
SimuGen: Multi-modal Agentic Framework for Constructing Block
Diagram-Based Simulation Models

Anonymous ACL submission

Abstract001

Recent advances in Large Language Models002
(LLMs) have demonstrated remarkable capa-003
bilities in mathematical reasoning and code004
generation. However, LLMs still perform005
poorly in the simulation domain, especially006
when tasked with generating Simulink mod-007
els, which are essential in engineering and sci-008
entific research. Our preliminary experiments009
reveal that LLM agents struggle to produce re-010
liable and complete Simulink simulation codes011
from text-only inputs, likely due to insufficient012
Simulink-specific data during pre-training. To013
address this gap, we introduce SimuGen, a014
multi-modal agentic framework designed to015
automatically generate accurate Simulink sim-016
ulation code by leveraging both the visual017
Simulink diagram image and domain knowl-018
edge. SimuGen coordinates several specialized019
agents—including an Investigator, a unit test020
reviewer, a code generator, an executor, a de-021
bug locator, and a report writer—supported by022
a domain-specific database. This collaborative,023
modular architecture enables interpretable and024
robust simulation generation for Simulink. 1025

1 Introduction026

“One test result is worth one thousand expert opin-027

ions.”028

— Wernher von Braun, Father of Rocket Science029

Simulation models are indispensable for test-030

ing complex systems across domains such as auto-031

motive, aerospace, and robotics. In industry and032

academia, Simulink, a tool for modeling and simu-033

lation of dynamic systems in the MATLAB environ-034

ment, has emerged as a prominent block-diagram035

platform for simulation (MathWorks, 2025).036

Recent advances in LLMs have demonstrated037

remarkable abilities in automating software devel-038

opment and code generation. Models like SWE-039

agent (Yang et al., 2024) and OpenAI’s Codex can040

1Code will be available at: https://anonymous.4open.
science/r/SimuGen-CD71

translate natural language into program code with 041

increasing proficiency. These successes, however, 042

are mostly confined to textual programming lan- 043

guages, leaving a gap in support for graphical sim- 044

ulation and modeling environments. In particu- 045

lar, existing LLM-based pipelines lack any native 046

capability for Simulink model generation or ma- 047

nipulation. The fundamental difference between 048

textual code and block-diagram models presents a 049

unique challenge: LLMs trained predominantly on 050

linear text struggle to represent and reason about 051

the two-dimensional structure of diagrams (Ab- 052

dalla and Smith, 2025). Furthermore, unlike the 053

wealth of open-source code available for training, 054

there is a paucity of public data for Simulink or 055

similar graphical models (Shrestha and Csallner, 056

2021). This data scarcity has hindered the spe- 057

cialization of LLMs for simulation tasks – early 058

attempts like SLGPT (a GPT-2 fine-tuned on just 059

400 Simulink models) showed promise in gener- 060

ating simple block diagrams, but were limited by 061

small corpus size (Shrestha and Csallner, 2021) and 062

could not generalize to complex systems. More re- 063

cent efforts in the automotive domain fine-tuned 064

7B-parameter models for Simulink function gener- 065

ation and still had to synthesize training data via 066

self-instruction due to the lack of real examples 067

(Abdalla and Smith, 2025). No prior work, to our 068

knowledge, has achieved a general LLM-driven so- 069

lution for automatically constructing full Simulink 070

models from high-level specifications. Beginners 071

usually replicate the now-existing Simulink dia- 072

gram images to learn Simulink. Inspired by this, 073

we pose the following research question: Is it pos- 074

sible to automatically obtain a complete and cor- 075

rect simulation code from a textual simulation 076

descriptions and the Simulink diagram images? 077

To bridge the gap between advanced LLM capa- 078

bilities and Simulink-based modeling, we introduce 079

SimuGen – a novel multimodal agentic framework 080

for automatic construction of Simulink simulation 081

1

https://anonymous.4open.science/r/SimuGen-CD71
https://anonymous.4open.science/r/SimuGen-CD71

models. SimuGen leverages a state-of-the-art mul-082

timodal LLM as its core reasoning engine, inte-083

grated with a suite of tools tailored for the Simulink084

environment. This agentic architecture ensures a085

modular, interpretable, and extensible workflow for086

universal simulation data generation. The contribu-087

tion of this work can be summarized as:088

• Multimodal LLM Agent for Simulink Gen-089

eration: We propose the first framework that090

enables an LLM-based agent to interpret di-091

agram images and generate corresponding092

Simulink models. Our system, SimuGen, com-093

bines visual understanding of block diagrams094

with language-based reasoning and planning,095

emulating how human engineers translate dia-096

grams into executable models.097

• Multi-Agent Workflow with Standard-098

Conformance Reviewer: We design a multi-099

agent system incorporating a specialized unit100

test reviewer, inspired by SWE agents (Yang101

et al., 2024). Unlike traditional unit tests102

that check code execution, our reviewer eval-103

uates whether the investigator agent’s natu-104

ral language-generated components align with105

Simulink modeling standards.106

• Empirical Insights on Reviewer Effective-107

ness: Case studies reveal that while the re-108

viewer cannot directly assess the correctness109

of block connections, it can verify their com-110

pliance with modeling standards—thereby in-111

directly improving the overall accuracy and112

reliability of the generated models.113

2 Challenges114

Despite Simulink’s widespread use and its advan-115

tages in modeling physical systems through graph-116

ical interfaces, automating its usage with LLMs117

introduces significant challenges. Through our118

initial experiments, we observed that even ad-119

vanced LLMs struggle with reliably generating120

valid Simulink models from either textual or visual121

inputs. These issues can be broadly categorized122

into three main types of errors, each pointing to123

a distinct deficiency in the model’s reasoning or124

implementation capabilities.125

2.1 Conceptual Errors: Missing Domain126

Knowledge127

These errors emerge when LLMs attempt to gen-128

erate a Simulink model from a textual description129

without a sound understanding of domain-specific 130

principles. For instance, an LLM may fail to grasp 131

the mathematical structure underlying a control sys- 132

tem or misinterpret the functional role of certain 133

blocks in a feedback loop. Such text-to-simulation 134

failures are often rooted in the model’s lack of 135

grounding in physical reasoning or engineering the- 136

ory. 137

An illustrative example is provided in Ap- 138

pendix A, where the LLM fails to properly measure 139

the capacitor voltage in a Simscape-based RC cir- 140

cuit by directly tapping a conserving port rather 141

than using a voltage sensor. This oversight reflects 142

a misunderstanding of Simscape’s physical signal 143

architecture. 144

To mitigate such issues, we propose using dia- 145

gram inputs to help the LLM infer the structure 146

of the model, allowing it to focus on retrieving 147

domain-aligned block functions rather than generat- 148

ing topology from scratch. This approach explicitly 149

embeds high-level intent and structural logic into 150

the input, thereby improving conceptual coherence. 151

2.2 Block Implementation Errors: Incorrect 152

Block and Port Usage 153

When generating MATLAB code to build models, 154

LLMs often produce syntactically correct but se- 155

mantically flawed outputs. These include referenc- 156

ing invalid block library paths, misconfiguring port 157

numbers, or confusing block names—particularly 158

for uncommon or custom components. 159

As illustrated in Figure 2, these errors are com- 160

monly observed when users request LLMs to con- 161

struct Simulink models via MATLAB code. Ex- 162

amples include incorrect block paths, mismatched 163

ports, and duplicated connections, all of which con- 164

tribute to broken model logic and execution fail- 165

ures. 166

This category of errors reflects a lack of struc- 167

tured implementation knowledge. To mitigate 168

this, we propose constructing a block description 169

database that provides LLMs with access to ac- 170

curate, structured metadata about block functions, 171

parameter names, port configurations, and usage 172

examples. 173

2.3 Linkage Implementation Errors: Invalid 174

Connections 175

In diagram-to-simulation workflows, LLMs fre- 176

quently generate invalid wiring configurations that 177

violate Simulink standards. Examples include con- 178

necting incompatible ports, omitting essential inter- 179

2

Figure 1: Common errors when users want LLM to generate MATLAB code for constructing Simulink model, such
as incorrect block paths, port mismatches, and duplicated connections.

