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Abstract

Image-based vision foundation models (VFMs) have001
demonstrated surprising 3D geometric awareness, despite002
no explicit 3D supervision or pre-training on multi-view003
data. While image-based models are widely adopted across004
a range of downstream tasks, video-based models have so005
far remained on the sidelines of this success. In this work,006
we conduct a comparative study of video models against007
image models on three tasks encapsulating 3D awareness:008
multi-view consistency, depth and surface normal estima-009
tion. To enable a fair and reproducible evaluation of both010
model families, we develop AnyProbe, a unified framework011
for probing network representations. The results of our012
study reveal a surprising conclusion, which we refer to as013
the diashow paradox. Specifically, video-based pre-training014
does not provide any consistent advantage on downstream015
tasks involving 3D understanding over image-based pre-016
training. We formulate two hypotheses to explain our obser-017
vations, which underscore the need for high-quality video018
datasets and highlight the inherent complexity of video-019
based pre-training. AnyProbe will be publicly released to020
streamline evaluation of image- and video-based VFMs in021
a mutually consistent fashion.022

1. Introduction023

Vision foundation models (VFMs), such as DINO [5, 23],024
have found widespread use in the computer vision commu-025
nity [e.g. 29, 30]. These VFMs encode a surprising degree026
of 3D spatial reasoning, despite using image sets for train-027
ing [10]. By contrast, video models, such as V-JEPA [4]028
and VideoMAE [26], learn from image sequences provid-029
ing multiple views on the same scene. Therefore, it should030
naturally follow that video models will exhibit enhanced031
3D awareness in comparison to the image-based VFMs.032
Consolidating the scattered empirical evidence in the liter-033
ature [20, 31], this short paper aims at illuminating an ap-034
parent paradox encountered in practice: the representations035
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Figure 1. The diashow paradox. Streamlining the evalua-
tion protocol, we develop AnyProbe, a framework to systemati-
cally compare video and image models on depth, surface normals
(NYUv2 [22]), and multi-view correspondences [16, 21]. Con-
trary to a common-sense expectation, we find that video-based vi-
sion foundation models (green) do not provide a consistent advan-
tage over image-based models (blue) on 3D awareness tasks.

learned by video models [4, 26] tend to exhibit a lower level 036
of 3D awareness than their image-based counterparts. 037

We implement an evaluation framework, AnyProbe, 038
which allows us to benchmark video- and image-based 039
models in a unified protocol. Specifically, AnyProbe can 040
train task-specific probes on top of frozen VFMs, including 041
video-based models. In our study, we focus on three key 042
tasks of 3D spatial awareness: monocular depth estimation, 043
surface normal estimation, and multi-view correspondence. 044
Our main contributions are: 045

• We develop AnyProbe, an evaluation framework designed 046
to provide fair and reproducible comparisons of VFMs 047
across diverse downstream tasks with a minimal engineer- 048
ing overhead. We will release AnyProbe to the research 049
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community under the MIT license.050
• Using AnyProbe, we conduct a study to compare video051

models to image models on 3D awareness tasks. The re-052
sults, illustrated in Fig. 1, lead to a surprising observa-053
tion: video models do not provide a consistent advantage054
over their image-based counterparts on 3D understanding055
tasks. We dub this phenomenon as the diashow paradox,056
recognizing that state-of-the-art models essentially learn057
from a “slide show” of the world rather than a continuous058
video stream – in contrast to humans.059

• Lastly, we propose two hypotheses to explain the ob-060
served results: (i) a lack of visual diversity in existing061
video datasets, and (ii) a deceptively high non-triviality062
of 3D-aware representation learning from videos.063

The results of our study challenge the conventional064
understanding that using video training data per se im-065
plies improved 3D-aware representations in comparison to066
image-based pre-training. Our findings illuminate two open067
avenues for future research: curating high-quality video068
datasets and 3D-aware pre-training strategies on videos.069

2. Related Work070

Probing VFMs. Recent studies such as Probe3D [10],071
DepthCues [6], and Lexicon3D [20] compare visual foun-072
dation models on core spatial reasoning tasks, including073
depth estimation, surface normal prediction, multiview con-074
sistency, and 3D scene understanding. These works provide075
a foundation for our AnyProbe framework in assessing the076
geometric capabilities of VFMs. Specifically, our work con-077
siders the impact of video pre-training: we compare video-078
and image-based models with a similar architecture to iso-079
late the effect of motion in pre-training on videos.080

Image- and video-based foundation models. Image-081
based foundation models leverage large-scale datasets and082
self-supervised learning techniques to extract visual rep-083
resentations that transfer well across diverse downstream084
tasks. MAE [14] reconstructs masked image patches; I-085
JEPA [1] predicts latent codes for missing regions; and the086
DINO models [5, 23] leverage self-distillation with Vision087
Transformers for robust feature learning. These methods088
have naturally been adapted to video input: VideoMAE [26]089
applies masked auto-encoding to video sequences, V-JEPA090
and V-JEPA 2 [2, 4] adapt joint-embedding for spatio-091
temporal data, and DoRA [27], drawing inspiration from092
DINO, leverages object continuity to learn robust represen-093
tations from long, unlabeled videos.094

3. Methodology095

We introduce AnyProbe, a unified foundation probing096
framework that enables systematic evaluation across diverse097
datasets, tasks, architectures, and probing protocols. For ex-098

Model Data Res. Arch.

