ℓ=1

log

(
gbf∗iℓ

g
(θ′)
iℓ

gbf∗iℓ

)
= 0.

The equality condition of Jensen’s inequality states that the inequality above is equality if and only if for all i, i′ ∈ [n], ℓ, ℓ′ ∈
[k],

gbf∗iℓ

g
(θ′)
iℓ

=
gbf∗i′ℓ′

g
(θ′)
i′ℓ′

= R

where R ∈ R \ {0} is the common ratio. Recall that by definition, for each i ∈ [n]

k∑
ℓ=1

gbf∗iℓ =

k∑
ℓ=1

g
(θ′)
iℓ = 1

For fixed but arbitrary i ∈ [n], using the common ratio, we have

1 =

k∑
ℓ=1

gbf∗iℓ =

k∑
ℓ=1

Rg
(θ′)
iℓ = R.

Therefore, Jensen’s inequality turns into an equality only when gbf∗ = g(θ
′) element-wise. This finishes the argument by

contradiction and we conclude that gbf∗ is the unique best approximator to η from the set G. Therefore, gbf∗ = g∗.

Corollary 28. Ag∗ = Aη.

Proof. Observe that the following equalities hold:

Aη = b∗ = Agbf∗ = Ag∗.

The first equality is by definition. The second and third equalities follow by the previous result (Theorem 27). Namely,
Agbf∗ = b∗ by construction and it was shown above that gbf∗ = g∗.

K ALMOST ALL OCDS PREDICTIONS ARE IN Gbf

We show now that almost all DS predictions fall into the exponential family of BF predictions Gbf . The main restriction is
that elements in the DS prediction (See Equation 8) cannot be 0 or 1. This is to avoid expressions with∞, especially∞/∞.
So, we’ll define G◦ds to be the set of all OCDS predictions where no class frequency or accuracy is 0 or 1. The set of OCDS
predictions Gds is the closure of G◦

ds.

The strategy will be to work backwards from an OCDS prediction and to write it as a softmax, involving the matrix A. Then,
it suffices to check what the possible weights are. We also show how to go from a prediction’s weights to OCDS parameters
(class frequencies/rule accuracies). These OCDS parameters can be used to construct that same prediction via E step.

To continue, we need to represent which rules predict what class on datapoints. This is because we allow rules to abstain
and want to talk about the rules that don’t abstain on a datapoint. Define a function ρ : [n]× [k]→ 2[p] be the function that
returns which rules predicted a certain label on a certain datapoint. For example, ρ(i, ℓ) returns the rules that predict class ℓ
on datapoint xi.

Suppose A was the matrix that encoded accuracy constraints for our p rules and class frequency constraints (a la the main
paper). Abuse notation and call the OCDS prediction for class ℓ on datapoint i with class frequencies w and rule accuracies b

gdsiℓ (w, b) ∝ wℓ

∏
j∈ρ(i,ℓ)

bj

k∏
ℓ′=1
ℓ′ ̸=ℓ

∏
j′∈ρ(i,ℓ′)

1− bj′

k − 1
.

This forms a distribution as ℓ varies in [k]. Let the OCDS prediction with w, b on all n datapoints in X be denoted gds(w, b).
Then for element-wise inequality,

G◦ds := {gds(w, b) : 0 < w, b < 1}.
Lemma 29. For accuracy constraints and rules that possibly abstain, Gbf = G◦ds.

Proof. In Lemma 30 below, we show that for any prediction gds ∈ G◦ds, there are real weights θds such that g(θ
ds) = gds.

By allowing each of the accuracies and class frequencies to range from (0, 1), all possible real weights are exhibited. As Gbf
is the set of predictions g(θ) attainable by all real weights θ ∈ Rm, we have our claim.

Lemma 30. For any gds ∈ G◦ds constructed by one E step on accuracies 0 < b1, . . . , bp < 1 and class frequencies
0 < w1, . . . , wk < 1, the weights

θp+ℓ = log (enwℓ) and θj = log

(
enj

bj(k − 1)

1− bj

)
,

are real and are such that g(θ) = gds.

Proof. We show this by working backwards, going from writing the DS prediction as a softmax to bringing about the matrix
A used in Gbf ’s definition. In doing this, the claimed weights will show up. Write the quantity that the DS prediction is
proportional to (from above) as a softmax:

exp

(
log (wℓ) +

∑
j∈ρ(i,ℓ)

log (bj) +

k∑
ℓ′=1
ℓ′ ̸=ℓ

∑
j′∈ρ(i,ℓ′)

log

(
1− bj′

k − 1

))

k∑
ℓ′=1

exp

(
log (wℓ′) +

∑
j∈ρ(i,ℓ′)

log (bj) +

k∑
ℓ′′=1
ℓ′′ ̸=ℓ′

∑
j′′∈ρ(i,ℓ′′)

log

(
1− bj′′

k − 1

)) .

Observe that we can write this as

exp

(
log (wℓ) +

∑
j∈ρ(i,ℓ)

log

(
bj(k − 1)

1− bj

)
+

∑
j′∈∪k

ℓ′=1
ρ(i,ℓ′)

log

(
1− bj′

k − 1

))
k∑

ℓ′=1

exp

(
log (wℓ′) +

∑
j∈ρ(i,ℓ′)

log

(
bj(k − 1)

1− bj

)
+

∑
j′′∈∪k

ℓ′′=1
ρ(i,ℓ′′)

log

(
1− bj′′

k − 1

)) .

Note that we can’t make the last sum range over [p] because we allow for specialists, so not all rules necessarily have to
make a prediction. Before moving forward, notice that the last term in every exponent is the same. Therefore, those make no
contribution to the softmax. The softmax can be written as

exp
(
log (wℓ) +

∑
j∈ρ(i,ℓ) log

(
bj(k−1)
1−bj

))
∑k

ℓ′=1 exp
(
log (wℓ′) +

∑
j∈ρ(i,ℓ′) log

(
bj(k−1)
1−bj

)) . (9)

To continue, recall the weights we presented in the claim,

θp+ℓ = log (enwℓ) and θj = log

(
enj

bj(k − 1)

1− bj

)
where once again j ∈ [p] and ℓ ∈ [k]. We would like to show that the linear combination in the numerator is a

(θ)
iℓ (the

(k(i− 1) + ℓ)th element of the vector A⊤θ). Indeed, observe (from the definition of A in Subsection B.3) that

a
(θ)
iℓ =

p∑
j=1

1

nj
h
(j)
iℓ θj +

k∑
ℓ′=1

1

n
[e⃗n

ℓ′]iℓθp+ℓ′ .

By transcribing the definitions of our matrix entries, we have that

a
(θ)
iℓ =

p∑
j=1

1

nj
θj1(h(j)(xi) = ℓ) +

k∑
ℓ′=1

1

n
θp+ℓ′1(ℓ′ = ℓ).

