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Abstract
We present an Adversarially Pre-trained Trans-
former (APT) that is able to perform zero-shot
meta-learning on tabular prediction tasks without
pre-training on any real-world dataset, extend-
ing on the recent development of Prior-Data Fit-
ted Networks (PFNs) and TabPFN. Specifically,
APT is pre-trained with adversarial synthetic data
agents, who continue to shift their underlying data
generating distribution and deliberately challenge
the model with different synthetic datasets. In
addition, we propose a mixture block architecture
that is able to handle classification tasks with ar-
bitrary number of classes, addressing the class
size limitation – a crucial weakness of prior deep
tabular zero-shot learners. In experiments, we
show that our framework matches state-of-the-art
performance on small classification tasks without
filtering on dataset characteristics such as number
of classes and number of missing values, while
maintaining an average runtime under one second.
On common benchmark dataset suites in both clas-
sification and regression, we show that adversarial
pre-training was able to enhance TabPFN’s perfor-
mance. In our analysis, we demonstrate that the
adversarial synthetic data agents were able to gen-
erate a more diverse collection of data compared
to the ordinary random generator in TabPFN. In
addition, we demonstrate that our mixture block
neural design has improved generalizability and
greatly accelerated pre-training.

1. Introduction
In standard deep learning workflows, models are either
trained per dataset, or employed on data in a form com-
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patible with, and drawn from, the same distribution as the
datasets it was previously trained on. Even in transfer learn-
ing, where the target of the model is changed, the input is at
most expanded, but at least overlaps heavily with the data
distribution that the model has previously seen in training.
This is in contrast with meta learning (Finn et al., 2017;
Nichol & Schulman, 2018; Lemke et al., 2015; Vanschoren,
2018; Feurer et al., 2022; Hospedales et al., 2021; Zintgraf
et al., 2021), where a model is trained to be adaptive to new
datasets such that few gradient updates or fine-tuning are
needed, instead of training a new model specialized to every
distinct dataset from scratch. In meta learning, rather than
modeling a specific dataset, the model is trained to learn
how to learn. This has multiple advantages. First, meta
learning is highly adaptable (Huisman et al., 2021; Finn
et al., 2017; Frans & Witkowski, 2021) – it learns more gen-
eralized representations that can be adapted to new tasks and
different domains. Second, meta learning makes efficient
use of data (Finn et al., 2017; Gevaert, 2021) – it supports
learning from just a few samples. Third, as a consequence
of its efficient use of (small) data, the model can reach a
point where it is able to make meaningful predictions very
quickly (Vanschoren, 2018).

In prior work, Verma et al. (2020) discussed the notion of
zero-shot meta-learning. They train a generative adversarial
network conditioned on class attributes, that can generate
novel (previously unseen) class samples. This relies on the
inputs present in the training data (class attributes) to be
indicative of the new unseen classes. While they do not use
gradient updates on the unseen data for prediction, they rely
on the input data coming at the very least from a very similar
distribution to that of the training data. The scope of prob-
lems this work aims to address is pristine zero-shot meta
learning: given an unseen dataset from an unseen task after
the model is pre-trained and deployed, can we do prediction
on this dataset without training the model on it? Specifi-
cally, with zero gradient update on the model, and with no
reliance on the context similarity between this dataset and
the datasets that the model was pre-trained on. Note that
this concept of zero-shot is slightly different from that in
large vision and language models (Mann et al., 2020; Perez
et al., 2021; Tsimpoukelli et al., 2021; Cahyawijaya et al.,
2024; Ahmed & Devanbu, 2022) – the unseen datasets can
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entail heterogeneous fields or class labels that were never
observed during pre-training, and zero-shot in this context
refers to the amount of model optimization conducted be-
ing zero given the unseen dataset rather than the amount
of empirical examples seen being zero. The advantage of
successfully establishing such a model is the exceptional
generalizability and runtime.

A few recent breakthroughs (Müller et al., 2021; Hollmann
et al., 2022) have demonstrated that achieving this aspiration
is possible: Müller et al. (2021) introduced Prior-Data Fitted
Networks (PFNs). They pursue zero-shot meta-learning by
using transformers pre-trained on synthetic data generated
from a collection of prior distributions, to perform approx-
imate Bayesian inference using in-context learning (Luo
et al., 2018; Mann et al., 2020). PFNs do not fit a model on
downstream training data, instead feeding training data into
the context in forward pass and making predictions condi-
tioned on the context. Hollmann et al. (2022) introduced
a PFN specifically aimed at tabular datasets – TabPFN. A
more detailed background review on PFNs and specifically
TabPFN can be found in Appendix A. Tabular data – data or-
ganized in rows and columns, and characterized by an unlim-
ited heterogeneity of data fields, remains an area of machine
learning where deep neural networks (DNNs) still struggle
(Borisov et al., 2022; Shwartz-Ziv & Armon, 2022; McEl-
fresh et al., 2024; Ye et al., 2024b) to push the boundaries of
the state-of-the-art gradient boosted decision trees (GBDTs)
(Prokhorenkova et al., 2018; Chen & Guestrin, 2016; Ke
et al., 2017), despite numerous approaches (Borisov et al.,
2022; Somepalli et al., 2021; Grinsztajn et al., 2022; Gor-
ishniy et al., 2021; Rubachev et al., 2022; Levin et al., 2022;
Kadra et al., 2021a; Arik & Pfister, 2021; Popov et al., 2019).
Yet, tabular data is one of the most common data types in
real-world machine learning (ML) applications (Chui et al.,
2018; Borisov et al., 2022; Shwartz-Ziv & Armon, 2022).
Although TabPFN has demonstrated exceptional zero-shot
meta-learning capability on certain small tabular prediction
tasks, we show that the distribution of synthetic data used in
its pre-training is actually quite limited. Besides, the class
size constraints of TabPFN pose a significant limitation on
its generalizability – this might not be an important concern
for the traditional one-model-for-one-domain pipeline, but
is a crucial weakness for a zero-shot meta-learner (ZSML)
since an unprecedented number of class labels could be
present in inference time. Note that zero-shot meta-learning
is largely similar to foundation modeling but slightly differ-
ent in its scale and objective – it does not necessarily involve
billions of parameters to learn the distribution of data and
acquire token representations in a broad domain such as
language or health records, but to model the general predic-
tion logic and learn how to acquire data representations in
unseen domains during inference time.

