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Abstract—Early dementia detection is a global healthcare
priority in diverse populations. In this study, we propose a
language-agnostic screening pipeline for dementia detection in
the early stage. First, we use speaker diarization to isolate the
speech of the target subject from a conversational recording.
From the extracted speech segments, we derive a set of acous-
tic features (e.g., spectral centroid, pitch mean, mel-frequency
cepstral coefficients) and linguistic features (e.g., normalized
tone contrast, articulation clarity coefficient, articulatory effort
coefficient). These features are used to train a ResNet-based
binary classifier to distinguish between Healthy Controls (HC)
and individuals with Mild Cognitive Impairment (MCI). We
evaluated the trained model on a held-out test set comprising
speakers of previously unseen languages, achieving an accuracy
of 70%. This cross-lingual transfer performance highlights the
potential of our approach for scalable, language-independent
dementia screening.

Index Terms—Speech Biomarker, Language-agnostic, Artificial
Intelligence, Dementia Screening

I. INTRODUCTION

Dementia affects over 55 million people globally, with
nearly 10 million new cases each year, posing a growing
challenge to public health systems worldwide [1]. Early de-
tection is critical: interventions at the stage of Mild Cognitive
Impairment (MCI) can delay progression and improve quality
of life. However, traditional cognitive assessments remain
resource-intensive, requiring in-person clinical visits, trained
professionals, and subjective interpretation. These constraints
limit the scalability of early dementia detection, especially in
diverse or low-resource settings. To address this, researchers
have increasingly turned to machine learning-based tools to
monitor early cognitive decline from daily life activities (e.g.,
conversation), with the goal of creating accessible, software-
based systems capable of notifying clinicians or caregivers
when signs of decline emerge.

Recent research has increasingly recognized language im-
pairments as early markers of cognitive decline, which
positions speech and language characteristics as important
biomarkers for the early diagnosis of dementia [2]. Fraser
et al. [3] highlighted lexical and syntactic impairments as
markers of dementia, while Luz et al. [4] investigated con-
versational speech, reporting promising but language-specific

performance. However, these studies often rely on single-
language datasets and lack evaluation on unseen languages.
Recently, Bertini et al. (2022) [5] proposed a cross-language
dementia classifier, which trained an end-to-end deep model
on multilingual datasets. Their approach treated the model
as a black box and offers limited interpretability, which
makes it challenging to extend the framework to more diverse
languages.

To address these limitations, we propose a language-
agnostic system for early dementia detection using machine
learning models trained on acoustic and linguistic features
extracted from spontaneous speech. Our goal is to create a
robust system that can generalize across languages, enabling
dementia detection in previously unseen linguistic groups.

Several technical challenges arise in building such a system.
First, there is model uncertainty due to language mismatch
between training and test data, especially when transferring
to previously unseen languages such as Mandarin [6]. To
mitigate this, we incorporate statistical interpretation of clas-
sification probabilities to better infer the likelihood of MCI.
Second, there is the challenge of capturing consistent features
across different languages. We address this by extracting
cross-linguistically relevant linguistic features, such as lexical
richness, syntactic complexity, and speech timing, alongside
acoustic features like pitch, jitter, and shimmer. Our pipeline
included data preprocessing, speaker diarization, feature ex-
traction, ResNet-based classification, and evaluation on unseen
languages.

We selected Mandarin for zero-shot evaluation because it
represents one of the most widely spoken languages globally,
with over a billion native speakers. Yet, it remains underrepre-
sented in publicly available clinical speech datasets, especially
those with validated dementia annotations. By demonstrating
cross-lingual performance on Mandarin without retraining,
we highlight the model’s potential for deployment in large,
underserved populations where labeled clinical data is scarce.

Our contributions include: (1) a full audio preprocessing
pipeline including robust speaker diarization for conversations,
(2) extraction of cross-linguistically valid acoustic and linguis-
tic features, (3) development and training of a deep neural
model for dementia classification, and (4) cross-lingual eval-



Fig. 1. System pipeline for language-agnostic dementia detection.

uation of the model’s generalization capability on an unseen
language. By enabling dementia screening across languages
without retraining for each population, this work represents
a critical step toward accessible, scalable, and language-
independent dementia detection.