mediary blocks, or mislabeling ports. These errors180

often bypass initial syntax checks but fail during181

execution, making them costly to debug.182

To address this, we developed a Unit Test Re-183

viewer and Debug Locator module to systemati-184

cally evaluate connection integrity. The Unit Test185

Reviewer validates that all block connections ad-186

here to Simulink specifications, while the Debug187

Locator assists in diagnosing faults by linking run-188

time errors to specific connection descriptions or189

block implementations.190

2.4 Context Window Bottlenecks in Single191

LLM Agents192

Recent studies have highlighted the limitations of193

single LLMs in handling long-context tasks. For194

instance, Hosseini and Others (2025) demonstrated195

that even LLMs with extended context windows196

struggle with long input sequences, leading to per-197

formance degradation. Similarly, Fei et al. (2024)198

proposed a semantic compression method to miti-199

gate the challenges posed by long inputs, emphasiz-200

ing the inherent difficulties faced by single LLMs. 201

To address these issues, Zhang et al. (2024) intro- 202

duced a multi-agent framework that enables bet- 203

ter information aggregation and context reasoning 204

across various LLMs. 205

Similarly, our investigation also revealed that 206

using a single LLM to autonomously manage the 207

entire Simulink automation pipeline—including 208

block recognition, connection validation, code gen- 209

eration, and debugging—presents fundamental lim- 210

itations. As the number of dialogue rounds in- 211

creases and task types shift, the LLM’s contextual 212

focus tends to degrade, leading to a decline in out- 213

put quality. Furthermore, we observed a recurring 214

pattern of overconfidence, where the LLM assumes 215

the correctness of its generated connections without 216

critically evaluating their validity. These issues re- 217

sult in persistent, hard-to-detect errors and expose 218

the fragility of a single-agent workflow. All these 219

factors motivate us to develop a multi-agent frame- 220

work to solve the simulation automation tasks. 221

3

3 Methodology222

3.1 SimuGen Framework Overview223

After identifying that current LLMs exhibit defi-224

ciencies in both conceptual understanding and im-225

plementation knowledge when generating Simulink226

simulations—as well as a notable decline in con-227

textual focus as model complexity increases—we228

propose the SimuGen Framework to address these229

challenges, as shown in Figure 2. Rather than rely-230

ing on a single LLM to reason about the entire mod-231

eling process, which is prone to context window232

limitations and loss of focus, SimuGen employs a233

multi-agent system in which each agent is responsi-234

ble for a specialized subtask. By decomposing the235

workflow, the multi-agent approach ensures that236

each agent maintains high task-specific attention,237

mitigating the risk of contextual degradation that238

plagues monolithic LLM solutions. Concretely,239

SimuGen takes a Simulink diagram image as input,240

providing explicit structural guidance and obviat-241

ing the need for the LLM to infer model topology242

from scratch. The six specialized agents (Investiga-243

tor, Unit Test Reviewer, Block Builder, Executor,244

Debug Locator, and Report Writer), together with245

a comprehensive Simulink block database, collabo-246

rate to bridge knowledge gaps and deliver robust,247

accurate simulation generation.248

3.2 Database Construction249

To provide agents with accurate and contextually250

relevant reference knowledge, we construct a com-251

prehensive Simulink database that contains Full252

Block Descriptions, Function Descriptions, and253

Code Templates. The Full Block Description cov-254

ers 50 commonly used Simulink blocks, detailing255

their block types, library paths, underlying princi-256

ples, connection-related parameter specifications,257

and port names along with their descriptions. For a258

thorough explanation of the database construction259

process and illustrative examples, please refer to260

Appendix D.261

3.3 LLM Agent Settings262

Investigator. The input to the Investigator con-263

sists of a Simulink diagram image and a block li-264

brary containing 50 block types. The Investigator265

first identifies each block in the diagram image266

along with its corresponding block type. Lever-267

aging an agentic retrieval-augmented generation268

(RAG) process, it then queries the database to re-269

trieve the Full Block Descriptions for the relevant270

blocks. Subsequently, the Investigator outputs the 271

connectivity relationships between blocks in the 272

diagram image, formatted as: BlockA (BlockA’s 273

block type) PortX <-> BlockB (BlockB’s block 274

type) PortY. The complete Investigator prompt is 275

provided in Appendix C. 276

Unit Test Reviewer. The Unit Test Reviewer re- 277

ceives as input the set of blocks and their connec- 278

tions identified by the Investigator within a given 279

Simulink diagram image, along with the corre- 280

sponding Full Block Descriptions. The Unit Test 281

Reviewer assesses whether the proposed connec- 282

tions adhere to Simulink standards by performing 283

eight checks: 1. Identify the existence of block 284

list; 2. Identify any extra blocks; 3. Format- 285

ting of block name; 4. Formatting of connection 286

description; 5. Validate parameter settings in 287

connections; 6. Detect duplicate connections; 7. 288

Validate block connection types; 8. Verify com- 289

plete port connections. The complete Unit Test 290

Reviewer prompt is provided in Appendix C. 291

Block Builder. The Block Builder utilizes the 292

Code Template, Function Description, and Full 293

Block Description from the database to imple- 294

ment the simulation code for the diagram image in 295

Simulink using matlab.engine, based on the connec- 296

tion descriptions provided by the Investigator. It is 297

important to note that this work primarily focuses 298

on the wiring aspects of simulations, therefore, the 299

Block Builder is instructed to generate code exclu- 300

sively with the add_block and add_line functions, 301

and to use set_param only when setting parameters 302

related to the connections. The complete Block 303

Builder prompt can be found in Appendix C. 304

Executor. The Executor is an automated compo- 305

nent responsible for running the code generated by 306

the Block Builder. It executes the provided code 307

and automatically returns the results of the execu- 308

tion. 309

Debug Locator. The Debug Locator analyzes er- 310

ror messages from the Executor to pinpoint the 311

cause and identifies the relevant 5–10 lines of code 312

for the Block Builder to modify. In practice, we 313

observed that most errors arise from logical 314

flaws in the connection description that the Unit 315

Test Reviewer fails to detect. Direct code mod- 316

ification in these cases would bypass the Inves- 317

tigator, resulting in code inconsistent with the 318

original diagram. 319

4

Figure 2: Overview of the agent-based architecture used in the SimuGen framework.

To resolve this, the Debug Locator first checks320

whether the code’s wiring and parameter settings321

match the connection description. If they match,322

the issue likely lies in the connection description it-323

self, the Debug Locator then prompts the Unit Test324

Reviewer and Investigator to re-examine and revise325

it. If inconsistencies or syntax errors are found,326

feedback is sent directly to the Block Builder for327

code correction. The complete Debug Locator328

prompt is provided in Appendix C.329

Report Writer. After the simulation has exe-330

cuted successfully, the Report Writer generates a331

comprehensive simulation report by synthesizing332

Full Block Descriptions, connection descriptions,333

and code implementation details. Specifically, the334

report generated by the Report Writer is structured335

into four sections: (1) What is the simulation336

about? (2) What are the main simulation steps?337

(3) What theoretical knowledge and mathemati-338

cal modeling are involved in each step? (4) How339

is each step implemented in code? The complete340

Report Writer prompt can be found in Appendix C.341

3.4 Full Agentic Workflow342

The overall workflow proceeds as follows:343

1. The Investigator receives a Simulink diagram344

and a block library, identifies present blocks, re-345

trieves their Full Block Descriptions from the RAG346

database, and extracts connection descriptions.347

2. The Unit Test Reviewer checks whether the348

connection descriptions comply with the Simulink 349

rules. If violations are found, the Investigator re- 350

vises the connection descriptions based on the re- 351

viewer’s feedback. 352

3. If valid, the Investigator passes the descrip- 353

tions to the Block Builder, who generates simula- 354

tion code using the matlab.engine library. 355

4. The executor will execute the code passed 356

from the Block Builder. 357

5. For execution errors, the Debug Locator de- 358

termines if the issue is due to code generation or 359

missed logical errors, providing targeted feedback 360

to the Block Builder or Investigator for further re- 361

vision. 362

6. After successful execution, the Report Writer 363

compiles the latest block descriptions, connection 364

details, and code into a comprehensive simulation 365

report. 366

4 Experiments 367

4.1 Experimental Setup 368

Task Selections. To comprehensively evaluate 369

the performance of SimuGen, we selected nine 370

Simulink simulations spanning four representative 371

domains: General Applications (covering artifi- 372

cial algebraic loops, Simulink models, state events, 373

and zero-crossing detection), Physical Modeling 374

(bouncing ball), Electrical System Modeling (in- 375

cluding 2-bus load flow, bipolar transistor, and RC 376

circuit), and Automotive Modeling (wheel speed). 377

5

Table 1: Simulation domains and complexity of ground truth (GT) models for 9 simulation examples.

Simulation Domain Simulation Name GT Blocks GT Connections

General Application

Artificial Algebraic Loops 5 5
State Event 5 6
Zero Crossing Detection 9 10
Simulink Model 11 13

Physical Modeling Bouncing Ball 7 7

Electrical Systems Modeling
Bipolar Transistor 13 20
RC Circuit 14 16
2 Bus Loadflow 14 13

Automotive Modeling Wheel Speed 12 11

Table 1 summarizes the complexity of the ground378

truth (GT) models corresponding to these simula-379

tion examples. In our study, model complexity is380

quantified by the number of blocks and connections381

present in each GT model.382

LLM Selections. Our framework involves five383

agents in total. Among them, the Investigator384

Agent is responsible for both visual recognition385

and visual reasoning tasks, while the remaining386

agents are focused solely on reasoning. Accord-387

ingly, we selected GPT-4.1 and o4-mini as the LLM388

backbones for the Investigator Agent. GPT-4.1 was389

chosen due to its status as OpenAI’s flagship model390

and its state-of-the-art performance in multimodal391

benchmarks. o4-mini, on the other hand, was se-392

lected for its support of vision-integrated chain-of-393

thought reasoning, a feature we hypothesize to be394

particularly beneficial for the Investigator Agent’s395

interaction with the Unit Test Reviewer Agent. For396

the other agents, all of which primarily require rea-397

soning capabilities, we use o3-mini as the underly-398

ing LLM, striking a balance between performance399

and computational efficiency.400

Accuracy of the Generation. To evaluate the401

accuracy of the generated simulations produced by402

the framework, we define the overall accuracy as403

the average of the block accuracy and connection404

accuracy, calculated as follows:405

Accuracy =
1

2

(
|Bmatch|
|BGT|

+
|Cmatch|
|CGT|

)
(1)406

where:407

• BGT is the set of blocks in the ground truth408

(GT) model.409

Table 2: Accuracy (%) on 9 simulation examples: In-
vestigator agent using o4-mini/GPT-4.1, others use o3-
mini.

