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ABSTRACT

Understanding how internal representations evolve across layers in large language
models (LLMs) is critical for interpretability, robustness, and efficient model de-
sign. We introduce LLMGD, a stability-guided pruning metric grounded in spec-
tral graph theory. For each layer, we estimate a precision matrix from embed-
ding vectors that characterize the model’s internal states, and then compute the
geodesic distance on the cone of symmetric positive definite (SPD) matrices be-
tween successive layers. This yields a smooth and robust measure of representa-
tional distortion, identifying layers with minimal geodesic change as candidates
for removal or replacement, thereby providing a principled foundation for model
compression. Empirically, across multiple LLMs and tasks, including OPT-1.3B
and OPT-2.7B models, LLMGD consistently detects structurally redundant seg-
ments and, when combined with lightweight replacement layers, delivers strong
compression–accuracy trade-offs compared to existing pruning methods. We fur-
ther establish a bi-Lipschitz upper-bound interpretation of LLMGD, which clari-
fies its robustness as a pruning criterion. Together, these results demonstrate that
LLMGD reliably identifies structurally important layers and enables robust model
compression with minimal performance degradation.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as foundational tools in natural language processing,
achieving impressive performance across a wide range of tasks, including text generation, transla-
tion, code synthesis, and reasoning (Vaswani et al., 2017; Touvron et al., 2023; Zhang et al., 2022).
However, their increasing scale and complexity come at the cost of substantial computational de-
mands and reduced interpretability. Gaining a clear understanding of the functional role of each layer
is essential to effectively address these challenges. While earlier work often assumed that all layers
contribute equally, recent studies suggest layers differ significantly in their contribution to model
performance (Geva et al., 2021; Georges Gabriel Charpentier & Samuel, 2023; Voita et al., 2019a;
Chen et al., 2025; Yang et al., 2024). This observation motivates the development of principled and
interpretable methods to assess the functional significance of transformer layers.

Layers of LLMs can be viewed as complex functions that map input tokens to high-dimensional
vectors, commonly referred to as hidden state embeddings. The input and output embeddings of
each layer, computed over a batch of data, can serve as indicators of the functional behavior of that
layer. By analyzing how the geometry of the input space is transformed into the output space, and
vice-versa, one can infer both the importance and potential redundancy of a layer. This insight is
valuable for several downstream applications, including model pruning (Chen et al., 2025), dynamic
layer selection (Dotzel et al., 2024), and robustness to noise. This motivates geometric criteria that
directly capture representational change across layers.

A central challenge in understanding large neural architectures lies in the absence of mathematically
rigorous tools to quantify how information is distorted across layers. While empirical heuristics
for layer importance exist, they often lack a theoretical foundation. To address this, we introduce
LLMGD, a layerwise criterion based on geodesic distances between precision matrices estimated
from hidden states. Specifically, we use probabilistic graphical models (PGMs) to derive precision
matrices that summarize variable dependencies within each layer’s embeddings. These matrices
are symmetric positive definite (SPD), and thus naturally lie on a non-Euclidean geometry where
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distances can be measured using the affine-invariant Riemannian metric (AIRM). By computing
geodesic distances between successive layers, we obtain a smooth, scale-aware measure of repre-
sentational distortion. Layers inducing minimal change can be identified as candidates for removal
or lightweight replacement, enabling stability-guided pruning.

In later sections, we establish a theoretical connection between this geodesic distance metric and the
bi-Lipschitz constant, a classical measure of how much a function can stretch or compress distances.
We show that LLMGD provides an upper bound on bi-Lipschitz distortion, thereby grounding our
pruning signal in a well-established theoretical framework.

Finally, we compare our metric with existing approaches for quantifying layer importance in model
pruning. Empirical results demonstrate that it effectively distinguishes between essential and redun-
dant layers, achieving substantial improvements at equivalent pruning ratios compared to state-of-
the-art metrics (Chen et al., 2025), particularly in LLMs with 1.3B and 2.7B parameters.

Overall our key contributions are as follows:

• We present LLMGD, a novel layer wise criterion based on geodesic distances between SPD
precision matrices summarizing hidden states.

• We demonstrate that LLMGD effectively captures functional distortion across layers, dis-
tinguishing essential from redundant components of transformer depth.

• Through pruning experiments, we show that LLMGD outperforms existing layer pruning
metrics, delivering strong compression–accuracy trade-offs.

• We establish a bi-Lipschitz upper-bound interpretation of LLMGD, providing theoretical
support for its robustness.

2 RELATED WORKS

PROBABILISTIC GRAPHICAL MODELS

Probabilistic Graphical Models (PGMs) offer a principled framework for modeling complex depen-
dencies among a set of random variables through graph-based representations (Koller & Friedman,
2009). In recent literature, PGMs have been applied to structured data scenarios where each node
presents a sample, such as an embedding from a machine learning model and edges reflect statisti-
cally significant interactions or similarities. By representing joint distributions of high-dimensional
data using graph-based factorizations, PGMs enable both interpretability and efficient inference.
Studies have shown that PGMs successfully capture not only local, but global dependencies be-
tween these variables as well (Feng, 2021; Vu & Thai, 2020). Edges are formed between nodes
that exhibit strong proximity or structural similarity, collectively capturing an approximation of the
data’s underlying manifold. Each node maintains a local neighborhood that encapsulates condi-
tional dependencies, while the overall edge configuration reflects the global topological structure
of the data manifold (Rubin-Delanchy, 2020). Dense subgraphs indicate clusters of high intrinsic
coherence, often corresponding to regions with low variability, whereas sparse or weakly connected
areas suggest increased uncertainty or diversity in the underlying distribution.

