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Abstract

Image-based vision foundation models (VFMs) have
demonstrated surprising 3D geometric awareness, despite
no explicit 3D supervision or pre-training on multi-view
data. While image-based models are widely adopted across
a range of downstream tasks, video-based models have yet
to share in this success. In this work, we conduct a com-
parative study of video models against image models on
three tasks encapsulating 3D awareness: multi-view consis-
tency, depth and surface normal estimation. To enable a fair
and reproducible evaluation of both model families, we de-
velop AnyProbe, a unified framework for probing network
representations. The results of our study reveal a surpris-
ing conclusion, which we refer to as the diashow paradox.
Specifically, video-based pre-training offers no consistent
advantage over image-based pre-training on downstream
tasks involving 3D understanding. We formulate two hy-
potheses to explain our observations, which underscore the
need for high-quality video datasets and highlight the inher-
ent complexity of video-based pre-training. AnyProbe will
be publicly released to streamline evaluation of image- and
video-based VFMs in a mutually consistent fashion.

1. Introduction

Vision foundation models (VFMs), such as DINO [7, 24],
have found widespread use in the computer vision commu-
nity [e.g. 31, 32]. Despite using image sets for training,
these VFMs encode a surprising degree of 3D spatial rea-
soning [5]. By contrast, video models, such as V-JEPA [6]
and VideoMAE [28], learn from image sequences, which
can provide multiple views of the same scene. Therefore,
it should naturally follow that video models will exhibit
enhanced 3D awareness in comparison to the image-based
VFMs. Consolidating the scattered empirical evidence in
the literature [22, 33], we illuminate an apparent para-
dox encountered in practice: the representations learned by
video models [6, 28] tend to exhibit a lower level of 3D
awareness than their image-based counterparts.
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Figure 1. The diashow paradox. Streamlining the evalua-
tion protocol, we develop AnyProbe, a framework to systemati-
cally compare video and image models on depth, surface normals
(NYUv2 [26]), and multi-view correspondences [18, 23]. Con-
trary to a common-sense expectation, we find that video-based vi-
sion foundation models (green) do not provide a consistent advan-
tage over image-based models (blue) on 3D awareness tasks.

We implement an evaluation framework, AnyProbe,
which allows us to benchmark video- and image-based
models in a shared unified protocol. Specifically, AnyProbe
can train task-specific probes on top of frozen VFMs, in-
cluding video-based models. In our study, we focus on three
key tasks of 3D spatial awareness: monocular depth estima-
tion, surface normal estimation, and multi-view correspon-
dence. Our main contributions are:
• We develop AnyProbe, an evaluation framework designed

to provide fair and reproducible comparisons of VFMs
across diverse downstream tasks with a minimal engineer-
ing overhead. We release AnyProbe to the research com-
munity under the MIT license.1

1AnyProbe repository: https://github.com/tum-vision/anyprobe

https://github.com/tum-vision/anyprobe


• Using AnyProbe, we conduct a study to compare video
models to image models on 3D awareness tasks. The re-
sults, illustrated in Fig. 1, lead to a surprising observa-
tion: video models do not provide a consistent advantage
over their image-based counterparts on 3D understanding
tasks. We dub this phenomenon as the diashow paradox,
recognizing that state-of-the-art models currently learn
from a “slideshow” of the visual world rather than a con-
tinuous video stream – in contrast to humans.

• Lastly, we propose two hypotheses to explain the ob-
served results: (i) a lack of visual diversity in existing
video datasets, and (ii) a deceptively high non-triviality
of 3D-aware representation learning from videos.
The results of our study challenge the conventional

understanding that using video training data per se im-
plies improved 3D-aware representations in comparison to
image-based pre-training. Our findings illuminate two open
avenues for future research: curating high-quality video
datasets and 3D-aware pre-training strategies on videos.

2. Related Work

Probing VFMs. Recent studies such as Probe3D [5],
DepthCues [8], and Lexicon3D [22] compare visual foun-
dation models on core spatial reasoning tasks, including
depth estimation, surface normal prediction, multiview con-
sistency, and 3D scene understanding. These works provide
a foundation for our AnyProbe framework in assessing the
geometric capabilities of VFMs. Specifically, our work con-
siders the impact of video pre-training: we compare video-
and image-based models with a similar architecture to iso-
late the effect of motion in pre-training on videos.

