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ABSTRACT

Odor perception in mammals is triggered by interactions between volatile or-
ganic compounds and a subset of hundreds of proteins called olfactory receptors
(ORs). Molecules activate these receptors in a complex combinatorial coding
allowing mammals to discriminate a vast number of chemical stimuli. Recently,
ORs have gained attention as new therapeutic targets following the discovery of
their involvement in other physiological processes and diseases. To date, pre-
dicting molecule-induced activation for ORs is highly challenging since 43% of
ORs have no identified active compound. In this work, we combine [CLS] token
from protBERT with a molecular graph and propose a tailored GNN architecture
incorporating inductive biases from the protein-molecule binding. We abstract the
biological process of protein-molecule activation as the injection of a molecule
into a protein-specific environment. On a newly gathered dataset of 46 700 OR-
molecule pairs, this model outperforms state-of-the-art models on drug-target
interaction prediction as well as standard GNN baselines. Moreover, by incorporat-
ing non-bonded interactions the model is able to work with mixtures of compounds.
Finally, our predictions reveal a similar activation pattern for molecules within a
given odor family, which is in agreement with the theory of combinatorial coding
in olfaction.

1 INTRODUCTION

Mammalian sense of smell constantly provides information about the composition of the volatile
chemical environment and is able to discriminate thousands of different molecules. At the atomic
scale, volatile organic compounds are recognized by specific interactions with protein receptors
expressed at the surface of olfactory neurons (Buck & Axel, 1991). Mammalian epithelium ex-
presses hundreds of different olfactory receptors (ORs), belonging to the G protein-coupled receptors
(GPCRs), which constitute the largest known multigene family (Niimura & Nei, 2003). The recog-
nition of odorants by ORs is based on the complementarity of structures and hydrophobic or van
der Waals interactions which leads to low molecular affinity (Katada et al., 2005). With the excep-
tion of a few conserved amino acids, the sequences of ORs show little identity. In particular, the
ligand-binding pocket has hypervariable residues (Pilpel & Lancet, 1999) that are relatively well
conserved between orthologs. This property gives ORs the ability to bind a wide variety of molecules
that differ in structure, size, or chemical properties. The recognition of odorants is done according
to the combinatorial code of activation (Malnic et al., 1999). Each odorant is recognized by several
ORs, whereas an individual OR can bind several odorants with distinct affinities and specificities
(Zhao et al., 1998). This combinatorial code is sensitive to subtle modifications, so the response
of a single receptor can have a major influence on the smell perception. Even a small sequence
modification could affect odorant responsiveness (Keller et al., 2007; Mainland et al., 2014). On the
other hand, structural and functional modifications of an odorant can abolish the interaction with a
specific receptor (Katada et al., 2005), and even lead to a different smell perception (Sell, 2006). So
far the combinatorial code of the majority of odorants remains unknown. Identifying the recognition
spectrum of each OR is therefore essential to decipher the mechanisms of the olfactory system and
subsequently build models capable of cracking the combinatorial code of activation.
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There is only a limited number of models designed to match ligands and ORs. Namely Kowalewski
& Ray (2020) follow a molecule-oriented approach and predict agonists for a subset of 34 ORs (24
wild types and 10 variants) by representing molecules via fingerprints (Morgan, 1965; Klekota &
Roth, 2008) and building an individual SVM model for each OR. On the other hand, Cong et al.
(2022) focus on receptors and address a more complex problem of predicting active ORs for 4 given
molecules. In their random forest model, each amino acid of the protein sequence is described by 3
physico-chemical properties and the molecules by a subset of Dragon descriptors (Mauri et al., 2006).
In a more general approach, Gupta et al. (2021) consider any OR-molecule pair and use BiLSTM
(Graves & Schmidhuber, 2005) to predict the binding of a molecule, represented by SMILES string,
to an OR sequence.

In contrast, in this work we use a graph and a [CLS] token embedding from protBERT (Elnaggar et al.,
2021) to represent molecules and receptors, respectively. We abstract receptor-molecule binding as
the injection of a molecule into a protein specific environment. This is achieved by using molecular
topology as a layout for the message passing process and copying the protein representation to each
node of the molecular graph. As a result, the redundancy of protein information enables a local
processing of the "protein environment" and achieves better performance than a common strategy
of processing the receptor and the molecule in parallel. This abstraction leads to a graph with the
number of nodes depending only on the size of the molecule.

Molecules with flexible moieties can undergo conformational changes upon binding to maximize in-
teractions with the receptor binding cavity. This structural adaptation modifies the strength of internal
non-bonded forces. However, standard GNN architectures are restricted to the molecular topology.
Thus, we have built a tailored GNN architecture combining local interaction of bonded atoms, as done
by standard GNNs, with multi-head attention, giving the model the ability to incorporate interactions
between any pair of atoms. We show that this architecture outperforms other baselines as well as
previous work on olfactory receptor-molecule activation prediction.

Finally, we found a relationship between human odor perception and model predictions, strengthening
the biological relevance of the model. The results for humans are in full agreement with the
experimental work done by Nara et al. (2011). By analyzing the predictions for human ORs, we
observe that the combinatorial codes exhibit large diversity. The OR repertoire contains mostly narrow
receptors with several broadly-tuned ones. The results also highlight the existence of odor-specific
receptors, but most odors are coded in a complex activation pattern.

2 PRELIMINARIES

2.1 PROTEIN LANGUAGE MODELS

Recently, protein language models emerged as unsupervised structure learners (Rao et al., 2021b; Vig
et al., 2021; Rives et al., 2021), allowing to extract abstract vector representations of proteins. As in
natural language processing (NLP), large models with millions of parameters (e.g BERT (Devlin et al.,
2019)) are trained on vast databases of amino acid sequences (Steinegger et al., 2019; Steinegger &
Söding, 2018; UniProt Consortium, 2019; Suzek et al., 2007). Rao et al. (2019) trained and evaluated
various natural language processing models on a set of structurally relevant tasks. Elnaggar et al.
(2021) went further and trained a list of powerful NLP models ranging from 200M to 11B parameters.
Recently proposed MSA Transformer (Rao et al., 2021a) exploits evolutionary relationships by
using Multiple Sequence Alignment (MSA) as input rather than a single protein sequence at a time.
AlphaFold2 (Jumper et al., 2021; Evans et al., 2021) extends the idea of using MSA and combines
it with an experimentally obtained protein template in an end-to-end model trained on supervised
structure prediction.

2.2 GRAPH NEURAL NETWORKS

In recent years, graph neural networks (Kipf & Welling, 2016; Gilmer et al., 2017; Simonovsky &
Komodakis, 2017; Veličković et al., 2018; Wang et al., 2018; Zhou et al., 2018; Battaglia et al., 2018)
have grown rapidly in popularity and received considerable attention in various domains such as drug
design (Torng & Altman, 2019), physics (Shlomi et al., 2021), and chemistry (Gilmer et al., 2017;
Yang et al., 2019; Gasteiger et al., 2020b;a). Chemistry is a particularly promising field for GNN
applications since a molecule can be naturally represented as a graph G = {V, E}, where V is the set
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of nodes (atoms) and E the set of edges (bonds). Each node v ∈ V and each edge (u, v) ∈ E in G
have an initial vector of features, xv and eu,v , respectively. These feature vectors contain information
about atom/edge properties such as atomic number, atomic weight, or bond type.