Video
VideoMAE [26] K400, SSV2 224 B/16, L/16
V-JEPA [2, 4] VM2M, VM22M 224, 384 H/16
DoRA [27] WTours 224 S/16
CogvideoX [32] Video-Text Pairs 768× 1360 –

Image
MAE [14] IN1K 224 B/16, L/16
I-JEPA [1] IN1K, IN22K 224, 448 H/16, H/14
DINO [5] IN1K, WTours 224 S/16
CogView-3Plus [33] LAION-2B[25] 512 –

Table 1. VFMs in our study. Models are categorized by architec-
ture (Arch.), training datasets (Data) and resolution (Res.).

Dataset Content Scenes Frames

ImageNet-1K [8] Natural object images 1.28M 1.28M
ImageNet-22K [8] Fine-grained object images 14.2M 14.2M
VM2M [4] Video datasets 2M 14B
VM22M [2] Video + image datasets 22M 90B
WTours [27] Egocentric city walk videos 10 3.5M
Kinetics-400 [17] Human action clips 240K 71.8 M
SSV2 [12] Object interaction videos 160K 19.4 M
LAION-2B [25] Image–text pairs 2.26B 2.26B

Table 2. Overview of pre-training datasets. Each dataset is spec-
ified by its number of scenes and frames. For video datasets, frame
counts are estimated based on the total duration and frame rate.

ample, AnyProbe supports lightweight integration of video- 099
based VFMs for monocular image tasks, allowing for a 100
comparative analysis of image- and video-based models on 101
3D-awareness tasks. We will open-source AnyProbe. 102

Model overview. Our study evaluates a diverse set of 103
image- and video-based VFMs summarized in Tab. 1. We 104
contextualize the models with statistics of the underlying 105
training data in Tab. 2. We select official checkpoints and 106
use comparable architectures and training strategies avail- 107
able for both input modalities, images and videos (e.g. I- 108
JEPA [1] vs. V-JEPA [4]; MAE [14] vs. VideoMAE [26]). 109

Adapting video ViT models for image tasks. To fairly 110
compare video to image models, we adapt video models 111
for image tasks. The video models included in our study, 112
V-JEPA [4] and VideoMAE [26], tokenize videos by em- 113
bedding tubelets of size T×H×W with a 3D convolution. 114
To adapt these models for per-image processing, we define a 115
2D convolution kernel k2D, which derives from its 3D coun- 116
terpart k3D by summing over the temporal dimension: 117

k2D(i, j) =

T∑
t=1

k3D(t, i, j). (1) 118

This formulation is equivalent to the practice of duplicat- 119
ing the image along the temporal dimension (cf . [2]), but is 120
more computationally efficient. To adapt the 3D positional 121
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Figure 2. Adapting video-based ViT models for image tasks.
We extract token embeddings from image patches using 2D con-
volutions adapted for video models, see Eq. (1), and use only the
spatial positional embeddings of the first frame.

embedding, we use only the components of the first frame122
and discard the rest. As a result, video-based models retain123
their architecture, but can operate on image tasks without124
any computational overhead, as visualized in Fig. 2.125

Depth and surface normal estimation. We extract pixel-126
level features and optimize a DPT probe [24]. For depth,127
we use a scale-invariant sigmoid depth loss [9] and a depth-128
gradient matching loss [15]; for normal estimation, we use129
an uncertainty-aware angular loss [3]. To ensure the fair-130
ness of our evaluation, we resize input images to the orig-131
inal pre-training resolution. This approach avoids interpo-132
lating the positional embedding, which we empirically con-133
firmed to have a negative effect on the downstream accu-134
racy. Instead, we downsample the input to the pre-training135
resolution. We resize the predicted maps produced by the136
DPT probe (depth or normals) to the original image size for137
evaluation. Specifically, we optimize the DPT probe for 10138
epochs using AdamW [18] with an initial learning rate of139
5e− 4, a cosine decay schedule [19] and batch size of 8.140