3 METHODOLOGY

3.1 OVERVIEW OF LLMGD

Figure 1 outlines the LLMGD pipeline, consisting of two phases: (Phase 1) Precision Matrix Esti-
mation from hidden-state embeddings using probabilistic graphical models, and (Phase 2) Geodesic
Distance Calculation between successive layers on the SPD manifold.

3.2 PHASE 1: PRECISION MATRIX ESTIMATION VIA PROBABILISTIC GRAPHICAL MODELS

Hidden State Embedding Extraction & Pooling To analyze the internal representations of a lan-
guage model, we extract hidden-state vector embeddings from each transformer layer. Specifically,
we randomly sample a subset of N input sequences (tokens) from the dataset and pass them through
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Figure 1: A high-level overview of the LLMGD pipeline, including hidden state extraction, (Phase
1) precision matrix estimation using PGM, and (Phase 2) geodesic distance computation between
precision matrices using Riemannian metric.

the model in evaluation mode. For each input sample, we retrieve the full stack of hidden-states
from all layers of the model. To obtain a fixed-size vector per layer, we apply mean pooling over the
token dimension.

h(ℓ) =
1

T

T∑
t=1

H
(ℓ)
t (1)

here H
(ℓ)
t ∈ RD is the embedding of the t-th token at layer ℓ and h(ℓ) ∈ RD is the resulting

mean-pooled vector representing the sequence at that layer.

By applying this to all N samples in the dataset, we construct a matrix P(ℓ) ∈ RN×D, where each
row corresponds to the pooled hidden state vector for that sample at layer ℓ. Stacking these across
all L layers yields a tensor of the size RL×N×D, which is used in our analysis of layer geometry and
structure.

Precision Matrix Estimation We consider a random vector x ∼ N (0,Σ) with the following
probability density function:

f(x) =
exp

(
− 1

2x
⊤Σ−1x

)
(2π)N/2 det(Σ)1/2

∝ det(Θ)1/2 exp

(
−1

2
x⊤Θx

)
(2)

where Σ denotes the covariance matrix and Θ = Σ−1 is the corresponding precision matrix (the
inverse covariance matrix).

Let P ∈ RN×D denote the embedding matrix of a specific layer (ℓ), with each row representing
a pooled hidden state for a sample. Our goal is to estimate a precision matrix Θ from this high-
dimensional data, rather than from sample x.

The graphical Lasso method (Friedman et al., 2008) aims at estimating the precision matrix by
solving the following convex optimization problem that maximizes the log-likelihood of f(x):

max
Θ

: F (Θ) = log det(Θ)− Tr⟨ΘS⟩ − β∥Θ∥1 (3)

where Θ denotes the precision matrix, S denotes the sample covariance matrix, and β is a regular-
ization parameter. The sample covariance matrix S is computed from N independent and identically
distributed (i.i.d.) samples P = [P0, P1, ..., Pn−1], where P ∼ N (0, S) is a zero-mean multivariate
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Gaussian distribution in RN . Each element Θi,j in the precision matrix encodes the conditional de-
pendencies between variables Pi and Pj . For example, if Θi,j = 0, then Pi and Pj are conditionally
independent given all other variables.

To improve computational efficiency in high-dimensional settings, graph Laplacian estimation meth-
ods (Dong et al., 2019; Lake & Tenenbaum, 2010) have recently been introduced to solve the fol-
lowing optimization problem:

max
Θ

: F (Θ) = log det(Θ)− 1

M
Tr

(
X⊤ΘX

)
− β∥Θ∥1 (4)

Subject to Θ = L+ 1
σ2 I , where L represents the set of valid Laplacian matrices. Here, Tr(·) denotes

the matrix trace, I is the identity matrix, and σ2 > 0 represents the prior variance of the features.
The three terms in Equation 4 correspond to log det(Θ), Tr(ΘS), and β∥Θ∥1 from the original
graphical Lasso objective in Equation 3, respectively. When every row vector in the data matrix P
is interpreted as a graph signal, there exists a close connection between the formulation in Equation
4 and the original graphical Lasso formulation (Friedman et al., 2008). In this formulation, all off-
diagonal entries of Θ are non-positive, which leads to the estimation of attractive Gaussian Markov
Random Fields (GMRFs) (Dong et al., 2019; Slawski & Hein, 2015). The relationship between
the resulting precision matrix and the graph-based representation of the underlying data manifold is
further explored in Section 4.

3.3 PHASE 2: GEODESIC DISTANCE CALCULATION LEVERAGING PRECISION MATRICES

We observe from Equation 4 that Θ is the sum of a graph Laplacian matrix L and a positive scalar
multiple of the identity matrix. This operation effectively adds a positive constant of 1

σ2 to each
diagonal element of L, ensuring that the resulting precision matrix Θ is a SPD matrix. The LLMGD
metric can be formally defined as the infimum length of geodesics connecting two data points in
the Riemannian manifold formed by the cone of these SPD precision matrices (Lim et al., 2019).
This can be imagined as a matrix representation of the geometric distance | log(a/b)| between two
positive numbers a, b (Bonnabel & Sepulchre, 2010; Shamai & Kimmel, 2017; Owen & Provan,
2010; Shuvo et al., 2024).

LLMGD(Θ1,Θ2) =

[
n∑

i=1

log2(λi(Θ
−1
1 Θ2))

]1/2

(5)

where Θ1 and Θ2 are the precision matrices derived from the hidden state embeddings P1 and P2,
respectively, and λi is the i-th generalized eigenvalue obtained from the matrix pencil (Θ−1

1 Θ2).

