
Exploiting MDP Symmetries for Offline
Reinforcement Learning

Jinzhu Luo, Qi Zhang
University of South Carolina

Abstract: Reinforcement Learning (RL) algorithms continue to face challenges in
addressing out-of-distribution (OOD) issue in offline environments. One primary
cause of such issue can be attributed to extrapolation error, which occur when
an RL agent encounters actions that are not present in the offline dataset. In this
study, we propose leveraging the inherent symmetry of the environment to expand
the range of actions available for the agent’s learning process. Our results demon-
strate that by incorporating environmental symmetry, the performance and sample
efficiency of basic RL algorithms can be improved in offline environment. This
finding highlights the potential of harnessing environmental properties to enhance
the generalization and robustness of offline RL algorithms.

Keywords: Offline RL, Symmetry

1 Introduction

In recent years, offline reinforcement learning (RL) has encountered difficulties in offline environ-
ments due to the evaluation of state-action pairs that are not supported by the offline dataset [1].
This issue arises from the max operation in Temporal Difference (TD) error calculations, leading to
overestimation of the value when an RL agent encounters unseen state-action pairs. Although sev-
eral studies have proposed algorithms to address this problem and achieved insightful results, such
as BCQ[2]. We can find that the majority of current offline RL algorithm focus on limiting action
selection to the existing state-action pairs.

In our study, we explore the utilization of symmetry properties in offline RL to tackle this challenge.
Specifically, we employ an Actor-Critic (AC) algorithm [3] that leverages environmental properties
to construct an extra symmetric critic, guiding the actor’s policy more effectively. By incorporating
symmetry into the RL framework, our approach demonstrates improvements in handling unseen
state-action pairs, resulting in enhanced performance and sample efficiency in offline RL.

2 Related Work

Markov Decision Processes (MDP) are renowned for modeling sequential decision-making in fields
like RL. MDP symmetries involve equivalent states and actions, maintaining invariant value func-
tions and optimal policies under specific transformations, aiding in the development of efficient
learning algorithms by reducing complexity and encouraging generalization across symmetrical sce-
narios.

Ravindran and Barto pioneered the exploitation of MDP symmetries to optimize RL algorithms,
introducing a framework called Homomorphism, aimed at addressing both exact and approximate
MDP minimization issues, facilitating knowledge transfer and lessening computational demand [4].
MDP Homomorphic Networks [5] leverage advancements in graph-based neural networks to encode
symmetries, displaying enhanced learning efficacy and convergence. Shoshtari et al. introduced a
unique method, Continuous MDP Homomorphism, and Homomorphic Policy Gradient [6], pre-

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

serving the MDP structure and demonstrating superior performance in classical MuJoCo-control
environments [7].

3 Preliminaries on MDP Symmetries

A MDP is a tuple (S,A,R, P, γ), with state space S, action space A, immediate reward function
R : S×A→ R, transition function P : S×A×S → R, and discount factor γ ∈ [0, 1]. The goal of
solving an MDP is to find a policy π ∈ Π, π : S × A → R (written as π(a|s)), where π normalizes
to unity over the action space, that maximizes the return Gt =

∑∞
t γtrt+1. The expected return

from a state s under a policy π is given by the value function Vπ . A related object is the Q-value
Qπ , the expected return from a state s after taking action a under π. Vπ and Qπ are governed by the
Bellman equations. In an MDP, optimal policies π∗ attain an optimal value V ∗ and corresponding
Q∗(s, a) given by V ∗(s) = maxπ Vπ(s) and Q∗(s, a) = maxπ Qπ(s, a).

Definition 1. (MDP equivalence). A MDP symmetry function h from a MDP M = (S,A,R, P, γ)
to an MDP M = (S,A,R, P , γ) is a subjection map function. we define it as h = (f, gs) where
f : S → S and gs = A→ A, we also can got that:

P (f(s), gs(a), f(s
′)) =

∑
s′

P (s, a, s′) R(f(s), gs(a)) = R(s, a)

MDP symmetries refers to the presence of a structural equivalence or similarity between different
parts of an MDP. By exploiting symmetries, we can identify equivalent states and actions, enabling
us to compute optimal policies more efficiently. In the definition and theorem, we present the formu-
lation of MDP symmetries and its underlying principles. These theoretical foundations were initially
established and proved by Ravindran and Barto [4].