II. METHOD

This section describes our dementia screening pipeline. The
full system workflow is depicted in Fig. 1.

A. Audio Preprocessing and Quality-Aware Data Curation

The audio recordings are preprocessed using noise reduc-
tion, speaker diarization, and voice activity detection. Only
continuous speech segments produced solely by the target
subject are retained. To maintain high audio quality, we apply
signal-to-noise ratio (SNR) criteria and exclude segments
containing overlapping speech, excessive background noise,
or non-speech vocalizations. This rigorous filtering process
ensures the reliability and accuracy of subsequent feature
extraction.

B. Acoustic Feature Extraction

To characterize the prosodic and spectral structure of each
subject’s speech, we extracted a set of frame-level acoustic
features that reflect fundamental cognitive and motor aspects
of vocal production. These features were computed over 25 ms
windows with a 10 ms hop size and aggregated using statistical
pooling to produce a fixed-length feature vector for each
recording.
• PitchMean and PitchStd: These features represent the first-

order statistical descriptors (mean and standard deviation)
of the fundamental frequency (F0) trajectory over voiced
regions. Pitch is extracted from the autocorrelation of short-
time frames in the time domain, where the lag of maximum
correlation approximates the glottal cycle length. PitchMean
reflects vocal register; PitchStd captures prosodic variability,
often reduced in cognitive decline.

• Formant Frequencies (F1, F2, F3): Formants are resonant
frequencies of the vocal tract, and their values correspond
to articulatory configurations. Formants are estimated via
LPC-based all-pole vocal tract modeling. The roots of the
LPC polynomial yield formant candidates via their angular
frequencies. F1 to F3 represent vowel height, backness,
and lip rounding, and their shifts may indicate articulatory
deficits.

• Spectral Centroid: This feature is computed as the
weighted mean frequency of the power spectrum and corre-
sponds perceptually to the brightness of the speech signal.
Mathematically, it is given by µ =

∑
k fkS(fk)∑
k S(fk)

, where S(fk)

is the spectral magnitude at frequency bin fk.
• Spectral Spread: This represents the second central mo-

ment (variance) of the spectrum around the spectral cen-
troid, quantifying spectral dispersion. It is calculated as
σ2 =

∑
k(fk−µ)2S(fk)∑

k S(fk)
.

• Spectral Flux: This measures the frame-to-frame Euclidean
distance between normalized spectra, reflecting dynamic
spectral change. It is sensitive to abrupt transitions and is
linked to articulatory agility.

• MFCC1–MFCC3: The Mel-Frequency Cepstral Coeffi-
cients (MFCCs) capture the spectral envelope of speech on a
perceptually motivated frequency scale. These are obtained
by applying the Discrete Cosine Transform (DCT) to the
log-filterbank energies. The first three coefficients reflect
low-order spectral shape variations linked to vocal effort
and clarity.
All features are statistically pooled using mean and variance

operators to summarize temporal dynamics over the entire
recording. This produces a compact representation of global
and local prosodic features.

C. Linguistic and Prosodic Feature Extraction

To model language-agnostic articulatory and phonological
patterns, we extract features from phoneme sequences derived
through forced alignment and phonemization [7]. The under-
lying goal is to quantify timing, clarity, and effort in speech
production, independent of language-specific lexical content.

In general, phoneme sequences are obtained by aligning
audio with transcripts using Whisper (large-v2) [8] and then
converting aligned tokens into International Phonetic Alphabet
(IPA) symbols using espeak-ng [9]. For Mandarin, phonotactic
rules are applied to classify phonemes into “initials” (typically
consonants) and “finals” (typically vowels or syllabic nuclei),
enabling structured analysis of phonological transitions.

The following features are computed:
• PhonemeTranscription: we calculate a sequence of IPA-

based phonemes per utterance, which can be used as the
foundation for higher-order linguistic features.

• Mean Phonation Duration (MDP): It is calculated by
averaging the lengths of continuous voiced segments (i.e.,
periods of vocal fold vibration) within a speech sample. It
captures temporal control in vowel production, which can
indicate the decline with motor impairment.