Similar to Hollmann et al. (2022), we investigate the capa-

bility of zero-shot meta-learning under the scope of tabular
data prediction problems. Our contributions are listed as
follows:

• We propose an adversarial synthetic data pre-training
approach on PFNs to establish a zero-shot meta-learner
that is able to handle tabular prediction tasks with im-
proved performance.

• We eliminated the class size limitation for TabPFN
on classification tasks by proposing the mixture block
neural design, which yields a zero-shot meta-learner
with better generalizability.

• In experiments, we show that our framework achieves
state-of-the-art performance on small tabular classifi-
cation tasks without filtering on class size, feature size,
number of categorical features or number of missing
values, and improved upon TabPFN in both classifica-
tion and regression. We show that the adversarial data
agents are able to enrich the synthetic data generating
distribution, and the mixture block is able to generalize
to unseen class size and accelerate pre-training.

2. Proposed Method
Our Adversarially Pre-trained Transformer (APT) model is
pre-trained once offline using a mix of random synthetic
data generators and adversarial synthetic data agents. In
this phase, the goal of the model is not to learn the specific
pattern or probability distribution of any given dataset, but
to learn the general prediction logic and means to represent
various data, i.e. learning to learn. Once pre-trained and
deployed, the model makes predictions on the testing set of
any real-world dataset of interest in one forward pass, with-
out performing any back-propagation or gradient updates
of its weights. A demonstration of the workflow is shown
in Figure 1. In Section 2.1, we describe the adversarial
data agents in detail, whose goal is to continuously produce
diverse and more challenging datasets for the meta-learning
model during pre-training; in Section 2.2, we elaborate on
the architecture of our transformer model, which has no
restrictions on the class size of any real-world datasets prac-
titioners provide.

2.1. Adversarial Data Agents

In the pre-training phase, we compose a batch of m datasets
{X(k),y(k)}1≤k≤m in each iteration using m different data
generators {g1, . . . , gm} that each independently generate
n number of data points, where X(k) = [x

(k)
i ]⊤i≤n =

[x
(k)
i,j ]i≤n,j≤dk

and y(k) = [y
(k)
i ]⊤i≤n are the predictor ma-

trix and response vector (denoted as X and y when no
index is specified) with feature size dk. We adopted the
multi-layer perceptron (MLP) construction introduced in
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Figure 1. The model workflow of Adversarially Pre-trained Transformer (APT). Pre-training is done once, offline, with datasets generated
by a mix of random synthetic data generators and adversarial synthetic data agents. The train-test split is randomly sampled for each batch
of datasets. After the model is pre-trained and deployed, predictions are done per real-world dataset, online, with one forward pass and no
parameter update. The transformer is test-masked, meaning that each token only attends to training data tokens. For cleanliness of the
figure, only the attentions to and from the first training data token and the first testing data token are plotted.

Hollmann et al. (2022) for each generator instance, where
predictors x

(k)
i and response y

(k)
i are values of randomly

selected neurons in sparsified noisy MLPs with some addi-
tional pre-processing. More details regarding this approach
can be found in Appendix A.1.

Different from Hollmann et al. (2022), instead of generating
datasets solely from randomly initialized sparse MLPs, a
subset of the m generators in our framework are adversar-
ial agents that learn from the model’s performance on the
generated data, and perform gradient ascent on the model’s
prediction loss. In other words, these adversarial agents chal-
lenge the model by constantly shifting the synthetic data
generating distributions to deliberately produce datasets that
are more difficult for the model to handle. The loss for an
adversarial agent gη with respect to prediction model qθ can
be written as

L(gη) = EX,y∼gη log qθ(y(l+1):n|X(l+1):n, {X1:l,y1:l})
(1)

where {X1:l,y1:l} and {X(l+1):n,y(l+1):n} are the train-
ing and testing set split from generated dataset {X,y} at
position l. In the following sections, we refer to the for-
mer (generators based on randomly initialized MLPs) as
ordinary data generator, and the latter (generators based on
adversarially updated MLPs) as adversarial data agents.

Relation to Classic Adversarial Training In relation to
GANs (Goodfellow et al., 2014), the data agents here are
the generators, and the meta-learner is the discriminator.
Contrary to classic adversarial training, there is no real ver-
sus fake samples for the discriminator to distinguish in this
context. The generator (data agent) and the discriminator
(meta-learner) have one coherent competing objective: the
meta-learner seeks to minimize the prediction loss on data
generated by the data agents, while the data agent seeks
to generate data that maximize the prediction loss by the
meta-learner. As a result, the desired gradients for updating
the discriminator is but a flip of sign to its gradients calcu-
lated through back propagation on the generator’s objective.
Hence, both the meta-learner and the data agents can be
updated in one single iteration after loss calculation in this
scenario. This results in a more efficient adversarial training,
and we further reduce its potential of mode collapse with
data agent reset described in the last paragraph of this sec-
tion. Note that contrary to classic GANs, the discriminator
is the final product in this context rather than the generator.

Discretization of Variables A key challenge in estab-
lishing adversarial data agents is the gradient flow under
discretization: how do we generate synthetic data with cat-
egorical features while being able to perform end-to-end
loss back-propagation? Inspired by the Gumbel-Softmax
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(a) Model architecture for classification tasks (b) Mixture block

Figure 2. Model architecture and the mixture block. a) X = (Xtrain, Xtest) and ytrain are embedded on Rdmodel using a feature
embedding block and linear projection respectively. Then, embeddings for Xtrain and ytrain are added as htrain, embeddings for Xtest

are denoted as htest. Embeddings (htrain,htest) are then passed to the transformer blocks with attention towards test embedding htest

masked, same as Hollmann et al. (2022). Finally, the outputs from transformer blocks are transformed to class probabilities through
the mixture block for classification tasks, or directly transformed to point predictions through standard dense final layer for regression
tasks. b) For each data point in the testing set, we use its output q after transformer blocks to query training data’s outputs K. With two
different dense feedforwards, two sets of logits are predicted: one set of logits are used to calculate the scaled softmax probabilities –
these probabilities indicate how likely that the testing point is in the same class as the corresponding training points; the other set of logits
are used to sample soft-discrete binary gates via Concrete distribution to sparsify these probabilities. Finally, the gated probabilities from
the same class are added together to yield the final predictions.

trick (Jang et al., 2016) and the Concrete distribution (Mad-
dison et al., 2016), we propose a continuous relaxation
of discretization that naturally extends on the ranking dis-
cretization approach introduced in Hollmann et al. (2022),
controlled by a user-specified temperature hyperparameter
τ . For the j-th feature column x·,j of a predictor matrix X
and the corresponding Nj − 1 randomly sampled Gaussian
quantiles Q