3 MODEL

To tackle the problem of receptor-molecule activation prediction we take a proteo-chemometric
approach (Qiu et al., 2017) where the model estimates the probability P (m, r) that a given molecule
m activates a given receptor r. The input to the model is the amino acid sequence of the receptor on
one side and the molecular graph on the other side. See Fig. 1 (a) for the model outline.

Protein sequence representation is obtained using protBERT (Elnaggar et al., 2021) pretrained on
a dataset with 217M protein sequences (Suzek et al., 2007). Olfactory receptors are biopolymers
of around 300 amino acids and modeling each amino acid explicitly is computationally demanding.
To keep the costs relatively low, we take the advantage of the BERT’s classification token ([CLS])
(Devlin et al., 2019) which aggregates information about an entire protein sequence. This way we
model amino acids implicitly as they contribute to the [CLS] token embedding, and at the same time,
the sequence representation is reduced from roughly 300× d to only d , where d is an embedding
dimension. We concatenate the [CLS] token embedding from the last 5 layers of protBERT and use
this vector as the receptor input. A molecule is represented as a graph G with node and edge features
in Tab. 5. Note that the representation relies solely on the molecular topology and does not take into
account spatial characteristics.

The model architecture itself was designed by observing several inductive biases which emerge in
molecule-receptor interactions:

Locality. The binding between a receptor and a molecule relies on subtle interactions between
the binding groups of both protagonists. In particular, molecules contain functional groups that are
crucial for forming intermolecular bonds with the receptor. Since we use an aggregated sequence
representation, and thus do not explicitly model interactions between amino acids and atoms in
the molecule, we emulate this "locality" by copying the receptor embedding to each node of the
molecular graph (Fig. 1 (a)). This way the sequence representation is part of the node embedding and
can be locally changed based on the connectivity and neighborhood properties of each node.

Non-bonded interactions. In addition to bonded interactions, atoms in the same molecule interact
with each other via electrostatic and hydrophobic interactions. To account for these, we use the
attention mechanism (Vaswani et al., 2017), which allows a flow of information between any pair of
atoms (Fig. 1 (b)). This is particularly relevant for flexible molecules where two distant atoms in
the topology could be close in the conformation. Such approach also inherently takes into account
interactions between multiple molecules and thus allows for modeling mixtures.

Receptor-molecule complex. When a molecule binds to a receptor, the two form a stable complex
that can be considered as a single entity. To accommodate this observation, we combine the molecule
and receptor inputs early in the model pipeline rather than mixing them at a late stage. This facilitates
the flow of information between them throughout the model.

Combining the above observations, we propose the model architecture in Fig. 1. Based on the locality
and receptor-molecule complex observations, we inject receptor embedding into the molecular graph
as additional node features, and we use the molecular topology as a layout for the message passing
process (Fig. 1 (a)). This approach reduces the biological problem of protein-molecule interaction to a
small-scale graph-level binary classification where a molecule is injected into a receptor environment.
In this formulation, the size of the graph depends solely on the number of atoms in the molecule.

Given the above abstraction, any standard GNN architecture might be applied to predict a molecule-
receptor activation. However, standard models do not allow for information to pass outside of the
graph topology. To account for non-bonded interactions, we combine the local processing done
by a GNN with the multi-head attention. To enhance the expressive power of the network, we use
two separate identical GNNs for queries and keys/values. We denote these GNNs Q-MPNN for
"queries" and KV-MPNN for "keys/values". Each row in the queries and keys/values is a node
embedding resulting from the corresponding GNN (Fig. 1 (b)). Then we use the multi-head attention
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Figure 1: Model design. (a) Overview of the model. The input is a pair of protein sequence and
molecular graph. The sequence is embedded using [CLS] token from protBERT (Elnaggar et al.,
2021) and the resulting representation is concatenated to each node of the molecular graph. (b)
Graph processing block. The node embeddings Xold of the input graph are first locally updated
using two identical message passing neural networks (Q-MPNN and KV-MPNN), and then pairwise
interactions are modeled by the multi-head attention. This is followed by residual connections,
layer normalization and a feed forward network (Vaswani et al., 2017) to obtain the updated node
embeddings Xnew. Graph to vector operation is an ECC layer (Simonovsky & Komodakis, 2017)
followed by an attention pooling (Section A, equation (2)). Edge features E are used in Q-MPNN
and KV-MPNN and are reset at the end of the block.

followed by layer normalization (Ba et al., 2016) and feed forward network (Vaswani et al., 2017). A
similar approach was taken in (Rong et al., 2020), but our methodologies differ. Rong et al. (2020)
replace linear transformations in the multi-head attention with graph neural networks and thus have
3∗ |heads| ∗ |layers| different message passing steps. Instead, we use two GNNs to construct queries
and keys/values, and the standard multi-head attention with linear transformations, so our model has
2 ∗N ∗ |layers| steps, where N is the number of graph processing blocks.

The final model simply consists of N blocks followed by an ECC layer (Simonovsky & Komodakis,
2017) and an attention pooling as the graph to vector operation, and a dense layer for final output.
We chose to keep the GNNs architecture simple since there is a subsequent processing. We use a
dense layer followed by ReLU to construct messages from concatenated sender, receiver and edge
features, sum aggregation and a GRU cell (Cho et al., 2014) to update nodes1.

Training. To avoid overfitting we adopt similar strategy as in (Rong et al., 2020). During training,
a random number of message passing steps T is sampled from a truncated normal distribution
N(µ, σ, a, b) in each iteration of gradient descent. We use the Adam optimizer (Kingma & Ba, 2015)
with the learning rate schedule from (Vaswani et al., 2017) and in all experiments we train the model
for 10 000 epochs. In the first 8000 epochs we train on graphs with up to 32 nodes and 64 edges, and
then we switch to the full dataset during the remaining 2000 epochs. For evaluation and prediction,
we set the number of message passing steps to µ. In our experiments, we set µ = 6, σ = 1 and the
truncation interval between a = 3 and b = 9.

1Model source code is available here: https://github.com/MatejHl/Receptor2Odorant
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4 DATA

Only a limited amount of organized and curated data on OR-molecule pairs is available (Cong et al.,
2022; Sharma et al., 2021; Liu et al., 2011). To fill this gap, we have gathered and curated a new
dataset of 46 700 unique OR-molecule pairs from the literature, tripling the size of the currently
largest database of this kind (Cong et al., 2022). The data puts together experiments for 1237 unique
sequences for 11 mammalian species with additional information on experimental procedure and
varying data quality. See Supplementary material G for further details about the dataset.