Method o4-mini GPT-4.1
Artificial Algebraic Loops 100 100
State Event 73.3 68.55
Zero Crossing Detection 95.5 72.25
Simulink Model 100 87.75
Bouncing Ball 100 100
Bipolar Transistor 95 77.5
RC Circuit 95.3 71.88
2 Bus Loadflow 100 88.7
Wheel Speed 91.25 82.15
Average 94.5 83.2

• Bgen is the set of blocks in the generated 410

model. 411

• Bmatch = BGT ∩ Bgen is the set of correctly 412

predicted blocks, i.e., blocks that exist in both 413

the GT and generated models. 414

• CGT is the set of connections (e.g., edges or 415

links) in the ground truth model. 416

• Cgen is the set of connections in the generated 417

model. 418

• Cmatch = CGT ∩ Cgen is the set of correctly 419

predicted connections, i.e., connections that 420

exist in both the GT and generated models. 421

4.2 Main Results 422

From Table 2, We observe that the Investigator 423

agent successfully completes all 9 tasks when us- 424

ing either o4-mini or GPT-4.1. However, when 425

powered by o4-mini, the agent achieves a Simulink 426

6

Table 3: Cost and run time for 9 simulation examples:
Investigator agent uses o4-mini, others use o3-mini.

Simulation Example Cost ($) Run Time (s)
Artificial Algebraic Loops 0.06 121.91
State Event 0.05 105.99
Zero Crossing Detection 0.09 169.57
Simulink Model 0.13 232.35
Bouncing Ball 0.22 297.34
Bipolar Transistor 0.41 642.44
RC Circuit 0.16 358.27
2 Bus Loadflow 0.14 221.89
Wheel Speed 0.21 325.95
Mean 0.17 275.41

simulation reproduction accuracy of 94.5%, com-427

pared to 83.2% with GPT-4.1. We hypothesize428

that this performance gap arises from o4-mini’s en-429

hanced visual reasoning capabilities. Specifically,430

the Investigator agent equipped with o4-mini tends431

to zoom in on the image regions highlighted by the432

Unit Test Reviewer in their feedback, leading to433

more accurate identification of the corresponding434

blocks and connections in the simulation diagram.435

We further observe that regardless of which436

model the Investigator agent uses, the reproduc-437

tion accuracy tends to be inversely correlated with438

the complexity of the ground truth (GT) Simulink439

model. In cases where the number of connections440

is fewer than 10, the reproduced models generally441

achieve an accuracy close to 100%. An excep-442

tion to this trend is the State Event case, where443

the accuracy drops significantly. We hypothesize444

that this may be due to limited exposure of both445

o4-mini and GPT-4.1 to high-quality images of446

various Simulink blocks during pretraining, partic-447

ularly those related to event-based dynamics.448

In terms of costing, Table 3 summarizes the mon-449

etary cost (in USD) and execution time (in sec-450

onds) for nine simulation examples processed by451

our framework. In each case, the Investigator agent452

utilizes the o4-mini model, whereas the remain-453

ing agents use o3-mini. Results demonstrate that454

typical simulation tasks can be completed within455

approximately $0.17 and 275 seconds on average.456

4.3 Alblation Study457

‘In our ablation study, we evaluate three variants458

of the system: (1) without the Unit Test Reviewer,459

(2) without the Debug Locator, and (3) without460

both components. It is important to note that in461

the absence of the Debug Locator, the code is ex-462

ecuted only once, and any runtime error is treated463

as a task failure. Overall, from Table 3, we ob- 464

serve that excluding either the Unit Test Reviewer 465

or the Debug Locator leads to a noticeable drop in 466

simulation reproduction accuracy. Notably, when 467

both components are removed, the accuracy drops 468

significantly to 51.7%. This highlights a synergis- 469

tic effect between the Unit Test Reviewer and the 470

Debug Locator, indicating that their combined con- 471

tribution to SimuGen is greater than the sum of 472

their individual parts. MEanwhile, we observe that 473

for the Bouncing Ball, RC Circuit, and Wheel Speed 474

simulations, none can be completed in the absence 475

of both the Unit Test Reviewer and the Debug Lo- 476

cator agents. This result highlights that, although 477

the Unit Test Reviewer and Debug Locator operate 478

via distinct mechanisms to reflect and reproduce 479

the Simulink modeling process, both play an essen- 480

tial role in ensuring successful reconstruction of 481

Simulink models. 482

It is also worth noting that in the Bipolar Tran- 483

sistor case, SimuGen achieves an accuracy that is 484

33.35% higher than the variant without the Unit 485

Test Reviewer. This suggests that although the 486

Unit Test Reviewer cannot directly assess whether 487

the Investigator’s predicted connections are correct, 488

it can still provide valuable feedback on the logi- 489

cal coherence of the connections. Such feedback 490

encourages the Investigator to re-examine the iden- 491

tified blocks and connections, ultimately leading to 492

more accurate reproductions. 493

At the same time, we observe that for most of 494

the 9 tasks, simulations can still be successfully 495

reproduced even without the Debug Locator. This 496

indicates that as long as the blocks and connections 497

identified by the Investigator are logically sound, 498

generating the corresponding executable code is 499

relatively straightforward. However, in the Bipolar 500

Transistor case, simulation fails when the Debug 501

Locator is removed. This underscores the comple- 502

mentary role of the Debug Locator: in scenarios 503

where the Unit Test Agent overlooks potential is- 504

sues, the Debug Locator can interact with the exe- 505

cution environment and analyze runtime outputs to 506

compensate for such oversights. 507

5 Related works 508

LLMs for Code Generation and Mathematical 509

Reasoning. Large language models trained on 510

code have demonstrated impressive capabilities in 511

both program synthesis and multi-step reasoning. 512

Chen et al. (2021) evaluated code-trained LLMs on 513

7

Table 4: Performance (%) of SimuGen and its ablations on 9 simulation examples: Investigator agent using o4-mini
and all other agents using o3-mini

Method SimuGen w/o Unit Test Reviewer w/o Debug Locator w/o All

Artificial Algebraic Loops 100 100 100 100
State Event 73.3 73.3 73.3 73.3
Zero Crossing Detection 95.5 95.5 95.5 95.5
Simulink Model 100 100 100 100
Bouncing Ball 100 92.8 100 –
Bipolar Transistor 95 61.65 – –
RC Circuit 95.3 95.3 95.3 –
2 Bus Loadflow 100 96.15 100 96.15
Wheel Speed 91.25 91.25 91.25 –

Average 94.5 86.21 83.9 51.7

a diverse set of programming tasks, showing they514

can generate nontrivial functions with high accu-515

racy. Li et al. (2022) introduced AlphaCode, which516

achieved human-comparable performance on com-517

petitive programming benchmarks by combining a518

powerful generative model with search techniques.519

Chain-of-thought prompting has further improved520

LLMs’ reasoning by eliciting intermediate logical521

steps, leading to better results on quantitative prob-522

lems (Wei et al., 2022). Hong et al. (2024), Jing523

et al. (2024), and Li et al. (2024) proposed the524

collaboration of multiple LLMs for complex data525

science applications.526

Data Scarcity in Simulation Domains. Liu527

et al. (2024a,b) proposed LLMs to generate Python528

codes for simulation tasks. However, many fields529

rely on the Simulink platform for their simulations.530

Luitel et al. (2024) applied LLMs to slice and an-531

alyze Simulink models. However, they did not532

propose a comprehensive system for generating533

and conducting simulations.534

Multimodal Agentic Frameworks. Li et al.535

(2023) introduced the first agent systems based536

on LLMs that facilitate cooperative interactions537

among multiple agents. In contrast, another form538

of agent interaction is adversarial (Gou et al.,539

2023). To address multimodal tasks, Liu et al.540

(2025) presented HM-RAG, a hierarchical multi-541

modal retrieval-augmented generation framework542

designed for multi-agent systems focused on per-543

ception, reasoning, and generation. Qian et al.544

(2024) developed ChatDev, wherein communica-545

tive agents collaboratively drive the software devel-546

opment lifecycle, illustrating the benefits of modu-547

lar agentic workflows. 548

Our SimuGen framework builds on these ideas 549

by assigning distinct roles—Investigator, Unit Test 550

Reviewer, Block Builder, Executor, Debug Loca- 551

tor, and Report Writer—to reliably generate and 552

validate simulation code. 553

6 Conclusion 554

SimuGen advances the automated generation of 555

Simulink models by introducing a collaborative 556

multi-agent framework that leverages both vi- 557

sual and domain knowledge. Through special- 558

ized agents for diagram interpretation, valida- 559

tion, code generation, and debugging—including 560

a standard-conformance unit test reviewer that 561

assesses whether model components adhere to 562

Simulink modeling standards—SimuGen reliably 563

transforms Simulink diagram images into accurate, 564

executable simulation code. Experimental results 565

show that SimuGen achieves an average reproduc- 566

tion accuracy of 94.5% across diverse simulation 567

tasks. Case studies further indicate that, while the 568

reviewer cannot directly assess the correctness of 569

block connections, its ability to enforce modeling 570

standards indirectly improves the overall reliability 571

of the generated models. These results demonstrate 572

the effectiveness of a modular, agent-based ap- 573

proach with built-in standard-conformance checks 574

for Simulink model construction. 575

Limitations 576

While SimuGen can nearly perfectly replicate all 577

9 Simulink cases used in this study, these cases 578

represent relatively simple scenarios. Industrial 579

Simulink models are typically much larger, often 580

8

featuring over 30 blocks and connections, present-581

ing new challenges that we plan to explore in future582

work. Moreover, the average generation time for583

SimuGen across the 9 cases is 275 seconds, which584

exceeds the time typically required by an experi-585

enced simulation engineer. Exploring strategies to586

further reduce generation time will be a valuable587

direction in our ongoing research.588

Ethical Statement589

No ethical issues.590

References591

Ahmed Abdalla and John Smith. 2025. Generative artifi-592
cial intelligence for model-based graphical program-593
ming in the automotive industry. SSRN Electronic594
Journal.595