The above formulation for computing distances between precision matrices is based on the Affine-
Invariant Riemannian Metric (AIRM) (Lim et al., 2019). When LLMGD is used to compute the
geodesic distance between two precision matrices, it is closely linked to the bi-Lipschitz maps be-
tween the two corresponding transformer layers, which will be discussed in the next section.

4 QUANTIFYING LAYERWISE BI-LIPSCHITZ MAPS IN LLMS WITH LLMGD

4.1 BI-LIPSCHITZ MAPS

In many representation learning tasks, it is desirable for a transformation to preserve the relative
geometry of data points. Bi-Lipschitz maps formalize this idea by bounding how much distances
can distort under the mapping.

A function f : (X, dX) → (Y, dY ) between two metric spaces is called κ-bi-Lipschitz if there
exists a constant κ ≥ 1 such that for all p, q ∈ X and f(p), f(q) ∈ Y :

1

κ
dX(p, q) ≤ dY (f(p), f(q)) ≤ κdX(p, q) (6)

Here dX(p, q) and dY (f(p), f(q)) denote the distances between points p and q points in the input
space X and output space Y , respectively.

Bi-Lipschitz maps are particularly useful in analyzing learned representations, as they preserve the
relative distances between points in a stable and controlled manner. This makes them valuable for
understanding embedding stability, robustness to perturbations, and geometry-preserving transfor-
mations in machine learning models.
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A Graph-Based Manifold Perspective on the Precision Matrix The Laplacian component of
the precision matrix encodes an undirected graph structure, which can be interpreted as a graph-
based manifold. This manifold captures the conditional dependencies among vector embeddings:
each node represents a data sample’s embedding, while each edge encodes a pairwise conditional
dependency. In practice, to estimate a graph structure corresponding to the precision matrix, we
can first build a k-nearest neighbor (k-NN) graph over the vector embeddings and then use spectral
graph sparsification to prune its edges, which is equivalent to the Maximum Likelihood Estimation
(MLE) of the precision matrix. The detailed theoretical analysis has been provided in Appendix A.1
and A.2.

In the following, we show that the graph-based manifolds constructed in the previous step can be ex-
ploited to quantify the bi-Lipschitz constants of the maps between two transformer layers. Equation
6 implies that the bi-Lipschitz constant κ satisfies:

κ := max

max
p,q
p̸=q

dY (p, q)

dX(p, q)
, max

p,q
p̸=q

dX(p, q)

dY (p, q)

 (7)

where p and q are two data samples mapped from the input X space to the output Y space, and dX ,
dY denote their respective distance metrics on the graph-based manifolds.

Theorem 4.1 (LLMGD as an Upper Bound on Bi-Lipschitz Distortion). The LLMGD between
two layers provides an upper bound on the logarithm of their bi-Lipschitz constant κ.

Proof. To compute distances dX and dY on graph-based manifolds, we consider effective-resistance
distance to capture both local and global connectivity between nodes. Effective resistance, derived
from spectral graph theory, draws an analogy between electrical networks and graphs, helping to
quantify how easily current can flow between two nodes. Two nodes with lower effective-resistance
distance between them imply higher connectivity (Ellens et al., 2011). Formally, for nodes p and q,
the effective resistance is computed as:

Reff(p, q) = (ep − eq)
⊤L†(ep − eq), (8)

where ep and eq denoting the standard basis vectors (i.e., vectors with a 1 at the p-th and q-th
positions, respectively, and zeros elsewhere), and L† is the Moore-Penrose pseudoinverse (Barata &
Hussein, 2012) of the graph Laplacian L.

Since X and Y spaces can be represented as graph-based manifolds corresponding to their respective
precision matrices, we can leverage resistance distance to quantify the bi-Lipschitz constant:

max
p,q
p̸=q

dY (p, q)

dX(p, q)
= max

p,q
p̸=q

RY
eff (p, q)

RX
eff (p, q)

= max
p,q
p̸=q

e⊤pqL
†
Y epq

e⊤pqL
†
Xepq

(9)

where epq = ep − eq . As epq spans a subset of all vectors orthogonal to 1, we can upper-bound the
above term by relaxing to all such vectors, leading to an expression involving generalized eigenval-
ues (Golub & Van Loan, 1996):

max
p,q
p̸=q

e⊤pqL
†
Y epq

e⊤pqL
†
Xepq

≤ max
u⊥1
u̸=0

u⊤L†
Y u

u⊤L†
Xu

= max
u⊥1
u̸=0

u⊤LXu

u⊤LY u
= λmax(L†

Y LX) ≈ λmax(Θ
−1
Y ΘX) (10)

Since ΘX and ΘY are SPD matrices, they are invertible, and their pseudoinverses are equal to their
inverses (Stoer et al., 1980). Similarly, we have:

max
p̸=q

dX(p, q)

dY (p, q)
= max

p̸=q

RX
eff(p, q)

RY
eff(p, q)

= max
p̸=q

e⊤pqL
†
Xepq

e⊤pqL
†
Y epq

≤ max
u⊥1
u̸=0

u⊤L†
Xu

u⊤L†
Y u

= max
u⊥1
u̸=0

u⊤LXu

u⊤LY u
= λmax(L†

XLY ) ≈ λmax(Θ
−1
X ΘY )

(11)
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Since ΘX and ΘY are both invertible matrices, we have λmax(Θ
−1
X ΘY ) =

1

λmin(Θ
−1
Y ΘX)

.