Theorem 1. (optimal value equivalence). Let M = (S,A,R, P , γ) be the symmetry image of
M = (S,A,R, P, γ) under the h = (f, gs). Then:

V
∗
(f(s)) = V ∗(s) Q

∗
(f(s), gs(a)) = Q∗(s, a)

In the symmetry MDP, we define the V-value and Q-value as V and Q.

4 Exploiting Symmetries for Offline RL

In the realm of offline RL, addressing the challenges posed by extrapolation errors in algorithms
remains a paramount research focus. In this context, we propose a novel methodology to augment
the valid or observable action space by capitalizing on the concept of symmetry. Our work is based
on an actor-critic algorithm which is a widely used RL approach that combines the strengths of both
value-based and policy-based methods by utilizing two separate neural networks, the actor for policy
learning and the critic for value estimation, to optimize decision-making in complex environments.
We introduce an extra symmetry critic on it, which we refer to as the ”Abstract Critic”. For our
abstract critic, we obtain the abstract state-action pairs through the MDP symmetries function. We
then use these abstract state-action pairs to update the abstract critic network:

Labstract critic = E(st,at)∼B[(rt + γQ(f(st+1), gs(at+1))−Q(f(st), gs(at))
2]

Ultimately, we employ both the original critic and the abstract critic to update the actor network.

To leverage MDP symmetries in policy evaluation and policy improvement, it is imperative to estab-
lish that the original MDP and the abstract MDP possess equivalent policies. Given that the abstract
MDP is derived from the original MDP’s symmetries, a key advantage of symmetries is the preser-
vation of object properties before and after the transformation. Consequently, the abstract MDP
ought to preserve the properties inherent to the original MDP. This implies that the optimal policy
should be congruent in both the original and the abstract MDPs. Thus, we make the assumption 1.

2

Assumption 1. (policy equivalence). Let M be the symmetry image of M under the h = (f, gs).
These policies maintain equivalence:

∀s ∈ S, ∀a ∈ A, π(gs(a) | f(s)) = π(a | s)

Similarly to prior works that use policy gradients [8] to get the optimal policy, we also define the
performance measure as where the expectation is over the uncertainty in transitions, rewards, and
initial states. We introduce a deep actor-critic algorithm, incorporating DDPG [9] and SAC [10],
selected for their comparative simplicity, enabling a concentrated examination of MDP symmetries’
impacts. DDPG and SAC concurrently act as standard algorithms for deterministic and stochastic
policies, respectively. Pseudo-code is provided in Appendix A.

5 Experiment

5.1 Dataset

We evaluated our algorithm on two OpenAI Gym tasks that exhibit perfect symmetry propriety:
Pendulum and Inverted-Pendulum [11]. The Pendulum and Inverted-Pendulum problems are classic
control challenges. Both tasks serve as benchmark problems to evaluate and compare RL methods
due to their nonlinear and dynamic nature. For data collection,we utilize DDPG as our base agent,
we train it from a random policy to obtain a stable, high-reward policy, which we consider to be the
optimal policy. During the training process, we will store every time step’s information (s, a, r, s′)
as our dataset. We have set the maximum number of time steps to 106, which means our dataset will
consist of 106 data points.

MDP Symmetries
Inverted-
Pendulum

Original Symmetry

state (υ1, υ2, υ3, υ4) (−υ1,−υ2,−υ3,−υ4)
action a −a
Pendulum
state (χ1, χ2, χ3) (−χ1,−χ2,−χ3)
action a −a

Table 1: Symmetry Transformation Rules.

In the Inverted-Pendulum problem, the
state space comprises four elements: the
cart’s position υ1, the pole’s vertical an-
gle υ2, the cart’s linear velocity υ3, and
the pole’s angular velocity υ4. The ac-
tion space is continuous, with actions
representing the force exerted on the
cart, in the range of [−3, 3], where the
magnitude indicates the force’s strength
and the sign denotes the direction. An
interesting aspect of this environment is
the perfect symmetry between the left
and right spaces of the equilibrium position. Shown as Figure 1.

symmetry

Figure 1: Example of Symmetry in Inverted-
Pendulum.

In the Pendulum problem, the state space con-
sists of three elements: the x (χ1) – y (χ2)
coordinates of the pendulum’s free end and its
angular velocity (χ3). The action space repre-
sents the torque applied to the pendulum. This
problem has a similar mapping function to the
Inverted-Pendulum.