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,596
Henrique Ponde De Oliveira Pinto, Jared Kaplan,597
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg598
Brockman, and 1 others. 2021. Evaluating large599
language models trained on code. arXiv preprint600
arXiv:2107.03374.601

Weizhi Fei, Xueyan Niu, Pingyi Zhou, Lu Hou, Bo Bai,602
Lei Deng, and Wei Han. 2024. Extending context603
window of large language models via semantic com-604
pression. In Findings of the Association for Compu-605
tational Linguistics: ACL 2024, pages 5169–5181.606

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong607
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.608
2023. Critic: Large language models can self-correct609
with tool-interactive critiquing. arXiv preprint610
arXiv:2305.11738.611

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu,612
Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang613
Li, Jiaqi Chen, Jiayi Zhang, and 1 others. 2024. Data614
interpreter: An llm agent for data science. arXiv615
preprint arXiv:2402.18679.616

Mohammad Hosseini and Others. 2025. Efficient so-617
lutions for an intriguing failure of llms: Long con-618
text inference. In Proceedings of the 2025 Inter-619
national Conference on Computational Linguistics620
(COLING).621

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-622
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,623
Xinya Du, and Dong Yu. 2024. Dsbench: How far624
are data science agents to becoming data science ex-625
perts? arXiv preprint arXiv:2409.07703.626

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii627
Khizbullin, and Bernard Ghanem. 2023. Camel:628
Communicative agents for" mind" exploration of629
large language model society. Advances in Neural630
Information Processing Systems, 36:51991–52008.631

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 632
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 633
James Keeling, Felix Gimeno, Agustin Dal Lago, and 634
1 others. 2022. Competition-level code generation 635
with alphacode. Science, 378(6624):1092–1097. 636

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney 637
Zheng, Minghao Liu, Xinyao Niu, Yue Wang, Jian 638
Yang, Jiaheng Liu, and 1 others. 2024. Autokaggle: 639
A multi-agent framework for autonomous data sci- 640
ence competitions. arXiv preprint arXiv:2410.20424. 641

Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan 642
Meng, Ding Wang, and Jun Ma. 2025. Hm-rag: Hier- 643
archical multi-agent multimodal retrieval augmented 644
generation. arXiv preprint arXiv:2504.12330. 645

Zhihan Liu, Yubo Chai, and Jianfeng Li. 2024a. Toward 646
automated simulation research workflow through llm 647
prompt engineering design. Journal of Chemical 648
Information and Modeling, 65(1):114–124. 649

Zhihan Liu, Yubo Chai, and Jianfeng Li. 2024b. 650
Towards fully autonomous research powered by 651
llms: Case study on simulations. arXiv preprint 652
arXiv:2408.15512. 653

Dipeeka Luitel, Shiva Nejati, and Mehrdad Sabetzadeh. 654
2024. Requirements-driven slicing of simulink mod- 655
els using llms. In 2024 IEEE 32nd International 656
Requirements Engineering Conference Workshops 657
(REW), pages 72–82. 658

MathWorks. 2025. Simulink - simulation and model- 659
based design. 660

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan 661
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng 662
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, 663
and Maosong Sun. 2024. ChatDev: Communicative 664
agents for software development. In Proceedings 665
of the 62nd Annual Meeting of the Association for 666
Computational Linguistics (Volume 1: Long Papers), 667
pages 15174–15186, Bangkok, Thailand. Association 668
for Computational Linguistics. 669

Sohil Lal Shrestha and Christoph Csallner. 2021. Slgpt: 670
Using transfer learning to directly generate simulink 671
model files and find bugs in the simulink toolchain. 672
arXiv preprint arXiv:2105.07465. 673

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 674
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 675
and 1 others. 2022. Chain-of-thought prompting elic- 676
its reasoning in large language models. Advances 677
in neural information processing systems, 35:24824– 678
24837. 679

John Yang, Carlos E. Jimenez, Alexander Wettig, Kil- 680
ian Lieret, Shunyu Yao, Karthik Narasimhan, and 681
Ofir Press. 2024. Swe-agent: Agent-computer inter- 682
faces enable automated software engineering. arXiv 683
preprint arXiv:2405.15793. 684

9

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5153452
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5153452
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5153452
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5153452
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5153452
https://aclanthology.org/2024.findings-acl.306/
https://aclanthology.org/2024.findings-acl.306/
https://aclanthology.org/2024.findings-acl.306/
https://aclanthology.org/2024.findings-acl.306/
https://aclanthology.org/2024.findings-acl.306/
https://aclanthology.org/2025.coling-main.128.pdf
https://aclanthology.org/2025.coling-main.128.pdf
https://aclanthology.org/2025.coling-main.128.pdf
https://aclanthology.org/2025.coling-main.128.pdf
https://aclanthology.org/2025.coling-main.128.pdf
https://doi.org/10.1109/REW61692.2024.00014
https://doi.org/10.1109/REW61692.2024.00014
https://doi.org/10.1109/REW61692.2024.00014
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://arxiv.org/abs/2105.07465
https://arxiv.org/abs/2105.07465
https://arxiv.org/abs/2105.07465
https://arxiv.org/abs/2105.07465
https://arxiv.org/abs/2105.07465
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister,685
Rui Zhang, and Sercan Ö. Arik. 2024. Chain of686
agents: Large language models collaborating on long-687
context tasks. arXiv preprint arXiv:2406.02818.688

10

https://arxiv.org/abs/2406.02818
https://arxiv.org/abs/2406.02818
https://arxiv.org/abs/2406.02818
https://arxiv.org/abs/2406.02818
https://arxiv.org/abs/2406.02818

A Appendix: Challenges 689

To illustrate common conceptual errors made by LLMs when generating Simulink models, we present an 690

example based on a user’s request to build a simple RC circuit using Simscape blocks. The generated 691

code successfully constructs the topology using matlab.engine, but fails to include a necessary voltage 692

sensor for signal measurement. 693

User Query 694

Could you generate a simulation RC circuit using Simscape library from Simulink? Please follow the 695

following steps: 696

1. Provide the blocks needed and their connections (there should be a Scope to observe the result). 697

2. Generate the simulation code using matlab.engine. 698

Note: Only generate blocks and connections; there is no need to set parameters. 699

Blocks and Library Paths 700

Table A.1: Blocks used in the generated RC circuit model

Block Name Library Path

Solver Configuration Simscape > Commonly Used Blocks
Electrical Reference Simscape > Foundation Library > Electrical Elements
DC Voltage Source Simscape > Electrical Sources > DC Voltage Source
Resistor Simscape > Electrical Elements > Resistor
Capacitor Simscape > Electrical Elements > Capacitor
PS-Simulink Converter Simscape > Utilities > PS-Simulink Converter
Scope Simulink > Sinks > Scope

Connection Overview 701

The following is a textual representation of the circuit structure: 702

Vsrc/1 –> R/1
R/2 –> C/1
C/2 –> Ground/1
Ground/1 –> SolverConfig/1
Vsrc/2 –> Ground/1
C/1 –> PS2SL/1
PS2SL/1 –> Scope/1

703

This design routes the voltage across the capacitor directly into the Scope via the PS-Simulink Converter. 704

11

Generated Code Using matlab.engine705

706
import matlab.engine707

708
Start MATLAB engine709
eng = matlab.engine.start_matlab()710

711
Create and open model712
model = 'rc_circuit'713
eng.new_system(model, 'Model')714
eng.open_system(model)715

716
Add blocks717
blocks = {718

'SolverConfig': 'simscape/Commonly Used Blocks/Solver Configuration',719
'Ground': 'simscape/Foundation Library/Electrical/Electrical Elements/Electrical Reference',720
'Vsrc': 'simscape/Foundation Library/Electrical/Electrical Sources/DC Voltage Source',721
'R': 'simscape/Foundation Library/Electrical/Electrical Elements/Resistor',722
'C': 'simscape/Foundation Library/Electrical/Electrical Elements/Capacitor',723
'PS2SL': 'simscape/Utilities/PS-Simulink Converter',724
'Scope': 'simulink/Sinks/Scope'725

}726
727

for name, path in blocks.items():728
eng.add_block(path, f'{model}/{name}')729

730
Make connections731
eng.add_line(model, 'Vsrc/1', 'R/1', 'autorouting','on')732
eng.add_line(model, 'R/2', 'C/1', 'autorouting','on')733
eng.add_line(model, 'C/2', 'Ground/1', 'autorouting','on')734
eng.add_line(model, 'Ground/1', 'SolverConfig/1','autorouting','on')735
eng.add_line(model, 'Vsrc/2', 'Ground/1', 'autorouting','on')736
eng.add_line(model, 'C/1', 'PS2SL/1', 'autorouting','on')737
eng.add_line(model, 'PS2SL/1', 'Scope/1', 'autorouting','on')738

739
Save model740
eng.save_system(model)741
eng.sim(model) # Uncomment to simulate742743

Listing 1: LLM-generated Python code to build the RC circuit model

Conceptual Issue Identified744

Although the generated structure is syntactically correct, it fails conceptually: Simscape does not allow745

direct measurement from conserving electrical ports. Instead, a Voltage Sensor block must be used to746

measure across the capacitor, with its output routed to a PS-Simulink Converter and then to the Scope.747

Summary: The LLM omits the essential measurement interface, demonstrating a conceptual gap in how748

physical signal flows work in Simscape. This is a typical example of domain-specific misunderstanding,749

even when code generation succeeds syntactically.750

12

B Appendix: Datasets 751

Figure B.1: Case study: artificial algebraic loops.