From Equation 5, we observe that the LLMGD metric incorporates all generalized eigenvalues be-
tween the two precision matrices in its computation. However, the extreme eigenvalues, the largest
and smallest eigenvalues tend to contribute to the final value significantly. The eigenvalue spectra
are shown in Figure 2, where the extreme eigenvalues represent a small but impactful portion of the
overall distribution. As such, the LLMGD metric serves as an upper bound on the square root of
the sum of squared logarithms of the extreme eigenvalues, thereby tightly bounding the bi-Lipschitz
constant. This relationship is formalized in the following inequality:

LLMGD ≥
√
log2(λmax) + log2(λmin) =

√
log2(λmax) + log2(

1

λmin
) ≥

√
log2(κ) = log(κ)

(12)
Here, λmin, λmax are the generalized eigenvalues of the matrix pencil (Θ−1

1 Θ2).

We observe that a smaller value of the LLMGD metric indicates a lower distortion between the
input and output spaces (and vice versa), suggesting that this transformation preserves the geometric
structure of the data.

Index of the n-th layer
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Figure 2: Generalized eigenvalues of input vs. output representations across OPT-1.3B and OPT-
2.7B layers. Black: extreme 2 percentiles; green: outer quartiles (1st & 4th); blue: interquartile
range (2nd & 3rd); red dot: median.The green envelopes for both OPT models are nearly identical,
indicating that the token embeddings undergo similar geometric transformations across layers in
comparable LLMs.

5 APPLICATIONS: STABILITY-GUIDED PRUNING & REPLACEMENT

Having established a principled metric for layerwise distortion, we now explore its utility in practical
applications. One of the primary applications of our proposed method, LLMGD, is to identify
structurally redundant layers within LLMs for layer-wise model pruning (Louizos et al., 2018; Chen
et al., 2023; Frantar & Alistarh, 2023; Das et al., 2023; Sun et al., 2024; Xia et al., 2024; Ma
et al., 2023; Chen et al., 2025). Traditional pruning techniques typically focus on removing specific
components, such as attention heads (Michel et al., 2019; Voita et al., 2019b), filters (McCarley
et al., 2019; Prasanna et al., 2020), or parameters that contribute to dimensionality (Xia et al., 2024;
Hu et al., 2024; van der Ouderaa et al., 2024). In contrast, LLMGD offers a theoretically grounded
alternative by quantifying the distortion between input and output manifolds at each layer.

Unlike recent studies that directly prune unimportant layers without any retraining (Song et al., 2024;
Men et al., 2024), our method involves retraining a lightweight replacement model after pruning.
This approach allows us to preserve the language model’s functional capacity while reducing depth
and computational complexity. Other approaches that incorporate fine-tuning after pruning (Yang
et al., 2024; Kim et al., 2024; Gromov et al., 2025) demonstrate the importance of model adaptation
post-pruning, an aspect that is useful for our application.

Since the geodesic distances derived from the AIRM reflect the degree of distortion introduced by
each layer, they provide an effective criterion for identifying low-impact transformations. Layers
exhibiting low LLMGD values correspond to those that preserve the global geometry of the data
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space and thus contribute minimally to internal transformations. Such layers can be considered
structurally redundant and pruned with minimal performance degradation.

Moreover, because LLMGD operates on internal hidden-state distributions, it generalizes across
both architectures and datasets without requiring task-specific supervision. This enables a data-
driven, bi-Lipschitz aware strategy for removing less informative layers in a principled way.

Lightweight Replacement Layer In the lightweight training phase, a contiguous block of layers
in the original model is replaced with a single trainable module. A group of k consecutive lay-
ers is first identified as redundant based on similarity metrics and subsequently removed. A single
layer is then initialized as a replacement and trained to approximate the input-output behavior of
the removed layer block. To enable this, hidden-state pairs are extracted from the original model:
specifically, the inputs to the first layer and the outputs of the last layer within the pruned segment.
The replacement module is trained using these pairs to minimize the mean squared error (MSE)
between its predictions and the true outputs. This process preserves the structural behavior of the
original model while reducing both model depth and computational cost. Importantly, the replace-
ment module retains both the multi-head self-attention and feedforward components, allowing it to
serve as a compact yet expressive approximation of the pruned layer group.

For comparison, we also use two additional metrics: (1) Cosine similarity and (2) KL divergence- to
evaluate the similarity of hidden-state distributions. These metrics are used to guide pruning while
maintaining model performance and are briefly described in Appendix A.3 and A.4.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

Table 1: Classification accuracy of various pruning methods ap-
plied to the OPT-1.3B model across different pruning rates and
classification benchmarks.

Metric Used Layers
Pruned

Benchmarks on OPT-1.3B

boolq hellaswag mmlu piqa

Cosine Similarity

2

49.11 36.24 23.29 67.74

KL Divergence 52.78 35.99 23.05 67.08

LLMGD 54.95 35.70 25.05 68.39
Cosine Similarity

4

57.71 29.71 23.05 62.51

KL Divergence 56.24 30.59 23.06 63.06

LLMGD 57.92 33.92 23.72 67.83
Cosine Similarity

6

41.16 27.35 23.60 57.56

KL Divergence 43.98 27.41 23.05 58.59

LLMGD 59.97 30.43 22.97 62.35
Cosine Similarity

8

37.83 26.95 23.47 58.05

KL Divergence 52.81 25.39 23.24 53.26

LLMGD 62.02 29.49 22.95 60.94
Cosine Similarity

10

37.83 26.72 26.42 56.04

KL Divergence 39.51 25.62 25.72 52.99

LLMGD 61.49 28.60 22.92 60.01
Baseline N/A 57.76 41.52 24.96 71.76

We conduct experiments on
widely-used open-source
large language models,
including OPT-1.3B and OPT-
2.7B (Zhang et al., 2022).
Building on prior work in
layer pruning and replacement
(Dettmers et al., 2023; Chen
et al., 2025), we evaluate
multiple pruning configura-
tions by varying both pruning
rates and criteria. To identify
optimal layers for pruning, we
use 10,000 randomly selected
samples from the RedPajama
(Weber et al., 2024) corpus
to compute three metrics:
LLMGD (our proposed
method), cosine similarity,
and KL divergence across
layers. These samples are
used to construct the precision
matrices for LLMGD com-
putation, calculate pairwise
cosine similarities between
layer inputs and outputs, and
measure KL divergence under
perturbations. The resulting
distributions across layers are

