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Abstract001

In this work, we present ALLaM: Arabic Large002
Language Model, a series of large language003
models to support the ecosystem of Arabic Lan-004
guage Technologies (ALT). ALLaM is care-005
fully trained, considering the values of lan-006
guage alignment and transferability of knowl-007
edge at scale. The models are based on an au-008
toregressive decoder-only architecture and are009
pretrained on a mixture of Arabic and English010
texts. We illustrate how the second-language011
acquisition via vocabulary expansion can help012
steer a language model towards a new language013
without any major catastrophic forgetting in En-014
glish. Furthermore, we highlight the effective-015
ness of using translation data and the process016
of knowledge encoding within the language017
model’s latent space. Finally, we show that018
effective alignment with human preferences019
can significantly enhance the performance of020
a large language model (LLM) compared to021
less aligned models of a larger scale. ALLaM022
achieves state-of-the-art performance in various023
Arabic benchmarks, including MMLU Arabic,024
ACVA, and Arabic Exams. Our aligned models025
improve both in Arabic and English from its026
base aligned models.027

1 Introduction028

Language modeling has significantly progressed029

from its humble origins, transitioning from funda-030

mental probabilistic methods to complex neural pri-031

ors. The foundational work by Shannon (1951) on032

the information theory of language laid the ground-033

work for predicting the next word in a sequence,034

which was initially tackled by Bengio et al. (2003)035

in neural space. The field experienced a substantial036

leap with the introduction of LSTMs (Hochreiter037

and Schmidhuber, 1997) in language model (LM)038

(Peters et al., 2018), which could capture longer039

dependencies in LMs but lacked scaling capability.040

The emergence of scalable and distributed architec-041

tures like Transformers (Vaswani et al., 2017), the042

Llama2 ALLaM
Arabic only

ALLaM
merged

0

2

4

6

8

Fe
rt

ili
ty

 r
at

e

English
Arabic
Code

Figure 1: Comparison of Fertility Rates of LLaMa-2
and ALLaMtokenizers. The chart illustrates the fertility
rates across three models: LLaMa-2, ALLaMArabic
only, and ALLaM merged with LLaMa-2 tokenizer, with
datasets in English, Arabic and Code.

potential for precisely (Kaplan et al., 2020; Hoff- 043

mann et al., 2022) compressing web-scale data has 044

resonated in recent years with the advancements 045

of Generative Pretraining (Radford et al., 2018; 046

Brown et al., 2020; Anil et al., 2023). 047

With the release of ChatGPT (OpenAI, 2022), 048

followed by the introduction of more frontier 049

class models Gemini (Google, 2024), Claude (An- 050

thropic, 2022), Reka (Ormazabal et al., 2024), 051

Mistral (Mistral, 2024), Llama-3 (Meta, 2024) 052

and recently released Qwen-2 (Alibaba, 2024), gen- 053

erative models have experienced a significant leap 054

from previous models (Laskar et al., 2023), raising 055

potential implications of Artificial General Intel- 056

ligence (Hendrycks and Mazeika, 2022; Marcus, 057

2022). This advancement has spurred discussions 058

across various fields, including ethics, economics, 059

and technology (Weidinger et al., 2021). Judging 060

from the initial capabilities (Bubeck et al., 2023), 061

the potential of these frontier models are reinvent- 062

ing the way humans interact with machines, im- 063

pacting social norms, productivity, trends, and cul- 064

ture on a broader scale (Zhou et al., 2024). How- 065

ever, most of these frontier-class models are pri- 066

marily trained on English or a few languages and 067

often lack integration of localized regional cultures 068
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Figure 2: Performance of Various Models on Arabic (Koto et al., 2024) and English (Hendrycks et al., 2020) MMLU
Benchmarks. ALLaM shows impressive improvement from it’s base model Llama 2.

and norms (Naous et al., 2024), risking slow, ir-069

reversible manipulation of regional identities and070

potentially leading to cultural homogenization.071

The significant training costs of LLMs and their072

environmental impact have become major concerns073

in recent years (Strubell et al., 2019). The vast com-074

putational resources required to train LLMs con-075

tribute to substantial carbon emissions (Luccioni076

and Hernandez-Garcia, 2023). Governments 1 and077

non/for-profit organizations (Dodge et al., 2022;078

Google, 2021; Amazon, 2021), are increasingly079

aware of these issues. This awareness has led to080

discussions about the ethical implications of AI081

development and the need for sustainable practices082

concerning “When and how to scale the training083

of these models” To address these concerns, in-084

stead of scaling fast, we have opted to continue085

training from a well-documented, strong, but poten-086

tially under-trained pre-trained model rather than087

starting from a randomly initialized model. We088

initialize our model from Llama 2 (Touvron et al.,089

2023) weights. This approach offers several key090

advantages that align with both our technical goals091

and our commitment to sustainable practices.092

Technically, continue pre-training a model in093

a new language can aid in understanding Second094

Language Acquisition (SLA) (Swain and Lapkin,095

1995), popularized by Bari et al. (2020) in NLP and096

recently adopted by Nguyen et al. (2023). This pro-097

cess involves the challenging task of incorporating098

an additional distribution without compromising099

the source. For instance, if a pre-trained model was100

initially trained in English, expanding to an addi-101

1https://www.cnrs.fr/en/update/
jean-zay-supercomputer-recycling-its-heat

tional language presents the specific challenge of 102

addressing tokenization issues. Figure 1 gives an 103

overview of ALLaM tokenizers. We expand the vo- 104

cabulary of Llama 2 tokenizer from an Arabic-only 105

ALLaM tokenizer. With the vocabulary expanded 106

model, we continue pre-train our model for addi- 107

tional 1.2 Trillion tokens 2 on English and Arabic 108

data mixtures and show impressive improvement 109

over the Llama 2 base model. Finally, we apply 110

these learnings to pre-train and align a 7B parame- 111

ter model from scratch 3, showing impressive im- 112

provements across the range of 7B parameter open 113

models. In general, our contributions are listed 114

below: 115

• We present the ALLaM model series, a col- 116

lection of large language models developed 117

specifically for Arabic and English languages, 118

with the goal of supporting the cultural val- 119

ues of the Arab World. We train four models 120

at three different scales: 7B, 13B, and 70B 121

model initialized by Llama weights and a 7B 122

model from scratch. 123

• Unlike recent trends, we explain our training 124

methodologies and the thought process behind 125

the decision-making involved in training the 126

LLM. We provide necessary ablation studies 127

for most of our crucial decisions. 128

• Our model achieves state-of-the-art results in 129

Arabic as well as improving overall English 130

performance of the original LLaMa-2 model. 131

Check figure 2 for a quick overview. 132

2For ALLaM-70B model, we train on 600B tokens
3Model initialized with random weights

2
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Figure 3: Effect of Arabic Translation Data in Pretraining.