Image- and video-based foundation models. Image-
based foundation models leverage large-scale datasets and
self-supervised learning techniques to extract visual rep-
resentations that transfer well across diverse downstream
tasks. MAE [15] reconstructs masked image patches; I-
JEPA [2] predicts latent codes for missing regions; and the
DINO models [7, 24] leverage self-distillation with Vision
Transformers for robust feature learning. These methods
have naturally been adapted to video input: VideoMAE [28]
applies masked auto-encoding to video sequences, V-JEPA
and V-JEPA 2 [3, 6] adapt joint-embedding for spatio-
temporal data, and DoRA [29], drawing inspiration from
DINO, leverages object continuity to learn robust represen-
tations from long, unlabeled videos.

3. Methodology

We introduce AnyProbe, a unified foundation probing
framework that enables systematic evaluation across diverse
datasets, tasks, architectures, and probing protocols. For ex-
ample, AnyProbe supports lightweight integration of video-
based VFMs for monocular image tasks, allowing for a

Model Data Res. Arch.

Video

VideoMAE [28] K400, SSV2 224 B/16, L/16
V-JEPA [3, 6] VM2M, VM22M 224, 384 H/16
DoRA [29] WTours 224 S/16
CogvideoX [34] Video-Text Pairs 768→1360 –

Image

MAE [15] IN1K 224 B/16, L/16
I-JEPA [2] IN1K, IN22K 224, 448 H/16, H/14
DINO [7] IN1K, WTours 224 S/16
CogView-3Plus [35] LAION-2B[25] 512 –

Table 1. VFMs in our study. Models are categorized by architec-
ture (Arch.), training datasets (Data) and resolution (Res.).

Dataset Content Scenes Frames

ImageNet-1K [10] Natural object images 1.28M 1.28M
ImageNet-22K [10] Fine-grained object images 14.2M 14.2M
VM2M [6] Video datasets 2M 14B
VM22M [3] Video + image datasets 22M 90B
WTours [29] Egocentric city walk videos 10 3.5M
Kinetics-400 [19] Human action clips 240K 71.8 M
SSV2 [13] Object interaction videos 160K 19.4 M
LAION-2B [25] Image–text pairs 2.26B 2.26B

Table 2. Overview of pre-training datasets. Each dataset is spec-
ified by its number of scenes and frames. For video datasets, frame
counts are estimated based on the total duration and frame rate.

comparative analysis of image- and video-based models on
3D-awareness tasks.

Model overview. Our study evaluates a diverse set of
image- and video-based VFMs summarized in Tab. 1. We
contextualize the models with statistics of the underlying
training data in Tab. 2. We select official checkpoints and
use comparable architectures and training strategies avail-
able for both input modalities, images and videos (e.g. I-
JEPA [2] vs. V-JEPA [6]; MAE [15] vs. VideoMAE [28]).

Adapting video ViT models for image tasks. To fairly
compare video to image models, we adapt video models
for image tasks. The video models included in our study,
V-JEPA [6] and VideoMAE [28], tokenize videos by em-
bedding tubelets of size T→H→W with a 3D convolution.
To adapt these models for per-image processing, we define a
2D convolution kernel k2D, which derives from its 3D coun-
terpart k3D by summing over the temporal dimension:

k2D(i, j) =
T∑

t=1

k3D(t, i, j). (1)

This formulation is equivalent to the practice of duplicat-
ing the image along the temporal dimension [3], but is more
computationally efficient. To adapt the 3D positional em-
bedding, we use only the components of the first frame and
discard the rest. As a result, video-based models retain their
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Figure 2. Adapting video-based ViT models for image tasks.
We tokenize the image using a 2D patch-embedding convolution
adapted for the video model (Eq. (1)), as in image ViTs, and use
only the spatial positional embeddings of the first frame.

architecture, but can operate on image tasks without any
computational overhead, as visualized in Fig. 2.

Depth and surface normal estimation. We extract pixel-
level features and optimize a DPT probe [36]. For depth,
we use a scale-invariant sigmoid depth loss [11] and a
depth-gradient matching loss [16]; for normal estimation,
we use an uncertainty-aware angular loss [4]. To ensure
the fairness of our evaluation, we resize input images to the
original pre-training resolution. This approach avoids in-
terpolating the positional embedding, which we empirically
confirmed to have a negative effect on the downstream accu-
racy. Instead, we downsample the input to the pre-training
resolution. We resize the predicted maps produced by the
DPT probe (depth or normals) to the original image size for
evaluation. Specifically, we optimize the DPT probe for 10
epochs using AdamW [20] with an initial learning rate of
5e↑ 4, a cosine decay schedule [21] and batch size of 8.