illustrated in Appendix A.5. For training lightweight replacement modules that recover performance
after pruning, we adopt domain-distribution sampling strategy (Xia et al., 2024). Specifically,
we use 50,000 examples from RedPajama to train single Transformer layers that replace each
pruned block, minimizing the mean squared error between the replacement module’s output and

7
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the original block’s output. This larger training set ensures robust approximation of the removed
layers’ functionality while maintaining computational efficiency.

Table 2: Classification accuracy of various pruning methods applied to the OPT-2.7B model across
different pruning rates and classification benchmarks.

Metric Used Layers
Pruned

Benchmarks on OPT-2.7B

arc easy boolq copa hellaswag mmlu piqa

Cosine Similarity

6

42.55 43.73 73.00 28.43 23.29 60.39

KL Divergence 42.26 62.60 71.00 35.18 22.95 63.49

LLMGD 48.23 60.46 68.00 31.57 22.99 65.94
Cosine Similarity

10

33.25 41.68 58.00 26.58 24.90 56.04

KL Divergence 34.18 38.78 61.00 28.58 22.95 57.45

LLMGD 39.94 42.17 68.00 27.50 23.05 59.14
Cosine Similarity

14

34.30 42.60 56.00 26.63 23.14 54.35

KL Divergence 32.53 37.83 51.00 26.61 22.95 55.98

LLMGD 39.94 51.59 66.00 28.35 22.91 60.39
Cosine Similarity

18

29.76 37.89 55.00 26.47 23.10 54.73

KL Divergence 29.55 37.83 52.00 26.23 22.95 54.13

LLMGD 30.09 38.44 55.00 26.15 23.97 56.31
Baseline N/A 60.77 60.24 77.00 45.85 25.61 73.78

6.2 PERFORMANCE EVALUATION

We evaluate the effectiveness of LLMGD on multiple downstream classification tasks under differ-
ent pruning configurations. In each setting, a contiguous block of layers is removed and replaced
with a lightweight module, guided by one of three metrics: LLMGD, Cosine Similarity, or KL Di-
vergence. As shown in Tables 1 and 2, LLMGD consistently delivers competitive performance, often
achieving the highest accuracy across tasks, and remaining close to the top when not achieving the
highest score. Although its advantage varies across datasets and pruning ratios, LLMGD frequently
outperforms the other metrics by a substantial margin, demonstrating its ability to effectively capture
geometric distortion and identify structurally redundant layers with minimal impact on downstream
performance.

As shown in Tables 1 and 2, pruning guided by LLMGD consistently produces higher or comparable
classification accuracy compared to pruning based on cosine similarity or KL divergence. This trend
holds across multiple pruning depths and benchmark datasets.

On the OPT-1.3B model, LLMGD outperforms both baselines in 16 out of 20 metric comparisons
(across 4 benchmarks and 5 pruning depths). For example, at 10-layer pruning, LLMGD achieves
61.49% on BoolQ and 28.60% on HellaSwag, compared to 37.83% and 26.72% using cosine simi-
larity. Even in cases where LLMGD does not attain the top score (e.g., MMLU at 10 layers pruning),
it remains within a close margin, indicating strong robustness.

On OPT-2.7B, LLMGD continues to demonstrate superior performance under moderate pruning.
For example, with six layers pruned, LLMGD achieves 48.23% on ARC-Easy and 65.94% on PIQA,
outperforming cosine similarity by 5.68% and 5.55%, respectively. At 14 layers pruned, LLMGD
improves COPA accuracy from 56.00% (cosine) to 66.00%, a 10-point gain, highlighting its capa-
bility to retain critical task-specific information even under aggressive compression.

Overall, LLMGD ranks highest in 16 out of 20 comparisons on the OPT-1.3B model and 16 out
of 24 comparisons on OPT-2.7B, demonstrating its consistent advantage across architectures and
pruning configurations. When not the top scorer, LLMGD remains highly competitive, closely
matching cosine similarity and KL divergence.

This strong performance can be attributed to LLMGD’ ability to measure nonlinear geometric dis-
tortion across hidden representations, providing a more accurate and globally-informed estimation
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of representational redundancy than first-order metrics such as cosine similarity or KL divergence.
These results validate LLMGD as a reliable and effective criterion for identifying structurally re-
placeable layers while preserving downstream task performance under aggressive compression.

6.3 RUNTIME AND COMPUTATIONAL COST

One of the strengths of the proposed LLMGD framework lies in its balance between theoretical rigor
and computational feasibility. While computing geodesic distances between precision matrices on
the SPD manifold involves matrix operations such as generalized eigenvalue decomposition, the
overall computational cost remains feasible for practical sample sizes and model depths.

Table 3: Computation time for
LLMGD between two layers at
varying sample sizes.