Figure B.2: Case study: state event.

Figure B.3: Case study: zero crossing detection.

13

Figure B.4: Case study: simulink model.

Figure B.5: Case study: bouncing ball.

Figure B.6: Case study: bipolar transistor.

14

Figure B.7: Case study: RC circuit.

Figure B.8: Case study: two bus.

Figure B.9: Case study: wheel speed.

15

C Appendix: Prompts of Agents752

753
ROLE #754
You are an Investigator responsible for deeply analyzing a simulation explanation, its corresponding755

simulation diagram, and a simulation blocks list.756
757

TASK #758
You will receive a detailed simulation explanation, its corresponding simulation diagram, and a759

simulation blocks list that includes the block types. Your tasks are to:760
- List all the blocks used in the simulation, **INCLUDING those without annotations if they are USED761

**. Before listing them, identify their corresponding block types from the simulation blocks762
list, **while please note that the diagram would NEVER include a SUBSYSTEM, so DO NOT request a763
subsystem.** The list should be formatted as:764

765
BlockA (BlockA's block type)766
BlockB (BlockB's block type)767
...768

769
where Used BlockA, BlockB are just example, if the annotation of a block is already given, please770

just use it. **BUT NEVER include the special symbol '/' in the block name, if it happen in the771
annotation, you need to modified it.**772

773
- **Important:** If the simulation diagram shows multiple instances of the same block without774

separate annotations, you should proactively annotate them to differentiate each instance. For775
example, there are two sum without annotation are shown in the diagram, you should list them776
like:777

778
sum 1 (sum)779
sum 2 (sum)780

781
782

INPUT #783
- **Simulation Explanation:**784
{simulation_explanation}785

786
- **Simulation Blocks List:**787
{simulation_blocks_list}788

789
RESPONSE #790
Always list all identified blocks first and then request half description of **ALL** listed blocks791

using their **block type (not Path) from the blocks list** at the end of your response in a JSON792
format as (DO NOT need to request the same unique block type):793

794
{795
"request_blocks": ["block type 1", "block type 2", ...]796

}797
798

Do not ask any clarifying questions or confirmations. Directly provide a complete answer.799800

Listing 2: Prompt of the Investigator agent in round 1.

16

801
INPUT # 802

803
- **Simulation Blocks Description:** 804
{simulation_blocks_list} 805

806
TASK # 807
According to the **block you identified in the simulation diagram**, you will receive an identified 808

block's **Simulation Blocks Description** that includes their block type and port description. 809
Your tasks are to: 810

811
- Clearly describe the connections and data flow among these blocks in the simulation diagram using 812

their block types. First, determine which port labels are connected, then match them to the 813
corresponding real port names from the **Simulation Blocks Description**. **MUST STRICTLY Format 814
** each connection description as: 815

816
BlockA (BlockA's block type) PortX (**related parameter setting to match the port number if 817

necessary**)<-> BlockB (BlockB's block type) PortY (**related parameter setting to match the 818
port number if necessary**) 819

820
Note: 821
1.Left side of '<->' is output port, while right side of '<->' is input port, never flip the 822

relationship. **In most of cases, the same Input port MUST NOT be connected more than one time 823
(with **ONLY** the exception of Electrical Reference and Solver Configuration).** For example, 824
if you identify there is a Constant block that is connected to 2 different Gain block, you 825
should describe them as: 826

827
''' 828
Constant 1 (Constant) 1 <-> Gain 1 (Gain) 1 829
Constant 1 (Constant) 1 <-> Gain 2 (Gain) 1 830
''' 831

832
rather than, 833

834
''' 835
Gain 1 (Gain) 1 <-> Constant 1 (Constant) 836
Gain 2 (Gain) 1 <-> Constant 1 (Constant) 837
''' 838

839
similarly, if you see the port LConn2 of a Current-Controlled Current Source are connected to both 840

the port LConn 1 of a Resistor and the port LConn1 of a Voltage Sensor, you should describe 841
these connections as: 842

843
''' 844
CCCS 1 (Current-Controlled Current Source) LConn2 <-> Resistor 1 (Resistor) LConn1 845
CCCS 1 (Current-Controlled Current Source) LConn2 <-> Voltage Sensor 1 (Voltage Sensor) LConn1 846
''' 847

848
rather than, 849

850
''' 851
Resistor 1 (Resistor) LConn1 <-> CCCS 1 (Current-Controlled Current Source) LConn2 852
Voltage Sensor 1 (Voltage Sensor) LConn1 <-> CCCS 1 (Current-Controlled Current Source) LConn2 853
''' 854

855
856

2.PortX and PortY are the real internal port names, BlockA and BlockB are the block name shown in 857
the diagram. 858

859
3.Any **parameters related to the number of port** need to be declared, for example: 860

861
Gain 2 (Gain) 1 <-> Sum (Sum) 1 (`Inputs` = `++-`), where the port number of Sum depends on ` 862

Inputs`, so it needs to be clarified, while the port number of Gain is fixed, so no 863
parameters need to be clarified. 864

865
866

IMPORTANT: 867
- **ONLY** use the below listed blocks, and **ALL** listed blocks should be used. 868

869
Response # 870
Do not ask any clarifying questions or confirmations. Directly provide a complete answer. 871872

Listing 3: Prompt of the Investigator agent in round 2.

17

873
ROLE #874
You are an **Unit Test Reviewer**. Your job is to verify and validate the Investigator's provided simulation connections description against the **simulation blocks description**.875876
TASK #877
You will receive:878
- A **simulation blocks description** that includes the port types, and port descriptions.879
- The Investigator's provided simulation information, which consists of:880

1. **The blocks used in the simulation:** A list of blocks utilized in the simulation.881
2. **Connections Description:** This details how the blocks are connected, with each connection formatted as:882

```883
BlockA (BlockA's block type) PortX (**related parameter setting to match the port number if necessary**)<-> BlockB (BlockB's block type) PortY (**related parameter setting to884

match the port number if necessary**)885
```886
Note: Left side of '<->' is output port, while right side of '<->' is input port, never flip the relationship. PortX and PortY are the real internal port names, not the887

visual labels; BlockA and BlockB are the block names shown in the diagram. (Block and its block type CAN BE similar in some cases)888889
Your responsibilities are to:890
1. **Identify the exist of block list:**891

- Verify if the identified block are listed first, such as:892
Swing bus 1pu (Load Flow Source)893
Electrical Reference 1 (Electrical Reference)894
Load 90 MW 30 Mvar (Wye-Connected Load)895896

2. **Identify any Extra Blocks:**897
- Verify if there are blocks mentioned in "The blocks used in the simulation" (**A specific block, not the real block name**) that do not appear in the Connections Description.898899

3. **Formatting of block name:**900
- Make sure the block names are NEVER included the special symbol '/'.901902

4. **Formatting of connection description**903
- Make sure the formatting of connection is strictily formmated as:904
BlockA (BlockA's block type) PortX (**related parameter setting to match the port number if necessary**)905
For example:906
Current-Controlled Current Source (-h_feIb) (Current-Controlled Current Source) RConn1 <-> Electrical Reference (Electrical Reference) LConn1, is not correct, where 'Current-907

Controlled Current Source (-h_feIb) (Current-Controlled Current Source) RConn1' should be formatted as '-h_feIb (Current-Controlled Current Source) RConn1'908909
and for '(**related parameter setting to match the port number if necessary**)', do not need to show any explanation if there is no related parameter910911
and you need to check the block type from Simulation Blocks Description carefully, some block type might include a '()'.912913

5. **Validate Parameter Settings in Connections:**914
- Check that the (**related parameter setting to match the port number if necessary**) for each connection is correctly provided and matches the expected configuration from the **915

simulation blocks description**.916917
6. **Detect Duplicate Connections:**918

- Check if there are any duplicate connections where the **same block's Input port (not Output port)** is connected more than once (with **ONLY** the exception of Electrical919
Reference and Solver Configuration). For example:920921

'''922
Discrete-Time Integrator (Discrete-Time Integrator) 1 (`ExternalReset` = `none`, `InitialConditionSource` = `internal`) <-> Gain 2 (Gain) 1923
Sum 1 (Sum) 1 (`Inputs` = `+-`) <-> Gain 2 (Gain) 1924
'''925926
These two connections are duplicate since there are two lines are connected to the input port 1 of Gain2. However:927928
'''929
Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) LConn2 <-> RLoad (Resistor) LConn1930
Current-Controlled Current source (Current-Controlled Current Source) LConn2 <-> RLoad (Resistor) LConn1931
'''932933
is available since LConn1 of RLoad (Resistor) is not dedicated as an input/output port, and it can be reused even though it is placed on the input place twice. (you need to934

check each port of each block if is dedicated as an input/output port from **Simulation Blocks Description**, Only ports explicitly described as Input/Output ports935
should be considered dedicated input/output ports - you do not need to make any inferences yourself. For example: - **Input Port:** - **Port name:** **1** - **Output936
Port:** - **Port name:** **1**)937938