2 Pretraining133

Pretraining language models on trillions of nat-134

ural language tokens represents the bulk of cost135

required to build an effective language model. This136

large investment of time and compute precludes ex-137

perimentation or ablation for every decision. Thus,138

before starting to train ALLaM from random initial-139

ization, or “scratch”, we experiment in the continue-140

pretraining regime. As the name implies, Continue141

pretraining is the practice of warm-starting a pre-142

training experiment from an already pretrained LM.143

2.1 Pretraining Data144

Starting from a Llama 2 pretrained model, we con-145

tinue pretraining the ALLaM-7B and ALLaM-13B146

models on 1.2T tokens, covering both English and147

Arabic languages. For the ALLaM-70B model, we148

train on 600B tokens.We included English data in149

our mixture to avoid degrading the performance of150

our model on English. For English, we harnessed151

subsets from Dolma-v1 (Soldaini et al., 2024) and152

Pile (Gao et al., 2021) datasets e.g., Dolma CC,153

The Stack (Kocetkov et al., 2022) and PeS2o, and154

PubMed, DM-Math (Saxton et al., 2019) and Stack-155

Exchange (Soboleva et al., 2023).156

Our Arabic pretraining data include inhouse157

crawled diverse sources covering Web documents,158

news articles, books (literature, religion, law and159

culture, among others), Wikipedia (over 1M ar-160

ticles), and audio transcripts (books and news)4.161

To ensure high quality Web data, we applied the162

following processing steps: (i) Drop documents163

with language identification score < 95%, (ii) Drop164

short documents that are less than 30 words, (iii)165

Drop documents with duplicate URLs, high ratio166

of spam and stop words, (iv) Drop duplicate docu-167

ments (using exact matching; although we experi-168

mented with fuzzy matching but we found it to be169

harsh and given that the Arabic data is scarce we170

4We are currently working on systematic auditing of our
pretraining data. Right now we do not have any timeline or
visibility when or if we can share our data for research.
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Figure 4: To find the right Arabic/English language mix-
ture that acquires Arabic knowledge while still retaining
English, we conducted an ablation over 20B tokens,
in which We found that a 55/45 English/Arabic ratio
achieves the best trend in performance, as measured via
English and translated Arabic MMLU.

opted not to use fuzzy matching for this version). 171

Additionally, we extended our Arabic data with 172

translated English content using an in-house ma- 173

chine translation system. We translated the fol- 174

lowing English datasets from Dolma: Wikipedia, 175

books, C4 and peS2o, which also are part of our En- 176

glish data, the hypothesis is that this will improve 177

English-Arabic language alignment, leading to a 178

better Arabic model. Figure 3 demonstrates the im- 179

pact of Arabic translation dataset in the pretraining 180

data mixture. While models trained without trans- 181

lation data exhibit lower training loss, those trained 182

with translation data show more stable training, as 183

evidenced by fewer spikes in gradient norms. Incor- 184

porating Arabic translation data in the pretraining 185

dataset mitigates catastrophic forgetting in English. 186

In total, we curate 500B arabic tokens5. 187

Data Mixture. To build a performant model in 188

both English and Arabic, we conducted experi- 189

ments to figure out an optimal language mix. Fig 4 190

gives an overview of data-mixture experiments on 191

our curated English-Arabic corpus. We conducted 192

the experiments with the same sampling ratio (Ta- 193

ble 1) and data order. We observe best trend in 194

performance with 55 : 45 English:Arabic data mix. 195

5Token counted by our merged tokenizer.
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Domain English
Arabic

Overall
Natural Translated

Web 31% 71% 65% 48%
Books 9% 13% 12% 11%
Wiki — 0.70% 0.61% 0.3%
News — 14% — 3%
Science 16% — 22% 14%
Code 39% — — 21%
Math 5% — — 2.5%
Other — 1.3% 0.39% 0.2%

Lang Mix 55% 22.5% 22.5% 100%

Tokens 660 B 270 B 270 B% 1200 B

Table 1: ALLaM Pretraining data mixture. We upsam-
ple data to match the mixture rates when needed. (Each
column sums to 100%)

Table 1 shows the language and category mixing196

distributions for English, Arabic Natural, Arabic197

Translated and final mix. As depicted, and fol-198

lowing mainstream work, Web data constitutes the199

highest ratio with 71%, 65% and 48% of the AR200

Natural, AR Translated and Final, respectively. We201

limited the contribution of Web English data to202

31%, as Llama 2 base model was trained on Web203

data already and increasing its ratio might degrade204

performance. We ensured that high-quality sources205

such as books, news articles and code are well-206

represented in our mixture.207

2.2 Continued pretraining208

Open-source and open weight models present an at-209

tractive option to conduct pretraining experiments210

cheaply, however, they also present challenges211

since most such models do not natively support212

Arabic or other languages. We develop a simple213

approach to enhance any language model with capa-214

bilities in new languages (e.g. language expansion).215

The approach relies on two steps: (i) tokenizer aug-216

mentation and (ii) expanded vocabulary learning.217

We demonstrate that this approach leads to minimal218

degradation of capabilities in the original language.219

Tokenization To calculate the fertility of our to-220

kenizers, we subsample the entire training corpus221

and use this subsample as test dataset.222

Existing open-weight language models (e.g.,223

Llama 2) tokenize Arabic (and other languages)224

poorly, often splitting words down to the character225

level or even relying on byte-fallback mechanisms226

for tokenization. This results in inefficient training,227

as the pretraining corpus size is inflated, and unop-228

timized inference, since the model must generate229

more tokens per word. Additionally, the context230

length is reduced because it is based on a fixed231

number of tokens. To address these issues, we use232
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Figure 5: Effect of Random initialization vs embedding
initialization during the start of continue pre-training.