(1)
j < Q

(2)
j < · · · < Q

(Nj−1)
j at the initializa-

tion of the corresponding data agent, the soft-discretization
that converts the i-th value of the j-th feature xi,j to a soft-
categorical value with cardinality Nj is given by

xcat
i,j = π

(∣∣∣{xi,j ≥ Q̃
(l)
j

}
l

∣∣∣)+
τ · log

1 +
xi,j − Q̃

(∣∣∣{xi,j≥Q̃
(l)
j

}
l

∣∣∣)
j

Q̃

(
1+

∣∣∣{xi,j≥Q̃
(l)
j

}
l

∣∣∣)
j − Q̃

(∣∣∣{xi,j≥Q̃
(l)
j

}
l

∣∣∣)
j


(2)

where π is a permutation function on integer domain
{1, 2, . . . , Nj − 1}, Q̃(l)

j = µ(x·,j) + σ(x·,j) · Q(l)
j for

1 ≤ l < Nj are the unnormalized quantiles with bound-
aries Q̃

(0)
j = min(x·,j) and Q̃

(Nk)
j = max(x·,j), and

|{v ≥ Q̃
(l)
j }l| =

∑
l I(v ≥ Q̃

(l)
j ) is the position of a value

v in the ordered sequence {Q̃(l)
j }1≤l≤Nj . A visual demon-

stration of this conversion can be found on the right side of
Figure 6 in the Appendix. Same as Hollmann et al. (2022),
the extended ranking discretization approach decides the
value of a categorical variable using only the continuous
scalar xi,j , i.e. the value of one neuron in the sparsified
noisy MLP, as opposed to the Gumbel-Softmax or Concrete
distribution approach which would require selecting Nj neu-
rons as logits of the Nj classes. In our early experiments,
we found that sampling multiple neurons to decide the value
of one categorical feature achieved significantly worse per-
formance than ranking discretization. Furthermore, since
we do not desire to learn the explicit form of these distribu-
tions, explicitly generating class logits is not a necessity, and
hence we prefer a more efficient differentiable discretization
technique that does not involve reparameterization tricks,
softmax operations or excessive samplings.

Data Agent Reset In terms of the diversity of generated
data, there is a balance between adversarially updating the
neurons in the MLPs and re-initializing the MLPs all to-
gether. Although in the short run, re-initializing the MLPs
and the corresponding random factors (number of features,
number of classes, etc.) instantaneously yield new datasets
with a high chance of possessing much different fields and
distributions from the previous, such generation is con-
strained by the domain of distribution defined by the preset
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range of hyperparameters in the long run (we show some
evidence on this in Section 3.2). On the other hand, al-
though adversarial data agents are performance-driven and
could explore out-of-distribution regions better than ran-
dom initialization, it also has the potential to converge to
the Nash equilibrium and reach a stalemate with the meta-
learner – for example, converging to a state where generated
predictors x and response y have no correlation. Hence,
we combine the two approaches and reset the adversarial
data agents every Ne epochs to avoid such convergence. To
speak from the GANs angle, we are letting the discriminator,
i.e. the meta-learner, to periodically gain an advantage and
slightly beat the generator. Different from classic GANs, the
discriminator is the desired model here while the generator
is the supporting entity, hence exploration is more important
than optimization for the generator in this context.

2.2. Mixture Block Architecture

Contrary to modern DNNs, traditional ML algorithms such
as K-nearest neighbors and tree-based methods are more
flexible in terms of their ability to handle varying cardinality
of classification labels, in the sense that they do not entail
fixed-size dense layer parameters that cannot generalize to
a different classification task with different label cardinality.
This is not much of an issue for the traditional one-model-
for-one-dataset ML pipeline, but is of significant importance
for zero-shot meta-learners, yet unaddressed in prior works.
Inspired by how tree-based methods solve classification
tasks in a manner that is compliant to the empirical values
and cardinality of training labels, we propose a scatter-sum
mixture block as the output prediction head for classifica-
tion tasks that significantly departs from the ordinary dense
final layer approach. A visual demonstration can be found
on the right of Figure 2. For each data point in the testing
set, we use its embedding after the transformer blocks to
query the embeddings of training data, and yield two sets
of logits via two separate feedforwards: one set of logits is
used to calculate softmax probability weights of keys and
the other set is used to sample soft-discrete gates via Con-
crete distribution (Maddison et al., 2016) to sparsify these
weights. In essence, these gates govern the splits of training
data in relation to the testing query, such that the final pre-
diction only pays attention to a subset of relevant training
data representations. In our preliminary experiments, we
discovered that sparsifying attention through these gates are
crucial to performance, and the mixture block works poorly
without this component. The output class probabilities are
then acquired by a scatter summation of non-gated values
using their original labels as index. Relating to tree-based
methods, the gates here are used to determine the subset
of training data that are in the same split of leaf nodes as
a given testing data point, and the weights are used to de-
termine the relative importance of each label in that split.

Contrary to tree-based methods, the splits are point-specific,
i.e. there is a different split decided for each testing data
point, and the decision within the split is weighted rather
than via majority voting. Note that this approach does not
change the order of computation complexity in terms of data
size and data dimensions – it simply removes the final dense
layer and adds two more multi-head attentions and feedfor-
wards to the transformer architecture in a non-sequential
manner.

Large Data Size and Feature Size Compared to the class
size limitation, the feature size limitation of PFNs is rel-
atively less tricky in theory, and there are already a few
straightforward solutions concurrent with this work (Holl-
mann et al., 2025; Qu et al., 2025) that extend TabPFN’s
capabilities in handling datasets with larger number of fea-
tures, as well as larger number of samples. Besides, the
data capacity of PFNs could be adequately expanded by
incorporating some of the recent advancements in general
transformer and state-space model research (Wu et al., 2022;
Bulatov et al., 2023). Therefore, we do not put emphasis on
addressing these problems in this work, and make two sim-
ple adaptations to APT based on patch embedding and batch
aggregation in the event that prediction on large datasets is
required. See Appendix B for details. Note that concurrent
solutions such as Hollmann et al. (2025); Qu et al. (2025)
do not pose conflict with our proposed architecture (mix-
ture block only modifies the last layer of the model), thus
can be naturally incorporated into our framework as the
practitioners desire.