Multi-view correspondence. We follow the previous met-
rics and protocols for evaluating multi-view correspondence
[5], with adaptations for video models, as shown in Fig. 2.
We compute the recall, the fraction of the matches with an
error below a threshold. Given two views of the same ob-
ject or scene, we extract dense feature maps from a frozen
backbone and establish feature correspondences based on
their cosine similarity. We consider two evaluation scenar-
ios. SPair-71k [23] provides class-level keypoints on ob-
ject instances. We evaluate only the annotated points and
perform a single nearest-neighbor lookup in feature space.
We calculate 2D pixel-level error in normalized image co-
ordinates and report the aggregate recall at threshold 0.10.
We further break down the recall by a relative change in
viewpoint levels d ↓ {0, 1, 2} (with d = 0 indicating small
and d = 2 indicating large view change). NAVI [18] sam-
ples dense points on the object mask. We extract dense fea-
tures, perform nearest-neighbor matching with Lowe’s ratio
test [5], and retain the top 1000 correspondences. We then
compute the 3D Euclidean error between each match and
its ground-truth back-projected point, and report the recall
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Figure 3. Qualitative examples. We visualize depth and surface
normal maps derived from running AnyProbe with a DPT [36]
head on frozen MAE and VideoMAE on NYUv2 [26]. MAE pro-
duces consistently sharper, more accurate geometry.

at a fixed 2cm threshold, grouped by relative viewpoint bins
ω ↓ {[0, 30), [30, 60), [60, 90), [90, 120]}.

4. Experiments

We use NYUv2 [26] for our experiments with depth and
surface normal estimation. For multi-view correspon-
dence, we use SPair-71k [23] and NAVI [18]. We rely on
AnyProbe to obtain the results, summarized in Tab. 3. No-
tably, DINOv2 [24], provided for reference, surpasses all
video models in both single-image estimation and multi-
view consistency. Comparing video and image models with
the same architecture, we make the following observations:
I. VideoMAE [28] exhibits higher multi-view consis-

tency than MAE [15], but inferior accuracy of depth and

surface normals. Within the autoencoder family, MAE
consistently outperforms VideoMAE [28] across all archi-
tectures in depth and surface normal estimation, achieving
lower RMSE scores on ViT-L16 (0.277 vs. 0.323 RMSE for
depth; 24.79 vs. 26.53 RMSE for normals). The results with
ViT-B16 align with these trends. While VideoMAE shows
improved multi-view consistency over MAE, this advantage
is rather marginal: DINO [7] outperforms both MAE vari-
ants substantially on both SPair-71k and NAVI.

II. V-JEPA [6] and its sequel V-JEPA 2 [3] yield inferior

accuracy than their image-based counterpart, I-JEPA

[2], across all benchmarks. Specifically, I-JEPA mod-
els (H16/H14) significantly outperform V-JEPA-H16 and
V-JEPA 2 in view consistency on SPairs-71k, achieving the
average recall of 44.81/35.74 vs. 25.13/28.4, respectively.

III. An image model, DINO [7], pre-trained on

videos is only marginally worse than a video model,

DoRA [29]. However, a DINO model pre-trained on IN1K
consistently outperforms DoRA pre-trained on the World
Tours dataset in terms of depth (0.353 vs. 0.437 RSME),
surface normals (28.49 vs. 31.60 RSME), and multi-view
consistency (e.g. 25.66 vs. 11.36 recall on SPairs-71k).



Arch Model Dataset Res. SPair-71k → NAVI → NYUv2 ↑

d = 0 d = 1 d = 2 all ω030 ω3060 ω6090 ω90120 Depth RMSE Snorm RMSE

B14 DINOv2 LVD-142M 518x518 62.55 51.40 48.79 56.26 94.27 69.04 39.65 25.85 0.222 24.79

B16
DINO IN1K 224x224 28.83 24.40 24.90 26.10 86.33 55.79 30.65 22.69 0.334 28.01
MAE IN1K 224x224 9.60 6.24 4.91 7.92 76.91 40.15 19.68 11.96 0.317 25.95

VideoMAE K400 224x224 8.98 6.45 5.47 7.73 88.32 48.32 20.38 11.58 0.384 28.37
VideoMAE SSV2 224x224 13.03 6.21 4.21 10.03 89.14 46.69 19.56 11.10 0.413 29.17

L16 MAE IN1K 224x224 8.22 6.00 4.57 7.17 74.58 37.92 14.55 11.39 0.277 24.79

VideoMAE K400 224x224 20.11 12.68 10.07 16.51 85.02 49.72 21.32 12.12 0.323 26.53