Number of
Samples (N)

Avg Time of
Computation

1000 0.430s
2000 2.907s
5000 40.089s

10000 313.21s

For a given layer ℓ, we first compute the precision matrix
Θℓ ∈ RN×N from the hidden state embeddings using a PGM,
where N is the number of samples. This involves constructing
a k-nearest neighbor graph over the embeddings, which has
a near-linear time complexity of O(N logN) (Cheng et al.,
2024; Malkov & Yashunin, 2018), followed by spectral spar-
sification with complexity O(Ndm), where d is the average
degree and m is the order of the Krylov subspace (Cheng
et al., 2024). Once the precision matrices for two layers are
obtained, the geodesic distance via the Affine-Invariant Rie-
mannian Metric is computed using the generalized eigenvalues
of the matrix pencil (Θ−1

1 Θ2). This eigenvalue decomposition
step has a computational complexity of O(N3) and constitutes the primary computational bottle-
neck in our pipeline. However, all previous steps are near-linear and thus scale efficiently with N .
In practice, we further reduce computational overhead by applying mean-pooling over token em-
beddings before constructing the graph. The total runtime required to compute LLMGD for varying
sample sizes is reported in Table 3.

7 LIMITATIONS

Although LLMGD provides a principled and effective approach to stability-guided model pruning,
several aspects remain open for future exploration. Our current study focuses on medium scale mod-
els and classification benchmarks, leaving opportunities to extend the analysis to larger architectures
and a wider range of downstream tasks such as reasoning, code generation, and long context under-
standing. Furthermore, evaluating LLMGD within broader model optimization pipelines, including
dynamic pruning and quantization, offers a promising direction for integrating geometric signals
with complementary compression strategies.

8 CONCLUSION

In this work, we proposed LLMGD, a geodesic-distance–based criterion for assessing layer im-
portance in large language models. By modeling layer-wise hidden state distributions as precision
matrices and computing distances on the SPD cone, our method provides a scalable and theoreti-
cally grounded measure of representational distortion. We demonstrated that LLMGD effectively
identifies redundant layers and consistently outperforms similarity-based metrics such as cosine dis-
tance and KL divergence in pruning experiments. Combined with lightweight replacement modules,
it yields strong compression–accuracy trade-offs, offering a principled framework for model opti-
mization. Finally, we established a bi-Lipschitz upper-bound interpretation of LLMGD, which ex-
plains its robustness as a pruning signal and connects our empirical findings to a broader theoretical
foundation.

LLM USEAGE

We used LLM-based tools to improve the clarity of a few sentences and to correct grammatical
errors.

9
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A APPENDIX

A.1 GRAPH-BASED MANIFOLD FORMATION

k-nearest neighbor graph construction Given a set of pooled hidden-state embeddings
{P0, P1, ..., Pn−1} ∈ RN×D, we construct a k-NN graph G = (V, E), where each node vi ∈ V
corresponds to a data sample embedding (Pi), and edges are formed between a node and its k most
similar neighbors. Similarity is measured using the Euclidean distance in the embedding space.

The adjacency matrix A ∈ RN×N is constructed such that Aij = 1 if vj ∈ NNk(vi), and 0
otherwise. We symmetrize the graph by enforcing A = max(A,A⊤) to ensure an undirected
structure.

A.2 OBJECTIVE MAXIMIZATION VIA EDGE PRUNING

Following prior work (Cheng et al., 2024), it has been shown that maximizing the objective

max
Θ

F (Θ) = log det(Θ)− 1

k
Tr(X⊤ΘX), (13)

where Θ = L+ 1
σ2 I , can be achieved by removing (or down-weighting) edges with small distance

ratios. Such edges contribute little to the log-determinant term while incurring a disproportionately
large penalty in the trace term, and their removal can increase the overall value of F (Θ).

Objective Decomposition The Laplacian is expressed as

L =
∑

(p,q)∈E
p̸=q

wpqepqe
⊤
pq,

The objective is decomposed in two terms as:

F (Θ) = F1(Θ)− 1

k
F2(Θ),

where
F1(Θ) = log det(Θ), F2(Θ) = Tr(X⊤ΘX).

Since Θ = L+ 1
σ2 I , each edge weight wp,q appears explicitly through the Laplacian L.

Gradient with Respect to an Edge Weight To analyze the effect of an individual edge, the gra-
dient of F (Θ) with respect to wp,q is considered.

F1(Θ): Let λi and vi denote the eigenvalues and eigenvectors of Θ, respectively. By applying
matrix calculus, it has been shown that:

∂F1

∂wpq
=

∂

∂wpq
log det

(
L+

1

σ2
I

)
≈ deff(p, q),

where deff(p, q) represents the effective resistance between nodes p and q, which captures how
strongly edge (p, q) influences log det(Θ).

F2(Θ):

F2(Θ) = Tr(X⊤ΘX) = Tr

(
X⊤

(
L+

1

σ2
I

)
X

)
=

Tr
(
X⊤X

)
σ2

+
∑

(p,q)∈E

wpq

∥∥X⊤epq
∥∥2
2
.

Using
∥∥X⊤epq

∥∥2
2
= X⊤epqe

⊤
pqX = ∥Xp −Xq∥22 = ddat(p, q), the derivative becomes:

∂F2

∂wpq
=

∥∥X⊤epq
∥∥2
2
= ddat(p, q),

13
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Since ddat (p, q) =
1

wpq
, it follows that:

∂F2

∂wpq
=

1

wpq

So, the derivative of F (Θ) w.r.t. wpq is

∂F

∂wpq
= deff(p, q)−

1

k

1

wpq
= 0 (14)

Distance Ratio and Edge Ranking Rewriting Equation 14:

deff(p, q) =
1

k

1

wpq

The pruning condition is reformulated using the distance ratio:

ρp,q =
deff(p, q)

ddat(p, q)
= wpqdeff(p, q).

This ratio serves as a heuristic for edge importance:

• Large ρp,q: the edge is important to keep log det(Θ) high and should be retained.
• Small ρp,q: the edge contributes little and can be pruned.