Mammalian olfaction is sensitive to chirality and two enantiomers can have different smell perception.
However, 21% of the gathered data are actually pairs of an OR and a mixture of enantiomers. To
address this, we consider two modeling strategies for the mixtures of enantiomers: a "mixture"
approach where we exploit the ability of our proposed model to work with mixtures and a "single"
approach where a mixture of enantiomers is treated implicitly, by changing the chiral property of the
nodes. See further details in sections B and E.1.

In addition, there are several biases in the data that need to be addressed during training. Label noise
coming from high-throughput screening, class imbalance, and the combinatorial nature of the task.
In response, we construct sample weights for each sub-problem and use a weighted binary cross
entropy loss where the final weights are the product of the partial weights. Further details for weights
construction are discussed in Supplementary material C.

4.1 TEST SET

Because of the varying data quality, special attention needs to be paid to the test set construction. In
order to have high confidence in the results we select only pairs from the highest quality dose-response
data for the test set. Unless otherwise stated, in each cross-validation run in the experiments, we
randomly select 30% of the dose-response samples for the test set. We run 5 cross-validation runs for
all experiments.

5 EXPERIMENTS

We performed a series of experiments on the newly gathered dataset of OR-molecule pairs. In 5.1 we
compare our proposed architecture with other GNNs and perform ablation studies on the inductive
biases. We explore the generalization of the model to unseen receptors and molecules in Section
5.2, and in 5.3 we compare our approach with the previous studies of OR-molecule interactions.
We present additional ablations and experiments on two other datasets in Supplementary material E.
Due to the imbalance nature of molecule-protein activations, we use Mathews correlation coefficient
(MCC) as the main evaluation metric. We also report others for comparison with previous work.

5.1 MODEL

GNN architecture We compare our model with 4 standard GNN models and we experiment with 2
additional modifications of our approach. We also compare our results with 2 state-of-the-art models
on drug-target interaction prediction (DTI), namely HyperAttentionDTI (Zhao et al., 2021) and
MolTrans (Huang et al., 2020), which based on Zhao et al. (2021) perform best on three different DTI
datasets. We use ECC (Simonovsky & Komodakis, 2017), GGNN (Li et al., 2015), GAT (Veličković
et al., 2018) and GIN (Xu et al., 2019) as standard GNN baselines. GAT is a particularly interesting
baseline because it is a generalization of attention mechanism to an arbitrary graph. In the first
ablation, we consider dropping the non-bonded interactions observation and we replace Q-MPNN,
KV-MPNN and the multi-head attention in Fig. 1 (b) with a GAT layer (Transformer GAT in Tab. 1).
This way the attention mechanism is kept, but we do not allow direct interactions between all pairs
of atoms, and the model is restricted solely to the topology of the molecule. The second ablation is
in the opposite direction. We drop the molecular topology and use only the multi-head attention by
setting Q-MPNN and KV-MPNN to identity functions. Note that this reduces to the Transformer
(Vaswani et al., 2017) encoder model.

As can be observed in the results in Tab. 1, our model outperforms the standard baselines and also
proves to be the best compared to the DTI models. The ECC model failed to converge at all and its
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Table 1: Summary of results for different architectures. Transformer GAT corresponds to replacing
Q-MPNN, K-MPNN and the multi-head attention in Fig. 1 (b) with the GAT layer, and Transformer
corresponds to setting Q-MPNN and K-MPNN to identity functions. All ablation models have 5
layers/blocks. Since baseline models cannot process mixtures, we use "single" approach to represent
mixtures of enantiomers for all models except Ours - mixture (see Section B for details).

Model AveP Precision Recall F-score MCC
ECC 0.307 (0.02) 0.325 (0.02) 0.527 (0.03) 0.402 (0.03) 0.187 (0.03)

GGNN 0.676 (0.02) 0.447 (0.02) 0.833 (0.02) 0.582 (0.02) 0.455 (0.02)

GAT 0.686 (0.03) 0.466 (0.03) 0.834 (0.03) 0.597 (0.02) 0.476 (0.02)

Transformer GAT 0.704 (0.02) 0.556 (0.01) 0.771 (0.04) 0.645 (0.01) 0.536 (0.01)

GIN 0.743 (0.02) 0.641 (0.03) 0.708 (0.04) 0.672 (0.02) 0.574 (0.02)

Transformer 0.748 (0.04) 0.654 (0.04) 0.695 (0.05) 0.671 (0.01) 0.576 (0.01)

MolTrans 0.638 (0.07) 0.402 (0.05) 0.822 (0.03) 0.556 (0.05) 0.476 (0.04)

HyperAttentionDTI 0.737 (0.02) 0.609 (0.03) 0.773 (0.02) 0.681 (0.02) 0.584 (0.02)

Ours - single 0.765 (0.02) 0.665 (0.01) 0.711 (0.02) 0.687 (0.02) 0.595 (0.02)

Ours - mixture 0.780 (0.01) 0.689 (0.02) 0.698 (0.04) 0.693 (0.02) 0.605 (0.02)

Table 2: Summary of results for strategies to combine sequence and molecule inputs. Mixtures of
enantiomers are treated as a single graph.

Mixing AveP Precision Recall F-score MCC
Concatenation 0.687 (0.03) 0.550 (0.05) 0.729 (0.02) 0.626 (0.03) 0.509 (0.03)

Attention 0.720 (0.02) 0.604 (0.02) 0.671 (0.03) 0.635 (0.02) 0.526 (0.02)

Ours - single 0.765 (0.02) 0.665 (0.01) 0.711 (0.02) 0.687 (0.02) 0.595 (0.02)

performance is poor compared to the others. The best from the baseline models is GIN with MCC
0.574, followed by GAT and GGNN. Compared to simple GAT, the performance increases in the first
ablation when we combine the GAT layer with feed-forward network, normalization, and residual
connections. Interestingly, ignoring the molecular topology and using Transformer yields better
performance than any of the baseline GNNs or than Tranformer GAT. This is surprising because
Transformer has no access to the topology of the molecule and this suggests that the multi-head
attention component is crucial for performance. However, combining both the multi-head attention
and GNN together works the best (our model), implying that both the molecular topology and
pairwise interactions are needed. Comparing to the DTI models, MolTrans performs worse than most
of the baseline models and ablations. Our approach surpasses it by a large margin of 0.119 (0.129
with the "mixture" approach). HyperAttentionDTI performs better than MolTrans and the baseline
GNNs, but is still outperformed by our approach.

Mixing It is not evident at which point in the model the protein and molecule inputs should be mixed.
We argue that the molecule and the receptor create a complex, and since they constantly interact
with each other, the information should be mixed in an early stage of the processing. We test this
hypothesis against a more common strategy (Du et al., 2022) of late mixing of protein and molecule
information. We compare our model with a standard strategy of processing molecular information
separately via a GNN and then mixing the molecular embedding with the protein representation. This
breaks the locality and receptor-molecule complex observations. We consider two mixing strategies:
concatenation and attention. Concatenation is the most standard one and in this case the molecule
is processed without the protein information and the resulting embedding from the graph to vector
operation is concatenated to the protein [CLS] token. This concatenated vector is then the input to a
dense network. The second strategy is to use the resulting molecule embedding as keys/values in the
multi-head attention and the [CLS] representation of the protein as a query. This is followed by layer
normalization and feed-forward network like in the Transformer block. We use the proposed blocks
in Fig. 1 (b) to generate molecular embedding.