a corpus of text in the target language to train a tok- 233

enizer specialized in that language. We then merge 234

the original tokenizer with the language-specific 235

tokenizer. Merging is accomplished by adding all 236

tokens from the language-specific tokenizer that 237

do not exist in the original tokenizer. As shown in 238

Figure 1, this effectively reduces the fertility rate 239

in the target language of the merged tokenizer to 240

the level of the language-specific tokenizer. 241

Newly added tokens in the merged tokenizer 242

have no associated embedding representations in 243

the pretrained language model’s weights. To learn 244

these representations, we experiment with two ap- 245

proaches: (i) random initialization and (ii) initial- 246

ization from combined representations of tokens 247

in the original tokenizer. Approach (ii) is accom- 248

plished by tokenizing the vocabulary of the new 249

tokenizer using the original tokenizer. The associ- 250

ated representations of this tokenization are then 251

averaged and assigned as the vector representation 252

of the new token. Since we work with tokenizers 253

with byte-fallback, such a tokenization is guaran- 254

teed to exist. Figure 5 provides an overview of our 255

initialization method. Initializing the new embed- 256

dings from the combination of previously learned 257

2T token trained embeddings gives a significant 258

boost to the learning of a new language. Figure 1 259

gives an overview of our tokenizers. 260

Learning rate In all of our continued pretrain- 261

ing experiments, we used the final learning rate 262

of the pretrained language model (usually 3e-5). 263

We experimented with approaches to gradually 264

increase the learning rate and then decay it but 265

found limited success. Such models typically ex- 266

hibited catastrophic forgetting, indicated by signifi- 267

cant drops in performance in the source language. 268

We also considered optimizer state warmup (as 269

open-weight models typically do not include the 270

optimizer states) but found this had little effect on 271

4
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Figure 6: Effect of Dropout during the start of continue
pre-training experiments.

performance. Figure 6 provides an overview of272

adding dropout during continued pretraining. We273

observe that adding dropout helps the Arabic lan-274

guage, as it acts as a regularizer for the new distri-275

bution. However, Llama 2 was pretrained on 2T276

tokens without any dropout, and adding dropout277

negatively impacts the source distribution. Consid-278

ering this trade-off, we decided not to add dropout279

in the continue pretraining stage.280

2.3 Pretraining from scratch281

We were able to curate 500B Arabic tokens. Follow-282

ing (Hoffmann et al., 2022; Touvron et al., 2023),283

training a high-quality English model from scratch284

requires a substantial amount of tokens. Even when285

pretraining from random initialization, we find it286

beneficial to start training with a high-resource lan-287

guage (en) and then continue pretraining to Arabic.288

In pre-training from scratch, selecting and iden-289

tifying good training dynamics requires spending290

a lot of tokens, as different evaluations start to dis-291

criminate at different stages 6. This may require292

extensive ablation studies to determine the optimal293

setup. Our initial experiments with 1B parame-294

ter models show that training with two languages295

can sometimes degrade the performance in English296

or result in slow learning of both language distri-297

butions. We also hypothesize that low-resource298

languages can dilute in the large volume of high-299

resource language data, even with careful tuning.300

On the contrary, our continued pretraining from301

scratch receipe retains the natural English distri-302

bution without catastrophic forgetting, effectively303

transferring knowledge from one distribution to304

another. Judging by this trade-off, we decide to305

first achieve a good English distribution before ap-306

plying the same approach for large-scale language307

alignment. The only difference here is that there is308

6For example, a 7 billion parameter model begins to show
discrepancies in MMLU at the 1 trillion tokens range.

no need for vocabulary expansion. 309

3 Alignment 310

Building effective LLMs requires ensuring they 311

perform well and adhere to ethical standards and 312

user expectations. This alignment process is cru- 313

cial, especially for models used in diverse linguistic 314

and cultural contexts. 315

Supervised Finetuning (Section 3.1) refines a 316

pre-trained model using a carefully selected dataset 317

relevant to specific tasks and domains. Preference 318

training (Section 3.2), on the other hand, aligns 319

the model’s outputs with human values and prefer- 320

ences by prioritizing responses that meet user ex- 321

pectations and ethical guidelines. Together, these 322

methods create reliable and ethically sound LLMs 323

for real-world use. 324

3.1 Supervised Finetuning Training 325

Data. Our Supervised Finetuning (SFT) data is 326

curated from a diverse array of sources. For En- 327

glish, we primarily use public web content as our 328

main source, offering a broad range of high-quality 329

and especially diverse prompts. In contrast, our 330

Arabic data comes from a combination of public 331

and proprietary sources to ensure comprehensive 332

coverage and relevance. We utilize classifiers, hu- 333

man and/or generative models (Ding et al., 2023) to 334

identify/interact if the text can be considered suit- 335

able for supervised finetuning and/or if we can gen- 336

erate an SFT dataset from any context. To gather 337

data from the source, we collect seed websites or 338

data sources, which involves utilizing domain ex- 339

perts, prompt librarians, local institutes specializ- 340

ing in areas such as Arabic language, history, and 341

politics, the use of permissible commercial LLMs 342

to generate data, and machine translation models 343

to convert rich English SFT data into Arabic. Our 344

datasets cover various domains and capabilities, en- 345

suring the model’s proficiency in handling tasks 346

across education, history, Arabic linguistics, pol- 347

itics, religion, computer science, and other fields. 348

The entire collection is named as Ultra-Instinct, 349

which is not human generated rather human driven. 350

Quality Is All You Need. Unlike Zhou et al. 351

(2023); AI et al. (2024) we hypothized that scaling 352

SFT data can unlock diverse capability as well as 353

improve responsiveness to the prompts. Initially we 354

crawled public web for supervised finetuned sam- 355

ples. The first version (v1) of Ultra-Instinct in- 356

cludes 6M samples each from English and Arabic, 357

while the second version (v2), is a reduced version 358

5
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Figure 7: SFT data distributions.

Quality Metric
V1 V2

Prompt Response Prompt Response

Word length 146.94 97.19 60.81 136.47
Lexical diversity 76.34 75.25 85.29 69.53

Table 2: Comparison of average word length and lexical
diversity for (v1) and (v2) in prompts and responses.

with half the number of samples. For v1, we did359

not implement rigorous quality checks or exten-360

sive data removal. In contrast, v2 underwent strict361

quality checks and random human assessments.362

Our quality checks for v2 included (i) Assessments363

based on instruction/response word length, (ii) Lex-364

ical and semantic diversity, exact and near-exact365

lexical deduplication, (iii) The removal of low qual-366

ity machine-translated Arabic data from English367

sources, and ensuring diversity in questions and368

commands. For detailed metrics on instruction and369

response lengths and lexical diversity, see Table 2.370

Figure 7a and Section 3.1 shows the distribution371

of the prompts and responses in v2, respectively.372

Version
MMLU

Exams (ar) ACVA ETEC
Huang et al. (2023) Koto et al. (2024) en

Ultra-Instinct v1 51.0 68.0 63.8 56.8 79.8 66.8
Ultra-Instinct v2 51.39 68.49 63.3 56.8 76.66 65.91

Table 3: Comparative results of Ultra Instinct ver-
sions, v1 and v2, across various evaluation datasets.