5.2 Results

In our experiments, we also present results
from the current state-of-the-art offline RL al-
gorithms BCQ. BCQ is specifically tailored for
offline RL and incorporates a Variational Au-
toencoder (VAE) network during action selec-

tion [12]. This addition constrains the range of actions to those present in the dataset, effectively
preventing the selection of actions outside the dataset to avoid extrapolation error.

3

In Figure 2(a), we evaluate our proposed method and traditional RL algorithms on the dataset col-
lected from Pendulum environment. This environment is considered relatively simple compared
to others, due to its state dimensions and action range is less than others. Consequently, all the
tested methods are capable of achieving high rewards and maintaining stability. However, this fig-
ure reveals that our method attains the optimal policy more rapidly than the corresponding original
methods. These findings indicate that, in comparison to traditional algorithms, incorporating sym-
metry can enhance the efficiency of the learning process in offline RL tasks such as the Pendulum
environment.

0 50 100 150 200 250

-1750

-1500

-1250

-1000

-750

-500

-250

0
Pendulum

BCQ
DDPG
DDPG+sym
SAC+sym
SAC

(a) Result of Pendulum.

0 50 100 150 200 250

0

200

400

600

800

1000

1200

Inverted_Pendulum

BCQ
DDPG
DDPG+sym
SAC+sym
SAC

(b) Result of Inverted-Pendulum.

Figure 2: Experimental results. The X-axis is the evaluation step and the Y-axis is the total reward.
We evaluate these algorithms after every 4,000 training iterations

In Figure 2(b), we observe that the traditional classical control algorithm, DDPG, fails to achieve
an optimal policy on the dataset collected using the same DDPG method. In contrast, our approach,
which incorporates an abstract critic, reaches a significantly higher reward. The performance gap
between the original DDPG algorithm and our method is quite substantial. The enhanced online al-
gorithm, SAC, eventually attains a high and stable reward policy. However, during the initial stages,
it exhibits an unstable learning curve. Our method, on the other hand, demonstrates a more favorable
curve, achieving similarly high rewards more quickly. As previously mentioned, the integration of
symmetry in RL algorithms can lead to greater learning efficiency, as exemplified by the improved
performance and accelerated convergence of our proposed method.

6 Conclusion and Future Work

In this paper, we have presented the symmetry method incorporates an additional abstract critic into
DDPG and SAC algorithms, utilizing identified symmetries. The symmetry function enables us
to obtain corresponding abstract state-action pairs, which we employ to improve the RL algorithm
performance in offline RL. Our results show that the proposed method can improve the performance
and learning efficiency of the online algorithm in the offline environment, showing the potential of
integrating symmetry-based techniques into offline RL algorithms.

In future work on the application of symmetry functions in offline RL, we aim to address several
critical aspects to broaden our understanding and enhance the effectiveness of our approach. Firstly,
we plan to test our method in various environments, as our current work focuses on only two envi-
ronments, which limits the demonstration of the generality of symmetry functions. Secondly, our
current experiments are based on two perfect symmetry functions, which are challenging to find in
real-world scenarios. Therefore, we need to explore the use of approximation symmetry functions.
Lastly, we will integrate symmetry functions into existing state-of-the-art offline RL algorithms,
such as BCQ. These algorithms have already demonstrated promising results, and we hope that in-
corporating symmetry functions into offline RL algorithms will further enhance their performance.

4

Acknowledgment

This work is supported in part by NSF CAREER IIS-2237963.

5

References
[1] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-

ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

[2] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.

[3] V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

[4] B. Ravindran and A. G. Barto. Symmetries and model minimization in markov decision pro-
cesses, 2001.

[5] E. Van der Pol, D. Worrall, H. van Hoof, F. Oliehoek, and M. Welling. Mdp homomorphic
networks: Group symmetries in reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 33:4199–4210, 2020.

[6] S. Rezaei-Shoshtari, R. Zhao, P. Panangaden, D. Meger, and D. Precup. Continuous mdp
homomorphisms and homomorphic policy gradient. arXiv preprint arXiv:2209.07364, 2022.