3. Experiment
We evaluated our model and competing algorithms on com-
mon ML benchmarking dataset suites for tabular classifi-
cation and tabular regression problems. In Section 3.1, we
show that APT achieves state-of-the-art performance on
small tabular classification tasks with a runtime comparable
to that of TabPFN. In Section 3.2, we present qualitative
analysis on the impact and characteristics of the adversarial
data agents. In Section 3.3, we demonstrate the generaliz-
ability of the mixture block and its effect on pre-training. In
Section 3.4, we provide ablation study and show that adver-
sarial pre-training was able to enhance the performance of
TabPFN on both classification and regression tasks.

Datasets For classification, we used the curated open-
source OpenML-CC18 dataset suite (Bischl et al., 2021)
containing 68 popular tabular benchmark datasets (4 vi-
sion datasets mnist 784, CIFAR 10, Devnagari-Script, and
Fashion-MNIST are not treated as tabular and removed from
the total 72 datasets), and our main results are presented
on all small datasets (number of samples no larger than
2,000) in OpenML-CC18 similar to Hollmann et al. (2022),
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Table 1. Performance of algorithms on 35 small datasets with no larger than 2,000 data points in the OpenML-CC18 suite, given one hour
of time budget. Note that there are two styles of standard deviation (std.) calculation for AUC: 1) first take the mean of AUC across
datasets, then calculate the std. across splits (std. of mean), as used by TabPFN (Hollmann et al., 2022); 2) first calculate the std. across
splits on each dataset, then take the mean across datasets (mean of std.), as used by TabZilla (McElfresh et al., 2024). Our result table
largely adopted the style of TabZilla, but we present both std.’s here for clarity. The std. of mean shows variation on suite level, which is
more likely to result in a statistical significance compared to mean of std., which shows average variation on dataset level. The mean
of AUC taken across splits are used as the scoring metric to calculate “Rank” and “Wins” of each algorithm across datasets. If many
algorithms are tied for first, a win is assigned to each first-place algorithm. Same as TabZilla (McElfresh et al., 2024), the table is ordered
by the mean of rank. The full results on each dataset for top algorithms are shown in Table 5 of Appendix D.

Rank ↓ ROC-AUC ↑ Wins ↑ Time (sec.) ↓
(Tune + Train + Predict)

mean med. min max mean std. of mean mean of std. num. mean med.

APT 3.86 3 1 11 0.921 0.003 0.019 13 0.90 0.40
CatBoost 4.03 4 1 9 0.918 0.002 0.020 6 3542.42 3555.74
TabPFN 4.57 4 1 11 0.913 0.003 0.020 4 0.86 0.37
SVM 4.89 4 1 12 0.904 0.003 0.023 10 1175.58 481.50
XGBoost 5.37 5 1 10 0.914 0.006 0.020 4 3607.78 3598.91
LightGBM 5.60 6 1 11 0.917 0.003 0.019 3 3542.94 3582.07
LASSO-Logistic 6.69 8 1 12 0.908 0.001 0.023 3 1519.41 1227.52
Ridge-Logistic 6.91 8 1 11 0.907 0.001 0.022 1 1479.93 845.59
RandomForest 7.17 7 1 12 0.908 0.003 0.021 3 1736.71 1476.37
ResNet 7.69 9 1 12 0.825 0.004 0.040 3 3582.15 3597.41
KNN 9.57 11 1 12 0.884 0.006 0.024 1 127.82 77.31
SAINT 9.97 12 1 12 0.759 0.017 0.077 1 3597.41 3594.41

except that 1) there is no additional filtering, i.e. all datasets
regardless of number of classes, number of features, num-
ber of categorical features, and number of missing values
are kept in our evaluation pool, composing a more general
collection of datasets. This brings the number of datasets
in the evaluation pool from 18 to 35; 2) The train-test split
is set to 80-20 instead of the unconventional 50-50. For
regression benchmarking, we used the curated open-source
OpenML-CTR23 dataset suite (Fischer et al., 2023).

Algorithms We compared APT to the top 3 GBDT algo-
rithms (CatBoost (Prokhorenkova et al., 2018), XGBoost
(Chen & Guestrin, 2016), LightGBM (Ke et al., 2017)) and
the top 3 DNN methods (TabPFN (Hollmann et al., 2022),
Tabular ResNet (Gorishniy et al., 2021), SAINT (Somepalli
et al., 2021)) in the main experiments of TabZilla (McEl-
fresh et al., 2024), as well as 5 standard machine learning
algorithms (KNN (Cover & Hart, 1967), Ridge (Tikhonov,
1963), LASSO (Tibshirani, 1996), SVM (Cortes, 1995),
Random Forest (Ho, 1995)).

Hyperparameters The hyperparameter search space of
benchmark models is directly inherited from Hollmann et al.
(2022), and directly inherited from McElfresh et al. (2024)
if the benchmark model is not in Hollmann et al. (2022).
TabPFN is pre-trained with hyperparameters directly in-
herited from their released checkpoint, only changing the
maximum number of classes from 10 to 26, which is the

maximal class size of datasets in the OpenML-CC18 suite.
For APT, all common hyperparameters shared with TabPFN
are directly inherited from TabPFN. See Appendix C for
more details. A total of 12.5% of the data generators are
adversarial data agents during the pre-training of APT, with
learning rate 10−1, weight decay 10−5, soft-discretization
temperature 10−2, and 2, 000 gradient steps between resets.

3.1. APT Achieves State-of-the-art Performance on
Small Tabular Classification Tasks

We evaluated APT and benchmark models on small datasets
in OpenML-CC18 using area under the receiver operating
characteristic curve (ROC-AUC) with the one-vs-one (OVO)
multi-class evaluation configuration, similar to Hollmann
et al. (2022). Previously, Hollmann et al. (2022) has shown
that TabPFN matches the performance of state-of-the-art
GBDT algorithms and outperforms them on small datasets
that have less than 100 features, less than 10 classes, no
categorical features, and no missing values in their main
results. In this work, we do not impose any of these re-
strictions to further examine APT’s and TabPFN’s zero-shot
meta-learning capability. The results are presented in Table
1. For datasets with number of features larger than 100, we
subsample 100 features similar to (McElfresh et al., 2024).
In these experiments, APT achieved state-of-the-art per-
formances with a runtime similar to that of TabPFN. The
average runtime of APT increased by 4.6% compared to
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(a) Distribution of data in datasets generated
by a set of ordinary data generators

(b) Distribution of data generated by another
independent set of ordinary generators

(c) Distribution of data generated by a set of
adversarial data agents

Figure 3. Contour plot of two-dimensional data generated by ordinary data generators and adversarial data agents. Each subplot contains a
total of 100,000 data points from 2,000 datasets. Note that subplot (a) and subplot (b) are two independent sets of ordinary generators
with no mutual, as each dataset is generated by an independently initialized random sparse neural network. Each dataset in subplot (c) is
generated by an adversarial data agent after each consecutive loss back-propagation.