Multi-view correspondence. We follow the previous met-141
rics and protocols for evaluating multi-view correspondence142
[10], with adaptations for video models, as shown in Fig. 2.143
We compute the recall, the fraction of the matches with an144
error below a threshold. Given two views of the same ob-145
ject or scene, we extract dense feature maps from a frozen146
backbone and establish feature correspondences based on147
their cosine similarity. We consider two evaluation scenar-148
ios. SPair-71k [21] provides class-level keypoints on ob-149
ject instances. We evaluate only the annotated points and150
perform a single nearest-neighbor lookup in feature space.151
We calculate 2D pixel-level error in normalized image co-152
ordinates and report the aggregate recall at threshold 0.10.153
We further break down the recall by a relative change in154
viewpoint levels d ∈ {0, 1, 2} (with d = 0 indicating small155
and d = 2 indicating large view change). NAVI [16] sam-156
ples dense points on the object mask. We extract dense fea-157
tures, perform nearest-neighbor matching with Lowe’s ratio158
test [10], and retain the top 1000 correspondences. We then159
compute the 3D Euclidean error between each match and160
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Figure 3. Qualitative examples. We visualize depth and surface
normal maps derived from running AnyProbe with a DPT [24]
head on top of frozen MAE and VideoMAE on NYUv2 [22]. MAE
produces consistently sharper and more accurate geometry.

its ground-truth back-projected point, and report the recall 161
at a fixed 2cm threshold, grouped by relative viewpoint bins 162
θ ∈ {[0, 30), [30, 60), [60, 90), [90, 120]}. 163

4. Experiments 164

We use NYUv2 [22] for our experiments with depth and 165
surface normal estimation. For multi-view correspon- 166
dence, we use SPair-71k [21] and NAVI [16]. We rely on 167
AnyProbe to obtain the results, summarized in Tab. 3. No- 168
tably, DINOv2 [23], provided for reference, surpasses all 169
video models in both single-image estimation and multi- 170
view consistency. Comparing video and image models with 171
the same architecture, we make the following observations: 172
VideoMAE [26] exhibits higher multi-view consistency 173
than MAE [14], but inferior accuracy of depth and sur- 174
face normals. Within the autoencoder family, MAE con- 175
sistently outperforms VideoMAE [26] across all architec- 176
tures in depth and surface normal estimation, achieving 177
lower RMSE scores on ViT-L16 (0.277 vs. 0.323 RMSE for 178
depth; 24.79 vs. 26.53 RMSE for normals). The results with 179
ViT-B16 align with these trends. While VideoMAE shows 180
improved multi-view consistency over MAE, this advantage 181
is rather marginal: DINO [5] outperforms both MAE vari- 182
ants substantially on both SPair-71k and NAVI. 183

V-JEPA [26] and its sequel V-JEPA 2 [2] yield inferior 184
accuracy than their image-based counterpart, I-JEPA 185
[1], across all benchmarks. Specifically, I-JEPA mod- 186
els (H16/H14) significantly outperform V-JEPA-H16 and 187
V-JEPA 2 in view consistency on SPairs-71k, achieving the 188
average recall of 44.81/35.74 vs. 25.13/28.4, respectively. 189

An image model, DINO [5], pre-trained on videos is only 190
marginally worse than a video model, DoRA [27]. How- 191
ever, a DINO [5] model pre-trained on IN1K consistently 192
outperforms DoRA [27] pre-trained on the World Tours 193
dataset in terms of depth (0.353 vs. 0.437 RSME), surface 194
normals (28.49 vs. 31.60 RSME), and multi-view consis- 195
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Arch Model Dataset Res. SPair-71k ↑ NAVI ↑ NYUv2 ↓

d = 0 d = 1 d = 2 all θ030 θ3060 θ6090 θ90120 Depth RMSE Snorm RMSE

B14 DINOv2 LVD-142M 518x518 62.55 51.40 48.79 56.26 94.27 69.04 39.65 25.85 0.222 24.79

B16
DINO IN1K 224x224 28.83 24.40 24.90 26.10 86.33 55.79 30.65 22.69 0.334 28.01
MAE IN1K 224x224 9.60 6.24 4.91 7.92 76.91 40.15 19.68 11.96 0.317 25.95
VideoMAE K400 224x224 8.98 6.45 5.47 7.73 88.32 48.32 20.38 11.58 0.384 28.37
VideoMAE SSV2 224x224 13.03 6.21 4.21 10.03 89.14 46.69 19.56 11.10 0.413 29.17

L16 MAE IN1K 224x224 8.22 6.00 4.57 7.17 74.58 37.92 14.55 11.39 0.277 24.79
VideoMAE K400 224x224 20.11 12.68 10.07 16.51 85.02 49.72 21.32 12.12 0.323 26.53