So, the only θj’s that appear are associated with the rules that predict label ℓ on datapoint xi. This is exactly the set of rules
that ρ (i, ℓ) represents. Also, there’s only one value of ℓ′ that makes the indicator non-zero. We can now write

a
(θ)
iℓ =

∑
j∈ρ(i,ℓ)

1

nj
θj +

1

n
θp+ℓ = log (wℓ) +

∑
j∈ρ(i,ℓ)

log

(
bj(k − 1)

1− bj

)
,

after plugging in the claimed weights θ. This is exactly the argument of the numerator in Equation 9. So, we have exhibited
a set of weights θ such that the DS prediction is recovered.

We can now go backwards and solve for the accuracies and class frequencies.

Lemma 31. An arbitrary prediction g(θ) ∈ Gbf is a one-coin DS prediction with

bj =
1

1 + enj (k − 1) exp(−θj)
and wℓ =

exp(θp+ℓ)∑k
ℓ′=1 exp(θp+ℓ′)

Moreover, the computed bj and wℓ all reside in (0, 1) and the wℓ’s form a distribution.

Proof. For rule weight θj where j ∈ [p], it suffices to solve for bj in

θj = log

(
enj

bj (k − 1)

1− bj

)
.

Doing some quick algebra, we have

exp (θj) (1− bj) = enj bj (k − 1) meaning exp (θj) = bj(e
nj (k − 1) + exp (θj))

We conclude that

bj =
1

1 + enj (k − 1) exp (−θj)
.

As θj → −∞, the right hand side tends to 0, while θ → ∞ means the right hand side tends to 1. Since we require the θ
value to be strictly real, we will never get bj ∈ {0, 1}.

Now, we handle the class frequency weights, i.e. weights θp+1, . . . , θp+k. Since the class frequencies are a distribution, the
class frequency that we choose must be such that

∑k
ℓ=1 wℓ = 1. Observe also that a class frequency weight appears in

every argument of the prediction softmax (see proof of Lemma 30). Therefore, we can add log(ŵ) to every argument of the
softmax without changing its value. Taking that into the class frequency weight, we can write

θp+ℓ = log
(
en

wℓ

ŵ

)
meaning wℓ =

exp (θp+ℓ) ŵ

en
.

Since we require
∑k

ℓ=1 wℓ = 1,

ŵ

en

k∑
ℓ=1

exp (θp+ℓ) = 1 we infer that ŵ =
en∑k

ℓ=1 exp (θp+ℓ)
.

Plugging in this ŵ and recognizing the result is a softmax gives us our claim. This means that arbitrary distributions from
the exponential family are actually one-coin DS predictions whose accuracies and class frequencies are in (0, 1).

L DAWID SKENE ERROR EXPRESSION

We now decompose the OCDS loss into terms corresponding to model and approximation uncertainty. Even though the BF
and OCDS prediction sets are technically different, they’re sufficiently similar so that OCDS has the same model uncertainty
as BF, which we’ll show. We use g† to represent a best OCDS approximator to η, compared to g∗ for BF’s best approximator
(g† ∈ argming∈Gds

d(η, g)). We’ll not endeavor to show that g† is unique.

We show a general decomposition which can be simplified by virtue of dealing with OCDS predictions.

L.1 DS LOSS DECOMPOSITION

Lemma 32. Let g† ∈ Gds be a best approximator to η, gds be a OCDS prediction with estimated parameters (w, b), and
gds∗ be the DS prediction using empirical parameters (w∗, b∗). Then,

d(η, gds)︸ ︷︷ ︸
Eds

= d(η, g†)︸ ︷︷ ︸
Emod
ds

+Eapprds

Eapprds = d(η, gds∗)− d(η, g†)︸ ︷︷ ︸
Eappr
ds,1

+

n∑
i=1

k∑
ℓ=1

ηiℓ log

(
gds∗iℓ

gdsiℓ

)
︸ ︷︷ ︸

Eappr
ds,2

.

Moreover, d(η, g†) = d(η, g∗).

Proof. The first claim is by definition. Then, by adding 0 twice, one immediately gets

d(η, gds) = d(η, g†) + d(η, gds∗)− d(η, g†) + d(η, gds)− d(η, gds∗).

The first term after the equals sign corresponds with the model uncertainty while the remaining terms are the approximation
uncertainty. One can simplify the last two terms as follows:

d(η, gds)− d(η, gds∗) =

n∑
i=1

k∑
ℓ=1

ηiℓ

[
log

(
ηiℓ
gdsiℓ

)
− log

(
ηiℓ
gds∗iℓ

)]
=

n∑
i=1

k∑
ℓ=1

ηiℓ log

(
gds∗iℓ

gdsiℓ

)
.

For our very last claim, recall that Lemma 29 shows that Gbf = G◦ds. The BF predictions missing from Gds \ Gbf are exactly
the limit points of Gbf . Specifically, the DS predictions where a rule accuracy bj or class frequency wℓ is in the set {0, 1}.
Thus if g† ̸∈ Gbf , the best approximator in Gbf is arbitrarily close to g†. Therefore, the BF and DS model uncertainties are
arbitrarily close.

Now, in our analysis of the last term, we will encounter the normalizing constant for the DS prediction. For the one-coin DS
model, it is

Zds
i =

k∑
ℓ=1

wℓ

∏
j∈ρ(i,ℓ)

bj

k∏
ℓ′=1
ℓ′ ̸=ℓ

∏
j′∈ρ(i,ℓ′)

1− bj′

k − 1
. (10)

We’ll also consider

Z∗
i = Prn(h(j)(x) = h(j)(xi),∀j ∈ [p]) =

1

n
|{x ∈ X : h(j)(xi) = h(j)(x),∀j ∈ [p]}|,

or the fraction of datapoints where the ensemble’s predictions are the same as the ones on datapoint xi. This quantity is
known when one has the ensemble predictions. However, the DS model predicts this implicitly when it normalizes, e.g. the
denominator on the right hand side of Equation 8. Thus, it comes into play.

We will consider the distribution of unique ways the ensemble can predict on datapoints. Since Z∗
i is defined in terms

of datapoint index i, there may be duplicates. For example, if all rules predict class 1 on the first three datapoints,
Z∗
1 = Z∗

2 = Z∗
3 . More generally, if we have p rules that predict on all points and k classes, there are kp possible ways for the

ensemble to predict. I.e. each rule can predict any of the k classes. However, it’s often the case that not all kp ways to predict
obtain, for usually n < kp or the ensemble makes the same prediction on different datapoints. So, we let Z∗, Zds∗, Zds be
the empirical, empirical OCDS, and OCDS distributions of unique ways for the ensemble to predict. To be clear, the next
two quantities are in reference to datapoint xi and not the ith “unique way for the ensemble to predict”. For example, Zds

i is
from Equation 10. One can get Zds∗

i by substituting in the empirical class frequencies and accuracies.

L.2 ONE-COIN ERROR EXPRESSION (LEMMA 10)

We can actually simplify the last term in the OCDS error expression. While we have used w ∈ ∆k to represent a class
frequency distribution, we’ll use w⃗ to emphasize that it is a vector.