To extrinsically evaluate the impact of higher373

quality SFT data, we trained two 13B models us-374

ing v1 and v2 datasets. Despite v2 containing 50%375

less data, both versions performed equally well on376

English and Arabic evaluation benchmarks. This377

reduction in data volume led to faster training times378

and reduced costs without compromising perfor-379

mance. Table 3 provides a detailed comparison of380

the 13B model results on Ultra-Instinct v1 and381

v2. Ultra-Instinct contains a large amount of382

multi-turn conversations. Figure 7c shows the dis-383

tribution of “# of turn” from Ultra-Instinct.384

While training the SFT model, we encountered385

an issue with the tokenizer. Llama 2 tokenizer386

was trained using sentencepiece7, which breaks387

7https://github.com/google/sentencepiece

the beginning and end of sequence token with 388

multiple tokens, adversely affecting long multi- 389

turn conversations. To address this issue, we 390

patched sentencepiece using the huggingface 391

LlamaTokenizer wrapper. During many stages of 392

training we saw that having 1% of noisy text (i.e., 393

empty response) can visibly affect the model. 394

3.2 Preference Training 395

After SFT, models are able to converse in multi-turn 396

conversations. However, they are not fully aligned 397

with human preferences. For example, our SFT 398

models were terse and had limited guardrails. To 399

circumvent these issues, we performed preference 400

tuning with human verified samples via Direct Pref- 401

erence Optimization (DPO) (Rafailov et al., 2024). 402

The DPO inputs we utilized were sourced from 403

early model testers and a manually curated selec- 404

tion of domains, such as questions related to ethics 405

or model ownership. DPO training necessitates 406

both negative and positive output samples to train 407

a reward model. We relied on the testers’ feedback 408

to identify the positive outputs. In the absence of 409

positive outputs, we generated and verified posi- 410

tively aligned outputs. While (Tunstall et al., 2023) 411

utlized preference data from AI Feedback (AIF) at 412

scale, we adopt a more cautious approach in cre- 413

ating DPO data. We generate a smaller volume 414

of DPO data, ensuring it is fully reviewed, edited 415

and/or re-written by humans. From our initial ex- 416

periments with small toy datasets, we observed 417

visible issues even with 0.1% of noisy seed DPO 418

data. However, after scaling, there is a possibility 419

that the model can ignore this noisy text. 420

There are two approaches for generating nega- 421

tive outputs: (i) on-policy: we use the generations 422

of the model we are tuning as negative outputs, 423

and (ii) off-policy: we use another, roughly similar, 424

model to generate the negative outputs. We did not 425

verify that the negative outputs were worse than the 426

positive; we ensured that the positive outputs were 427

of the highest quality, such that they were almost 428

always better than the negative outputs. 429

6
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Figure 8: Benchmark evaluations throughout ALLaM model training. Using HellaSwag as a proxy for language
understanding, seems that smaller models’ performance reduce when introducing Arabic, while larger models (70b)
have enough capacity to improve simultaneously in English and Arabic. Arabic language acquisition is rapid in all
models, as indicated by Arabic MMLU.

Compared to pretraining and SFT, the model is430

most sensitive to the DPO data. Therefore, we431

ensured the highest quality data are collected and432

verified. In early DPO models, we did not verify433

all the samples, and found that moderately noisy434

samples resulted in broken models that repeat gen-435

erations, or output incoherent text.436

4 Evaluation437

In this section, we dive deeper into the evaluation of438

our model and report the results of our validations439

of ALLaM 7B, 13B and 70B models, as well as rel-440

evant models such as GPT-4, Command-R+ (Gomez,441

2024), Jais-30B (Sengupta et al., 2023), and oth-442

ers. Our evaluation mechanisms integrate three key443

aspects: (i) automatic evaluations, (ii) LLM-based444

evaluations, (iii) human evaluations.445

Limitations We start discussing evaluation by446

stating current limitations. Recently (Alzahrani447

et al., 2024) showed that multiple choice or cloze448

test based evaluation can be tricky and flip the449

benchmark. In addition to that MT-bench uses450

LLM as a judge and reportedly has high contamina-451

tion possibility. Additionally, doing human evalua-452

tion is time consuming and requires training human453

evaluators. In this work, we try to ensure robust454

validation and attain a balanced assessment of the455

quantitative metrics and qualitative effectiveness456

and relevance of models in various applications and457

domains.458

4.1 Automatic Evaluations459

Figure 8 shows the continuous evaluation of our460

pretraining. Table 4 and 5 give an overview of the461

performance of ALLaM-instruct models compared462

to the relevant models. More detailed results can463

be found in Table 8, and 9. In Arabic benchmarks,464

we can see that ALLaM 70B scores are the best in465

five (MMLU arabic both versions, Exams, ETEC, 466

araTruthfulQA) out of the eight benchmark sets. 467

For the remaining benchmarks: araSwag Jais 30B 468

v3 scored the best (for this dataset, it is not publicly 469

available but the authors shared with us the training 470

and dev set and we are reporting on the dev set); 471

ACVA ALLaM 7B scored the best and for araMath 472

LLamaa3 70B scored the best with ALLaM 70B 473

scoring second best. In English benchmarks, we 474

can see a high competition between ALLaM 70B 475

and LLama 3 70B, where LLama3 70B scored the 476

best in seven (MMLU, MMLU-Pro, Ethics, Truth- 477

fulQA, ARC, MixEval (hard - standard)) out of 478

the nine benchmark sets and ALLaM 70B scoring 479

second best in five of these (MMLU, MMLU-Pro, 480

ARC, MixEval (hard-standard)). For the Ethics 481

benchmark ALLaM 13B scored second best and 482

for TruthfulQA Mistral 7B scored second best. As 483

for the remaining two benchmarks AGIEval and 484

HellaSwag ALLaM 70B scored the best. 485

4.2 LLM-based Evaluations 486

MT Bench (Zheng et al., 2024) consists of 80 multi- 487

turn questions to evaluate models’ capabilities and 488

complex instruction-following. In addition to the 489

English version, we created an Arabic version of 490

MT Bench developed via human translation and 491

localization. GPT-4 serves as the LLM judge, scor- 492

ing responses as recommended in (Zheng et al., 493

2024). Model performance is compared turn by 494

turn, with results shown in Table 6, where ALLaM 495

70B achieves the best Arabic performance. 496

4.3 Human Evaluation 497

Finally we perform human evaluations to gather 498

voting and calculate ELO scores. We developed 499

an Arabic multi-turn dataset that covers seven do- 500

mains: Arabic linguistics, history, health, politics, 501
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araSwag ACVA
MMLU (ar)

Exams (ar) ETEC araTruthfulQA araMath
Koto et al. (2024) Huang et al. (2023)