Pruning Strategy Edges with low ρp,q values are removed to maximize F (Θ). This approach re-
tains edges that preserve the spectral properties of the graph-based manifold via log det(Θ)—while
reducing the trace penalty induced by weakly informative but distant edges. As a result, a struc-
turally faithful and more efficient representation is obtained.

SPECTRAL GRAPH SPARSIFICATION

Edges with low ρp,q are candidates for pruning as they contribute less to maximizing the objective
function F (Θ).

These retained edges preserve the spectral properties of the graph-based manifold via log det(Θ),
while reducing the trace penalty from weakly informative connections. The ratio ρp,q corresponds
to the edge sampling probability used in spectral graph sparsification (Spielman & Teng, 2011).
Spectral sparsification aims to approximate the original graph with a sparser one while preserving
its spectral (Laplacian) properties. Here:

• Edges are sampled with probability proportional to wpqdeff(p, q).
• Edges with higher ρp,q are more likely to be included in the sparsified graph.

Therefore, our edge pruning strategy, performing spectral sparsification on the initial dense graph
is equivalent to maximizing the objective function in Equation 4. To implement this efficiently, we
adopt the Low-Resistance Diameter (LRD) decomposition scheme (Aghdaei & Feng, 2024; Cheng
et al., 2024; Aghdaei & Feng, 2022), which approximates edge-wise effective resistance in weighted
graphs, offering a viable and scalable path toward spectral sparsification. This ensures that the
essential structural properties of the graph are preserved while significantly reducing complexity.

A.3 COSINE SIMILARITY

A widely adopted metric for identifying redundant or less important layers in LLMs is the cosine
similarity (Chen et al., 2025) between a layer’s input and output hidden states, which treats each
Transformer decoder layer as a residual transformation applied to the input hidden states.

As a definition, for the ℓ-th layer with parameters θ(ℓ) and input hidden state p(ℓ), the residual form
of the transformation is given by:

p(ℓ+1) = p(ℓ) + f(p(ℓ), θ(ℓ)), (15)

14
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where f denotes the transformation function of the layer. If the output p(ℓ+1) is highly similar to
the input p(ℓ), the transformation contributed by f is minimal, and thus the layer may be considered
redundant. To quantify this, cosine similarity is computed between p(ℓ) and p(ℓ+1) across randomly
sampled sequences:

cos
(
p(ℓ),p(ℓ+1)

)
= E

(p
(ℓ)
i ,p

(ℓ+1)
i )∈H

 1

L

L∑
j=1

p
(ℓ)
i,j · p

(ℓ+1)
i,j

∥p(ℓ)
i,j ∥ · ∥p

(ℓ+1)
i,j ∥

 , (16)

where H is the set of hidden state pairs from a set of samples. p(ℓ)
i ,p

(ℓ+1)
i ∈ RD×L denote the input

and output hidden states of the i-th sample, respectively. D denotes the hidden size, L denotes the
sequence length, and j indexes over tokens.

For pruning, contiguous layers that yield the highest inter-layer cosine similarity over a fixed interval
n are selected, defined as:

ℓ∗(n) = argmax
ℓ

cos
(
p(ℓ),p(ℓ+n)

)
, (17)

which identifies the least informative contiguous block of n layers.

While cosine similarity provides a useful, lightweight metric for measuring redundancy, it captures
only angular relationships in the embedding space. However, it fails to capture intrinsic distortions
in the embedding manifold, which is a more global measure of layer behavior. We compare cosine
similarity with our metric in Section 6.

A.4 KL DIVERGENCE

We assess the functional redundancy between layers by computing the Kullback-Leibler (KL) di-
vergence (Hershey & Olsen, 2007; Pérez-Cruz, 2008) between their hidden state distributions. Let
H(ℓ) ∈ RT×D denote the output hidden state of layer ℓ for a given sample input, where T is the
number of tokens and D is the hidden dimension.

To evaluate the impact of perturbations and assess layer stability, we add small Gaussian noise to
the source layer ℓ:

H̃(ℓ) = H(ℓ) + ϵ, ϵ ∼ N (0, σ2I) (18)
where σ is a small positive constant (e.g., σ = 10−2). This mimics random activation fluctuations
and enables us to assess the sensitivity of downstream layers to perturbations in earlier representa-
tions.

We then propagate the perturbed hidden states through the remaining layers and compare the output
at the target layer ℓ+k. For each token position t ∈ {1, . . . , T}, we normalize the hidden states into
token-wise distributions using the softmax function:

P
(ℓ+k)
t = softmax

(
H

(ℓ+k)
t

)
, Q̃

(ℓ+k)
t = softmax

(
H̃

(ℓ+k)
t

)
(19)

where P
(ℓ+k)
t and Q̃

(ℓ+k)
t are the original and perturbed token distributions at the target layer.

The KL divergence for a single token is (Hershey & Olsen, 2007):

DKL

(
P

(ℓ+k)
t ∥ Q̃(ℓ+k)

t

)
=

D∑
j=1

P
(ℓ+k)
t,j log

P
(ℓ+k)
t,j

Q̃
(ℓ+k)
t,j

(20)

Finally, we compute the mean KL divergence across all samples and tokens:

D̄
(ℓ,ℓ+k)
KL =

1

NT

N∑
i=1

T∑
t=1

DKL

(
P

(ℓ+k)
i,t ∥ Q̃(ℓ+k)

i,t

)
(21)

where N is the number of sample inputs.
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Figure 3: Cosine Similarity Distribution for OPT1.3B Model

Figure 4: Cosine Similarity Distribution for OPT2.7B Model

A lower D̄(ℓ,ℓ+k)
KL indicates greater invariance of the downstream layer ℓ + k to perturbations in-

troduced at layer ℓ, suggesting potential redundancy or robustness. This insight guides our pruning
strategy by identifying stable, potentially compressible layers without degrading the model’s repre-
sentational capacity.