TabPFN and remained within a second on GPU (NVIDIA
H100), showing that neural modifications from the mix-
ture block have not made APT significantly heavier. Note
that there is no cherry-picking being performed on model
checkpoints for APT – the APT model that we released and
used for evaluations is the last model after the final itera-
tion of pre-training. Realistically, PFN-based models are
pre-trained on synthetic data, and picking checkpoints for
evaluations ad hoc is not ideal unless using a whole different
collection of real-world datasets for validation. But even in
that case, it would still raise the concern of data leakage.

In these experiments, the deep learning algorithms under the
standard supervised learning pipeline, ResNet and SAINT,
yielded subpar performances. Note that the computing bud-
get in Hollmann et al. (2022) and ours is set to 1 hour per
dataset per split contrary to the 10 hours in McElfresh et al.
(2024). The deep learning algorithms under the zero-shot
meta-learning pipeline, APT and TabPFN, yielded ideal per-
formances, but it has been previously shown that TabPFN
sees a significant drop in performance on datasets with cate-
gorical features or missing values (Hollmann et al., 2022).
In Figure 4, we further break down the results on datasets
with and without these characteristics.

Figure 4. A breakdown of performance by dataset characteristics.
The mean of ranks are plotted as orange on datasets with the respec-
tive characteristic, and as blue on datasets without the respective
characteristic.

From Figure 4, it can be observed that APT has fairly dealt
with TabPFN’s weakness in handling datasets with missing
values, and has closened the gap between performance on
datasets with and without categorical features compared to
TabPFN, although GBDTs such as CatBoost still shows the
greatest capability in handling datasets with categorical fea-
tures. We further break down the performance contributions
from each proposed component in Section 3.4.

3.2. Qualitative Analysis of the Adversarial Data Agents

Even though arbitrary MLPs have the potential to serve as
universal function approximators given certain regularity
constraints (Hornik et al., 1989), the pre-set hyperparame-
ters (e.g. sampling distribution of neurons, sampling distri-
bution of the number of layers, choices of activations, etc.)
as well as the lack of gradient updates restrict the family
of data distributions that randomly initialized sparse neural
networks can put forward in practice. As shown in Figure 3,
the distribution of two-dimensional data generated by two
whole different sets of random sparse neural networks align
fairly precisely with merely 2,000 independent initializa-
tions. On the contrary, even without resetting neural archi-
tecture and neural parameters, the adversarial data agents
still managed to generate a more diverse collection of data
and diffuse the concentrated peaks presented in the density
distribution of data generated by ordinary data generators.
To be exact, for a collection of 2, 000 datasets generated by
ordinary data generators, we evaluated a KL-divergence of
0.134± 0.141 between it and a collection of 2, 000 datasets
generated by another set of ordinary data generators, and a
KL-divergence of 0.813± 0.072 between it and a collection
of 2, 000 datasets generated by adversarial data agents.

As a motivation of imposing data agent reset, we were wary
that the data agents after many adversarial updates could
yield synthetic datasets whose features have little to no
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signal on the response variable. With our hyperparame-
ter settings, we have not observed such behavior and to
our surprise, the synthetic datasets generated by adversarial
agents exhibit slightly stronger signal with a Pearson corre-
lation of 0.311 ± 0.026 between predictors and responses
on datasets with two-dimensional features as oppose to the
0.268±0.013 of ordinary data generators. We postulate that
this is partially in consequence of the high reset frequency
and high generator learning rate.

3.3. Generalizability of the Mixture Block

After a ZSML is deployed, one should not be required to
re-do its pre-training given certain characteristics of the
datasets in evaluation pool that the model cannot handle,
and this is why the mixture block architecture is important.
For TabPFN, we have to look at the evaluation dataset pool
first, calculate the largest class size, before using it as a
hyperparameter for pre-training. This is not a procedure that
fits well into the zero-shot learning concept. Our proposed
mixture block architecture does not have such class size
limitation, and we show the performance of APT on datasets
with more than 10 classes in OpenML-CC18 in Table 2.

Table 2. The ROC-AUC on datasets with more than 10 classes.
APT pre-trained on datasets with a maximum of 10 classes is able
to match APT without mixture block pre-trained on datasets with
a maximum of 26 classes on 3 of the 4 datasets.

letter isolet vowel texture

APT w/o Mixture .975 ± .002 .970 ± .003 1 ± 0 1 ± 0
APT .975 ± .002 .939 ± .011 1 ± 0 1 ± 0

Interestingly, the mixture block’s generalizability signif-
icantly accelerated pre-training in our experiments. The
ROC-AUC evaluated after each iteration of pre-training
with and without the mixture block is presented in Figure 5.
Note that ensembling over permutations (Hollmann et al.,
2022) is not performed in this experiment as it would dramat-
ically increase runtime given that evaluation is performed
following every gradient step.

Figure 5. ROC-AUC on the 35 small datasets in OpenML-CC18
evaluated after each of the first 30,000 gradient steps.

From Figure 5, we can see that models with mixture block

learn remarkably faster than models without it. For APT, the
model reaches an AUC of 0.70 in merely 40 gradient steps,
an AUC of 0.80 in 591 gradient steps and 0.90 in 11,780
gradient steps.

3.4. Ablation Study

Classification Although we discovered that the mixture
block gives the model a nice performance acceleration in the
previous section, the original purpose of designing such ar-
chitecture was not performance-driven, and we still expect
that the final performance improvement was largely con-
tributed by the adversarial pre-training. We present ablation
study in Table 3 to verify this expectation.

Table 3. Ablation study on tabular classification. Note that APT is
TabPFN with adversarial pre-training and mixture block.

Small All

mean AUC ↑ rank ↓ mean AUC ↑ rank ↓
APT 0.921 ± 0.003 2.11 ± 0.16 0.918 ± 0.006 2.1 ± 0.2
APT w/o Mixture 0.917 ± 0.005 2.09 ± 0.06 0.917 ± 0.005 2.1 ± 0.1
TabPFN w/ Mixture 0.914 ± 0.004 2.55 ± 0.22 0.914 ± 0.005 2.6 ± 0.2
TabPFN 0.913 ± 0.003 2.49 ± 0.16 0.914 ± 0.005 2.4 ± 0.2

Unsurprisingly, models with and without the mixture block
did not dominate each other on mean AUC and rank col-
lectively. Note that the mixture block was proposed for
generalizing on datasets with unseen number of classes, and
we expect it to have little to no impact on datasets with seen
number of classes performance-wise.