10-shot 5-shot 0-shot 0-shot 5-shot 0-shot 0-shot 5-shot

ALLaM-Instruct 7B 49.28 80.33 66.9 49.6 52.7 62.95 36.4 36.5
AceGPT-Chat 7B 43.4 59.35 45.8 33.58 35.57 36.05 37.9 22.5
Llama 2-Chat 7B 24.44 52.46 33.33 26.45 25.33 26.69 29.9 21.5
Mistral-Instruct-v0.3 7B 30.59 60.7 44.3 34.06 31.1 34.41 30.3 26.0
Llama 3-Instruct 8B 33.99 75.21 53.98 41.49 44.32 49.42 34.0 38.3

ALLaM-Instruct 13B 54.77 78.59 68.11 51.03 54.93 65.59 37.5 46.8
Llama 2-Chat 13B 25.75 60.14 35.84 28.73 22.91 30.44 31.4 22.3
Jais-Chat 13B 77.12 70.68 54.8 41.43 46.93 48.68 31.6 25.3

ALLaM-Instruct 70B 57.91 79.01 75.92 62.23 58.47 78.38 38.4 56.8
Jais-Chat-v3 30B 88.37 70.05 62.37 30.15 51.21 38.53 37.3 32.5
Llama 2-Chat 70B 30.72 59.49 40.77 32.86 28.68 30.6 32.3 25.5
Llama 3-Instruct 70B 45.75 80.26 36.27 60.11 58.47 71.41 37.7 59.70

Table 4: Comparison of Arabic benchmarks for various instruct models.

AGIEval
MMLU

MMLU-Pro Ethics TruthfulQA
ARC

HellaSwag
MixEval

Average Challenge Hard Standard

0-shot 0-shot CoT 5-shot 0-shot 0-shot 0-shot 0-shot 5/0-shot (base/ft) 5/0-shot (base/ft)

ALLaM-Instruct 7B 47.09 58.31 27.78 69.8 42.11 51.45 75.2 28.9 67.6
AceGPT-Chat 7B 26.33 44.53 — 53.38 49.34 42.32 70.92 — —
Llama 2-Chat 7B 35.55 46.4 22.87 58.88 45.32 44.28 75.52 30.8 61.7
Mistral-Instruct-v0.3 7B 42.22 59.75 36.33 73.59 59.65 58.7 82.88 36.2 70.0
Llama 3-Instruct 8B 44.35 63.82 41.32 68.07 51.72 56.83 75.81 45.6 75.0

ALLaM-Instruct 13B 48.42 61.8 34.05 76.47 57.69 55.89 81.14 37.2 72.8
Llama 2-Chat 13B 37.73 53.3 27.19 70.52 43.95 50.17 79.66 — —
Jais-Chat 13B 31.45 49.46 — 64.92 39.66 46.84 77.6 — —

ALLaM-Instruct 70B 65.67 75.43 48.61 76.16 58.78 59.56 84.97 51.60 83.5
Jais-Chat-v3 30B 36.78 57.57 26.45 68.03 42.34 51.02 78.91 — —
Llama 2-Chat 70B 46.0 61.15 35.16 68.5 52.77 54.27 82.14 38.0 74.6
Llama 3-Instruct 70B 63.78 78.38 59.52 77.09 61.79 64.33 82.49 55.90 84.00

Table 5: Comparison of English benchmarks for various instruct models.

Model
English Arabic

Avg. Turn 1 Turn 2 Avg. Turn 1 Turn 2

AceGPT 13B-chat 5.44 6.76 4.12 6.33 7.01 5.64
ALLaM 13B Instruct 7.34 7.67 7.01 7.57 7.9 7.23
ALLaM 70B Instruct 7.44 7.91 6.96 8.19 8.4 7.97
Jais 13B Chat 4.18 4.39 3.96 4.72 5.07 4.36
Jais 30B Chat v1 3.89 4.13 3.64 3.54 4.13 2.95
Jais 30B Chat v3 5.86 6.25 5.47 6.28 6.78 5.78
Cohere Command R+ 7.41 7.63 7.18 7.97 8.28 7.65
Cohere Command R 6.99 7.19 6.79 7.47 7.82 7.12
DBRX Instruct 7.16 7.33 6.98 7.83 8.19 7.46
GPT 3.5 Turbo 7.55 7.79 7.31 8.12 8.39 7.84

Table 6: MT Bench scores for Arabic and English. The
scores represent the average GPT judge score over the
80 samples ranging from 0 to 10.

coding, entertainment, and ethics, each domain502

contains ten questions with two turns. Each com-503

parison was evaluated by three evaluators, and we504

calculated the majority voting among them. In505

cases of disagreement, a fourth evaluator was used506

to break the tie. ALLaM 13B win rate was al-507

ways higher than its loss rate compared with other508

models. Figure 9 shows the ELO scores of the509

human evaluations. ELO scoring had two configu-510

ration, the default scoring rewards the good model511

with 1 point, the tie (good and both-bad) with 0.5512

points, penalizing the bad model. The custom con-513

figuration, however, penalizes the bad model and514

both models if both models provided bad responses.515

From the figure, GPT-4 achieved the highest score,516

followed by ALLaM 13B with the second highest517

score, outperforming (or matching) larger models518

such as CommandR+.519
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Figure 9: ELO Scores for Human Evaluation Across
Various Models

5 Conclusion 520

ALLaM model series mark a significant leap in 521

Arabic Language Technologies (ALT) by achieving 522

state-of-the-art performance across various Arabic 523

benchmarks and enhancing English performance. 524

Through careful training that emphasizes language 525

alignment and transferability, our models demon- 526

strate effective second-language acquisition with- 527

out catastrophic forgetting. The strategic use of 528

translation data, knowledge encoding, and align- 529

ment with human preferences have been crucial in 530

this success. Our openly available models on the 531

redacted aim to support and enrich the cultural 532

and technological landscape of the Arab World, 533

fostering further advancements in LLMs. 534
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6 Limitations535