H16
I-JEPA IN1K 448x448 51.35 38.47 42.52 44.81 81.58 52.57 27.42 17.72 0.246 23.43

V-JEPA VM2M 224x224 29.00 17.47 17.75 23.34 86.39 52.56 23.03 13.79 0.269 26.09
V-JEPA VM2M 384x384 30.92 18.74 19.60 25.13 77.19 45.41 21.23 15.03 0.270 24.88
V-JEPA 2 VM22M 224x224 32.48 25.78 24.46 28.40 76.01 48.11 23.12 13.15 0.259 25.05

H14 I-JEPA IN22K 224x224 43.18 31.28 32.12 37.45 83.07 49.84 23.89 14.88 0.294 25.64

I-JEPA IN1K 224x224 40.48 30.79 32.75 35.74 82.51 49.73 24.99 14.83 0.329 27.69

S16
DINO IN1K 224x224 27.97 24.32 24.88 25.66 83.85 53.77 30.42 22.46 0.353 28.49

DINO WTours 224x224 8.98 9.05 6.63 8.41 54.76 32.75 21.51 14.81 0.477 33.70
DoRA WTours 224x224 12.45 10.28 8.55 11.36 60.74 36.71 22.93 16.37 0.437 31.60

3B CogView-3Plus LAION-2B 512x512 20.02 12.04 8.95 15.91 81.34 45.66 19.02 10.31 0.361 29.32

2B CogVideoX1.0 Video-Text Pairs 768x1360 3.17 2.93 2.77 3.05 44.08 28.27 16.26 11.54 0.594 34.47

Table 3. Image vs. video comparison on 3D awareness. We evaluate all models with AnyProbe, which extracts features for multi-
view correspondence and train a DPT probe for depth and surface normal estimation. For multi-view consistency, we use SPair-71k (200
keypoints) and NAVI (1000 keypoints) and report recall (cf . Sec. 3). We use NYUv2 for depth and surface normal estimation and report
RMSE. Across most architectures, image-based models (highlighted in blue) consistently outperform their video counterparts on 3D tasks.
The image-based DINOv2 achieves the best overall results.

IV. An image-based diffusion model, CogView-

3Plus [35], substantially outperforms its video-based

counterpart, CogVideoX [34]. Consolidating previous
observations, we test text-to-image diffusion mod-
els, CogView-3Plus and CogVideoX. The video-based
CogVideoX shows diminished 3D awareness compared
to image pre-training across all metrics, despite sharing
similarities in the architecture and the pre-training scheme.

5. Discussion and Conclusion

Our findings highlight an apparent paradox, referred to as
the diashow paradox. Contrary to the prevailing belief,
learning from image sets, not videos, appears to yield more
3D-aware representations. Our study supports this postula-
tion with empirical evidence: VFMs trained on static im-
ages consistently match or exceed their video-based coun-
terparts in geometric 3D-awareness tasks (cf . Tab. 3). We
discuss two hypotheses to explain our observations:

Existing video datasets lack visual diversity. Deep mod-
els benefit from data diversity and size. The temporal con-
tinuity inherent to videos renders image sequences highly
redundant. More technically, the gradients in video pre-
training exhibit high correlation [14]. Recall from Tab. 3
that DINO trained on Walking Tours (a few, but long
videos) performs significantly worse than its IN1K variant
across all metrics. Furthermore, existing video datasets are
known to contain low-resolution sequences and compres-
sion artifacts. While a “golden bullet” dataset exists for im-

age pre-training (ImageNet) [17], we may have yet to curate
such a dataset for the video modality. However, the same
curation effort would apply to image sets as well. Amass-
ing diverse image sets may still prove more cost-efficient
than curating videos in the long term.

Learning 3D-aware representations from videos is de-

ceptively non-trivial. The photographic bias leveraged
by self-supervised methods on image datasets [7, 15] might
be less prominent in videos, where strong frame-to-frame
correlations and camera motion introduce additional chal-
lenges [9, 12, 14, 30]. Consequently, learning multi-view
consistency and geometric priors from videos becomes a
highly non-trivial task (e.g. V-JEPA 2 lacks I-JEPA’s multi-
view robustness despite larger-scale pre-training).

Perhaps as a consequence of the task complexity, a typ-
ical evaluation protocol of video models is rarely a 3D-
aware task, favoring instead other spatio-temporal bench-
marks, such as action recognition and anticipation [e.g. 3].
We hope that AnyProbe will encourage more comprehen-
sive evaluation of future video models, including 3D aware-
ness tasks, by simplifying the engineering effort of probing
experiments and streamlining cross-modal comparison.

Conclusion. Systematically comparing video to image
models, our study exposes the diashow paradox: image
sets yield surprisingly more 3D-aware representations than
videos. By highlighting the paradox, we hope to incentivize
the community in future explorations of video curation, and
3D-aware training and evaluation of video-based models.
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