Lemma 33 (Lemma 10). Fix OCDS prediction gds gotten from applying one E step to fixed class frequencies w⃗ and fixed
rule accuracies b. For gds and gds∗,

d(η, gds) = d(η, g∗) + d(η, gds∗)− d(η, g∗) + n

(
KL(w⃗∗, w⃗) +

p∑
j=1

nj

n
KL(b⃗∗j , b⃗j)

+KL(Z∗, Zds∗)−KL(Z∗, Zds)

)

where w⃗∗ is the vector of empirical class frequencies, while b⃗j and b⃗∗j are the distributions (bj , 1− bj)
⊤ of the fixed and

empirical accuracies for rule j.

Proof. We show this by simplifying the last sum in Lemma 32. (By that same Lemma, we can replace d(η, g†) by d(η, g∗).)
For a one-coin prediction, it is equal to

n∑
i=1

k∑
ℓ=1

ηiℓ

log
w∗

ℓ

∏
j∈ρ(i,ℓ) b

∗
j

∏k
ℓ′=1
ℓ′ ̸=ℓ

∏
j′∈ρ(i,ℓ′)

1−b∗
j′

k−1

wℓ

∏
j∈ρ(i,ℓ) bj

∏k
ℓ′=1
ℓ′ ̸=ℓ

∏
j′∈ρ(i,ℓ′)

1−bj′

k−1

+ log

(
Zds
i

Zds∗
i

) .

We have used our above definition of Z. Observe that because the last logarithm term doesn’t depend on ℓ, it becomes
n∑

i=1

[
log
(
Zds
i

)
− log

(
Zds∗
i

)]
.

Before simplifying further, define τ as the total of number of unique ways the ensemble predicts on a datapoint. τ ≤ (k+1)p

because each of the p rules can predict any of the k classes or abstain. For each t ∈ [τ], define it ∈ [n] to be the first
datapoint where the ensemble predicts like the tth unique way. Now, define Z∗

it
as the fraction of points where the ensemble

predicts as the tth unique way. We may understand this another way: suppose we fix some datapoint xit and randomly select
one out of the n datapoints x. Z∗

it
is the probability that the rule predictions on x match the rule predictions on xit . Then,

τ∑
t=1

Z∗
it = 1.

Thus, our sum of differences of logarithms becomes
τ∑

t=1

nZ∗
it

[
log
(
Zds
it

)
− log

(
Zds∗
it

)]
.

By adding 0, this is equal to

τ∑
t=1

nZ∗
it

[
log

(
Zds
it

Z∗
it

)
+ log

(
Z∗
it

Zds∗
it

)]
= n(KL(Z∗, Zds∗)−KL(Z∗, Zds)).

This is equal to the difference of KL divergences between the empirical and predicted distributions of ensemble predictions.
Z∗
it

is the probability that for each rule h(j), h(j)(xit) = h(j)(x). Observe that Z∗
it

in general does not equal either Zds
it

or
Zds∗
it

, meaning this quantity is non-zero.

Now, we take on the first logarithm term. To get rid of the fraction, define

ξj = log

(
b∗j
bj

)
, ξ̂j = log

(
1− b∗j
1− bj

)
, and ξp+ℓ = log

(
w∗

ℓ

wℓ

)
.

Also, by turning the products in the logarithm into sums outside the logarithm, we get

n∑
i=1

k∑
ℓ=1

ηiℓ

[
ξp+ℓ +

∑
j∈ρ(i,ℓ)

ξj +

k∑
ℓ′=1
ℓ′ ̸=ℓ

∑
j′∈ρ(i,ℓ′)

ξ̂j′

]
.

Lets first simplify
k∑

ℓ=1

n∑
i=1

ηiℓξp+ℓ.

Observe that by summing over i first, we are computing nw∗
ℓ . Thus, the above is equal to

k∑
ℓ=1

nw∗
ℓ log

(
w∗

ℓ

wℓ

)
= nKL(w⃗∗, w⃗).

We deal with the remaining terms now. Rather than summing over specific j and j′, we can use indicators as follows.

n∑
i=1

k∑
ℓ=1

ηiℓ

[
p∑

j=1

ξj1(h(j)(xi) = ℓ) +

k∑
ℓ′=1
ℓ′ ̸=ℓ

p∑
j′=1

ξ̂j′1(h(j′)(xi) = ℓ′)

]
.

Now, recall that

n∑
i=1

k∑
ℓ=1

ηiℓ1(h(j)(xi) = ℓ) = njb
∗
j so that nj(1− b∗j) =

n∑
i=1

k∑
ℓ=1

k∑
ℓ′=1
ℓ′ ̸=ℓ

ηiℓ1(h(j)(xi) = ℓ′).

This means our above sum is actually equal to

p∑
j=1

njb
∗
j log

(
b∗j
bj

)
+

p∑
j=1

nj(1− b∗j) log

(
1− b∗j
1− bj

)
.

Defining b⃗j = (bj , 1− bj)
⊤ and respectively for b∗j , the above becomes

p∑
j=1

njKL(b⃗∗j , b⃗j).

Putting everything together,

n∑
i=1

k∑
ℓ=1

ηiℓ log

(
g
(θds∗)
iℓ

g
(θds)
iℓ

)
= n

(
KL(w⃗∗, w⃗) +

p∑
j=1

nj

n
KL(b⃗∗j , b⃗j) +KL(Z∗, Zds∗)−KL(Z∗, Zds)

)
.

M BF AND DS ERROR COMPARISON

We now have everything needed to be able to compare BF and DS by looking at their model and approximation uncertainties.
The first case considered is when BF gets the empirical parameters, i.e. ϵ = 0⃗m.

Theorem 34. For any set of rule predictions, if the empirical rule accuracies b∗ and empirical class frequencies w∗ are
given to BF (so it predicts gbf = g∗), the learner’s best-play is always better/no worse than any DS prediction. That is, for
any OCDS prediction gds,

d(η, gbf) ≤ d(η, gds).

Proof. From Lemma 29, Gbf = G◦ds. Since BF is given b∗, w∗, we know that the BF prediction gbf , is equal to g∗, the best
approximator of η from Gbf (Theorem 27). With these two facts, g∗ is better than any prediction in G◦ds. However, there are
also DS predictions outside of Gds. So, take gds ∈ Gds \Gbf . Since gds is a limit point of G◦ds, there is a sequence {gds+i }ni=1

whose limit is gds. (Note that gds+i ∈ G◦ds for all i and that we have abused notation with the subscript index.) We have
already established that for any i,

d(η, gbf) ≤ d(η, gds
+

i) = d(η, gds) + d(η, gds+i)− d(η, gds).

Because gds+i → gds, the last difference is arbitrarily small and

d(η, gbf) ≤ d(η, gds),

which is what we wanted to show.

M.1 LEMMA 12

We now have the error bound presented in the paper in full detail.

Lemma 35 (Lemma 12). If gbf from V (b, ϵ), g(θ
∗) the best approximator from Gbf , and ϵ satisfies

∥ϵ∥∞ ≤
1

2 ∥θ∗∥1

(
d(η, gds∗)− d(η, g(θ

∗)) + n
(
KL(w⃗∗, w⃗ds) +

p∑
j=1

nj

n
KL(⃗b∗j , b⃗

ds
j)
)

+ n
(
KL(Z∗, Zds∗)−KL(Z∗, Zds)

))
,

then gbf is better than the one-coin DS prediction gds, i.e. d(η, gbf) ≤ d(η, gds).