The model was trained on data that may potentially536

include toxic language, unsafe content, and societal537

biases originally sourced from the internet, lead-538

ing to the possible amplification of these biases539

and toxic responses, particularly when prompted540

with toxic inputs. Although the model underwent541

concise safety training during the alignment phase,542

more community feedback is needed to iteratively543

improve the model. Additionally, inherent uncer-544

tainties in generative models mean that trials can-545

not encompass every possible use case, making it546

impossible to predict the model’s responses in all547

contexts. This can occasionally result in inaccurate,548

biased, or socially unacceptable outputs, even if549

the prompt itself is not explicitly offensive. De-550

velopers must conduct thorough safety evaluations551

and make specific adjustments to ensure the model552

is suitable for its intended purposes. Furthermore,553

the output generated by this model should not be554

considered a statement from the model’s creators555

or any affiliated organization.556

7 Ethical Statement557

While conducting and presenting this research, we558

are committed to upholding the highest ethical stan-559

dards. We recognize the potential impact of large560

language models on society and the importance of561

ensuring their responsible development and deploy-562

ment. Our work adheres to principles of fairness,563

transparency, and inclusivity, striving to mitigate bi-564

ases and ensure diverse representation in our train-565

ing data. We are mindful of privacy concerns and566

have taken steps to anonymize and secure data used567

in our research. Additionally, we acknowledge568

the potential for misuse of language technologies569

and advocate for their ethical application, promot-570

ing beneficial use cases while being vigilant about571

unintended consequences. Our models are made572

openly available to foster collaboration and further573

research, with the aim of contributing positively574

to the advancement of language technologies and575

supporting the cultural and technological growth576

of the Arabic-speaking world.577

8 Risk Statement578

The deployment and use of LLMs in various ap-579

plications pose significant risks, including data pri-580

vacy and security concerns due to the inadvertent in-581

clusion of sensitive information in training datasets.582

LLMs can perpetuate or amplify biases, resulting583

in unfair treatment and discrimination in critical 584

decision-making processes. They can also gener- 585

ate convincing but inaccurate content, spreading 586

misinformation and potentially influencing public 587

opinion negatively. Over-reliance on LLMs may di- 588

minish human judgment, and the models’ suscepti- 589

bility to adversarial attacks can compromise system 590

integrity. To mitigate these risks, we follow robust 591

governance, continuous monitoring, and iterative 592

improvements. We also adhere to best practices in 593

data handling and model training, fostering trans- 594

parency and accountability in LLM development. 595
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B Related Work 1091

The most prominent Arabic-focused LLMs are: 1092

1. Jais (Sengupta et al., 2023): 13b and 30b base 1093

and chat models trained from scratch using a 1094

combination of natural and translated Arabic 1095

data along with English and code data. 1096

2. AceGPT (Huang et al., 2023): 7b and 13b 1097

base and chat models trained from Llama 1098

2 without vocabulary expansion. They also 1099

highlight the dangers of using translated data 1100

on LLM localization. 1101

While Jais and AceGPT are the most prominent 1102

ones, early open models such as AraGPT (An- 1103

toun et al., 2020), AraT5 (Elmadany et al., 2022), 1104

AraBART (Eddine et al., 2022), and Noon8 mod- 1105

els that utilized limited resources to serve Arabic 1106

and fueled the ambition to pursue Arabic focused 1107

models. 1108

Other closed models such as Noor (Lakim et al., 1109

2022), Jasmine (Abdul-Mageed et al., 2023), and 1110

Aramus (Alghamdi et al., 2023) are worth mention- 1111

ing to show the interest in serving a language with 1112

over 400 million speakers worldwide. 1113

Language adaptation of open models to other lan- 1114

guages has been investigated in many research pa- 1115

pers, some focus on languages written Latin scripts, 1116

which lessens the need for vocabulary expansion, 1117

such as Polish (Ruciński, 2024), in their work they 1118

adapted Mistral 7B. Mala-500 is another effort to 1119

expand to 534 languages, they expanded the vo- 1120

cabulary to 260K tokens, and further pretrained 1121

Llama 2 using LoRA adaptors (Lin et al., 2024), 1122

they used significantly less data for each language, 1123

and the evaluation of the approach was limited to 1124

measuring perplexity, and automatic classification 1125

benchmarks. (Cui et al., 2023) introduced Chinese 1126

Language adaptation of Llama and Alpaca models, 1127

where the vocabulary was increased to 50K tokens, 1128

then continued to pretrain the models and finally 1129

finetune them. 1130

It is worth noting that low-resource no longer 1131

means low in data, more significantly it also means 1132

low in compute, our work has certainly benefited 1133

from the open-source community, and our direc- 1134

tion is to provide ALLaM models as open-source 1135

pending final checks and approvals. 1136
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Figure 10: The semantic diversity of the prompts capa-
bilities in Arabic v2 SFT data.

C Alignment Details1137

C.1 SFT Data Details.1138

In SFT data, we ensured that the prompts cover1139

a sufficiently diverse embedding space, Figure 101140

shows the diversity in capabilities for Arabic (v2)1141

SFT data.1142

C.2 SFT Training Details.1143

We trained our base model, which was trained1144

on 3.2 trillion (2T Llama + 1.2T ALLaM) to-1145

kens, for 3 epochs using Ultra-Instinct-v21146

with a learning rate of 5e-6 and a batch size of1147

1024. For assistant training, the model was not1148

supposed to generate the prompt; therefore, we1149

masked out our prompt tokens when calculating1150

the loss. Ultra-Instinct-v2 contains a substan-1151

tial number of multi-turn conversations. To train1152

on these multi-turn conversations, we performed1153

turn-augmentation. Figure 11 visually explains1154

the process of turn augmentation.1155

C.3 DPO Training Details.1156

For DPO, we used 512 batch size with KLpenalty1157

and learning rate 9e-7 decayed to 5e-7 using Cosine1158

Annealing learning rate scheduler.1159

Khan et al. (2023) demonstrated that model out-1160

puts can vary significantly depending on the sam-1161

pling mechanism used. Building on this insight, we1162

generate 10 additional samples for each instance1163

by employing different temperature and nucleus1164

sampling techniques. These additional samples are1165

utilized to produce rejected samples, ensuring that1166

our model provides more grounded responses and1167

generalizes well across various sampling mecha-1168

nisms. We then train the model for a single epoch1169

using all the generated samples.1170

8https://huggingface.co/Naseej/noon-7b
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Assistant reply 1

User prompt 2

Assistant reply 2

User prompt 3

Assistant reply 3

Augmented Turn 1

User prompt 1

Assistant reply 1

Augmented Turn 2

User prompt 1

Assistant reply 1

User prompt 2

Assistant reply 2

Augmented Turn 3

User prompt 1

Assistant reply 1

User prompt 2

Assistant reply 2

User prompt 3

Assistant reply 3

Trained text Masked text

Figure 11: Augmentation process for conversations:
The original conversation (left) is expanded into multi-
ple turns (right), with user prompts and assistant replies
marked for training (red) and masking (orange) to en-
hance the model’s language understanding and multi-
turn response generation capabilities.

Model
Elo rating

Default Custom

GPT-4 1,078 1,088
ALLaM Instruct 13b 1,035 1,013
Command R+ 1,026 1,029
Jais 30b Chat v3 949 939
Command R 912 931

Table 7: Elo rating from human evaluations on Arabic
prompts.)

