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Abstract

Zero-shot coordination (ZSC) is an important challenge for developing adaptable
AI systems that are capable of collaborating with humans in unfamiliar tasks. While
prior work has mainly focused on adapting to new partners [13, 28], generaliz-
ing cooperation across different environments is equally important. This paper
investigates training AI agents in self-play (SP) to achieve zero-shot collaboration
with novel partners in novel tasks. We introduce a new Jax-based, procedurally
generated environment for multi-agent reinforcement learning, Infinite Kitchen.
Our rule-based generator creates billions of solvable kitchen configurations that
enable the training of a single, generalizable agent that can adapt to new levels. Our
results show that exposure to diverse levels in self-play consistently improves gen-
eralization to new partners, with graph neural network (GNN) based architectures
achieving the highest performance across many layouts. Our findings suggest that
learning to collaborate across a multitude of unique scenarios encourages agents to
develop maximally general norms, which prove highly effective for collaboration
with different partners when combined with appropriate inductive biases.

1 Introduction

Humans excel at ad-hoc cooperation, readily adapting to new partners and environments by jointly
attending to relevant cues, reasoning about shared intentions, and playing their role within an implicit
collective plan [30, 14, 25, 33]. This ability to compositionally represent collective tasks allows
skills to transfer across domains. For instance, after mastering a family recipe with their parents, a
novice chef can seamlessly transition to cooking that dish and more at home with their spouse. While
understanding these cognitive mechanisms is crucial for building AI that can coordinate in novel
scenarios, current reinforcement learning methods have yet to address this challenge. Developing AI
capable of zero-shot coordination (ZSC) with new partners in unfamiliar tasks is essential for creating
adaptable, human-compatible, AI agents [16].

Prior work on ZSC has mainly focused on adapting to novel partners, using methods like population-
based training and self-play (SP) algorithms. These approaches either simulate diverse partner
strategies during training [35, 4, 27, 23] or adjust the training objectives to explore broader strategy
spaces [13]. However, they often suffer from high computational costs, poor scalability, or brittle
coordination strategies. While generalizing to new partners is important, existing research has largely
overlooked the equally important challenge of generalizing across different environments. Neglecting
this aspect can lead to a false sense of progress in building AI that reliably coordinates with humans.
Each agent can only cooperate on the specific problem instance it was trained on and thus lacks a
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Figure 1: Overview of learning general cooperation through Infinite Kitchen. By training agents in
self-play on a large distribution of environments, we find that agents develop the ability to coordinate
with novel partners and novel problems, contrasting prior work which suggests self-play is insufficient
for learning general norms for cooperation.

more general notion of cooperation. In this work, we investigate the following question: how can we
train AI agents in self-play capable of zero-shot collaboration with novel partners in novel tasks?
We focus on the game Overcooked, a 2-player, cooperative 2D cooking game where an AI agent
collaborates with an AI or human partner to prepare a recipe [4, 33, 28, 37, 23]. We introduce a pro-
cedurally generated Overcooked environment called Infinite Kitchen. Infinite Kitchen is implemented
in Jax and is highly performant; we achieve processing speeds of 10 million steps per minute on a
single GPU. Unlike previous work that studies at most five handcrafted levels [4, 27, 23], our system
generates billions (4.60× 1028 possible initial states) of solvable kitchen configurations, enabling
the training of a single, generalizable agent that adapts to diverse scenarios rather than memorizing
specific solutions. In contrast to many unsupervised environment design (UED) approaches that
struggle with unsolvable or trivial scenarios, our rule-based generator ensures each layout presents a
legitimate coordination challenge, such as those depicted in Figure 2.

Our experiments intriguingly reveal that exposure to diverse environments during training consistently
improves generalization to novel partners (see Figure 1). From these results, we theorize that learning
to collaborate with a single partner across many levels during training encourages agents to develop a
minimal set of maximally general norms. We introduce a novel model architecture based on Graph
Neural Networks (GNNs). We show that when Infinite Kitchen training is paired with relational
inductive biases [1], the resulting learned norms prove highly effective for collaboration with different
partners across multiple grids. Our results suggest that the diversity of problems encountered, rather
than partner diversity alone, plays a crucial role in fostering general cooperative behaviors.