A.5 COSINE SIMILARITY, KL DIVERGENCE AND LLMGD VALUES DISTRIBUTION

A.5.1 COSINE SIMILARITY

We analyze the cosine similarity distributions between interval-pruned layers in the OPT-1.3B and
OPT-2.7B models to better understand internal redundancy and structural diversity under varying
pruning depths. Each curve in Figure 3 and Figure 4 represents the pairwise similarity among layers
selected via regular-interval pruning at a given pruning depth.

OPT-1.3B For OPT-1.3B, cosine similarity curves generally follow a rising-then-falling pattern.
With shallow pruning (2 or 4 layers), similarity remains high (0.9–0.98), indicating strong repre-
sentational redundancy between pruned layers. As pruning depth increases to 6, 8, and 10 layers,
similarity steadily declines, suggesting growing representational differentiation. This trend reflects
a relatively uniform semantic transition across layers, implying that OPT-1.3B layers are structurally
consistent and exhibit limited hierarchical specialization.

OPT-2.7B OPT-2.7B displays a more dramatic decay. While shallow pruning (2 and 6 layers)
shows similarly high similarity to the results of OPT-1.3B, deeper pruning (10 layers and beyond)
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Figure 5: KL Divergence Distribution for OPT1.3B Model

Figure 6: KL Divergence Distribution for OPT2.7B Model

yields significantly lower similarities; dropping to the range of 0.5–0.6 at 18 or 22 layers. This rapid
decline suggests that deeper layers in OPT-2.7B are structurally and semantically more specialized.
The pattern suggests the presence of internal modularity and a richer hierarchy of representations.

Summary The initial rise in similarity followed by decay reflects internal alignment among early
layers and divergence as pruning deepens. OPT-1.3B’s gradual decay contrasts with the sharper
divergence in OPT-2.7B, highlighting architectural scaling effects. These observations offer practi-
cal implications for pruning strategy, indicating that interval-based layer selection is effective in the
shallow regime, while deeper pruning may require recovery modules to maintain performance.

A.5.2 KL DIVERGENCE

We further analyze the KL divergence between the hidden state distributions of interval-pruned
layers under a specific perturbation to assess the functional dissimilarity across layer positions in
OPT-1.3B and OPT-2.7B. Results are shown in Figure 5 and Figure 6, respectively.

OPT-1.3B In OPT-1.3B, KL divergence increases gradually with pruning depth. For shallow prun-
ing (2 or 4 layers), divergence values remain below 0.1, indicating high semantic alignment and
redundancy among pruned layers. As pruning deepens (6–10 layers), the divergence curves rise
smoothly, without abrupt changes, suggesting progressive yet controlled representational diversifi-
cation. This regularity implies that the internal layers of OPT-1.3B are relatively homogeneous and
can tolerate perturbation to some extent, making it structurally suitable for uniform interval-based
pruning.
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Figure 7: LLMGD Values Distribution for OPT1.3 Model

Figure 8: LLMGD Values Distribution for OPT2.7B Model

OPT-2.7B By contrast, OPT-2.7B exhibits much higher and less stable divergence behavior. While
shallow pruning (2 or 6 layers) produces relatively low KL values, deeper pruning (14–22 layers)
introduces sharp peaks, with divergence values exceeding 1.5 in some cases. These abrupt changes
indicate that deeper layers in OPT-2.7B are more functionally specialized and encode semantically
distinct transformations. The irregularity of the curves further implies the presence of modular
substructures and non-uniform transitions across the model depth.

Summary KL divergence curves highlight the architectural contrast between models. OPT-1.3B
shows smooth, interpretable divergence progression, while OPT-2.7B exhibits spike-prone, high-
variance behavior under deep pruning.

A.5.3 LLMGD VALUES

To further assess the geometric characteristics of hidden representations, we computed LLMGD val-
ues between pruned layer pairs in both OPT-1.3B and OPT-2.7B. These values quantify the intrinsic
distance between layer representations in a nonlinear manifold space, and provide insights into how
representational complexity evolves with depth. The results are shown in Figure 7 and Figure 8,
respectively.

OPT-1.3B LLMGD values in OPT-1.3B exhibit a U-shaped structure across nearly all pruning
depths. Values first decrease, reaching a minimum around middle layers, then increase again as
the pruned positions move deeper. This symmetric pattern implies that the model transitions from
complex low-level processing (early layers), through a compressed semantic bottleneck (middle
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layers), and back to complex task-specific representations (late layers). As pruning depth increases
(e.g., 6 to 10 layers), the LLMGD curves skew upward, suggesting greater semantic diversity among
selected layers.

OPT-2.7B In contrast, the LLMGD profiles of OPT-2.7B reveal more irregular and hierarchical
structure. With deeper pruning (14–22 layers), the curves no longer follow a U-shape, but instead
contain multiple local peaks. This pattern implies the presence of functional modules and discon-
tinuities in the model’s representational space. Notably, high LLMGD values in certain regions
indicate that some layers are geometrically distant from others—highlighting their role as semanti-
cally distinct processing blocks.

Summary Compared to the smoother trajectories in OPT-1.3B, the irregular and high-curvature
structures in OPT-2.7B reflect stronger specialization and internal modularity. These observations
support the notion that large models develop deep hierarchical features and that pruning strategies
should adapt to such representational stratification.
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