C.4 DPO vs PPO 1171

One of the fundamental differences between DPO 1172

and PPO is that PPO is always on-policy with an 1173

external Reward Model. In our experience with 1174

DPO, we did not encounter any significant issues 1175

with off-policy experiments. Additionally, DPO 1176

allows for faster iteration and easier understanding 1177

of the training dynamics. The decision to use DPO 1178

over PPO was based on logistical constraints rather 1179

than a performance comparison of the algorithms. 1180

Given our compute setup and time constraints, we 1181

chose to proceed with DPO. We plan to explore 1182

PPO in future iterations of our alignment efforts. 1183

D Evaluation Details 1184

D.1 Human Evaluations 1185

In the human evaluation, we have presented two 1186

models to the human for the multi-turn dataset, and 1187

we asked the human to provide their rating with a 1188

consent that their preference (without any personal 1189

identification) will be used to further improve the 1190

language model. The shared instruction with the 1191

evaluators were the following: choose model x as 1192

the winner if it had the best answer, tie if both 1193

models good, and both-bad if both models had bad 1194
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responses. The model’s response was considered1195

good if if it was answering the questions correctly,1196

have a coherent and natural language, is grammati-1197

cally correct, the response is in the right language1198

(if asked in Arabic the response should be in the1199

same language except if the question was speci-1200

fying answering in other languages.), and if the1201

answer is aligned with human values and don’t con-1202

tain hate or any bias. The Elo scores for human1203

evaluations are detailed in Table 7.1204

D.2 Automatic Evaluation Frameworks1205

Most evaluations were completed using the Lan-1206

guage Model Evaluation Harness framework (Gao1207

et al., 2023) with the following exceptions: Hu-1208

manEval was evaluated using BigCode Evaluation1209

Harness (Ben Allal et al., 2022). MMLU-Pro, Mix-1210

Eval, and Arabic MMLU (Koto et al., 2024) were1211

evaluated using the repositories of the dataset cre-1212

ators.1213

D.3 Dataset List1214

The evaluation pipeline covers Arabic and English1215

benchmarks grouped into the categories listed be-1216

low:1217

1. Multi-domain: MixEval (Ni et al., 2024),1218

MMLU-Pro (Wang et al., 2024), and BBH1219

(Suzgun et al., 2022).1220

2. Reasoning and Commonsense: HellaSwag1221

(Zellers et al., 2019), PIQA (Bisk et al., 2020),1222

WinoGrande (Sakaguchi et al., 2019), and1223

AraSwag (Nagoudi et al., 2022).1224

3. World Knowledge and Language Understand-1225

ing: MMLU (Hendrycks et al., 2020),ARC1226

Easy and Challenge (Clark et al., 2018), Trivi-1227

aQA (Joshi et al., 2017), BoolQ (Clark et al.,1228

2019), NQ Open (Kwiatkowski et al., 2019),1229

AGIEval (Zhong et al., 2023), Exams-Ar1230

(Hardalov et al., 2020), MMLU Arabic (tr)1231

(Huang et al., 2023), MMLU Arabic (MBZU)1232

(Koto et al., 2024) , and ETEC (in-house cu-1233

rated).1234

4. Safety and Alignment: Hendrycks Ethics1235

(Hendrycks et al., 2021a), ACVA (Huang1236

et al., 2023), TruthfulQA (Lin et al., 2022),1237

and AraTruthfulQA (in-house curated).1238

5. Conversation: MT Bench (Zheng et al., 2024),1239

and Arabic domain capability dataset (in-1240

house curated).1241

6. Math: Minerva MATH (Lewkowycz et al., 1242

2022; Hendrycks et al., 2021b), GSM8K 1243

(Cobbe et al., 2021) and araMath (in-house 1244

curated). 1245

The following benchmarks were developed and pro- 1246

cessed in-house: ETEC is a 1891 multiple choice 1247

questions covering different exams performed by 1248

the Education and Training Evaluation Commis- 1249

sion at KSA9. Additionally AraMath is a subset that 1250

focuses testing the model performance on Arabic 1251

math problems, it consists of 600 test samples that 1252

were post-processed and prepared from the Ara- 1253

Math dataset (Alghamdi et al., 2022). The dataset 1254

AraTruthfulQA is a dataset created using similar 1255

methodology to TruthfulQA dataset. It comprise a 1256

total of 541 samples, 285 samples were translated 1257

directly from TruthfulQA using GPT-4, then it was 1258

carefully validated and aligned to Arabic culture 1259

by human labelers. Additionally, 256 questions 1260

were curated by humans to ensure their contex- 1261

tual relevance and cultural appropriateness. As for 1262

MT-Bench Arabic version, we have used GPT-4 to 1263

translate the original dataset then it was reviewed 1264

and aligned to Arabic culture by human evaluators. 1265

D.4 Detailed Results 1266

Follow Table 8 for arabic and Table 9 for English 1267

evaluation results. 1268

E Intended Use 1269

ALLaM is specifically designed to expedite the 1270

research and development of ALT through Large 1271

Language Models (LLM). It serves as one of the 1272

foundational elements for building product offer- 1273

ings as well as facilitating experimental initiatives. 1274

F Writing Help 1275

We prompt ALLaM-13B-Instruct to perform gram- 1276

matical check of the content. 1277

G Computational Budget and Infra 1278

From different stage of training we had access from 1279

128 A100 GPUs to 1024 A100 GPUs. We trained 1280

on GPU cluster with infiniband connections to en- 1281

able high-speed communication between nodes. 1282

The all-reduce test on the cluster ranges around 1283

1200-1400 Gbps (node-node interconnect (RoCE)). 1284

The entire training period of the models are esti- 1285

mated around 5M GPU hours. 1286

9https://etec.gov.sa/home
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araSwag ACVA
MMLU (ar)

Exams (ar) ETEC araTruthfulQA araMath
Koto et al. (2024) Huang et al. (2023)

10-shot 5-shot 0-shot 0-shot 5-shot 0-shot 0-shot 5-shot

Pretrained

ALLaM-Base (from scratch) 7B 52.68 68.46 44.45 36.28 42.09 41.7 29.4 25.5
ALLaM-Base 7B 51.63 66.18 41.52 34.42 38.55 36.58 29.9 11.5
AceGPT 7B 46.8 59.54 36.33 27.18 32.22 25.42 30.1 19.3
Llama 2 7B 25.62 62.93 33.61 26.64 23.09 27.85 25.7 24.8
Mistral-v0.3 7B 30.33 53.81 40.81 32.1 31.47 32.45 27.0 16.3
OLMo-1.7 7B 24.44 57.8 30.97 25.7 25.7 27.17 23.5 16.8
OLMo 7B 22.09 56.07 31.41 24.98 28.31 23.1 26.2 31.7
Qwen2 7B 40.26 78.74 52.91 47.16 46.0 55.23 29.9 51.2
Gemma 7B 25.36 54.82 46.33 26.04 22.91 25.48 24.0 39.3
Llama 3 8B 38.95 71.54 47.62 38.88 44.69 42.86 29.9 43.8