The results for mixing ablation are summarized in Tab. 2. Despite the redundancy of the protein
representation in the nodes, our approach outperforms other mixing strategies. This suggests that by
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incorporating the locality and receptor-molecule complex inductive biases, the model can learn to
exploit the dependencies between various molecular binding groups and the receptor.

5.2 GENERALIZATION

An important and perhaps the most interesting experiment we conduct is to test the generalization of
the model. 43% of mammalian ORs have no identified active compound, and only 206 out of 385
human ORs have a known responsive molecule. Therefore, the prediction of active compounds for
so-called orphan receptors (i.e. deorphanization task) remains a great challenge. Moreover, among
6389 described odorant molecules (Castro et al., 2022), 504 have been tested so far, and finally only
336 of them are known to induce an OR response. Thus, it is of major interest to identify new active
molecules for ORs (i.e. expanding chemical space).

Deorphanization. Model generalization to unseen ORs is tested in two scenarios. In the first one
(called random in Tab. 3), several ORs are randomly chosen to be exclusively included in the test
set and all their occurrences are removed from the training set. This scenario appears more realistic
because deorphanized ORs are found in each OR family. In the second, more complex scenario,
entire clusters of receptors are selected for the test set. The ORs are clustered according to their
sequence similarity, and then all dose-response pairs for all receptors in 9 randomly picked clusters
are placed in the test set. In this complex case, the model has to extrapolate to proteins with dissimilar
sequences. In both scenarios, we also experiment with keeping negative primary and secondary
screening pairs for the selected receptors (OR-keep in Tab. 3).

Expanding chemical space. Identifying new active compounds for olfactory receptors remains
challenging. To test the ability of the model to generalize to new molecules, we follow the same
strategy as for "deorphanization" (Molecules in Tab. 3). We either randomly select molecules and put
all their occurrences to the test set, or we choose several clusters based on Tanimoto coefficient (i.e.
structural similarity). See Section D for the full description of the experimental setup.

Generalization results. The results of the generalization experiments are summarized in Tab.
3. In the first random scenario, mainly recall is affected compared to an i.i.d. split and precision
undergoes minor changes by 2-5%. Keeping non-active molecules has small impact and leads to a
more conservative model with higher precision and lower recall. It appears that the model generalizes
poorly to entirely new family of receptors (Tab. 3, cluster task). This is due to the fact that subtle
variations in the amino acids sequence of ORs can utterly alter its recognition profile (de March et al.,
2018; Trimmer et al., 2019). Interestingly, even though overall MCC is low for the cluster scenario,
the precision is still maintained at a relatively high level with a difference of 11-15% compared to the
i.i.d. split. From the molecule perspective, the model can generalize well to new compounds that
have similar distribution to the training set. As expected, the performance decreases on an entirely
unseen group of molecules, yet the model still keeps the precision of 54.4%, only 14% lower than
in the i.i.d. case. The recall on the other hand deteriorates by half. This suggests that the model is
conservative and reluctant to predict many responsive pairs, which can be an advantage for in vitro
experiments. Although some responsive pairs are missed as a result of lower recall, the predictions
keep similar reliability across scenarios, and thus the number of laboratory hits would remain stable.

5.3 COMPARISON WITH OR-MOLECULE MODELS

In Tab. 4, we compare our work with Kowalewski & Ray (2020), Cong et al. (2022), and Gupta et al.
(2021). Overall, when generality is taken into account, our model outperforms previous approaches.
In particular, Kowalewski & Ray (2020) perform slightly better in AUROC than others, but this
approach fits a separate SVM model for each OR and can only be generalized to ORs that already
have at least 3 known active compounds. This is a limitation for most of ORs. On the other hand,
Cong et al. (2022) took a more general approach by fitting a single model to data for 10 molecules
(4 targets and 6 similar compounds). It is applicable to a variety of ORs, but only for compounds
structurally close to the 4 targets. Even though Cong et al. (2022) consider an easier setting with a
limited number of molecules, our approach outperforms it by a large margin. Finally, our model and
the BiLSTM model of Gupta et al. (2021) consider any given molecule-receptor pair. Our approach
outperforms Gupta et al. (2021) in all the metrics and more than twice the precision.
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Table 3: Summary of results for a generalization test set in case that a cluster of molecules/sequences
is not present in the training set (Cluster) and randomly chosen molecules/sequences are not present
in the training set (Random). OR - keep corresponds to a case where primary and secondary screening
non-active molecules are kept in the training set. Mixtures of enantiomers are treated as a "mixture".

Split Num data AveP Precision Recall F-score MCC
i.i.d. 1565.0 0.780 (0.01) 0.689 (0.02) 0.698 (0.04) 0.693 (0.02) 0.605 (0.02)

C
lu

st
er Molecule 1320.4 0.580 (0.08) 0.544 (0.07) 0.342 (0.06) 0.418 (0.06) 0.334 (0.07)

OR 1062.0 0.558 (0.14) 0.535 (0.12) 0.132 (0.04) 0.203 (0.04) 0.088 (0.06)

OR - keep 1062.0 0.625 (0.03) 0.576 (0.06) 0.095 (0.03) 0.161 (0.05) 0.091 (0.09)

R
an

do
m Molecule 1056.2 0.729 (0.08) 0.657 (0.11) 0.629 (0.04) 0.638 (0.06) 0.533 (0.07)

OR 1217.8 0.684 (0.10) 0.636 (0.07) 0.491 (0.11) 0.552 (0.09) 0.417 (0.10)

OR - keep 1217.8 0.710 (0.09) 0.670 (0.06) 0.470 (0.13) 0.548 (0.11) 0.430 (0.10)

Table 4: Comparison with previous studies on OR-molecule activation prediction. ORs and Mols are
average numbers of unique receptors and molecules, respectively, in the test set.

Model ORs Mols TNR AUROC Precision Recall F-score
SVMa 32 n/a 0.80 (0.06) 0.88 (0.07) n/a 0.77 (0.10) n/a
RFb 80 4 0.91 0.74 0.52 0.53 0.53
BiLSTMc n/a n/a n/a 0.77 0.34 0.71 0.46
Ours - mixture 205 237 0.91 (0.01) 0.79 (0.03) 0.69 (0.02) 0.70 (0.04) 0.69 (0.02)

aKowalewski & Ray (2020)
bCong et al. (2022)
cGupta et al. (2021), results taken from supplementary Fig. 3.