2 Related Work

The ZSC paradigm arises when generating data and retraining an AI for new tasks is costly or
inconvenient, and its solution has the potential for broad impacts across robotics [2, 24], digital
assistants [12, 18, 36], and other scientific domains [11, 19, 5].

Self-Play and Population-based Training ZSC has been approached through self-play and
population-based training. Self-play has been successful in many games [34, 26, 32, 38, 4], but often
leads to inflexible strategies that struggle with unfamiliar partners [28, 16]. Population-based methods,
which train an AI with diverse partners and then evaluate it with humans, generally outperform self-
play in zero-shot Human-AI coordination. In Overcooked, previous works [4, 28, 37, 23] introduced
diversity through variations in initial conditions, action trajectories, or rewards, but these approaches
are computationally expensive and fail to produce reusable strategies across tasks. Our approach
systematically varies the environment to increase state diversity, enabling cross-task generalization
while reducing the need to train multiple policies by remaining in the self-play setting.

Procedural Environment Generation Recent work has demonstrated that procedurally generated
environments can improve the generalizability of reinforcement learning (RL) methods in single and
multi-agent settings [7, 8, 10, 3, 6, 22]. These studies show that exposure to a large and diverse set of
samples enhances generalization [7]. However, they typically evaluate agents with the same team seen
during training, which doesn’t address the core challenge of zero-shot coordination (ZSC). Related to
our work, Ruhdorfer et. al. [20] study unsupervised environment design (UED) in a in the context
of Overcooked. However, their work does not prevent the generation of impossible coordination
challenges [9, 17, 15] and their results reveal poor cross-play performance on held-out levels. In
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Figure 2: A few New Coordination Challenges from "Infinite Kitchen" - a procedural level generator
capable of creating billions of layouts in Overcooked. 2a shows symmetric advantages with one
optimal delivery location, requiring agents to break symmetry in who delivers first. Rigid conventions,
like always having blue go first, can fail with novel partners, especially if red takes the lead, potentially
trapping the other agent. 2b and 2c illustrate asymmetric advantages, where one agent is closer to the
pot and the other to remaining items. These layouts are challenging due to navigational complexity
and efficiency issues, particularly if agents develop brittle strategies. 2c is especially difficult due
to the higher variability in conventions, increasing the risk of learning arbitrary rules that don’t
generalize to new partners.

contrast, we show for the first time how training on a vast number of novel, solvable coordination
challenges improves the generalization of AI to novel partners.

3 Methods

Procedurally Generated Overcooked We extend the Overcooked environment from the JaxMARL
project to support a wider variety of levels while keeping observation and action spaces consistent
[21]. We observe three main sources of variation that contribute to a range of coordination challenges
in Overcooked: (1) barriers that hinder movement, (2) asymmetric advantages encourage self-play
agents to memorize a single role, and (3) crowded objects restricting an agent’s access to an item
while it is being used by another.

To address these challenges, agents need to flexibly coordinate roles, anticipate each other’s actions,
and navigate obstacles. We randomly generate features like walls, plates, pots, and onions within the
grid, using wall-predicates to structure the generation process and introduce adjustable complexity.
This ensures solvable layouts by placing essential objects in reachable areas, as shown in Figure
6 and detailed in the Appendix, but also varied environments, since we sample additional delivery
locations, plate piles, pots, and onion piles on unoccupied walls. In the worst case where a wall
divides both agents and all items are located on one side of the divider, a single agent will be able to
achieve the task on their own. If the items are spread across both sides of the divider, then this is a
coordination problem similar to the Forced Coordination Overcooked layout [4]. In the remaining
cases, since a single agent is able to complete the task on its own, it is achievable by a pair of agents
but still presents challenging navigation and coordination problems.