Proof. Theorem 21 states
d(η, gbf) ≤ d(η, g(θ

∗)) + 2∥ϵ∥∞∥θ∗∥1,

bounding the total epistemic error of the BF prediction via the exact model uncertainty and an upper bound on the
approximation uncertainty. From Lemma 33, we see that the model uncertainty for one-coin DS matches. Therefore, it
suffices for our upper bound of BF’s approximation uncertainty to be smaller than DS’ approximation uncertainty. Written
out, we require ϵ sufficiently small that the following inequality holds.

2∥ϵ∥∞∥θ∗∥1 ≤ Eapprds

But, this just boils down to

∥ϵ∥∞ ≤
1

2∥θ∗∥1

(
d(η, gds∗)− d(η, g(θ

∗)) + n
(
KL(w⃗∗||w⃗) +

p∑
j=1

nj

n
KL(b⃗∗j ||b⃗j)

+KL(Z∗||Zds∗)−KL(Z∗||Zds)
))

where we’ve expanded the OCDS approximation uncertainty via Lemma 32.

N OCDS WITH EM IS INCONSISTENT

We end the theoretical portion of the appendix by formally describing a class of problems where OCDS equipped with EM
can easily be shown to be inconsistent. In essence, we compute the unique optimal approximator g∗ to η (Theorem 27) and
show that applying the M Step to it, and then applying the E Step will result in the OCDS prediction not equalling g∗. Recall
that EM is said to converge when repeated applications of the E and M step bring no change to the prediction. Thus, if we
give EM a prediction (namely g∗) and and the resulting prediction from the E-Step (after applying an M-Step) is different
from g∗, then that means EM never converges to g∗.

Our class of problems will have p = 2 rules in the ensemble and k = 2 classes. Moreover, the rules will be generalists and
predict on all n datapoints. Observe that there are eights ways for the ensemble to predict and for the labels to be assigned
(Table 4).

Table 4: All Rule Prediction/Ground Truth Label Combinations

true label→ 1 2 1 2 1 2 1 2

h(1)(x) 1 1 2 2 1 1 2 2
h(2)(x) 1 1 2 2 2 2 1 1

Call c11 the number of points (out of n) where both rules in the ensemble predict 1. Going by this, c21 is the number of
points where the first rule predicts class 2 while the second rule predicts class 1. Formally,

c11 = nPrn(h(1)(x) = 1, h(2)(x) = 1) and c21 = nPrn(h(1)(x) = 2, h(2)(x) = 1).

One quickly infers that
c11 + c22 + c12 + c21 = n.

Similarly, call r1,12 the number of points where the true label is 1, and the first rule predicts class 1 while the second rule
erroneously predicts class 2.

r1,12 = nPrn(y = 1, h(1)(x) = 1, h(2)(x) = 2)

One sees that r1,12 + r2,12 = c12. Moreover, nb∗1 = r1,11 + r2,22 + r1,12 + r2,21 or writing out the probabilities only,

b∗1 = Prn(h(1)(x) = y) = Prn(y = 1, h(1)(x) = 1, h(2)(x) = 1)

+ Prn(y = 2, h(1)(x) = 2, h(2)(x) = 2) + Prn(y = 1, h(1)(x) = 1, h(2)(x) = 2)

+ Prn(y = 2, h(1)(x) = 2, h(2)(x) = 1).

Similarly for the class frequencies, w∗
1 = r1,11 + r1,22 + r1,12 + r1,21.

Suppose for datapoint xi that the rules both predict 1. Then,

Prn(y = ℓ | h(1)(x) = 1, h(2)(x) = 1) =
Prn(y = ℓ, h(1)(x) = 1, h(2)(x) = 1)

Prn(h(1)(x) = 1, h(2)(x) = 1)
=

rℓ,11
c11

.

If a prediction (from BF/OCDS) predicts the above probability for label ℓ when the rules each predict 1, we’ll say the
prediction infers the correct proportions of labels for c11. If the prediction can do this for all c values, we’ll just say it
infers the correct proportion of labels. Formally, say g′ infers the correct proportion of labels. Suppose that for datapoint xi,
h(1)(xi) = ℓ′ and h(2)(xi) = ℓ′′. When we say g′ infers the correct proportion of labels, we mean

g′iℓ =
rℓ,ℓ′ℓ′′

cℓ′ℓ′′
=

Prn
(
y = ℓ, h(1)(xi) = ℓ′, h(2)(xi) = ℓ′′

)
Prn

(
h(1)(xi) = ℓ′, h(2)(xi) = ℓ′′

) .

We now show that under a certain restriction on the r and c values, the BF prediction infers the correct proportion of labels.

Lemma 36. Suppose for a dataset that c11 = c22, c12 = c21, r1,11 = r2,22, r1,12 = r2,21, and r2,12 = r1,21. Then, class
frequencies for each class are equal. Now, suppose we have an ensemble of two rules that predict on each of the n datapoints.
If BF is given the empirical accuracies and empirical class frequencies, it correctly infers the correct proportion of labels.
Furthermore, a set of weights that are optimal for BF are as follows. The class frequency weights are both equal to n. The
learner’s weights for rules h(1) and h(2) are

n log

(√
r1,11
r2,11

r1,12
r2,12

)
and n log

(√
r1,11
r2,11

r2,12
r1,12

)
respectively.

Proof. We now write out the dual problem for BF. We will make the following simplification: defining real variables
representing σ′ − σ. Let nθ1 and nθ2 represent the weights for the rules, while nτ1 and nτ2 represent the weights for
the class frequencies. They are allowed to be real by definition. We include the n explicitly on the outside so that the
log-sum-exp term in the BF dual does not contain n. (Each row of A in this case is defined by h(j)/n or e⃗n

ℓ /n, so we want
to get rid of the n.) Expanding the terms from Theorem 2, our objective is

max
θ1,θ2,τ1,τ2

[nb1θ1 + nb2θ2 + nw1τ1 + nw2τ2 − c11 log (exp (τ1 + θ1 + θ2) + exp (τ2))

− c22 log (exp (τ1) + exp (τ2 + θ1 + θ2))

− c12 log (exp (τ1 + θ1) + exp (τ2 + θ2))

− c21 log (exp (τ1 + θ2) + exp (τ2 + θ1))].