6 AGREEMENT WITH ODOR PERCEPTION

The combinatorial nature of olfaction was first hypothesized in 1973 by Polak (1973) and further
confirmed by the discovery of ORs by Buck & Axel (1991). Malnic et al. (1999) demonstrated that
different odorants are recognized by different subsets of ORs. Here, we refer to a subset of 385
human ORs activated by a given odorant as the combinatorial code, and in this section we asses a
biological plausibility of our approach by analyzing consistency between the combinatorial code
predicted by our model and odor perception of molecules (i.e. the odor families).

We evaluate the concordance between our model and the olfactory perception as follows: given a
large dataset of known odorants (Castro et al., 2022), we construct an abstract smell characteristic
of a molecule by taking an embedding of a GNN-based odor prediction model (Sanchez-Lengeling
et al., 2019). This model was recently shown to outperform a median panelist in odor description task,
and its embedding can capture perceptual similarity of molecules (Lee et al., 2022). The odorants
are clustered based on their odor embedding to abstract odor families. For each family, we define an
agreement score as the α-quantile of the distribution of median l1 distances between the combinatorial
codes within the family2. In other words, let Ak

i , A
k
j ∈ {0, 1}385 be the combinatorial codes for

molecules i, j in family k. Then the agreement score Qk for family k is given by

Qk(α) = inf
q
{∀i ∈ k : P (m̂{∥Ak

i −Ak
j ∥1} ≤ q) > α} (1)

where m̂ denotes the median through j ∈ k. When considering α percent of the most consistent
codes in family k, Qk(α) represents the largest deviation of OR responses in that family. We report
several values of α due to the known ambiguity of odor descriptors which depend on several cultural
and personal factors of the panelists such as varying verbal expressions, current state and previous
experience, or are even affected by OR mutations (Kaeppler & Mueller, 2013).

Fig. 2 reports the distribution of Qk(α) for all abstract odor families and several levels α. Most of the
families have a consistent combinatorial code as illustrated by the density of Qk (Fig. 2), highlighting

2There are 205 abstract odor families and 385 human ORs.
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(a) (b)

Figure 2: (a) Density and (b) cumulative distribution of agreement scores Qk(α) for several levels α.

an agreement between the results of the two independent models: odor prediction and OR activation.
For α = 75%, more than 60% of all families differ by less than 25 ORs and 84% by less than 50.
Fig. 5 provides examples of families with different α-quantile values. Although the odor prediction
model outperforms a median panelist, it is still prone to error. This may influence the quality of the
clustering and consequently lead to outliers in the families, as illustrated in Fig. 5 (b).

A previous in vitro study on 125 odorants suggested that molecules recognized by a subset of ORs
share the same odor quality (Nara et al., 2011). The consistency of activation patterns observed in
the odor families allows us to generalize this experimental observation to all known odorants. Nara
et al. (2011) found that most ORs are narrowly tuned with the exception of few broadly tuned ORs.
Our predictions are consistent with this observation, as the results conclude that the vast majority
of ORs have a very narrow recognition spectrum (Fig. 4). In addition, our model is able to identify
specialized receptors for some specific odor families (e.g. Fig. 6). In agreement with Nara et al.
(2011), odor is generally encoded in a combination of multiple active receptors and the size of the
code varies among odorants.

7 CONCLUSION

In this study, we transfer the biological problem of protein-molecule interaction to a graph-level
binary classification. We combine [CLS] token from the protein language model with graph neural
networks and multi-head attention to predict active compounds for ORs. We design a tailored GNN
architecture by incorporating inductive biases that are observed in receptor-ligand interactions and we
demonstrate that this architecture outperforms other baselines and previous works. Our results show
that [CLS] token contains valuable information to characterize proteins and at the same time lowers
computational and memory demands. In addition, by taking into account non-bonded interactions,
the model is suited to deal with mixtures of compounds.

Although [CLS] token reduces computational costs, it comes with the limitation that one cannot
infer the importance of individual amino acids. In the future, we plan to explore the possibility to
use MSA-based protein language models to explicitly model amino acids. This may lead to better
interpretability with the drawback of higher computational demands. While our predictions are in
good agreement with experimental results, our model does not take into account the influence of
the concentration on either the perceived odor or the pattern of activated ORs. Recent experiments
have shown that inhibition of ORs by odorants is also part of the combinatorial code of odors and,
more specifically, that the interaction between odorants in a mixture modulates the activation of ORs
relative to that of isolated molecules (Kurian et al., 2021). However, data on OR inhibition remain
scarce and do not allow training a model predicting molecular inhibition.

To date, 43% of the ORs are still orphans. The prediction of the combinatorial code for all ORs and
odorant molecules opens the way to the generalization of experimental results obtained on subsets
of ORs or a limited number of odorants. By linking activity patterns to olfactory perception, we
confirm that odorants are recognized by a unique subset of ORs and that these subsets are specific
to an olfactory characteristic. Finally, we expect this work to have an impact beyond the olfaction
research. ORs are also expressed in non-nasal tissues and are involved in the regulation of different
metabolic functions or found in cancerous cells. Thus, they are becoming a promising drug targets,
and matching ligand to specific ORs is of major importance.
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A MODEL DETAILS

In all our experiments, we consider node and bond features in Tab. 5. Molecular graphs were
constructed using RDkit (Landrum, 2020) from SMILES obtained from PubChem (Kim et al., 2020).
Atomic number, chiral tag and hybridization were embedded in R72, and Bond type and Stereo type
in R36.

Table 5: Features of the molecular graph. Features were treated as categorical variables except for
formal charge, number of implicit Hs, explicit valence and mass which are continuous variables.

Atom features Bond features
Atomic number Bond type
Chiral tag Stereo type
Hybridization Is aromatic
Formal charge
Num. of implicit Hs
Explicit valence
Mass
Is aromatic

The attention pooling layer in graph to vector operation for graph g is defined as

α = softmax(Xw) x′ =

n∑
i=1

αiXi (2)

where X ∈ Rn×d is a matrix of node embeddings and w ∈ Rd×1 are trainable parameters.

A.1 TRAINING DETAILS

Dropout of 0.1 was applied in each multi-head attention layer and 0.5 just before the output layer.
Padding was set to 32 nodes and 64 edges in the first 8000 epochs and 128 and 256, respectively, in
the remaining 2000 epochs. The initial learning rate was set to 0.001 and we use 6000 warm-up steps
for the scheduler. The model was implemented in JAX (Bradbury et al., 2018) and FLAX (Heek
et al., 2020) and trained on Nvidia V100 SXM2 32GB or Nvidia A100 SXM4 80GB GPUs.

B ENANTIOMERS

The olfactory system of primates is sensitive to the chirality of molecules: they can discriminate
between enantiomers. By definition, a pair of enantiomers3 are mirror isomers that are not superim-
posable chemical structures. They have the same atomic composition and they share identical physical
and chemical properties in an achiral environment. However, they will have different properties when
interacting with a chiral environment (for example, polarized light or the binding site of a protein).
Two enantiomers can have a completely different odor, for example R-carvone and S-carvone which
smell like caraway and mint, respectively. At the molecular level, these two molecules are recognized
by distinct OR subsets. The specific selectivity of ORs for a given enantiomer is at the origin of
the differences in perception of chiral molecules. Even if chirality has a high influence on ORs
recognition, the distinction between enantiomers is often overlooked in laboratory experiments.
As a result, 21% of our gathered data are actually pairs of an OR and a mixture of two (or more)
enantiomers. Thus, it appears crucial to inject molecular chirality into our model.