Our generator creates new coordination challenges in Overcooked, as illustrated in Figure 2. Moreover,
Jax allows us to run the entire training and evaluation pipeline, from the environment generation to
the neural network updating of agents, at 10 million steps per minute on a single GPU. We leverage
this speed to train our agents on Infinite Kitchen for 2 billion steps.

Graph Attention Networks Previous work in Overcooked has relied on Convolutional Neural
Networks (CNNs) for feature extraction from pixel observations. However, human cognition heavily
relies on relational bias and attention, which facilitate complex social reasoning and generalization
by forming abstract representations and attributing intentions to agents [30]. To incorporate these
cognitive aspects, we extend the use of Graph Attention Networks [31] to Overcooked as a feature
extractor, replacing the traditional MLP or CNN approach in Overcooked.

Following [29], we represent each cell’s sparse 26-channel symbolic encoding from the original
JaxMARL implementation [21] as a node in a graph, connecting all cells to all agents. This allows
agents to reason about their environment in relation to other objects and each other. After processing
this graph through a single graph attention layer, we concatenate the node-level information into a
cohesive scene embedding using a Linear layer with ReLU activation. The scene embedding is then
passed through an LSTM and three Linear layers to create the actor and critic networks. We refer to
this architecture as GNN+LSTM, and also introduce a variant without the LSTM called GNN.
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Figure 3: Comparison of agent performance across different architectures and training regimes.
3a shows the performance of Single Kitchen agents within their training environment (blue bars),
whereas for Infinite Kitchen agents (green bars) we show generalization to a novel, held-out test
environment. 3b shows the generalization gap between self play and cross play performance for
Single Kitchen and Infinite Kitchen agents, where lower values indicate a better ability to generalize
to novel partners on the 5 original grids.

4 Results

In the following section, we evaluate the effect of training on our Procedurally Generated Overcooked
environment, Infinite Kitchen, for ZSC with AI baselines, although future work will evaluate the
performance of these agents playing with humans.

Held-out test environments. For evaluation, we generate a set of 100 grids from the procedural
environment generator and prevent them from being sampled during training.We also keep the
expanded version of the 5 original Overcooked grids shown in Figure 5 held out of the training data.
We train 6 teams of agents using IPPO on 2 billion steps split across 32 parallel environments per
team. We compare the performance of a single model trained across multiple grids (which we refer
to as Infinite Kitchen) to models trained only on one grid (which we refer to as Single Kitchen).

Baselines. In keeping with conventional architecture for Overcooked with symbolic observations
[21], we train a single Linear layer feature extractor, a Recurrent Neural Network to encode historical
context within the scene, and three additional Linear layers followed by ReLU activations on the
outputs of first two for both the actor and critic modules required by IPPO. We call this baseline
(MLP+LSTM), and call a variant with the same architecture except no Recurrent layers (MLP).All
network architectures are trained in both Single Kitchen and Infinite Kitchen. We also train and
evaluate the State-of-the-Art Self-Play algorithm for cross-play generalization in Overcooked, E3T
[35], on both Single and Infinite Kitchen, using either an MLP or GNN feature extractor but keeping
all other architectural decisions true to the original work.

Cross-Play (XP) Evaluation Metric. We compare the performance of all agents and architectures in
self-play (SP) and cross-play (XP). We assess the mean number of handoffs (successful deliveries)
in two settings. The SP setting is when an agent plays with the same partner it saw during training
but does not do any learning. We generate 100 rollouts of agent behavior per grid per pair of agents
trained together (with 6 seeds per architecture/training regime this becomes 600 data points per model
evaluated. For XP, we assess the mean number of handoffs for agents playing with partners they
have not seen during training but rely on the same algorithm and architecture. This results in 3000
datapoints per model evaluated given 6 seeds all playing with each other.