Note that the term inside the logarithm is the sum of all the exponential of all possible predictions given that the ensemble
predicts in a certain way. For example, c11 is the case where the rules both predict label 1. Therefore, the two possible
predictions are τ1 + θ1 + θ2 for class 1 and τ2 for class 2. Since this objective is convex, we can take the partial derivatives
with respect to each variable and exhibit θ1, θ2, τ1, τ2 such that the partial derivatives are 0. The partial derivatives set to 0
are

nb1 = c11
eτ1+θ1+θ2

eτ1+θ1+θ2 + eτ2
+ c22

eτ2+θ1+θ2

eτ2+θ1+θ2 + eτ1
+ c12

eτ1+θ1

eτ1+θ1 + eτ2+θ2
+ c21

eτ2+θ1

eτ2+θ1 + eτ1+θ2

nb2 = c11
eτ1+θ1+θ2

eτ1+θ1+θ2 + eτ2
+ c22

eτ2+θ1+θ2

eτ2+θ1+θ2 + eτ1
+ c12

eτ2+θ2

eτ2+θ2 + eτ1+θ1
+ c21

eτ1+θ2

eτ1+θ2 + eτ2+θ1

nw1 = c11
eτ1+θ1+θ2

eτ1+θ1+θ2 + eτ2
+ c22

eτ1

eτ1 + eτ2+θ1+θ2
+ c12

eτ1+θ1

eτ1+θ1 + eτ2+θ2
+ c21

eτ1+θ2

eτ1+θ2 + eτ2+θ1

nw2 = c11
eτ2

eτ2 + eτ1+θ1+θ2
+ c22

eτ2+θ1+θ2

eτ2+θ1+θ2 + eτ1
+ c12

eτ2+θ2

eτ2+θ2 + eτ1+θ1
+ c21

eτ2+θ1

eτ2+θ1 + eτ1+θ2

Now, choose τ1 = τ2 = 1 and

θ1 = log

(√
r1,11
r2,11

r1,12
r2,12

)
and θ2 = log

(√
r1,11
r2,11

r2,12
r1,12

)
.

By our choice of τ ’s, we can disregard the appearance of τ1 and τ2 in the softmaxes. Observe that the accuracies and class
frequencies can be written in terms of the r terms.

nb1 = r1,11 + r2,22 + r1,12 + r2,21, nb2 = r1,11 + r2,22 + r2,12 + r1,21

nw1 = r1,11 + r1,22 + r1,12 + r1,21, and nw2 = r2,11 + r2,22 + r2,12 + r2,21.

We briefly digress to show that nw1 = nw2. Since

c11 = c22, it follows that r1,11 + r2,11 = r1,22 + r2,22.

As we have assumed r1,11 = r2,22, we see the above equality implies r2,11 = r1,22. Now by our assumptions of equality of
the r terms, nw1 = nw2.

If we can establish correspondences between the softmaxes and those equations involving the r’s using our claimed weights,
that means those weights are optimal and the learner’s optimal prediction infers the correct proportions of labels. (The
learner’s predictions are exactly those softmaxes.) For the first partial derivative,

c11
eθ1+θ2

eθ1+θ2 + 1
= c11

e
log

(
r1,11
r2,11

)

e
log

(
r1,11
r2,11

)
+ 1

= c11
r1,11

r1,11 + r2,11
= r1,11

because r1,11 + r2,11 = c11. The softmax term for c22 works out the same way. Recall that by assumption that r1,11 = r2,22,
the softmax equals r2,22/c22 because we also assumed that c11 = c22. For the last two terms in the first partial derivative,
one can see that

c12
eθ1

eθ1 + eθ2
= c12

√
r1,11
r2,11

r1,12
r2,12√

r1,11
r2,11

r1,12
r2,12

+
√

r1,11
r2,11

r2,12
r1,12

= c12
r1,12
c12

= c21
r2,21
c21

where for the second to last equality, we used the fact that c12 = r1,12+ r2,12 whereas the last equality used our assumptions
that r1,12=r2,21 and c12 = c21. These calculations show that the first partial derivative is 0 with respect to the weights we
have chosen. In fact, all of the partial derivatives evaluate to zero when our weights are used.

To summarize, we chose weights of n for each of the class frequency constraints, and we chose

n log

(√
r1,11
r2,11

r1,12
r2,12

)
for the first rule’s constraint, and

n log

(√
r1,11
r2,11

r2,12
r1,12

)
for the second rule’s constraint.

Because we gave the empirical accuracies and class frequencies to BF, its prediction is also the best approximator. Since the
optimal approximator g∗ is such that Ag∗ = b∗, the M-step of OCDS’ EM algorithm (Algorithm 1) will return the empirical
accuracies and class frequencies. Then, the E-Step will return OCDS predictions using the aforementioned empirical
quantities. To see that the resulting prediction from OCDS after an M-Step and E-Step is not optimal (doesn’t necessarily
match BF’s prediction), observe that the OCDS prediction for class 1 on a datapoint where both rules predict label 1 is

w∗
1b

∗
1b

∗
2

w∗
1b

∗
1b

∗
2 + w∗

2(1− b∗1)(1− b∗2)
, not necessarily equal to

r1,11
r1,11 + r2,11

,

which is the optimal prediction.

For completeness, following Lemma 30, the OCDS weights are

n log (w∗
1) and n log (w∗

2)

for the class frequencies while assigning

n log

(
b∗1(k − 1)

1− b∗1

)
and n log

(
b∗2(k − 1)

1− b∗2

)
for the rules.

N.1 A CONCRETE EXAMPLE

We now instantiate an instance of the above problem and show that one does not get g∗ after applying one M step followed
by one E step to g∗. This means that EM does not converge at g∗.

Define w∗
1 = w∗

2 = 0.5 and say we have n = 22 datapoints. Also, say

r1,11 = r2,22 = 5, r1,12 = r2,21 = 3, r2,11 = r1,22 = 2, r2,12 = r1,21 = 1,

which means that

c11 = c22 = 7, c12 = c21 = 4, w∗
1 = w∗

2 =
11

22
= 0.5, b∗1 =

16

22
, b∗2 =

12

22
.

The previous section shows that g∗ computed from V (b∗, 0⃗4) (we’re abusing notation so that b∗ has both the empirical
rule accuracies and class frequencies) is such that Ag∗ = b∗. Note that g∗ is unique (Theorem 27) so that we only have to
consider what we computed from V (b∗, 0⃗4). This means that the M step with g∗ will return b∗. Now, we check the result of
the E step. We compute one prediction from the E step, and omit the others for brevity. With the empirical accuracies and
empirical class frequencies (from the M step), DS predicts that the probability that the label is 1 when both rules predict 1
(which has actual value r1,11/c11) is

w∗
1b

∗
1b

∗
2

w∗
1b

∗
1b

∗
2 + w∗

2(1− b∗1)(1− b∗2)
=

1
2
16
22

12
22

1
2
16
22

12
22 + 1

2
6
22

10
22

=
1

1 + 6·10
16·12

≈ 0.76.

Since there are c11 = 7 points where both rules predict 1, DS predicts that 0.76 · 7 = 5.33 out of 7 many points have label 1.
This is in contrast to the optimal approximator, which correctly predicts that 5 out of 7 points have label 1 (when both rules
predict 1).

The following table shows the optimal approximator’s predictions, and DS’ predictions for the r values. It suffices to note
that the DS predictions do not match the optimal approximator. Therefore, EM cannot converge at g∗ for this problem

Table 5: Predicted r values from BF and OCDS

Pred. r1,11 r2,11 r1,22 r2,22 r1,12 r2,12 r1,21 r2,21

g∗ 5 2 2 5 1 3 1 3
gds∗ 5.33 1.67 1.67 5.33 1.71 2.29 1.71 2.29

as applying an M step followed by an E step results in the prediction moving away from g∗. We conclude that DS is
inconsistent.