Another example is:939940
'''941
Discrete-Time Integrator (Discrete-Time Integrator) 1 (`ExternalReset` = `none`, `InitialConditionSource` = `internal`) <-> Gain 2 (Gain) 1942
Gain 2 (Gain) 1 <-> Sum 1 (Sum) 1 (`Inputs` = `+-`)943
'''944945
These two connections are available, 'Gain 2 (Gain) 1' in the first connection means the input port1 of Gain 2, while 'Gain 2 (Gain) 1' in the second connections means the946

output port1 of 'Gain2', that is not duplicate.947948949
7. **Validate Block Connection Types:**950

- Ensure that no block is connected to another block that only has dedicated output port, for example:951952
'''953
Gain 1 (Gain) 1 <-> Constant 1 (Constant) 1954
'''955
is not allowed, since Constant is a block only has dedicated output956957
- Ensure that no block that only has dedicated input port is connected to another block, for example:958959
'''960
Scope 1 (Scope) 1 <-> Gain 1 (Gain) 1961
'''962
is not allowed, since Scope is a block that only has dedicated input963964
- For ports that are not dedicated as input/output port can be reused as input and output, for example:965966
'''967
AC Voltage Source (AC Voltage Source) LConn1 <-> C1 (Capacitor) LConn1968
C1 (Capacitor) LConn1 <-> RBias (Resistor) LConn1969
'''970971
is available since LConn1 is not dedicated as an input/output port.972973974

8. **Verify Complete Port Connections:**975
- Under the premise of the already set parameter settings, check whether every input and output port of each block has a connection. For example:976977
Discrete-Time Integrator (Discrete-Time Integrator) 1 (`ExternalReset` = `none`, `InitialConditionSource` = `internal`) <-> Gain 2 (Gain) 1978
Gain 2 (Gain) 1 <-> Sum 1 (Sum) 1 (`Inputs` = `+-`)979980
In this case, the ouput port and input port of Gain 2 are both properly connected.981982

INPUT #983
- **Simulation Blocks Description:**984
{blocks_list}985986

- **Investigator's Simulation Information:**987
{investigator_simulation_info}988
(This includes both "The blocks used in the simulation" and the "Connections Description" as described above.)989990

RESPONSE #991
Provide a **brief but clear** report addressing each of the eight responsibilities above. List any inconsistencies or errors found, and articulate your findings clearly. Do not ask992

any clarifying questions; directly provide your complete review.993994
At the end of your response, output a JSON formatted object with the key "Investigator_unit_test_pass". Set its value to True if no issues were found, or False if any inconsistencies995

or errors were detected. For example:996
```json997
{998
"Investigator_unit_test_pass": True999

}1000
```10011002

Listing 4: Prompt of the Unit Testing agent.

18

1003
ROLE # 1004
You are a Simulation Block Builder, responsible for generating MATLAB/Simulink code using matlab. 1005

engine. 1006
1007
1008

You will receive: 1009
- A **code template** outlining the required structure. 1010
- A set of **functions** that you are permitted to use. 1011
- A detailed **blocks description** that lists block types, paths, and port description. 1012
- Information provided by an Investigator Agent, which is extracted by the Investigator from a 1013

simulation diagram, including a List of Used Blocks for the specific simulation, and a Complete 1014
List of Connections for that simulation. The Complete List of Connections are formatted as: 1015

BlockA (BlockA's block type) PortX (**related parameter setting to match the port number if necessary 1016
)<-> BlockB (BlockB's block type) PortY (related parameter setting to match the port number 1017
if necessary**) 1018

Note: PortX and PortY are the real internal port names (not the visual labels); BlockA and 1019
BlockB are the block name shown in the diagram. 1020

1021
CODE TEMPLATES & REFERENCES # 1022
- **Code Template:** 1023
{code_template} 1024

1025
- **Functions:** 1026
{functions} 1027

1028
- **Blocks Description:** 1029
{blocks_description} 1030

1031
- **Information provided by an Investigator Agent:** 1032
{investigator_agent_information} 1033

1034
1035

TASK # 1036
1037

Your objective is to generate MATLAB/Simulink code using matlab.engine to re-implement the simulation 1038
extracted by the Investigator. You are to implement the following operations: 1039

- **add_block** 1040
- **add_line** 1041
- **set_param** **(limited strictly to parameters related to port count or connectivity)** 1042

1043
Important Guidelines: 1044
- Follow the provided code template exactly. (You need to define the model_name by yourself.) 1045
- Use only the provided functions and blocks. 1046
- Adhere strictly to the **PATH, port naming and connection instructions** as described in the ** 1047

Blocks Description:**. Ensure that you use the **exact port names specified (DO NOT use port 1048
labels)**, and that all calls to add_line utilize these correct port names. 1049

- **DO NOT** set any block parameters except those that affect port count or connections. 1050
1051
1052

RESPONSE # 1053
Please generate the **complete and fully detailed** MATLAB/Simulink code using `matlab.engine` based 1054

on the above instructions. **ONLY** generate the full Python code without omitting **any** parts 1055
or using **any** ellipsis (`...`) or placeholder symbols. **DO NOT** include explanations or 1056

any content other than the Python code. 10571058

Listing 5: Prompt of the Block Builder agent.

19

1059
ROLE #1060
You are a **Debug_locator**.1061
Your job is to diagnose and locate the source of errors within the execution code based on provided1062

implementation details.1063
1064

TASK #1065
1066

1. **Analyze and Understand:**1067
- Read the provided implementation code information extracted by the Investigator.1068
- Review the detailed **blocks description**, which lists block types, paths, and port description.1069

1070
- Examine the set of **functions** that you are permitted to use.1071

1072
2. **Locate Error Source:**1073

- Analyze the execution code and error message to determine the 5-10 lines of code that are most1074
likely causing the error, as well as an additional 5-10 lines of code that are related to the1075
error.1076

- Keep in mind that the error message might be triggered by issues originating in earlier code.1077
Carefully evaluate any dependencies that could be contributing to the error.1078

1079
3. **Assess Connection and Parameter Integrity to Determine Error Origin or Provide Fix1080

Recommendations:**1081
- First, check if the code's connection configuration exactly matches the Investigator's1082

Implementation Details. This means verifying that the block types and the corresponding port1083
names in the code are identical to those specified.1084

- If the connection configuration is identical, then verify that the parameters related to these1085
blocks and ports are set correctly according to the required number of ports specified in the1086
Investigator's Implementation Details.1087

- If both the connection configuration and the port-related parameters are correct, **then verify1088
if the error is casued by any other reason except from connection configuration, **for1089
instance the wrong setting of block's path**. If there is no other reason, this indicates that1090
the error is due to a discrepancy in the Investigator's Implementation Details.** In this1091
case, DO NOT provide any code modification suggestions. Instead, articulate that the error is1092
caused by a discrepancy in the Investigator's Implementation Details, and at the end of your1093
response output a JSON formatted as:1094

```json1095
{1096
'Investigator_error': True (Default is False)1097

}1098
```1099

- If you find that the error is caused by any other reason except from connection configuration,1100
for instance the wrong setting of block's path, provide modification suggestions that1101
strictly adhere to the Investigator's Implementation Details and use only the provided1102
functions and blocks.1103

1104
1105
1106

INPUT #1107
1108

- **Execution Code:**1109
{execution_code}1110

1111
- **Error Message:**1112
{error_message}1113

1114
- **Functions:**1115
{functions_set}1116

1117
- **Blocks Description:**1118
{blocks_description}1119

1120
- **Investigator's Implementation Details:**1121
{investigator_implementation_info}1122

1123
1124

RESPONSE #1125
Provide a **brief but clear** report addressing each of the responsibilities above, and at the end of1126

your response output a JSON formatted as:1127
```json1128
{1129
'Investigator_error': True (Default is False)1130

}1131
```11321133

Listing 6: Prompt of the Debug Locator agent.

20

1134
ROLE # 1135
You are a **technical report writer agent** with expertise in simulation analysis, theoretical 1136

modeling, and scientific writing. Your role is to generate clear, logically structured, and 1137
academically rigorous reports based on simulation outputs. You are expected to synthesize 1138
information from simulation context, block descriptions, connection description and code 1139
implementation, to produce a well-integrated explanation that combines theory, implementation, 1140
and code-level details. 1141

1142
--- 1143

1144
TASK # 1145
Now that the simulation has been successfully executed without errors, please write a comprehensive 1146

report **strictly** addressing the following four key questions: 1147
1148

1. **What is the simulation about?** 1149
Describe the purpose, context, and overall objective of the simulation. What real-world system or 1150

process does it aim to represent or replicate? 1151
1152

2. **What are the main simulation steps?** 1153
Break down the simulation **(not code implementation)** into distinct stages or functional modules. 1154

Clearly outline the step-by-step process of how the simulation is structured. 1155
1156

3. **What theoretical knowledge and mathematical modelling are involved in each step?** 1157
For **above** every simulation step, explain the relevant theoretical foundations and mathematical 1158

models involved (e.g., control theory, physical modelling, system dynamics, signal flow, etc 1159
.). 1160

1161
4. **How is it implemented in code?** 1162

Provide and explain the corresponding code for **each above step** (you may reorganize the code to 1163
match the stepwise structure). Highlight how the code reflects both theoretical concepts and 1164
the simulation block diagram. 1165

1166
Your final report must integrate **both** theoretical analysis and complete code explanations. Ensure 1167

the explanation is clearly aligned with the four sections above. **Do not ask any clarifying 1168
questions.** 1169

1170
--- 1171

1172
INPUTS # 1173

1174
- **Simulation Description:** 1175
{simulation_description} 1176

1177
- **Used Block Description:** 1178
{used_block_description} 1179

1180
- **Connection Description:** 1181
{connection_description} 1182

1183
- **Execution Code:** 1184
{execution_code} 1185

1186
Important Note: 1187
You **DO NOT** need to clarify or address any feedback from reviewers. 11881189

Listing 7: Prompt of the Report Writer agent.