Findings We compare the zero-shot coordination performance between AI baselines using different
architectures in Figure 3. The results show that even for simple architectures such as an MLP
without any recurrent networks, a single model training on Infinite Kitchen significantly improves XP
performance on the conventional 5 layouts than models which only trained on one layout. This finding
holds true even when compared to the state-of-the-art method for ZSC coordination on a single
kitchen (E3T). When Infinite Kitchen agents are trained using the E3T algorithm, we observe that
the addition of a Graph Network feature extractor boosts cross-play performance further. Moreover,
Figure 3b demonstrates that this improved generalization is a direct product of training on Infinite
Kitchen: there is a lower generalization gap across the board between SP and XP performance for
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Figure 4: Heatmap of agent trajectories in an episode of Forced Coordination (grid illustrated in 4a).
(4b, 4c) show the normalized frequency of visited locations by Single Kitchen agents in Self Play. 4c
shows the normalized frequency of visited locations by an Infinite Kitchen agent. Brighter regions
indicate the location has been visited more often. The highly concentrated regions of cells visited
for SK seeds in comparison to the IK seed indicates that SK agents learn brittle and rigid strategies
which do not generalize to new partners. In contrast, IK agents show more diverse and adaptable
behavior by increasing its state coverage.

Infinite Kitchen agents than for Single Kitchen agents. This indicates that the norms learned during
training across varied environments are enabling transfer to novel partners as well as problems.

We validate our findings in Figure 7 in the Appendix, which shows the cross-play performance of
Infinite Kitchen models on 100 held-out levels created by the procedural environment generator.
Infinite Kitchen agents consistently cooperate with their training partner to solve new tasks, and this
ability generalizes to other partners (green bars). Figure 7 also shows the performance of Single
Kitchen agents trying to generalize to novel environments and partners. None of these agents could
solve a single task created by the procedural generator because they have overfit to the environment
they trained on, forming brittle visual representations and cooperation strategies. Thus, the mean
number of handoffs on cross-level evaluations for existing methods is 0 even in SP, compared to the
9 deliveries achieved by IK agents in XP settings using simple architectures such as MLPs. GNNs
provide an additional boost to this cross-level, cross-partner generalization, boosting the number of
handoffs to 10 on some IK generated grids.

Qualitative Analysis of Learned Norms We provide empirical intuition for the success of IK
methods performing in XP with novel partners. After being exposed to many diverse grids, IK
agents have gained a richer representation of the compositional nature of a task and the consequences
of movement and interaction in a grid. This means they can explore more of the state space with
confidence, so if a novel partner takes an action they were not expecting during training, they can
still optimally respond. This can be seen in Figure 4, where we compare the frequency of different
locations visited by SK and IK agents in Coordination Ring. The prevalence of darker regions for
the SK agents indicates that they follow a fixed route when completing the task that can be brittle if
users try going the opposite way around the center block and force agents into locations they do not
have experience acting in. We found that the seed in 4b is unable to play with seed 4c because they
have learned different modes of the cooperative policy. In contrast, the IK agents have a much more
uniform distribution over the cells they visit, meaning they will be more capable of adapting to users’
actions should they be forced into a route they would not traditionally take.

5 Discussion

This paper has shown how learning cooperative strategies across many tasks with a single partner
is a powerful method to generalize to many tasks with novel partners. Whereas prior work on ZSC
has focused on increasing the entropy of strategies a learning agent is exposed to during training,
we propose increasing the entropy of the task space as a means to coordinate across partners. When
paired with methods to learn rich relational representations of scenes, we find this approach enables
robust transfer across a wide variety of coordination problems and partners.

Our findings raise many questions, such as how much do agents which learn to coordinate on many
tasks with a single partner benefit from additional exposure to diverse partner strategies during the
course of learning? Future research will address these questions and evaluate the generalizability of
IK agents compared to SOTA population-based methods when cooperating with humans.
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Figure 5: 5 original Overcooked layouts from [4]. From left to right, we have Cramped Room,
Asymmetric Advantages, Coordination Ring, Forced Coordination, Counter Circuit.

Figure 6: Color map of Procedural Overcooked Grid Generation. Green regions show reachable areas
for delivery locations, pots, plates, and onions. Agents spawn in opposite blue or purple regions.
Dark gray indicates potential wall locations that may block access to items. The grid shows all wall
predicates (horizontal, vertical, middle block, no interior walls) superimposed, though only one type
is sampled during actual grid generation.