Regression Although ZSMLs are gradually catching up
with GBDTs on classification problems and likely reached a
performance mark close to saturation on small classification
problems, tabular regression remains an area where ZSMLs
have not yet shown exceptional performance. We addition-
ally report a study on the 35 datasets in OpenML-CTR23
regression suite in Table 4, and show the progress APT has
made on regression tasks over TabPFN.

Table 4. Ablation study on tabular regression. Small datasets are
the 12 datasets in OpenML-CTR23 with data size no larger than
2,000. Note that APT is TabPFN with adversarial pre-training in
this setting, since the mixture block was only used for classification
tasks.

Small All

mean MSE ↓ wins ↑ mean MSE ↓ wins ↑
TabPFN 0.412 ± 0.077 3.8 ± 1.2 0.340 ± 0.025 6.4 ± 1.4
APT 0.344 ± 0.068 8.2 ± 1.2 0.306 ± 0.023 28.6 ± 1.4

From Table 4, it can be observed that incorporating adver-
sarial pre-training has boosted the performance of TabPFN,
yielding a larger number of wins with a significant margin.
Note that we used the exact same synthetic data sampling
distributions and hyperparameters that were used in TabPFN
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for the purpose of ablation, in order to clearly demonstrate
the contribution of adversarial training. TabPFN was trained
only on classification problems, and therefore it is possible
that these hyperparameters are over-optimized for classifica-
tion tasks, and under-optimized for regression tasks.

4. Related Work
4.1. Tabular Learning

GBDTs such as XGBoost and others (Chen & Guestrin,
2016; Prokhorenkova et al., 2018; Ke et al., 2017) are com-
monly used for tabular data problems, in the traditional one-
model-for-one-dataset approach. At this point, numerous
deep learning approaches have been developed for tabular
data, mostly taking the one-model-for-one-dataset approach
(Borisov et al., 2022; Somepalli et al., 2021; Gorishniy et al.,
2021; Rubachev et al., 2022; Kadra et al., 2021a; Arik &
Pfister, 2021; Popov et al., 2019; Arik & Pfister, 2021; Kotel-
nikov et al., 2023; Gorishniy et al., 2024; 2022; Chen et al.,
2024; Kadra et al., 2021b; Huang et al., 2020), but some also
venturing into transfer learning, many but not all leveraging
large language models to find relevant information for the
tabular data problem at hand (Levin et al., 2022; Yan et al.,
2024; Borisov et al., 2023; Ye et al., 2024a; Spinaci et al.,
2024; Hegselmann et al., 2023; Kim et al., 2024; Zhu et al.,
2023).

Tabular Meta-Learning Auto-Sklearn introduced in
Feurer et al. (2015) and improved upon in Feurer et al.
(2022) use Bayesian optimization to determine the best algo-
rithm and feature pre-processing steps for modeling a given
dataset. Meta learning is used for initializing the Bayesian
optimization. In contrast to Auto-Sklearn and methods of
transfer learning for tabular data, TabPFN (Müller et al.,
2021) is trained solely on synthetic data to learn the gen-
eral prediction logic of tabular classification and to acquire
meaningful data representations in inference time. Helli
et al. (2024) introduced a variant of TabPFN that was trained
on a drifting synthetic data distribution, but the drift is inde-
pendent of the performance of the model being optimized.

4.2. Zero-shot Learning

Recent work such as Xian et al. (2018; 2017); Chang et al.
(2008); Larochelle et al. (2008); Palatucci et al. (2009) have
shown impressive capability of zero-shot learning in the
space of language and vision problems. Recent approaches
to zero-shot or few-shot learning for tabular data problems
mostly encode tabular data as language, and then leverage
large language models (LLMs) for their zero- or few-shot ca-
pabilities (see Hegselmann et al. (2023); Nam et al. (2023);
Gardner et al. (2024)). These approaches rely on relevant
information about the tabular data existing in LLMs – this
is most obviously the case when column names are mean-

ingful, but not guaranteed for broad tabular data problems.

4.3. Adversarial Training

Upon generative adversarial networks (GANs) (Goodfellow
et al., 2015; Madry et al., 2018; Kurakin et al., 2017), recent
work such as Shafahi et al. (2019) improved on the efficiency
by combining the back-propagation steps of the generator
and discriminator. However, this method has been shown
to suffer from catastrophic overfitting (Andriushchenko &
Flammarion, 2020; Kim et al., 2021) without further modi-
fications. Other works focusing on improving the efficiency
of GAN training include Wong et al. (2020) and Zhang
et al. (2019) where they restrict most of the forward and
back propagation within the first layer of the network dur-
ing adversarial updates. Zhang et al. (2021) in particular
noted that weight updates frequently go back and forth in
opposite directions in one training epoch, suggesting those
updates might be redundant. Many other variations have
been introduced to mitigate vanishing gradient and addi-
tional challenges of GAN training (Jabbar et al., 2021):
failing at finding a Nash-equilibrium (Ratliff et al., 2016),
and internal covariate shift (Ioffe, 2015).

5. Conclusion
In this work, we gave the first effort in exploring the adver-
sarial pre-training of deep zero-shot meta-learners, specifi-
cally PFNs. We proposed APT, a zero-shot meta-learner that
improves the performance of TabPFN on tabular prediction
tasks and matches state-of-the-art GBDTs on small tabular
classification tasks. In addition, we proposed a mixture
block neural design to eliminate the class size restriction of
PFNs, addressing a crucial issue in their generalizability to
broad classification problems. As for limitations, APT does
not outperform GBDTs on large tabular datasets, and shares
the quadratic computational complexity of TabPFN. Hence,
extensions of this work could explore means of acquiring
data representations in a more inexpensive manner. For
example, considerable research in recent years has signifi-
cantly accelerated the transformer and increased its context
length (Wu et al., 2022; Bulatov et al., 2023). It is a worth-
while effort for future research to apply these advancements
to APT as well as other PFNs. Besides, future research
could extend the mixture block to standard (non-zero-shot)
classification settings in light of its ability to generalize and
greatly accelerate convergence, which could improve the
performance of traditional DNNs on small classification
datasets. Mixture block or other alternatives to the dense
final layer could also be explored in both standard and zero-
shot regression settings, which could have an impact on the
inductive bias of DNNs and their underperformance in com-
parison to GBDTs (Grinsztajn et al., 2022) under certain
tabular data nature.
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A. Background
In this section, we give a brief introduction to PFNs, and specifically the synthetic data generating mechanism of TabPFN.
For a more complete description, see Müller et al. (2021); Hollmann et al. (2022); Nagler (2023). Given training dataset
Dtrain = (Xtrain,ytrain), the goal is to approximate the conditional outcome distribution ytest ∼ p(·|xtest, Dtrain) given
a test point xtest. In the Bayesian framework for supervised learning, the prior of the dataset is a hypothesis of the data
generating mechanism ϕ drawn from hypothesis space Φ, under which p(·|xtest, Dtrain) is a posterior predictive distribution
(PPD) and can be factorized as follows by the Bayes’ rule:

p(·|xtest, Dtrain) =

∫
ϕ∈Φ

p(·|xtest, ϕ)p(ϕ|Dtrain) dϕ (3)