Molecular graphs of enantiomers are identical and the only difference is in their chiral centers. These
may have clockwise (CW) or counter-clockwise (CCW) chirality and one way of distinguishing
them is to put chiral tag property of one chiral center to CW and CCW for the other. Since the
molecular graphs are identical, a mixture of enantiomers can be modeled in two ways: as a single
graph where chiral centers have "unknown" chirality or a mixture of independent molecules. In the
latter case, we can exploit the fact that combining GNN with the multi-head attention is capable

3With a slight abuse of notation, we refer to both enantiomers and diastereoisomers as enantiomers.
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Table 6: Screening quality. Values in each row correspond to the conditional probability that the true
response is positive/negative (i.e. the outcome of the dose-response measurement) given the result
from the primary and secondary screening. These probabilities were estimated based on the data
from Mainland et al. (2015). EC50 denotes the true label from the dose-response measurements.

Primary Secondary

pos. neg. pos. neg.

EC
50 pos. 0.40 0.31 0.72 0.23

neg. 0.60 0.69 0.28 0.77

of modeling mixtures. Thus, a mixture of enantiomers can be treated as a graph with 2|chiral centers|

identical disconnected components that differ only in the chiral tag property of chiral centers.

We test both "single" and "mixture" approaches in Section E.1. Our experiments indicate that the two
strategies have similar performance on OR-molecule pairs (Tab. 7). Interestingly, when evaluated on a
limited set of complex mixtures (i.e. pairs of OR and mixture containing more than two topologically
different compounds), the performance of the model trained in the "mixture" approach is higher even
though the only mixtures seen during training were the mixtures of enantiomers (Tab. 8). Note that
the data on mixtures are limited and further experiments are needed.

C SAMPLE WEIGHTS

Data quality. Conducting an experiment with high confidence on responsiveness is costly and
time-consuming. The standard procedure for testing molecule-receptor pairs is to first perform a
noisy primary screening where many different pairs are tested with just one injection for a single
concentration. Then, promising pairs from the primary screening are further tested at several
concentrations in a secondary screening. Finally, the pairs that are considered responsive from
the secondary screening are tested in the most precise tertiary screening in multiple concentrations
and multiple injections per concentration (i.e. dose-response curve). If neglected, varying sample
quality could lead to fitting corrupted labels and impairing the model performance and generalization.
Therefore, during training we employ a simple strategy to counteract this label noise. For each type
of screening, we estimate probability P type

c,ĉ that the observed label ĉ corresponds to the true label
c. By treating a dose-response label as true we estimate P̂ type

c,ĉ based on (Mainland et al., 2015),
where several pairs were tested in all three types of experiments (Tab. 6). Then we use the diagonal
elements as data quality weights for a given type and a given class y

wquality(y, type) = P̂ type
y,y (3)

We set the weight for dose-response samples to 1. In the future, a more elaborated label noise
treatment could be used (see (Song et al., 2022) for a non-exhaustive list of label noise strategies).

Class imbalance. Naturally, most of the molecule-receptor pairs are non-responsive and only 6.2%
of the samples in our data are responsive. To account for this class imbalance, we use standard class
weights based on the imbalance ratio

wclass(y) =

{
|non−responsive|

|responsive| if y = 1

1 if y = 0
(4)

Pair imbalance. On top of the class imbalance, some olfactory receptors have been tested with
many molecules, whereas others are yet to be explored and were tested only on a few specific
compounds (Fig. 7). We refer to this type of imbalance as pair imbalance and to avoid the bias
resulting from the uneven distribution of experiments, we adopt a heuristic weighting scheme to
down-weight extensively tested receptors and up-weight less-known ones. For each molecule-receptor
pair, we set pair imbalance weight as the logarithm of the harmonic mean

wpair(m, r) = ln

(
1 +

K

2

(
1

|M(r)|
+

1

|OR(m)|

))
(5)
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where |M(r)| is the number of molecules tested for a given receptor r, |OR(m)| is the number of
receptors tested for a given molecule m and K is a constant. In the experiments, we set K = 100.

The final sample weight is then given by

w(m, r, y, type) = wquality(y, type)wclass(y)wpair(m, r) (6)

D EXPERIMENTAL DETAILS

D.1 GENERALIZATION

Deorphanization. To test the generalization to unseen receptors we consider two scenarios. The
first one (referred to as random in Tab. 3), where the model predicts active compounds for unseen
receptors chosen randomly, and the second, more complex scenario, where entire groups of similar
receptors are unseen during the training (cluster in Tab. 3).

We test the random scenario by constructing a test set for each cross-validation run in the following
way. From pairs tested in dose-response experiments, we filter receptors with at least 3 known active
compounds. Then from these filtered receptors we randomly choose 35% and place all dose-response
pairs containing these into the test set. We then discard remaining primary and secondary screening
pairs containing the selected receptors from the training set (OR in Tab. 3) or we discard only the
responsive pairs containing these receptors (OR - keep in Tab. 3). The reasoning behind keeping
negative examples is that, in reality, we have access to non-responsive molecules from primary
screenings for all human olfactory receptors. Following this procedure, the model has never seen the
selected receptors and it needs to extrapolate their molecule-receptor interaction from the remaining
proteins.

Test set construction in the cluster scenario is similar to the random case, but we do not choose
receptors for the test set uniformly. Instead, we cluster receptors based on their sequence similarity
and then place dose-response pairs for all receptors from 9 randomly picked clusters into the test
set. We then follow the same procedure of discarding either all or only the responsive primary and
secondary screening pairs containing these receptors from the training set. This scenario is more
demanding than the first setting because the model would need to extrapolate to entirely dissimilar
proteins than the ones in the training set.

Expanding chemical space. Extrapolation to the unseen molecules is tested by an identical
procedure as the deorphanization. The only differences are that we select molecules instead of
receptors (25% molecules with at least 2 responsive pairs in random) and in the cluster scenario we
cluster molecules based on their Tanimoto coefficient (i.e. structural similarity). We take compounds
from 6 randomly selected clusters. In both scenarios, we then discard all other pairs containing the
selected compounds from the training set.

E ADDITIONAL EXPERIMENTS

E.1 DATA ABLATIONS

Enantiomers. As we argued previously, olfaction is sensitive to the chirality and modeling enan-
tiomers poses a great challenge. Here, we test the two approaches to incorporate mixtures of
enantiomers and their performance is summarized in Tab. 7. We report two settings where we either
test the model on single molecules only (i.e. discarding mixtures of enantiomers from the test set) or
on the full test set. We also train a separate model on the training set with mixtures of enantiomers
discarded. As can be seen in the results, modeling mixtures of enantiomers explicitly as a mix of
independent molecules slightly outperforms the implicit "single" approach. In both cases keeping
mixtures of enantiomers is beneficial for modeling single molecules.