O EXPERIMENTAL RESULTS

To end the appendix, we now present the complete experimental results. The results of the main paper are presented again,
but with more detailed commentary. The loss decomposition for every dataset is also shown.

O.1 DATASETS

The first citation is the source of the raw data, while the second citation is the source of the rules-of-thumb. We note that
many of the datasets and rules have been compiled in the WRENCH repository [Zhang et al., 2021]. If the validation sets
were not provided, we construct it by doing a random split on the training set. The resulting size of the training/validation
sets are chosen to match the cited author’s choices. The datasets are also included in the supplementary material.

1. Animals with Attributes (AwA) [Xian et al., 2019], [Mazzetto et al., 2021]. We wish to distinguish images of animals.
Two classes (chimpanzee and seal) are selected to create a binary task. The rules are created by fine-tuning a pretrained
ResNet-18 using labeled data from other classes.

2. Basketball [Fu et al., 2020] for both data and rules. We wish to identify which videos are about basketball in a set of
videos. The rules are heuristics that are given information such as presence of certain objects, their size, and distance
from each other.

3. Breast Cancer [Wolberg et al., 1995], [Arachie and Huang, 2018]. We wish to determine whether breast cell nuclei are
positive or negative for breast cancer. The rules are single dimension logistic regression classifiers. The features chosen
are mean radius of the nucleus, radius standard error, and worst radius of the cell nucleus.

4. Cardiotocography [de Campos and Bernardes, 2010], [Arachie and Huang, 2018]. We wish to use cardiotocograms
to predict fetal heart rate. Out of the ten possible classes, the two most common are selected. The rules are single
dimension logistic regression classifiers. The features chosen are accelerations per second, mean value of long-term
variability, and histogram median.

5. DomainNet [Peng et al., 2019], [Mazzetto et al., 2021]. We wish to classify images that come from different domains.
5 classes are randomly selected from the 25 classes that appear most frequently. To generate the rules, a pre-trained
ResNet-18 network is fine-tuned using 60 labeled examples from each domain.

6. IMDB [Maas et al., 2011], [Ren et al., 2020]. We wish to determine whether or not an IMDB review is positive or
negative. The rules look for specific keywords or patterns present in the text.

7. OBS Network [Rajab, 2017], [Arachie and Huang, 2018]. We wish to detect and block network nodes which may have
potentially malicious behavior. The rules are single dimension logistic regression classifiers. The features chosen are
percentage flood per node, average packet drop rate, and utilized bandwidth.

8. SMS [Almeida and Hidalgo, 2012], [Awasthi et al., 2020]. We wish to determine whether a text message (SMS) is
spam or not. Rules check for specific keywords or phrases.

9. Yelp [Zhang et al., 2015], [Ren et al., 2020]. We wish to classify whether a Yelp review is positive or not. The rules
look for specific keywords or patterns present in the text.

10. Youtube [Alberto and Lochter, 2017], [Snorkel AI Inc., 2022]. We wish to determine whether comments on five youtube
videos were spam or not. The rules check for certain keywords to determine if the comment is spam.

For datasets where the rules predict probabilities, we convert the probabilities to hard predictions by taking the label with the
highest probability. Also, for methods that cannot handle abstaining rules, we have a version of the dataset where a random
label replaces a rule abstention. This “filled out” dataset is only used for the methods that can’t handle rule abstentions.

Table 6 summarizes some relevant statistics.

Table 6: Dataset Statistics

Name # Class (k) # Rules (p) # Train (n) # Valid Rules Abstain?

AwA 2 36 1372 172 N
Basketball 2 4 17970 1064 Y
Cancer 2 3 171 227 N
Cardio 2 3 289 385 N
Domain 5 5 2587 323 N
IMDB 2 8 20000 2500 Y
OBS 2 3 239 317 N
SMS 2 73 4571 500 Y
Yelp 2 8 30400 3800 Y
Youtube 2 10 1586 120 Y

O.2 METHODS

We consider a seven methods that serve as representatives for various label estimation strategies used in weak supervision.
They are briefly described here, along with relevant details about initialization. See the attached code for the complete
implementation of each method.

1. Majority Vote (MV), but we normalize the counts for each datapoint so a distribution is predicted. Namely, its prediction
gmv
iℓ is

gmv
iℓ :=

|{j ∈ [p] : h(j)(xi) = ℓ}|
|{j ∈ [p] : h(j)(xi) ̸= ?}|

2. Dawid-Skene, one-coin variant (OCDS) equipped with EM [Dawid and Skene, 1979], [Li and Yu, 2014]. Our nominal
representative for the probabilistic approach, described in Subsection B.2. Assumes conditional independence of rule
predictions given the label. EM is initialized with the majority vote prediction and is run until convergence.

3. Data Programming (DP) [Ratner et al., 2016], a generalization of DS that relaxes the independence assumptions made
by use of a factor graph. Run with the default hyperparameters provided in the WRENCH implementation [Zhang
et al., 2021].

4. Enhanced Bayesian Classifier Combination (EBCC) [Li et al., 2019], a Bayesian method that generalizes DS, in-
terpretable as having multiple confusion matrices per rule. Posterior label distribution is estimated via mean field
variational inference with suggested hyperparameters from aforementioned authors.

5. Hyper Label Model (HyperLM) [Wu et al., 2023], a graph neural network that predicts a label given rule predictions.

6. Adversarial Multi-Class Learning, Convex Combination variant (AMCL CC) [Mazzetto et al., 2021], another adversarial
weak supervision method. The scaling factor is set to 0.4. We note that this method cannot handle rules that abstain.
Thus, if any rule abstains on a datapoint, “fill-in” that rule’s prediction by selecting a label uniformly at random. This
method requires a linear program solver, for which we use Gurobi [Gurobi Optimization, 2021].

7. Balsubramani-Freund with log-loss and accuracy constraints (BF), our method in consideration, implemented with
CVXPY [Diamond and Boyd, 2016], run with MOSEK [MOSEK ApS, 2022], an off the shelf convex solver.

DP, EBCC, AMCL CC, and BF each have sources of randomness, so we run each mentioned method 10 times. DP’s and
EBCC’s randomness comes from the intialization, while AMCL CC and BF’s randomness comes from the fact that those
two methods use labeled data. For the table, 100 labeled points are randomly drawn from the validation set. Wilson’s interval
with failure probability 0.05 (as suggested by Brown et al. [2001]) is used to bound the rule accuracies and class frequencies
for BF.

The mean log loss/0-1 loss/Brier score is reported for each method on each dataset. Bolded entries ones where the respective
means could not be distinguished by a paired two tailed t-test with p = 0.05.

O.3 COMPARISON WITH SOTA

We consider three losses for each method. Let the ground truth be η and the prediction from some fixed method be g. For the
experiments, the labels will be deterministic. If the label for datapoint xi, denoted yi is ℓ, then ηiℓ = 1.