ALLaM-Base 13B 54.90 77.81 51.48 40.29 47.3 44.4 28.5 17.3
Yi-1.5 9B 28.76 61.19 46.36 34.11 34.82 40.01 24.0 44.8
AceGPT-v1.5 13B 48.89 73.47 42.24 33.18 40.6 33.56 30.3 18.8
Llama 2 13B 28.63 64.52 35.83 30.0 28.86 31.13 26.2 13.8
Jais 13B 49.28 60.76 32.2 29.23 33.33 27.96 28.7 28.5

ALLaM-Base 70B 59.35 79.67 59.21 49.34 53.82 55.97 33.5 38.7
Jais-v1 30B 54.51 68.25 37.6 32.94 43.39 34.04 29.6 19.3
Jais-v3 30B 53.86 70.49 45.19 38.31 50.28 45.61 30.5 25.2
Qwen1.5 32B 37.78 73.63 55.94 48.67 49.53 57.4 34.0 45.3
Yi-1.5 34B 32.16 65.25 42.93 36.26 33.71 36.21 23.7 52.0
Mixtral-8x7B-v0.1 47B 38.43 75.64 51.25 39.74 44.32 44.61 25.5 39.8
Llama 2 70B 34.38 51.16 44.79 37.1 37.99 39.38 26.6 32.3
Llama 3 70B 54.51 74.17 36.67 59.39 55.31 64.27 31.4 53.70
Qwen1.5 72B 44.84 76.0 61.38 54.44 54.0 62.84 34.90 51.8
Qwen2 72B 51.76 68.7 69.94 65 56.98 75.16 36 62.3
DBRX 132B 47.58 72.38 53.24 47.2 47.11 51.96 26.8 49.3
Mixtral-8x22B-v0.1 141B 45.1 77.21 53.6 45.92 48.42 53.96 29.8 51.0

Fine-tuned

ALLaM-Instruct (from scratch) 7B 50.98 79.59 69.16 51.38 52.89 67.34 30.7 42.2
ALLaM-Instruct 7B 49.28 80.33 66.9 49.6 52.7 62.95 36.4 36.5
AceGPT-Chat 7B 43.4 59.35 45.8 33.58 35.57 36.05 37.9 22.5
Llama 2-Chat 7B 24.44 52.46 33.33 26.45 25.33 26.69 29.9 21.5
Mistral-Instruct-v0.3 7B 30.59 60.7 44.3 34.06 31.1 34.41 30.3 26.0
OLMo-Instruct 7B 25.36 58.74 32.74 26.5 24.77 27.33 29.6 36.5
Qwen2-Instruct 7B 37.78 79.3 49.82 48.07 47.3 56.18 35.1 51.3
Gemma-it 7B 25.62 58.03 41.48 23.15 22.91 23.73 34.8 37.0
Llama 3-Instruct 8B 33.99 75.21 53.98 41.49 44.32 49.42 34.0 38.3
Aya-23 8B 51.11 73.65 54.37 36.39 43.76 42.28 31.6 32.0

ALLaM-Instruct 13B 54.77 78.59 68.11 51.03 54.93 65.59 37.5 46.8
Yi-1.5-Chat 9B 29.8 67.57 45.5 36.02 31.47 43.6 28.7 47.8
AceGPT-Chat-v1.5 13B 49.41 64.93 60.7 37.92 40.04 42.81 36.4 22.5
Llama 2-Chat 13B 25.75 60.14 35.84 28.73 22.91 30.44 31.4 22.3
Jais-Chat 13B 77.12 70.68 54.8 41.43 46.93 48.68 31.6 25.3

ALLaM-Instruct 70B 57.91 79.01 75.92 62.23 58.47 78.38 38.4 56.8
Jais-Chat-v1 30B 80.52 71.14 60.4 43.99 48.6 48.52 32.9 26.0
Jais-Chat-v3 30B 88.37 70.05 62.37 30.15 51.21 38.53 37.3 32.5
Qwen1.5-Chat 32B 37.39 78.86 57.25 50.62 48.23 59.73 39.0 43.0
Yi-1.5-Chat 34B 30.85 65.96 45.6 35.47 35.2 40.22 25.3 49.8
CommandR 35B 55.42 78.34 60.19 48.38 50.65 55.44 33.8 47.2
Aya-23 35B 55.56 79.69 57.71 47.78 51.77 56.18 33.8 43.8
Mixtral-8x7B-Instruct-v0.1 47B 37.91 77.27 52.66 41.09 42.64 49.37 32.5 39.7
Llama 2-Chat 70B 30.72 59.49 40.77 32.86 28.68 30.6 32.3 25.5
Llama 3-Instruct 70B 45.75 80.26 36.27 60.11 58.47 71.41 37.7 59.70
Qwen1.5-Chat 72B 46.8 80.49 64.99 54.32 53.26 62.32 42.30 45.7
Qwen2-Instruct 72B 51.9 79.98 71.51 66.18 58.66 75.16 47.70 61.70
CommandR+ 104B 59.35 80.37 66.33 52.98 52.89 62.1 37.0 50.2
DBRX-instruct 132B 45.75 76.46 56.6 46.73 48.79 53.17 30.5 48.8
Mixtral-8x22B-Instruct-v0.1 141B 43.79 76.45 58.92 46.74 49.72 55.55 35.1 46.0

Table 8: Comparison of Arabic benchmarks for Various Models.
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Table 9: Comparison of English benchmarks for Various Models.
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H Training Framework1287

At the start of the project we forked Megatron-LM1288

and did our own customizations. During training,1289

we utilized data, tensor, and pipeline parallelism to1290

efficiently manage the large-scale model computa-1291

tions. By leveraging these parallelism techniques,1292

we achieved significant improvements in training1293

speed and model scalability. Our modifications also1294

included improving data iterators, adding metadata1295

in the checkpoints, custom data pipelines etc. De-1296

pending on how many GPUS, nodes, batchsize,1297

overlapping strategy and parallelism, our TFlops1298

varies in between 120 to 167. We trained our model1299

on bf16 mixed-precision.1300
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https://github.com/NVIDIA/Megatron-LM
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