=

∫
ϕ∈Φ

p(·|xtest, ϕ)
p(ϕ)p(Dtrain|ϕ)

p(Dtrain)
dϕ (4)

∝
∫
ϕ∈Φ

p(·|xtest, ϕ)p(Dtrain|ϕ)p(ϕ) dϕ. (5)

PFNs conduct synthetic prior fitting by defining a family of data generating mechanisms Φ from which independent samples
xi ∼ p(xi) = Ep(ϕ)[p(xi|ϕ)] and yi ∼ p(yi) = Ep(ϕ)[p(yi|xi, ϕ)] are drawn to compose feature matrix (Xtrain, Xtest)
and response vector (ytrain,ytest) of a synthetic dataset D = Dtrain∪Dtest, and use a transformer model qθ(·|Xtest, Dtrain)
to approximate p(·|Xtest, Dtrain) by minimizing their expected divergence over the synthetic data distribution

Ep(Dtrain,Xtest)

[
KL
(
p(ytest|Xtest, Dtrain), qθ(y

test|Xtest, Dtrain)
)]

. (6)

Since

∇θEp(Dtrain,Xtest)

[
KL
(
p(ytest|Xtest, Dtrain), qθ(y

test|Xtest, Dtrain)
)]

(7)

=∇θEp(Dtrain,Xtest)

[
H
(
p(ytest|Xtest, Dtrain), qθ(y

test|Xtest, Dtrain)
)]

(8)

=∇θEp(Dtrain,Dtest)

[
− log qθ(y

test|Xtest, Dtrain)
]
, (9)

it is equivalent to minimizing the expected negative log-likelihood loss

L(qθ) = Ep(D)

[
− log qθ(y

test|Xtest, Dtrain)
]
. (10)

TabPFN in particular, conducts synthetic prior fitting by defining a family of sparsified-random-MLP-based data generating
mechanisms Φ, which we call ordinary data generators in the context of this paper. The following section gives a detailed
description of the workflow of these generators.

A.1. Ordinary Data Generator

To sample data generating mechanism ϕ ∼ Φ, TabPFN first initializes a random MLP by sampling a collection of
hyperparameters from a pre-defined hyperparameter space, including number of layers, hidden size, activation function,
dropout probability, noise scales, etc. Specifically, dropout probability is used to sparsify neural connections between
neurons, and noise scales dictate the amount of random noise injected into neurons at each layer. After the sparsified noisy
random MLP is initialized, TabPFN randomly selects a subset of neurons in this MLP to be predictors xi, and randomly
select one neuron to be response yi. With n different random inputs to the MLP, a dataset with n instances of (x, y) is thus
generated.

Discretization Since generated data are selected neurons from MLPs, their values are naturally continuous. To mimic
real-world datasets that possess categorical features and to generate discrete class labels for classification tasks, TabPFN
uses a ranking discretization approach that converts a subset of continuous values to discrete by designating certain quantile
ranges of the continuous value v to certain categories. A visual demonstration of this conversion can be found on the left
side of Figure 6.

Normalization The generated synthetic data (as well as real-world datasets during inference time) are normalized across
samples within each dataset, with the range of the values clipped to four standard deviations. Although the meta-learner
might see datasets with unseen fields and out-of-distribution predictor-response relations during inference time, this ensures
that at least the range of values will not be out-of-distribution as well.
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(a) Ranking Discretization (b) Ranking Soft-discretization

Figure 6. Discretization of continuous variables. x-axis is the value generated by the data generator, and y-axis is its value after
discretization. The soft-discretization approach produces near-categorical features that are differentiable and thus do not disrupt gradient
flow. Intuitively, the adversarial data agents will try to produce new value that escapes the range of the current category if the meta-learner
becomes very good at identifying signal from the current category. However, the new category it escapes to is arbitrary and cannot be
targeted by gradient updates, giving additional exploration potentials to the adversarial agents.

A.2. Limitations

Although there is no theoretical limitation on the number of data PFNs can handle, the transformer architecture does entail
significant computation complexity and memory usage for large datasets. Besides, given the nature of dense input embedding
layer and dense final prediction layer, there is a theoretical limitation on the number of features and the number of classes
that PFNs can handle. The former is less of an issue since feature selections or simply random sampling of features can
be performed, and PFNs would still yield ideal performance as shown in McElfresh et al. 2024. The latter is a rather big
problem for classification tasks because there is hardly any direct and effective work-around.

B. Handling of Large Datasets
Since expanding TabPFN’s capabilities in handling large datasets is not the focus of this work, we only provide two simple
adaptations such that APT can practically handle datasets of this nature. We recommend that practitioners try out the
concurrent and future developments in more involved model innovations for large datasets, but in case they do not wish to
do so, the following approaches can serve as a baseline.

B.1. Uncertainty-based Batch Aggregation

For datasets with large number of samples, to avoid calculating attention spanning all training data points which results in
quadratic order of operations and memory usage with respect to data size, we estimate the PPD with batches drawn from the
training set:

p(ytest|Xtest, Dtrain) ≈
∫
b

qθ(y
test|Xtest, b) · p(b|Dtrain), (11)

which is equivalent to drawing uniform samples from training set Dtrain and scale the resulting predictions with weights
p(b|Dtrain). We cap the batch size at 3000 in alignment with McElfresh et al. (2024). For classification datasets with
number of samples larger than 3000, we split the training set into batches and weigh the resulting predictions in proportion
to the batch size (prediction from the last batch may have less weight than the others). For regression tasks, we parameterize
model qθ(ytesti |xtest

i , b) as Gaussian distribution (µθ(x
test
i , b), σθ(x

test
i , b)) similar to Hollmann et al. (2022), and directly

produce the point estimation using the inverse variance estimator in inference time:

E[ytesti |xtest
i , Dtrain] ≈

∫
b

Eθ[y
test
i |xtest

i , b] · p(b|Dtrain) (12)

=

(∑
k

1

σ2
θ(x

test
i , bk)

)−1 N∑
k=1

1

σ2
θ(x

test
i , bk)

µθ(x
test
i , bk). (13)
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The intuition is that, prediction on each batch is weighted by its uncertainty – more weights are put to the predictions that
the model is more certain of, and vice versa.