• Normalized Tonal Contrast (NTC): It quantifies the fre-
quency of transitions between initials and finals, normalized
by sequence length. This reflects the rhythm and tonal
variation of speech, which are often reduced in MCI.

• Articulation Clarity Coefficient (ACC): It is defined as
the average run-length of initial segments, indicating con-
sistency in consonant articulation. A higher ACC reflects
stable motor planning in speech onset.



• Articulatory Effort Coefficient (ACE): It refers to the aver-
age run-length of final segments that captures the subject’s
sustained vowel effort. It indirectly reflects vocal stamina
and breath support.

• Log-Cepstral Coefficient (LCC): It denotes the maximum
run-length of consecutive initial phonemes, reflecting burst-
like consonant articulation that may become fragmented as
cognitive decline progresses.

• Log-Cepstral Energy (LCE): It represents the maximum
run-length of final segments, approximating vocal energy
over extended vowel sounds. It captures speech smoothness
and fluency.
These features are designed to generalize across languages

by analyzing speech production at the phonetic level, avoiding
dependency on lexicon or grammar. They capture articulatory
timing, segmental clarity, and rhythmic stability—properties
shown to degrade with early cognitive [3].

D. Tabular ResNet and Optimization

While simpler models like SVMs offer lower computa-
tional cost, they underperformed in cross-lingual settings. To
effectively work with structured feature matrix (i.e., tabular
data), we use a tabular ResNet model to better capture non-
linear feature interactions, offering improved generalization
with minimal added complexity. It contained approximately
113,665 trainable parameters (for 100 input features), offering
a balance between expressivity and computational efficiency.
The model is optimized using binary cross-entropy loss with
a class-weighted formulation and Adam optimization.

E. Post-Processing Calibration

Temperature scaling is a post-processing method used to
improve probability calibration by adjusting the confidence
of the softmax outputs. Specifically, it introduces a scalar
temperature parameter T > 0 that rescales the logits before
applying the softmax function. Higher temperatures flatten
the output distribution, reducing overconfidence, while lower
temperatures sharpen it. Temperature scaling helps ensure that
predicted probabilities are better aligned with actual outcome
frequencies without affecting classification accuracy [10].

III. EXPERIMENTS & RESULTS

A. Dataset and Implementation

Data Preparation. We use the DementiaBank dataset [11].
The dataset consists of over 200 participants, offering a rich
source of conversational speech. Participants include individu-
als diagnosed with Mild Cognitive Impairment (MCI) as well
as Healthy Controls (HC), with detailed metadata including
age (typically 45–90 years), gender, and education level. This
corpus contains audio recordings and transcripts of clinical
interviews, primarily involving the Cookie Theft picture de-
scription task from the Boston Diagnostic Aphasia Examina-
tion. The ResNet classifier is trained using a combined dataset
of English, Spanish, and Greek speech recordings. Speech data
is divided into overlapping clips of 15–30 seconds, with each
segment retaining full utterance boundaries. In total, we get

around 900 samples. We perform five-fold cross-validation to
evaluation the performance.
Software Implementation. Experiments are seeded for repro-
ducibility. Feature scaling is applied using a standard scaler,
and training is performed using PyTorch with the Adam
optimizer. A batch size of 64 and an initial learning rate of
0.001 are used across all training epochs.

B. Evaluation Metrics

We evaluate model performance using the following stan-
dard classification metrics: accuracy, F1 score, receiver oper-
ating characteristic (ROC) and precision-recall (PR) curves.

C. Results

1) Overall Performance: The ResNet classifier achieves
a final validation accuracy of 82.6% on the in-language
validation set, with an F1-score of 0.81. The model shows
balanced performance across HC and MCI, as evidenced
by the validation confusion matrix presented in Table I. To
contextualize ResNet performance, we trained baseline classi-
fiers on the same features: Support Vector Machine (SVM)
with RBF kernel, Logistic Regression, and Random Forest
(100 trees). On cross-validation, Logistic Regression achieved
69.4% accuracy, Random Forest 73.1%, and SVM 75.6%. The
ResNet’s 82.6% validation accuracy thus reflects a statistically
meaningful improvement over conventional baselines.