1. Log-loss: 1
n

∑n
i=1

∑k
ℓ=1−ηiℓ log giℓ

2. 0-1 loss: 1
n

∑n
i=1 1(argmaxℓ∈[k] giℓ = yi)

3. Brier Score: 1
n

∑n
i=1

∑k
ℓ=1(giℓ − ηiℓ)

2

In Table 7, we see that BF does very well when judged by its prediction’s log loss. This may not be surprising because that
is its the minimax game objective. Even when BF does not have the best log-loss (compared to other methods on Yelp,
Youtube), its loss was very close to HyperLM’s.

Now, the model uncertainty in the last row 1
nd(η, g

∗) allows us to determine how much of BF’s loss is from its approximation
uncertainty. (Recall g∗ is gotten by solving the BF dual with empirical rule accuracies/class frequencies, Theorem 21.)
In other words, how much of BF’s error is theoretically reducible without getting more rules of thumb? For almost all of
these datasets considered, the answer is not very much (in terms of log loss). We see that the BF log loss with 100 labels is
decently close to the lowest possible log loss BF can attain with the rules-of-thumb used. In the loss visualizations below,
one can see that for a lot of the datasets, BF is limited by the lack of rules available to it. Thus, the presence of additional
labeled data (up to 300 labeled points) does not bring a big gain in performance. Also in those graphs is the breakdown of
DS error. That will be discussed when the graphs are presented.

Table 8 shows that the BF prediction is pretty good when measured with 0-1 loss and Brier score. While it is less dominant,
it still performs very well – being the method that has the best result on the largest number of datasets. When it does not

Table 7: Comparison of BF Against Other WS Methods Using Average Log Loss

Method AwA Basketball Cancer Cardio Domain IMDB OBS SMS Yelp Youtube

MV 0.31 2.40 14.87 0.66 5.48 6.39 8.73 0.79 5.90 1.27
OCDS 0.24 3.75 4.46 13.74 22.32 2.91 6.28 0.78 1.73 17.63

DP 0.42 1.31 6.14 7.01 9.21 0.68 3.98 0.53 2.61 0.72
EBCC 0.13 0.45 4.25 0.90 1.80 0.73 2.23 0.43 0.81 0.69

HyperLM 0.21 1.31 6.93 0.60 1.29 0.62 2.66 0.68 0.60 0.42
AMCL CC 0.14 1.26 14.86 0.42 5.42 1.46 8.73 0.69 0.85 0.70

BF 0.13 0.39 0.68 0.20 1.12 0.59 0.61 0.42 0.64 0.50
1
nd(η, g

∗) 0.01 0.32 0.65 0.13 1.01 0.57 0.59 0.25 0.54 0.21

Table 8: Comparison of BF Against Other WS Methods Using Average 0-1 Loss and Average Brier Score

Method AwA Basketball Cancer Cardio Domain IMDB OBS SMS Yelp Youtube
0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS 0-1 BS

MV 1.31 0.15 24.54 0.31 52.05 0.95 34.95 0.35 45.73 0.62 29.40 0.47 27.62 0.54 31.92 0.32 31.84 0.49 18.79 0.23
OCDS 2.11 0.04 11.29 0.23 52.05 1.02 39.79 0.80 80.17 1.60 49.81 0.95 27.62 0.55 9.67 0.18 46.74 0.72 52.40 1.05

DP 3.15 0.06 11.29 0.23 50.88 1.01 39.79 0.80 72.51 1.36 30.48 0.45 27.62 0.55 32.19 0.36 46.78 0.71 34.75 0.40
EBCC 1.57 0.03 36.33 0.29 52.05 1.03 39.79 0.62 48.23 0.74 28.26 0.45 27.62 0.55 8.16 0.25 36.02 0.51 52.40 0.50

HyperLM 2.55 0.10 36.36 0.45 52.05 0.94 7.96 0.31 41.98 0.65 27.74 0.41 27.62 0.45 53.73 0.50 32.92 0.41 20.37 0.26

AMCL CC 2.00 0.06 12.14 0.23 49.18 0.93 3.11 0.06 36.82 0.54 31.74 0.46 27.62 0.54 45.04 0.49 37.39 0.48 38.88 0.47
BF 3.67 0.06 11.40 0.22 40.47 0.49 3.11 0.08 36.75 0.55 29.33 0.41 27.62 0.42 13.50 0.25 34.42 0.45 24.34 0.33

g∗ 0.58 0.01 11.27 0.19 36.26 0.46 3.11 0.06 37.26 0.51 28.74 0.38 27.62 0.40 8.09 0.14 26.54 0.36 7.31 0.12

have the best result, it is competitive with the other methods shown. Like for log-loss, we are also able to evaluate the best
approximator g∗ to η on these losses. Note that g∗ is the best approximator in terms of KL divergence. Except for Domain
with 0-1 Loss and IMDB with 0-1 Loss, g∗ had loss no bigger (and often smaller) than even the best methods. This shows
that the prediction gotten from BF with log loss is good even when evaluated under other losses.

O.4 CONSISTENCY

To demonstrate the consistency of BF, we show that it is consistent under the DS generative assumption. For us, a method
being consistent means it can attain 0 approximation uncertainty for every problem. And specifically, BF produces a
prediction that has 0 approximation uncertainty when it is given b∗. In the literature, consistency can mean the ability of a
method to infer the underlying generative distribution as the number of (unlabeled) datapoints n→∞. When BF is used in
that setting, it will also infer the underlying generative distribution.

We will consider the one-coin BF model, with rule accuracy and class frequency constraints. The data will be generated
under the one-coin DS assumption with k = 2 classes, p = 3 rules and n datapoints. Our label space will be {−1, 1} for
convenience, and distributions over two elements will be other those labels.

1. Draw the underlying label distribution w⋆ ∼ Dirichlet(1, 1).

2. For each j ∈ [p], draw underlying accuracy b⋆j ∼ Beta(2, 4/3).

3. For each i ∈ [n]:

(a) Draw label yi ∼ Categorical(w)

(b) For each j ∈ [p], draw rule j’s prediction, yi(−1)s, s ∼ Bernoulli(bj).

If we fix n, we can compute the empirical class frequencies and rule accuracies, w∗ and b∗ respectively. Those are the
quantities given to BF. To simulate the case where one gets more data generated by the same underlying distribution, we
generate a total of n = 105 datapoints, and give BF the first 102, 103, . . . datapoints. A total of 10 datasets are generated via
this process and the resulting KL divergence between the BF prediction and the underlying distribution is averaged.

The underlying label distribution η in this case can be represented easily. If we fix the underlying label distribution and the
underlying rule accuracies, then for any set of rule predictions, the underlying distribution η is in the form of the RHS of

102 103 104 105

Points

10 7

10 6

10 5

10 4

10 3

10 2

10 1

KL
 D

iv
er

ge
nc

e

Mean KL Div.
Max/Min KL Div.

Figure 6: Synthetic Data Convergence

Equation 8. By how the rule accuracies/class frequencies are generated, one can easily show that η ∈ Gbf (Lemma 29). We
measure the KL divergence of the BF prediction when it gets 102, 103, . . . datapoints to the underlying label distribution η
for those 102, 103 . . . datapoints.