H16
I-JEPA IN1K 448x448 51.35 38.47 42.52 44.81 81.58 52.57 27.42 17.72 0.246 23.43
V-JEPA VM2M 224x224 29.00 17.47 17.75 23.34 86.39 52.56 23.03 13.79 0.269 26.09
V-JEPA VM2M 384x384 30.92 18.74 19.60 25.13 77.19 45.41 21.23 15.03 0.270 24.88
V-JEPA 2 VM22M 224x224 32.48 25.78 24.46 28.40 76.01 48.11 23.12 13.15 0.259 25.05

H14 I-JEPA IN22K 224x224 43.18 31.28 32.12 37.45 83.07 49.84 23.89 14.88 0.294 25.64
I-JEPA IN1K 224x224 40.48 30.79 32.75 35.74 82.51 49.73 24.99 14.83 0.329 27.69

S16
DINO IN1K 224x224 27.97 24.32 24.88 25.66 83.85 53.77 30.42 22.46 0.353 28.49
DINO WTours 224x224 8.98 9.05 6.63 8.41 54.76 32.75 21.51 14.81 0.477 33.70
DoRA WTours 224x224 12.45 10.28 8.55 11.36 60.74 36.71 22.93 16.37 0.437 31.60

3B CogView-3Plus LAION-2B 512x512 20.02 12.04 8.95 15.91 81.34 45.66 19.02 10.31 0.361 29.32
2B CogVideoX1.0 Video-Text Pairs 768x1360 3.17 2.93 2.77 3.05 44.08 28.27 16.26 11.54 0.594 34.47

Table 3. Image vs. video comparison on 3D awareness. We evaluate all models with AnyProbe, which extracts features for multi-
view correspondence and train a DPT probe for depth and surface normal estimation. For multi-view consistency, we use SPair-71k (200
keypoints) and NAVI (1000 keypoints) and report recall (cf . Sec. 3). We use NYUv2 for depth and surface normal estimation and report
RMSE. Across most architectures, image-based models (highlighted in blue) consistently outperform their video counterparts on 3D tasks.
The image-based DINOv2 achieves the best overall results.

tency (e.g. 25.66 vs. 11.36 recall on SPairs-71k).196

An image-based diffusion model, CogView-3Plus [33],197
substantially outperforms its video-based counterpart,198
CogVideoX [32]. Consolidating previous observations,199
we test text-to-image diffusion models, CogView-3Plus and200
CogVideoX. The video-based CogVideoX shows dimin-201
ished 3D awareness compared to image pre-training across202
all metrics, despite sharing similarities in the architecture203
and the pre-training scheme.204

5. Discussion and Conclusion205

Our findings highlight an apparent paradox, referred to as206
the diashow paradox. Contrary to the prevailing belief,207
learning from image sets, not videos, appears to yield more208
3D-aware representations. Our study supports this postula-209
tion with empirical evidence: VFMs trained on static im-210
ages consistently match or exceed their video-based coun-211
terparts in geometric 3D-awareness tasks (cf . Tab. 3). We212
discuss two hypotheses to explain our observations:213

Existing video datasets lack visual diversity. Deep mod-214
els benefit from data diversity and size. The temporal conti-215
nuity inherent to videos renders image sequences highly re-216
dundant. Recall from Tab. 3 that DINO trained on Walking217
Tours (a few, but long videos) performs significantly worse218
than its IN1K variant across all metrics. Furthermore, exist-219
ing video datasets are well-known to contain low-resolution220
sequences and compression artifacts. While a “golden bul-221

let” dataset exists for image pre-training (ImageNet), we 222
may have yet to curate such a dataset for the video modal- 223
ity. However, the same curation effort would apply to image 224
sets as well. Amassing diverse image sets may still prove 225
more cost-efficient than curating videos. 226

Learning 3D-aware representations from videos is de- 227
ceptively non-trivial. The photographic bias leveraged 228
by self-supervised methods on image datasets [5, 14] might 229
be less prominent in videos, where strong frame-to-frame 230
correlations and camera motion introduce additional chal- 231
lenges [7, 11, 13, 28]. Consequently, learning multi-view 232
consistency and geometric priors from videos becomes a 233
highly non-trivial task (e.g. V-JEPA 2 lacks I-JEPA’s multi- 234
view robustness despite larger-scale pre-training). 235

Perhaps as a consequence of the task complexity, a typ- 236
ical evaluation protocol of video models is rarely a 3D- 237
aware task, favoring instead other spatio-temporal bench- 238
marks, such as action recognition and anticipation [e.g. 2]. 239
We hope that AnyProbe will encourage more comprehen- 240
sive evaluation of future video models, including 3D aware- 241
ness tasks, by simplifying the engineering effort of probing 242
experiments and streamlining cross-modal comparison. 243

Conclusion. Systematically comparing video to image 244
models, our study exposes the diashow paradox: image 245
sets yield surprisingly more 3D-aware representations than 246
videos. By highlighting the paradox, we hope to incentivize 247
the community in future explorations of video curation, and 248
3D-aware training and evaluation strategies. 249
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