TABLE I
VALIDATION SET CONFUSION MATRIX

Predicted HC Predicted MCI
Actual HC 92 (84.4%) 17 (15.6%)

Actual MCI 14 (20.3%) 55 (79.7%)

2) Performance on Unseen Language: We further evaluate
the trained model on Mandarin speech to assess generalization
to an unseen language. A calibrated decision threshold of
0.5493 is applied, obtained from the temperature scaling
procedure using the validation set. Specifically, this threshold
corresponds to the probability at which the calibrated model’s
predicted scores achieve the best alignment with true labels.
Using this threshold, the model is tested on a Mandarin dataset
comprising healthy controls and individuals with MCI.

Fig. 2. Confusion matrix for the Mandarin evaluation set.

Fig. 2 presents the confusion matrix heatmap for the Man-
darin evaluation set, an unseen language during training. The
classifier correctly identifies 72.5% of individuals with MCI
and 68.1% of HC, indicating strong performance despite the



language mismatch. The false positive rate (31.9%), where HC
individuals are misclassified as MCI, is slightly higher than
the false negative rate (27.5%). It suggests a tendency toward
over-detection, which may be preferable in a screening context
to minimize missed MCI cases.

Fig. 3 illustrates the ROC and PR curves for the Mandarin
evaluation set. The ROC curve (AUC = 0.70) suggests a
reasonably good trade-off between the true positive rate and
false positive rate, indicating that the classifier can distinguish
between HC and MCI cases with moderate confidence. The PR
curve further contextualizes this performance in the presence
of class imbalance. It shows a gradual decline in precision as
recall increases, which is an expected behavior when positive
(MCI) cases are less frequent or more difficult to classify.
The AUC of 0.72 for the PR curve indicates that the model
maintains reasonable precision across a range of recall values,
reinforcing the utility of post-temperature scaling calibration
in improving probabilistic outputs for reliable downstream
decision-making in multilingual screening applications.

Fig. 3. ROC and Precision-Recall curves for the Mandarin evaluation set.

3) Feature Contribution Analysis: To understand feature
relevance, we computed permutation-based feature importance
using a random forest surrogate model. Although 18 features
were originally extracted, only 13 appear in the importance
plot because the remaining features contributed negligibly and
were pruned during permutation analysis for clarity. As shown
in Fig. 4, pitch-related features along with the MFCC, emerged
as the top contributors to model performance. These features
are closely associated with prosody, reflecting variations in
vocal tone and intonation, which are known to be affected by
cognitive decline. Additionally, spectral features such as Spec-
tralFlux and SpectralSpread, and articulatory-related MFCCs
(e.g., MFCC3) also showed notable importance. Interestingly,
higher-order features like Normalized Tone Contrast (NTC)
and Mean Phonation Duration (MPD) ranked lower, possibly
due to their dependence on longer or more complex speech
contexts. Overall, the results emphasize that low-level acoustic
cues, particularly those related to pitch and spectral shape, are
the most reliable indicators for distinguishing between HCs
and individuals with MCI in a language-agnostic framework.

IV. CONCLUSION

We presented a language-agnostic speech-based dementia
screening pipeline using acoustic and linguistic features ex-
tracted from dialogue. A ResNet-based model was trained
on data from English, Spanish, and Greek speakers, then
evaluated on Mandarin in a zero-shot setting. The system

Fig. 4. Permutation-based feature importance rankings.

achieved a final validation accuracy of 82.6% on in-language
data and a cross-lingual accuracy of 70.0% on Mandarin.

This work demonstrates that cognitive impairment manifests
in speech through language-independent prosodic and articu-
latory features. Our system enables scalable MCI screening
without language-specific retraining. Key contributions include
a full audio preprocessing pipeline, cross-linguistic feature
design, and probabilistic calibration via temperature scaling.

A key limitation of our study is the relatively small and
imbalanced dataset, particularly in Spanish, Greek, and Man-
darin. This constrains model generalization. Future research
could leverage large-scale multilingual pretraining, semi-
supervised approaches, or transfer learning from automatic
speech recognition to mitigate data scarcity.
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