The figure shown in the main paper is reproduced here (Figure 6). Once again, the graph is on a log-log scale and the
divergence between the BF prediction and the underlying label distribution (1

nd(η, g
∗)) decreases exponentially fast. This

means that g∗ → η as n→∞.

O.5 ERROR DECOMPOSITION VISUALIZATION

To finish the appendix, we present the error decomposition visualizations for all ten datasets. We want to remind the reader
that even though we write d(µ, ν), what we have plotted is 1

nd(µ, ν). Practically speaking, this makes no difference to us as
the vertical axis values have just been scaled. Because of this, the values on the vertical axes match the values in Table 7.
If the OCDS loss d(η, gds) is not shown, it is because the value is so large that it would otherwise compress all the other
values displayed.

Recall that we are framing the discussion on approximation uncertainty in terms of how it changes as a function of how well
the empirical parameters are estimated. Specifically for our experiments, we are concerned with how well the empirical rule
accuracies and class frequencies are estimated. For (one-coin) BF, these estimates are given directly to BF while for OCDS,
those quantities are estimated via its EM algorithm.

For a fixed quantity of labeled points, we randomly sample that quantity 10 times from the validation set for BF. The
resulting minimum/average/maximum approximation uncertainties are plotted.

We will take η to be the ground truth labeling. To compute the BF loss decomposition, we take advantage of Theorem 6,
which says that if we give BF the empirical parameters, we get the best approximator g∗ for η. Calling the BF prediction
gbf , we know d(η, gbf) and d(η, g∗). By Lemma 5, those two quantities are enough to compute d(g∗, gbf). We point out
that the blue section (the minimum BF approximation uncertainty d(g∗, gbf)) often doesn’t decrease because the rule
accuracies/class frequency on the labeled dataset (the validation set) does not in general equal the rule accuracies/class
frequencies on the training set (which is what we’re labeling and measuring loss on). For OCDS, we are interested in
Eapprds,1 = d(η, gds∗)− d(η, g∗) and Eapprds,2 = d(η, gds)− d(η, gds∗). These two quantities taken together represent the OCDS
approximation uncertainty, but only the latter depends on how well EM estimates the empirical rule accuracies and class
frequencies. We plot lines such that the gap between the lines denotes a specific contribution of loss. The (green) gap
between the horizontal axis and the solid black line is the model uncertainty. The gap between the solid and dashed lines

100 110 120 130 140 150 160 170
Labeled Points

0.00

0.05

0.10

0.15

0.20

0.25

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)

d(, gds *)

d(, gds)

Figure 7: AwA BF/OCDS Loss Decomposition

is Eapprds,1 + d(η, g∗) = d(η, gds∗), the loss OCDS has if EM perfectly estimated the empirical rule accuracies and class
frequencies. (Recall that gds∗ is the OCDS prediction gotten from doing one E-Step with the empirical parameters.) The gap
between the dashed and dotted lines is Eapprds,2 = d(η, gds)− d(η, gds∗), the loss incurred from imperfect estimation of the
empirical rule accuracies/class frequencies by EM. We remind the reader that while Eapprds,2 can be negative, that was not
observed in our experiments.

To be terse, we will reference the figure number after the dataset and will not explicitly say “Figure”. For Cancer (9),
Cardio (10), IMDB (12), SMS (14), and Yelp (15), Eapprds,1 is very low as the dashed line (d(η, gds∗)) is not far above the
solid line d(η, g∗). Thus, the reducible portion of OCDS’ error is mainly from EM’s failure to estimate the empirical rule
accuracies/class frequencies well. For AwA (7), Basketball (8), and OBS (13), EM perfectly estimating the empirical rule
accuracies/class frequencies would give a loss close to the BF loss d(η, gbf) because Eapprds,1 is so large. Domain (11) and
Youtube (16) are the last two datasets and is the in-between case.

100 125 150 175 200 225 250 275 300
Labeled Points

0.0

0.1

0.2

0.3

0.4

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)

d(, gds *)

Figure 8: Basketball BF/OCDS Loss Decomposition

100 120 140 160 180 200 220
Labeled Points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)
d(, gds *)

Figure 9: Cancer BF/OCDS Loss Decomposition

100 125 150 175 200 225 250 275 300
Labeled Points

0.00

0.05

0.10

0.15

0.20

0.25

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)
d(, gds *)

Figure 10: Cardio BF/OCDS Loss Decomposition

100 125 150 175 200 225 250 275 300
Labeled Points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)
d(, gds *)

Figure 11: Domain BF/OCDS Loss Decomposition

100 125 150 175 200 225 250 275 300
Labeled Points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)
d(, gds *)

Figure 12: IMDB BF/OCDS Loss Decomposition

100 125 150 175 200 225 250 275 300
Labeled Points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)

d(, gds *)

Figure 13: OBS BF/OCDS Loss Decomposition

100 125 150 175 200 225 250 275 300
Labeled Points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)
d(, gds *)

d(, gds)

Figure 14: SMS BF/OCDS Loss Decomposition

100 125 150 175 200 225 250 275 300
Labeled Points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)
d(, gds *)

Figure 15: Yelp BF/OCDS Loss Decomposition

100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 120.0
Labeled Points

0.0

0.1

0.2

0.3

0.4

0.5

Lo
g

Lo
ss

Max d(g*, gbf)
Mean d(g*, gbf)
Min d(g*, gbf)
d(, g*)

d(, g*)

d(, gds *)

Figure 16: Youtube BF/OCDS Loss Decomposition

	Introduction
	Related Work
	Setup
	An Adversarial Approach
	Statistical Analysis of BF
	Learner's Prediction is Maximum Entropy Model in P
	Characterizing the BF Solution
	BF Solution Lies in an Exponential Family
	BF is a Form of Logistic Regression
	Model and Approximation Uncertainty
	A Pythagorean Theorem for G
	BF's Consistency and its Rate of Convergence

	A Probabilistic Approach
	Relation and Comparison to Adversarial Approach
	DS Prediction in Same Exponential Family
	Comparing BF with DS

	Experimental Results
	Discussion
	Appendix Overview
	Model Recap
	Notation Recap
	DS Model
	BF Model

	Proof of Theorems 1 and 2
	Exponential Family of BF Predictions
	BF and Logistic Regression (Lemma 3)
	Pythagorean Theorem (Lemma 4)
	Model and Approximation Uncertainty
	BF Loss Decomposition (Lemma 5)
	The BF Bound and Proof of Theorem 7
	Reference Program
	Sensitivity Analysis of an Arbitrary BF program
	Simplification of terms in Sensitivity Analysis

	Proof of Theorem 6
	Almost all DS Predictions are in G
	Dawid Skene Error Expression
	DS Loss Decomposition
	One-coin Error Expression (Lemma 10)

	BF and DS Error Comparison
	Lemma 12

	OCDS with EM is Inconsistent
	A Concrete Example

	Experimental Results
	Datasets
	Methods
	Comparison with SOTA
	Consistency
	Error Decomposition Visualization