B.2. Patch-based Feature Embedding

We drew inspiration from Dosovitskiy et al. (2020) and developed a patch-based embedding approach that adapts to datasets
with arbitrary number of features. In Hollmann et al. (2022), embeddings of x are acquired by padding or clipping the number
of features dk to a certain maximum feature size d∗, such that x can be fed to a dense feedforward eθ : Rd∗ → Rdmodel .
Instead, we split features into patches, setting d∗ as the patch size, and only pad the last patch to d∗ dimensions if d ̸≡ 0
(mod d∗). After feeding each patch to dense feedforward eθ, we pass them to an attention block with optional relative
positional encoding (Su et al., 2021; Press et al., 2021), and average pool across the resulting embeddings of patches.
Essentially, this is a half-way approach between using a dense feedforward to embed all features, and using an attention
block to tokenize each individual feature. In this way, the embedding block can handle features in a more flexible manner
while controlling computational complexity and memory usage.

C. Hyperparameter Settings
All common hyperparameters of APT are directly inherited from TabPFN and not tuned, including learning rate 10−4,
number of blocks 12, hidden dimensions 512, hidden feedforward dimensions 1024, number of heads 4, effective batch size
(batch size per step × number of gradient accumulation steps) 64, total number of training datasets (number of epochs ×
steps per epoch × number of datasets per step) 6, 400, 000, as well as all data generator hyperparameters. For more details
on the data generator hyperparameters, see the code repository in our supplementary material.

D. More Results
We list the performance of top algorithms on small classification datasets in Table 5. Standard deviations are calculated
across 5 different splits.
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Table 5. The ROC-AUC of top algorithms on the 35 small datasets in OpenML-CC18.

LightGBM XGBoost SVM TabPFN CatBoost APT

mfeat-fourier .981 ± .004 .982 ± .004 .982 ± .004 .985 ± .002 .984 ± .002 .983 ± .003
breast-w .993 ± .006 .993 ± .006 .995 ± .007 .997 ± .003 .996 ± .005 .997 ± .003
mfeat-karhunen .999 ± .001 .999 ± .001 1 ± 0 .999 ± 0 .999 ± 0 1 ± 0
mfeat-morphological .959 ± .004 .961 ± .002 .965 ± .006 .967 ± .003 .964 ± .003 .966 ± .006
mfeat-zernike .970 ± .004 .973 ± .004 .992 ± .003 .982 ± .001 .974 ± .003 .977 ± .003
cmc .751 ± .036 .758 ± .036 .690 ± .020 .736 ± .031 .758 ± .037 .739 ± .026
credit-approval .931 ± .030 .920 ± .022 .912 ± .024 .928 ± .029 .931 ± .030 .930 ± .022
credit-g .809 ± .018 .824 ± .028 .816 ± .020 .835 ± .018 .816 ± .025 .846 ± .024
diabetes .821 ± .027 .812 ± .037 .811 ± .050 .817 ± .026 .827 ± .025 .824 ± .016
tic-tac-toe 1 ± 0 1 ± 0 1 ± 0 .993 ± .003 1 ± 0 .997 ± .002
vehicle .936 ± .009 .945 ± .008 .965 ± .011 .965 ± .005 .941 ± .008 .961 ± .008
eucalyptus .900 ± .022 .894 ± .024 .874 ± .009 .908 ± .013 .905 ± .019 .912 ± .017
analcatdata authorship 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
pc4 .953 ± .008 .954 ± .012 .907 ± .058 .957 ± .013 .961 ± .011 .964 ± .016
pc3 .814 ± .031 .831 ± .048 .706 ± .055 .848 ± .044 .829 ± .042 .865 ± .032
kc2 .887 ± .060 .862 ± .102 .881 ± .052 .875 ± .079 .885 ± .084 .896 ± .087
blood-transfusion-service-center .740 ± .085 .722 ± .068 .705 ± .075 .750 ± .082 .732 ± .077 .751 ± .086
cnae-9 .981 ± .005 .994 ± .005 .998 ± .001 .812 ± .032 .991 ± .005 .901 ± .014
ilpd .767 ± .067 .751 ± .038 .628 ± .085 .792 ± .046 .787 ± .059 .808 ± .035
wdbc .993 ± .006 .989 ± .007 .998 ± .003 .997 ± .003 .993 ± .003 .997 ± .004
dresses-sales .685 ± .028 .618 ± .045 .669 ± .027 .552 ± .056 .637 ± .051 .617 ± .049
MiceProtein 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
steel-plates-fault .975 ± .003 .979 ± .003 .964 ± .006 .970 ± .005 .978 ± .003 .969 ± .006
climate-model-simulation-crashes .944 ± .043 .936 ± .052 .951 ± .070 .960 ± .053 .949 ± .044 .960 ± .058
balance-scale .970 ± .027 .998 ± .003 .994 ± .006 .997 ± .004 .949 ± .014 .998 ± .003
mfeat-factors .999 ± .001 .999 ± .001 .999 ± .001 .999 ± .001 .999 ± 0 .999 ± .001
vowel .999 ± .001 .999 ± .001 .999 ± .001 1 ± 0 1 ± 0 1 ± 0
analcatdata dmft .595 ± .032 .597 ± .029 .601 ± .033 .577 ± .044 .582 ± .027 .593 ± .040
pc1 .901 ± .065 .917 ± .063 .802 ± .127 .917 ± .059 .916 ± .058 .942 ± .041
banknote-authentication 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
qsar-biodeg .934 ± .015 .925 ± .012 .932 ± .017 .944 ± .016 .935 ± .017 .944 ± .013
semeion .998 ± .001 .999 ± .001 .999 ± 0 .984 ± .004 .999 ± .001 .980 ± .004
cylinder-bands .898 ± .041 .873 ± .036 .913 ± .035 .911 ± .021 .904 ± .044 .913 ± .031
car 1 ± 0 1 ± 0 1 ± 0 .999 ± .001 1 ± 0 .997 ± .005
mfeat-pixel .999 ± 0 1 ± 0 1 ± 0 .999 ± 0 1 ± 0 .999 ± 0
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