21

D Appendix: Database Construction1190

To integrate external knowledge into LLMs, we adopt a RAG framework and use ChromaDB as the1191

vector-retrieval database. We predefine 50 block’s Full Block Description, each containing three pieces1192

of information: the block type, its location within Simulink, and its ports details. For example, the Full1193

Block Description of Busbar is formatted as:1194
1195

Busbar1196
1197

Path: `'ee_lib/Connectors & References/Busbar'`1198
1199

Ports:1200
1201

- When **`n_nodes`** is set to **1**, the exposed port is:1202
- **LConn1**1203

1204
- When **`n_nodes`** is set to **2**, the exposed ports are:1205
- **LConn1**1206
- **RConn1**1207

1208
- When **`n_nodes`** is set to **3**, the exposed ports are:1209
- **LConn1**1210
- **RConn1**1211
- **LConn2**1212

1213
- When **`n_nodes`** is set to **4**, the exposed ports are:1214
- **LConn1**1215
- **RConn1**1216
- **LConn2**1217
- **RConn2**1218

1219
*In the visual simulation blocks, the port labels correspond as follows:*1220
- **LConn1** appears as **~1**.1221
- **RConn1** appears as **~2**.1222
- **LConn2** appears as **~3**.1223
- **RConn2** appears as **~4**.1224

1225
~1, ~2, ~3, ~4 are just port label for recognition, NOT port name, only use **LConn1 ,**RConn1**1226

,**LConn2** ,**RConn2****.1227
---12281229

22

E Appendix: Case Study – Bipolar Transistor 1230

In the first step, our SimGen employs a LLM (o4-mini) to extract and summarize the key information 1231

from the simulation task of Bipolar Transistor. Upon completion of this process, a markdown file is 1232

automatically generated containing essential simulation details, which include the required blocks and 1233

wiring information. Below is the generated markdown file for the two-round investigation: 1234
1235

[Investigator] C1 (Capacitor) 1236
AC Voltage Source (AC Voltage Source) 1237
Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) 1238
R1 (Resistor) 1239
Current-Controlled Current Source (Current-Controlled Current Source) 1240
R2 (Resistor) 1241
RBias (Resistor) 1242
RLoad (Resistor) 1243
Electrical Reference (Electrical Reference) 1244
Voltage Sensor (Voltage Sensor) 1245
PS-Simulink Converter (PS-Simulink Converter) 1246
Solver Configuration (Solver Configuration) 1247
Scope (Scope) 1248

1249
```json 1250
{ 1251
"request_blocks": [ 1252
"Capacitor", 1253
"AC Voltage Source", 1254
"Voltage-Controlled Voltage Source", 1255
"Resistor", 1256
"Current-Controlled Current Source", 1257
"Electrical Reference", 1258
"Voltage Sensor", 1259
"PS-Simulink Converter", 1260
"Solver Configuration", 1261
"Scope" 1262

] 1263
} 1264
``` 1265
[Investigator] AC Voltage Source (AC Voltage Source) LConn1 <-> C1 (Capacitor) LConn1 1266
C1 (Capacitor) RConn1 <-> Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) 1267

LConn1 1268
AC Voltage Source (AC Voltage Source) RConn1 <-> Electrical Reference (Electrical Reference) LConn1 1269
Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) RConn1 <-> Electrical Reference 1270

(Electrical Reference) LConn1 1271
RBias (Resistor) LConn1 <-> Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) 1272

LConn1 1273
RBias (Resistor) RConn1 <-> Electrical Reference (Electrical Reference) LConn1 1274
R1 (Resistor) LConn1 <-> Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) LConn1 1275
R1 (Resistor) RConn1 <-> Current-Controlled Current source (Current-Controlled Current Source) LConn1 1276
Current-Controlled Current source (Current-Controlled Current Source) RConn1 <-> Electrical Reference 1277

(Electrical Reference) LConn1 1278
Current-Controlled Current source (Current-Controlled Current Source) LConn2 <-> Voltage-Controlled 1279

Voltage source (Voltage-Controlled Voltage Source) LConn2 1280
Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) LConn2 <-> R2 (Resistor) LConn1 1281
Current-Controlled Current source (Current-Controlled Current Source) LConn2 <-> R2 (Resistor) LConn1 1282
R2 (Resistor) RConn1 <-> Electrical Reference (Electrical Reference) LConn1 1283
Voltage-Controlled Voltage source (Voltage-Controlled Voltage Source) LConn2 <-> Voltage Sensor (1284

Voltage Sensor) LConn1 1285
Current-Controlled Current source (Current-Controlled Current Source) LConn2 <-> Voltage Sensor (1286

Voltage Sensor) LConn1 1287
RLoad (Resistor) LConn1 <-> Voltage Sensor (Voltage Sensor) LConn1 1288
RLoad (Resistor) RConn1 <-> Electrical Reference (Electrical Reference) LConn1 1289
Voltage Sensor (Voltage Sensor) RConn2 <-> Electrical Reference (Electrical Reference) LConn1 1290
Voltage Sensor (Voltage Sensor) RConn1 <-> PS-Simulink Converter (PS-Simulink Converter) LConn1 1291
PS-Simulink Converter (PS-Simulink Converter) 1 <-> Scope (Scope) 1 1292
Electrical Reference (Electrical Reference) LConn1 <-> Solver Configuration (Solver Configuration) 1293

RConn1 12941295

Listing 8: Case study of the Investigator agent for the Bipolar Transistor simulation.

23

In the second step, our SimGen uses o4-mini to check if the Investigator Agent generates error1296

information. Our SimGen will check eight rules defined by experts, such as: "Block List Existence",1297

"Extra Blocks", "Formatting of Block Name" and so on. A summary of findings will be generated to1298

highlight the potential errors in the markdown file of the previous investigation step. The investigation-1299

testing process will be repeated until no error is detected.1300
1301

[Unit_test_reviewer] Below is the review of the Investigator's simulation:1302
1303

1. Block List Existence:1304
- The provided "The blocks used in the simulation" list is consistent with the request_blocks from1305

the JSON. Although multiple resistor-instances (R1, RBias, R2, RLoad) appear in the connections,1306
they all use the "Resistor" type from the list.1307

1308
2. Extra Blocks:1309
- No extra blocks are present. All block names in the provided simulation list appear in the1310

connections description.1311
1312

3. Formatting of Block Name:1313
- All block names are formatted correctly with no "/" symbols.1314

1315
4. Formatting of Connection Description:1316
- Each connection is shown in the required format: BlockName (BlockType) PortName <-> BlockName (1317

BlockType) PortName.1318
- There is no unnecessary parameter explanation text; the formatting rules are followed.1319

1320
5. Parameter Settings in Connections:1321
- No parameter settings (parenthesized settings) were expected or provided. This is acceptable based1322

on the simulation blocks description.1323
1324

6. Duplicate Connections:1325
- There are several connections to Electrical Reference's LConn1. However, since Electrical Reference1326

(and Solver Configuration) is allowed to have duplicate input connections, no duplicate-1327
connection error is flagged.1328

- No other dedicated input port (as defined explicitly in the simulation blocks description for ports1329
declared as "Input Port" or "Output Port") is used more than once.1330

1331
7. Block Connection Types:1332
- All connections are made between ports of similar "electrical conserving" type (or between the1333

dedicated ports in PS-Simulink Converter, Electrical Reference, Solver Configuration, and Scope).1334
No block that is only a dedicated output is connected to a block that is only an input, so the1335

types are valid.1336
1337

8. Complete Port Connections:1338
- For the Capacitor, AC Voltage Source, Resistors, Electrical Reference, Voltage Sensor, PS-Simulink1339

Converter, Solver Configuration, and Scope, every defined port has a connection.1340
- However, for the Voltage-Controlled Voltage Source (which has four ports: LConn1, RConn1, LConn2,1341

and RConn2) only LConn1, RConn1, and LConn2 are connected. Its RConn2 port is left unconnected.1342
- Similarly, for the Current-Controlled Current Source (with ports LConn1, RConn1, LConn2, and RConn21343

), the RConn2 port is not connected.1344
- Based on the requirement that every input and output port (as defined in the simulation blocks1345

description) must be connected under the given parameter settings, these are considered1346
incomplete connections.1347

1348
Summary of Findings:1349
- Block list, extra blocks, name formatting, connection formatting, parameter settings, duplicate1350

connection rules, and block connection type validations are all acceptable.1351
- The main issue is that not all ports for Voltage-Controlled Voltage Source and Current-Controlled1352

Current Source are connected (the RConn2 ports are missing).1353
1354

Thus, due to the incomplete port connections, the overall simulation has errors.1355
1356

{1357
"Investigator_unit_test_pass": False1358

}13591360

Listing 9: Case study of the Unit Testing Agent for the Bipolar Transistor simulation.