[7] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[8] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-
forcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[10] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[11] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[12] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

6

Algorithm 1 Symmetry Augmented DDPG
Input:policy πθ(a|s) , actual critic Qφ(s, a), abstract critic Q′

φ(s
′, a′), state map functionf(s),

action map function gs(a), and dataset B
Parameter: actor θ, θ′, critic ϕ, ϕ′, abstract critic φ,φ′, target network update weight α

1: Let t = 0.
2: for t to T do
3: Sample mini batch of N transitions (s, a, r, s′) from B.
4: Critic and abstract critic update:
5: Compute the Critic Loss Lactuacl critic = E(st,at)∼B[(rt+γQϕ′(st+1, at+1)−Qϕ(st, at))

2]

6: Compute the abstract Critic Loss Labstract critic = E(st,at)∼B[(rt + γQφ′(st+1, at+1) −
Qφ(st, , at))

2]
7: Update parameter:

ϕ← ϕ− λQ∇ϕLactual critic(ϕ)

φ← φ− λQ∇φLabstract critic(φ)

8: Actor Update:
9: if t mod 1000 then

10: Compute policy loss

Lactor = −Es∼B[Qϕ(s, πθ(s)) +Qφ(f(s), gs(πθ(s)))]

11: Update policy: ψ ← argmaxLactor

12: Update target networks:
θ′ ← αθ + (1− α)θ′

ϕ′ ← αϕ+ (1− α)ϕ′

φ′ ← αφ+ (1− α)φ′

13: end if
14: end for

Appendix A
Pseudo-code

The components of our algorithm are: actual critic Q(s, a), abstract critic Q(s, a), deterministic
actor a = π(s) or stochastic actor a ∼ πθ(a | s) , symmetry function h = (f(s), gs(a)), reward
function R(s), and probabilistic transition model p(s′ | s, a).

We use our MDP symmetry function h = (f, gs) to get the abstract state-action pairs. But according
the determines policy and stochastic policy property, we make some difference in critic function
sample action process.
For determinant policy: a = π(s) and a = π(s).
For stochastic policy: a ∼ πθ(a | s) and a = gs(a).
This is because ,we can got a same action from a deterministic policy if we have a same state. But
for stochastic policy, we can not make sure we can got a same action due to the property of random
sample in actor.

Actual and abstract critics are trained using TD(0) error for a faster reward propagation. The loss
function for each critic is therefore defined as the expectation of the Bellman error estimated over
transitions samples from the dataset B. The two gradients are added together and a single actor
policy update is conducted.

Here, Tθ in SAC with Symmetry is a neural network transformation for reparameterize the policy.
There is more info about this in the SAC paper.

7

Algorithm 2 Symmetry Augmented SAC
Input:policy πθ(a|s) , actual critic Qϕ(s, a), abstract critic Qφ(s, a), State map functionf(s),
action map function gs(a), and dataset B
Parameter: actor θ, θ′, critic ϕ, ϕ′, abstract critic φ,φ′, target network update weight α, tempera-
ture parameter ρ

1: Let t = 0.
2: for t to T do
3: Sample mini batch of N transitions (s, a, r, s′) from B.
4: Critic and abstract critic update:
5: Compute the Critic Loss Lactuacl critic = E(st,at)∼B[

1
2 (Qϕ(st, at) − (rt +

γ(Qϕ′(st+1, at+1)− ρ log(πθ(at+1|st+1)))))
2]

6: Compute the abstract Critic Loss Labstract critic = E(st,at)∼B[
1
2 (Qφ(st, at) − (rt +

γ(Qφ′(st+1, at+1)− ρ log(πθ(at+1|st+1)))))
2]

7: Update parameter:
ϕ← ϕ− λQ∇ϕLactual critic(ϕ)

φ← φ− λQ∇φLabstract critic(φ)

8: Actor Update:
9: if t mod 1000 then

10: Compute policy loss

Lactor = Est∼B,ϵt∼N [Qϕ(st, Tθ(ϵt; st))

+Qφ(st, Tθ(ϵs; st))− ρ log πθ(Tθ(ϵt; st)|st)]
11: Update target networks:

θ′ ← αθ + (1− α)θ′

ϕ′ ← αϕ+ (1− α)ϕ′

φ′ ← αφ+ (1− α)φ′

12: end if
13: end for

8

	Introduction
	Related Work
	Preliminaries on MDP Symmetries
	Exploiting Symmetries for Offline RL
	Experiment
	Dataset
	Results

	Conclusion and Future Work
	Pseudo-code