A Appendix / supplemental material

A.1 Wall Generation Method

The generation process was carefully designed to ensure that every layout created is both solvable and
presents significant coordination challenges from one or more of the 3 tasks. We begin by creating a
continuous wall around the border of the grid, making the maximal space a player can move in be a
5× 5 grid. We then have the option to generate a large, 3× 3 block in the middle of this space with a
probability pm or a continuous wall stretching through the middle row or column of the grid with a
probability pc, or leaving the 5× 5 grid empty with a probability pe. If we generate a middle wall,
each cell in the 3× 3 middle block has the probability of being converted back into a free space with
a probability pp. If we chose to generate a continuous wall, we select f cells from the 5 cells that the
wall is comprised with a probability of 1

(5f)
∗ (1− pf ) of those f of cells being converted into a free

space, where pf is the probability of the wall remaining intact.

We note that this wall generation process leaves the potential for being unsolvable if items are naively
sampled from all possible walls, since delivery locations could end up in the corners of the grid, on a
wall in the middle of the grid that is inaccessible, or at T-junctions where the border wall connects
with a wall going through the middle row or column of the grid (the dark gray regions in Figure 6).
As such, we begin by first sampling a single delivery location, plate pile, pot, and onion pile to be
on the border wall but not within the corners or potential T-junction locations (the green regions
within Figure 6). We then spawn agents on opposite quadrants of the 5 × 5 grid, but make sure
none of them are located on a wall position if the middle wall block, horizontal continuous wall,
and vertical continuous wall are superimposed onto of each other (opposite blue regions or opposite
purple regions in Figure 6). When taken with our previous wall generation scheme, this enables
agents to complete the task independent of where the items apart of the recipe are generated. In the
worst case where a wall divides both agents and all items are located on one side of the divider, a
single agent will be able to achieve the task on their own. If the items are spread across both sides
of the divider, then this is a coordination problem similar to the Forced Coordination Overcooked
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layout. In all other cases, since a single agent is able to complete the task on its own, it is achievable
by a pair of agents but still presents challenging navigation and coordination problems.

By structuring our generator to target the mentioned three sources of variation, and ensuring solvabil-
ity, we introduce a number of different coordination challenges for future research on collaboration
in Overcooked to address. A few of them are detailed in Figure 2.
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Figure 7: Comparison of agent performance on 100 held-out procedurally generated levels using
different architectures and training regimes. The blue bars indicate Single Kitchen agent performance
and the green bars indicate Infinite Kitchen agent performance. Hashed bars show performance from
self play, while solid bars show performance in cross play.

A.2 Additional Results

We demonstrate the cross-play performance of different seeds and architectures of models trained
on our procedurally generated environment playing 100 novel levels together in Figure 7. Just as in
Figure 3, we find that the GNNs support generalization to novel environments and novel partners,
and that strategies learned for cooperation in self-play are flexible enough to transfer over into the
cross-play setting, even with simple architectures such as an MLP.

Moreover, we provide a breakdown of the cross-play performance between Single Kitchen and Infinite
Kitchen methods on each of the five canonical levels (Asymmetric Advantages, Forced Coordination,
Coordination Ring, Counter Circuit, and Cramped Room) in Figure 8. Again, we find that a single
model training on a procedurally generated environment is able to cooperate with novel partners
better than agents who were only exposed to one environment, with the added benefit of their learned
coordination strategies being reusable when faced with novel challenges.
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(a) Asymmetric Advantages
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(b) Coordination Ring
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(c) Counter Circuit
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(d) Cramped Room
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(e) Forced Coordination

Figure 8: Comparing Infinite Kitchen vs Single Kitchen across the 5 original Overcooked layouts.
Infinite Kitchen is a single model we reevaluate across each layout, and Single Kitchen is when we
retrain a new model for every layout. We observe that Infinite Kitchen typically produces better
Cross-play performance despite never having seen the levels or partners it is tested with during
training.
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