24

Thirdly, after the Unit Testing agent does not find any errors, the Block Builder agent will receive the 1361

correct investigation report and generate a corresponding simulation code. 1362
1363

[Block_builder] import sys 1364
sys.path.append('/usr/local/lib/python3.10/dist-packages/matlabengine-24.2-py3.10.egg') 1365
import matlab.engine 1366

1367
eng = matlab.engine.start_matlab() 1368

1369
model_name = 'ElectricalModel' 1370
eng.new_system(model_name, nargout=0) 1371
eng.open_system(model_name, nargout=0) 1372

1373
eng.add_block('fl_lib/Electrical/Electrical Elements/Capacitor', model_name + '/C1', 'MakeNameUnique', 'on' 1374

, nargout=0) 1375
eng.add_block('fl_lib/Electrical/Electrical Sources/AC Voltage Source', model_name + '/AC Voltage Source', 1376

'MakeNameUnique', 'on', nargout=0) 1377
eng.add_block('fl_lib/Electrical/Electrical Sources/Voltage-Controlled Voltage Source', model_name + '/ 1378

Voltage-Controlled Voltage source', 'MakeNameUnique', 'on', nargout=0) 1379
eng.add_block('fl_lib/Electrical/Electrical Elements/Resistor', model_name + '/R1', 'MakeNameUnique', 'on', 1380

nargout=0) 1381
eng.add_block('fl_lib/Electrical/Electrical Elements/Resistor', model_name + '/RBias', 'MakeNameUnique', ' 1382

on', nargout=0) 1383
eng.add_block('fl_lib/Electrical/Electrical Elements/Resistor', model_name + '/R2', 'MakeNameUnique', 'on', 1384

nargout=0) 1385
eng.add_block('fl_lib/Electrical/Electrical Elements/Resistor', model_name + '/RLoad', 'MakeNameUnique', ' 1386

on', nargout=0) 1387
eng.add_block('fl_lib/Electrical/Electrical Sources/Current-Controlled Current Source', model_name + '/ 1388

Current-Controlled Current source', 'MakeNameUnique', 'on', nargout=0) 1389
eng.add_block('fl_lib/Electrical/Electrical Elements/Electrical Reference', model_name + '/Electrical 1390

Reference', 'MakeNameUnique', 'on', nargout=0) 1391
eng.add_block('fl_lib/Electrical/Electrical Sensors/Voltage Sensor', model_name + '/Voltage sensor', ' 1392

MakeNameUnique', 'on', nargout=0) 1393
eng.add_block('nesl_utility/PS-Simulink Converter', model_name + '/PS-Simulink Converter', 'MakeNameUnique' 1394

, 'on', nargout=0) 1395
eng.add_block('nesl_utility/Solver Configuration', model_name + '/Solver Configuration', 'MakeNameUnique', 1396

'on', nargout=0) 1397
eng.add_block('simulink/Commonly Used Blocks/Scope', model_name + '/Scope', 'MakeNameUnique', 'on', nargout 1398

=0) 1399
1400

eng.add_line(model_name, 'C1/LConn1', 'RBias/LConn1', nargout=0) 1401
eng.add_line(model_name, 'C1/LConn1', 'Voltage-Controlled Voltage source/LConn1', nargout=0) 1402
eng.add_line(model_name, 'C1/LConn1', 'R1/LConn1', nargout=0) 1403
eng.add_line(model_name, 'C1/RConn1', 'AC Voltage Source/LConn1', nargout=0) 1404

1405
eng.add_line(model_name, 'AC Voltage Source/RConn1', 'Electrical Reference/LConn1', nargout=0) 1406
eng.add_line(model_name, 'RBias/RConn1', 'Electrical Reference/LConn1', nargout=0) 1407

1408
eng.add_line(model_name, 'Voltage-Controlled Voltage source/RConn1', 'Electrical Reference/LConn1', nargout 1409

=0) 1410
eng.add_line(model_name, 'Voltage-Controlled Voltage source/LConn2', 'R2/LConn1', nargout=0) 1411
eng.add_line(model_name, 'Voltage-Controlled Voltage source/RConn2', 'Electrical Reference/LConn1', nargout 1412

=0) 1413
1414

eng.add_line(model_name, 'R1/RConn1', 'Current-Controlled Current source/LConn1', nargout=0) 1415
1416

eng.add_line(model_name, 'Current-Controlled Current source/RConn1', 'Electrical Reference/LConn1', nargout 1417
=0) 1418

eng.add_line(model_name, 'Current-Controlled Current source/LConn2', 'R2/LConn1', nargout=0) 1419
eng.add_line(model_name, 'Current-Controlled Current source/RConn2', 'Electrical Reference/LConn1', nargout 1420

=0) 1421
1422

eng.add_line(model_name, 'R2/RConn1', 'Electrical Reference/LConn1', nargout=0) 1423
1424

eng.add_line(model_name, 'RLoad/LConn1', 'Voltage-Controlled Voltage source/LConn2', nargout=0) 1425
eng.add_line(model_name, 'RLoad/LConn1', 'Current-Controlled Current source/LConn2', nargout=0) 1426
eng.add_line(model_name, 'RLoad/LConn1', 'Voltage sensor/LConn1', nargout=0) 1427
eng.add_line(model_name, 'RLoad/RConn1', 'Electrical Reference/LConn1', nargout=0) 1428

1429
eng.add_line(model_name, 'Voltage sensor/RConn2', 'Electrical Reference/LConn1', nargout=0) 1430
eng.add_line(model_name, 'Voltage sensor/RConn1', 'PS-Simulink Converter/LConn1', nargout=0) 1431

1432
eng.add_line(model_name, 'PS-Simulink Converter/1', 'Scope/1', nargout=0) 1433
eng.add_line(model_name, 'Solver Configuration/RConn1', 'Electrical Reference/LConn1', nargout=0) 1434

1435
eng.Simulink.BlockDiagram.arrangeSystem(model_name, nargout=0) 1436

1437
eng.save_system(model_name, model_name + '.slx', nargout=0) 14381439

Listing 10: Case study of the Block Builder agent for the Bipolar Transistor simulation.

25

In the next step, the Debug Locator agent will debug the code created by the Block Builder agent.1440

Additionally, the Debug Locator can determine whether the source of the bugs is the Block Builder agent or1441

the Investigator agent. If the bugs originate from the Block Builder, the Debug Locator instructs the Block1442

Builder to regenerate the code based on the error message. However, if the bugs stem from the Investigator,1443

our SimGen will return to the investigation-testing process until the correct investigation report is produced.1444

The Debug Locator will approve the code generation and send it to the Executer agent until no errors are1445

detected. Finally, a report in markdown file format will be generated to track the whole process of our1446

SimGen. This report can be checked on: https://anonymous.4open.science/r/SimuGen-CD71.1447
1448

[Debug_locator] Below is our brief report:1449
1450

1. Analysis and Understanding:1451
- The code adds blocks and makes connections exactly as specified by the Investigator's block list1452

and port names. Each add_block call uses the proper library path and each add_line call refers1453
to the designated port (for example LConn2 on both Voltage-Controlled Voltage Source and Current-1454
Controlled Current Source).1455

- The connections being made follow the Implementation Details exactly, including two connections1456
made to the same conserving port (LConn2) on the Voltage-Controlled Voltage Source and the1457
Current-Controlled Current Source, as specified.1458

1459
2. Error Location:1460
- The error message "The second port already has a line connection" is thrown at the call:1461
--eng.add_line(model_name, 'RLoad/LConn1', 'Current-Controlled Current source/LConn2', nargout=0)1462
-- The related lines also include the earlier connection made with:1463
--eng.add_line(model_name, 'Current-Controlled Current source/LConn2', 'R2/LConn1', nargout=0)1464
-- These 5-10 lines are part of the code block that connects "RLoad" and "R2" to the same LConn2 port1465

of the Current-Controlled Current source, which causes the error.1466
1467

3. Connection and Parameter Integrity:1468
- A careful check reveals that the block types, port names, and connections match the Investigator's1469

Implementation Details.1470
- The error is not caused by erroneous setting of the block's path or wrong parameters, but it1471

results from the fact that the same port (LConn2 of the Current-Controlled Current source) is1472
being used twice.1473

- Since the code strictly adheres to the provided details and the connection configuration exactly1474
matches the Investigator's Implementation Details, the root cause is a discrepancy in the1475
Investigator's Implementation Details (i.e. they require two connections to a single port, which1476
Simulink does not allow).1477

1478
Thus, no modifications to the code are recommended because the error is due to a discrepancy in the1479

Investigator's Implementation Details.1480
1481

{1482
"Investigator_error": true1483

}14841485

Listing 11: Case study of the Debug Locator Agent for the Bipolar Transistor simulation.

26

https://anonymous.4open.science/r/SimuGen-CD71

	Introduction
	Challenges
	Conceptual Errors: Missing Domain Knowledge
	Block Implementation Errors: Incorrect Block and Port Usage
	Linkage Implementation Errors: Invalid Connections
	Context Window Bottlenecks in Single LLM Agents

	Methodology
	SimuGen Framework Overview
	Database Construction
	LLM Agent Settings
	Full Agentic Workflow

	Experiments
	Experimental Setup
	Main Results
	Alblation Study

	Related works
	Conclusion
	Appendix: Challenges
	Appendix: Datasets
	Appendix: Prompts of Agents
	Appendix: Database Construction
	Appendix: Case Study – Bipolar Transistor