Complex mixtures. Several lab experiments have been performed to test a receptor with a mixture
of topologically different compounds. In Tab. 8, we report the performance of our model on a limited
dataset of complex mixtures. In particular, we investigate impact of the two strategies for treating
mixtures of enantiomers on the performance on complex mixtures. Although the two approaches
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Table 7: Summary of results for strategies to treat mixtures of enantiomers. Mixtures of enantiomers
are either modeled as a mixture of distinct molecules (mixture) or as a single graph with chiral centers
having "unknown" chirality (single). Discard corresponds to the model trained only on data without
the mixtures. Discard mix of isomers denotes a test set without the mixtures and full test set is a test
set containing all pairs, including mixtures of enantiomers.

Isomers Num data AveP Precision Recall F-score MCC

D
is

ca
rd

m
ix

of
is

om
er

s Discard 1425.0 0.773 (0.01) 0.666 (0.03) 0.689 (0.03) 0.677 (0.02) 0.589 (0.03)

Single 1425.0 0.759 (0.02) 0.656 (0.01) 0.715 (0.03) 0.685 (0.02) 0.597 (0.03)

Mixture 1425.0 0.778 (0.01) 0.681 (0.02) 0.704 (0.04) 0.691 (0.02) 0.608 (0.02)

Fu
ll

te
st se
t Single 1565.0 0.765 (0.02) 0.665 (0.01) 0.711 (0.02) 0.687 (0.02) 0.595 (0.02)

Mixture 1565.0 0.780 (0.01) 0.689 (0.02) 0.698 (0.04) 0.693 (0.02) 0.605 (0.02)

Table 8: Summary of results for a small dataset of complex mixture-receptor pairs for dose-response
pairs only (EC50) and all available data (All).

Isomers Num data AveP Precision Recall F-score MCC

EC
50 Single 37.0 0.938 (0.05) 0.895 (0.04) 0.836 (0.02) 0.864 (0.01) 0.494 (0.10)

Mixture 37.0 0.994 (0.01) 0.915 (0.07) 0.836 (0.07) 0.869 (0.02) 0.538 (0.10)

A
ll Single 112.0 0.799 (0.08) 0.716 (0.08) 0.774 (0.03) 0.741 (0.03) 0.638 (0.05)

Mixture 112.0 0.940 (0.04) 0.789 (0.10) 0.755 (0.06) 0.768 (0.04) 0.684 (0.07)

have identical training sets, the results suggest that the model trained with the "mixture" strategy
outperforms the "single" approach.

Data quality weights. Label noise originating from different quality of experiments can bias the
model and negatively impact its generalization. To test the label noise treatment, we experiment with
discarding primary screening data (the most noisy ones in Tab. 6), with weights presented in Section
C, and with ignoring the label noise (i.e. a naive approach). Note that we use only dose-response data
for test sets and these are assumed to have no noise.

According to the results in Tab. 9, neglecting the label noise lowers the performance. It can be
observed that when using weights and when discarding the primary screening data the results are on
par. This is due to the fact that most of the corrupted labels are coming from the primary screening
(Teb. 6) and so discarding these cures a large portion of the label noise. Nevertheless, we hypothesize
that keeping the primary screening data while taking the noise into account could be beneficial for
model generalization. Primary screening experiments have relatively low cost and can cover a large
number of different pairs. Thus, the model can have access to a large sample of the data distribution.

Table 9: Summary of results for data quality weights. Naive corresponds to equal weights. Mixtures
of enantiomers are treated as a "mixture".

Data quality AveP Precision Recall F-score MCC
Discard primary 0.754 (0.02) 0.667 (0.03) 0.724 (0.04) 0.694 (0.01) 0.603 (0.02)

Naive 0.740 (0.04) 0.631 (0.05) 0.715 (0.02) 0.669 (0.03) 0.570 (0.04)

Weight 0.780 (0.01) 0.689 (0.02) 0.698 (0.04) 0.693 (0.02) 0.605 (0.02)

E.2 PERFORMANCE ON OTHER DATASETS

In addition to OR-molecule data, we conduct experiments on two drug-target interaction prediction
datasets, namely KIBA (Tang et al., 2014) and DAVIS (Davis et al., 2011), and we compare perfor-
mance of our approach with two state-of-the-art drug-target interaction models HyperAttentionDTI
(Zhao et al., 2021) and MolTrans (Huang et al., 2020), which based on Zhao et al. (2021) perform
best on the two datasets. Both KIBA and DAVIS record kinase inhibition binding affinities measured
in laboratory assays. We follow data preprocessing and binarization scheme from (Zhao et al., 2021).
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Table 10: Statistics of DAVIS (Davis et al., 2011), KIBA (Tang et al., 2014) and M2OR (ours)
datasets. Seqs. and Mols. respectively refer to unique number of sequences and moleucles in the
datasets. Orphans is a number of sequences without any known active compound and % mols. tested
per sequence and Ligands per sequence are, respectively, average portion of molecules tested on a
given sequence and average number of known active compounds for a sequence.

Dataset Num. pairs Seqs. Mols. Orphans % mols. tested
per sequence

Ligands
per sequence

DAVIS 25 772 379 68 0 100.0% 19.3
KIBA 116 350 225 2068 5 25.0% 98.5

M2OR 46 717 1237 596 527 6.3% 2.3

(a) (b)

(c) (d)

Figure 3: Distributions of the number of laboratory experiments: (a) per molecule and (b) per
sequence for DAVIS, (c) per molecule and (d) per sequence for KIBA. Note that DAVIS dataset
contains results on all possible pairs of 68 molecules and 379 proteins.

In Tab. 10, Fig. 3 and Fig. 7 a comparison between distributions of the two datasets and of our
data (M2OR in Tab. 10) is reported. As can be observed by shapes of the gray areas in Fig. 3 and
Fig. 7, OR data have a more scarce distribution of tests per sequence and per molecule and a more
imbalanced class distribution than what can be observed in KIBA or DAVIS.

Table 11: Performance of HyperAttentionDTI (Zhao et al., 2021), MolTrans (Huang et al., 2020) and
our model on KIBA (Tang et al., 2014), DAVIS (Davis et al., 2011) and M2OR (ours) data. Results
for MolTrans and HyperAttentionDTI on KIBA and DAVIS are taken from (Zhao et al., 2021).

Model AveP Precision Recall MCC

D
AV

IS MolTrans 0.784 (0.002) 0.782 (0.003) 0.617 (0.004) n/a
HyperAttentionDTI 0.839 (0.002) 0.754 (0.002) 0.780 (0.001) n/a

Ours - mixture 0.744 (0.015) 0.699 (0.013) 0.666 (0.016) 0.564 (0.011)

K
IB

A MolTrans 0.708 (0.003) 0.710 (0.003) 0.645 (0.003) n/a
HyperAttentionDTI 0.814 (0.002) 0.689 (0.003) 0.798 (0.002) n/a

Ours - mixture 0.704 (0.010) 0.610 (0.014) 0.683 (0.005) 0.555 (0.012)

M
2O

R MolTrans 0.638 (0.066) 0.402 (0.053) 0.822 (0.027) 0.476 (0.042)

HyperAttentionDTI 0.737 (0.015) 0.609 (0.028) 0.773 (0.020) 0.584 (0.022)

Ours - mixture 0.780 (0.012) 0.689 (0.016) 0.698 (0.042) 0.605 (0.017)
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The performance on all three datasets is summarized in Tab. 11. Overall, on DAVIS HyperAtten-
tionDTI and MolTrans have higher AveP value than our model, and on KIBA HyperAttentionDTI
performs best and our approach is on par with MolTrans. Our model outperforms other approaches
on the OR-molecule dataset.

F ANALYSIS OF THE COMBINATORIAL CODE

Figure 4: Distribution of the estimated broadness of human ORs. Broadness for each OR is defined
as a portion of its predicted active compounds out of all known odorant molecules as given by the
pyrfume database (Castro et al., 2022). The olfactory receptors are grouped by receptor families
(Olender et al., 2008) and colored by mean Tanimoto similarity between their active compounds.

(a) Balsamic, floral and spicy. Q(a)({0.5, 0.75, 0.9, 1.0}) = {13, 19, 24, 32}.

(b) Citrus, waxy and fatty. Q(b)({0.5, 0.75, 0.9, 1.0}) = {20, 29, 50, 52}.

(c) Floral, woody and minty. Q(c)({0.5, 0.75, 0.9, 1.0}) = {25, 30, 58, 129}.

(d) Nutty, Roasted and Meaty. Q(d)({0.5, 0.75, 0.9, 1.0}) = {48, 79, 127, 330}.

Figure 5: Examples of the predicted combinatorial codes for 4 abstract odor families and 385 human
ORs4. Each row is an odorant molecule and each column is an olfactory receptor. Each molecule-OR
pair is colored by the probability of activation ranging from dark blue for no activation to yellow
for an active pair. The ORs are sorted in the figures in descending order from the left to right by
their predicted broadness. Captions under the figures correspond to the most frequent descriptors in a
given abstract odor family, ordered by frequency.

4Figures for all families available here: https://github.com/MatejHl/Receptor2Odorant.
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Figure 6: UMAP (McInnes et al., 2018) projection of the odor embedding with estimated densities of
active compounds. Each point is an embedded odorant from pyrfume database (Castro et al., 2022)
and highlighted points are molecules that belong to the abstract odor families with the given smell
descriptor being 1. the most occurring one, 2. the second most occurring, and 3. the third most
occurring in the family. The contour regions are estimated densities of active compounds for a given
receptor. We identify specific receptors OR10W1 (green) and OR5K1 (blue). OR10W1 is activated
by molecules with the woody descriptor whereas OR5K1 by nutty compounds. OR2W1 (grey) is an
example of a broad receptor activated by odorants with all kinds of different descriptors.

G DATASET

Our newly gathered dataset of OR-molecule pairs5, called M2OR for Molecule to Olfactory Receptor,
currently contains 46 700 unique pairs that were collected from 31 scientific papers (Malnic et al.,
1999; Wetzel et al., 1999; Kajiya et al., 2001; Spehr et al., 2003; Saito et al., 2004; Araneda et al.,
2004; Sanz et al., 2005; Neuhaus et al., 2006; Jacquier et al., 2006; Schmiedeberg et al., 2007; Keller
et al., 2007; Fujita et al., 2007; Saito et al., 2009; Repicky & Luetje, 2009; Shirasu et al., 2014;
Mainland et al., 2015; Gonzalez-Kristeller et al., 2015; Geithe et al., 2015; 2016; 2017; Sato-Akuhara
et al., 2016; Noe et al., 2016; 2017; Jones et al., 2019; Yasi et al., 2019; Frey et al., 2020; Jabeen
et al., 2021; Marcinek et al., 2021; Haag et al., 2021; 2022; Cong et al., 2022). It combines 596
different molecules with 1237 unique sequences and in total consists of 68 837 experiments. Wild
type, variant and mutant receptors are assembled across 11 different mammal species. For each
experiment, several types of information are available:

• Receptor: Species, Mutation, Gene Name, Uniprot ID, Sequence. When available, primary
sequence or Uniprot ID is obtained from the publication or else Uniprot ID is inferred
from the gene name. We keep original gene name as was stated in the article. For mutants,
Uniprot ID/Sequence corresponds to the reference sequence and the mutation is annotated
in the dedicated column. Then mutated sequence should be deduced by combining the
reference sequence and the mutation.

• Molecule: Name, CID, CAS, InChI Key, canonicalSMILES, Mixture. Compounds are
identified by InChI Key based on the Pubchem database (Kim et al., 2020). Distinction
between mono-molecular compounds, mixture, and sum of isomers is made, and it is derived

5Data available here: https://github.com/chemosim-lab/M2OR
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(a) (b)

(c) (d)

Figure 7: Distributions of the number of lab experiments in the M2OR dataset: (a-b) per receptor,
(c-d) per molecule. Sever imbalance in the quality, number of experiments, and class distribution can
be observed.

using EnumerateStereoisomers function form RDKit (Landrum, 2020). When no InChI Key
is available, canonicalSMILES is inferred from the chemical structure.

• Response: Value, Unit, Value_Screen, Unit_Screen, Responsive, Nbr_measurements. Value
corresponds to the experiment’s raw response if available and Value_Screen is a tested
concentration. If a sample is non-responsive in a dose-response measurement, Value_Screen
is set to the maximum tested concentration. Nbr_measurements corresponds to the number
of injections for a given experiment. Responsiveness is encoded as 1 for agonists and 0 for
non-agonists.

• Bioassay: Type, Cell_line, Delivery, Assay, G-protein, Co_transfection, Assay System, Tag.
Information about the type of assay done, the cell line used, the delivery method of the
odorant and about the system such as the presence of G protein, tags or co-transfection of
other proteins.

• Reference: Reference, DOI, Reference Position. Article name, authors, DOI and location
where the information was found.

Table 12: Dataset statistics.

Experiments 68 110
Unique pairs 46 717
Unique sequences 1237
Unique molecules 596
Species 11

Data preparation. Some OR-molecule pairs may be tested in several different experiments with
possibly different outcomes. In order to train and evaluate our model, we extracted unique pairs
from the dataset as follows: If a given pair has a dose-response experiment, we take its result and
ignore others. Otherwise, if a pair has multiple measurements but not a full dose-response curve, we
consider it as a secondary screening and we take this pair and its response only if there is no conflict
between the experiments. If there is a conflict, we discard the pair entirely (in total 166 pairs were
discarded).
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