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Abstract

Deep generative models, while revolutionizing fields like image and text gener-
ation, largely operate as opaque “black boxes”, hindering human understanding,
control, and alignment. While methods like sparse autoencoders (SAEs) show
remarkable empirical success, they often lack theoretical guarantees, risking sub-
jective insights. Our primary objective is to establish a principled foundation for
interpretable generative models. We demonstrate that the principle of causal mini-
mality — favoring the simplest causal explanation — can endow the latent represen-
tations of diffusion vision and autoregressive language models with clear causal
interpretation and robust, component-wise identifiable control. We introduce a
novel theoretical framework for hierarchical selection models, where higher-level
concepts emerge from the constrained composition of lower-level variables, better
capturing the complex dependencies in data generation. Under theoretically de-
rived minimality conditions (manifesting as sparsity or compression constraints),
we show that learned representations can be equivalent to the true latent variables
of the data-generating process. Empirically, applying these constraints to leading
generative models allows us to extract their innate hierarchical concept graphs,
offering fresh insights into their internal knowledge organization. Furthermore,
these causally grounded concepts serve as levers for fine-grained model steering,
paving the way for transparent, reliable systems.

1 Introduction

Deep generative models, such as diffusion [25}156] and language models [4], are reshaping numerous
domains. However, their complexity often renders them ‘black boxes, hindering understanding and
control. While empirical tools like sparse autoencoders (SAEs) offer methods for probing these
models, they lack theoretical guarantees, risking subjective interpretations. In this work, we tackle
this challenge, seeking a principled foundation for interpretable and controllable generative models.

We identify causal minimality [55} 165, 124] as the formal principle connecting practices like sparsity
to the recovery of meaningful, hierarchical concepts. We apply this to text-to-image (T2I) diffusion
models and autoregressive LMs, finding that sparsity constraints are instrumental for identifying
visual and textual concepts.

A cornerstone of our contribution is establishing the first identifiability results for selection-
based [81} 166,123, 76} 2 14} 9} 5] hierarchical models, where higher-level concepts emerge as effects
of lower-level compositions. This diverges from traditional models where influence propagates from
high to low levels [54, 7, 78] and, we argue, better captures the dependencies in concept formation
(e.g., a car” from its parts). Our framework establishes component-wise identifiability for these
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Figure 1: Our causal minimality principle enables interpretable text-to-image generation through hierarchical
concept graphs, with implications for downstream tasks.

models (Conditions and [A-T}iii), proving that under these minimality conditions, learned rep-
resentations can be equivalent to the true latent variables. Empirically, this allows us to extract and
steer innate hierarchical concept graphs (Figure [T), offering new levers for model control. Due to
page limits, we focus on T2I models in the main text and defer LMs to Appendix [A]

2 Deep Generative Models as Hierarchical Concept Models

Notations. We denote random variables with upper-case characters (e.g., X) and values with lower-
case characters (e.g., ). We use bold fonts for multidimensional objects (e.g., X) with dimen-
sionality n(-). Parents Pa(-) and children Ch(-) relations are defined based on the selection graph
(Figure[2). We denote [M] := {1,..., M}. We denote the image as X € R"X), textas D € N"(P),

and visual concepts as Z := [Zy,--- , Z1, ], where Z; € R™(%) are concepts at level I.
Hierarchical processes and selection mechanisms. Text D,y D
Our framework conceptualizes high-level concepts T / T
as emerging from lower-level ones via a selection AR AR
mechanism 81} 66| 23| [76] 2| [14} 9L 5]. A higher-
level concept V is an effect of its constituents V1 Visual Zs 1/ Z\ j?(;)f_ \Z)
(i.e., its "parents”): V; := gy,(V;41). This "se- Concepts ‘
lection” perspective is critical for modeling how ab- , f Y / ; VZ\T\ ;\(2
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stract concepts (e.g., “bicycle”) enforce coherence 3,143,

among their parts (e.g., “wheels”, “frame”). Tradi-

tional models [7, |53} [78] often require dense intra- Image X

level graphs to capture these dependencies, violating

the minimality principle. The generative pathway in- Figure 2: A visual concept graph. We denote

verts this process, sampling from abstract concepts {€Xt as D, visual concepts as Z, and the image as
to concrete details: X. See Appendix @ for the text counterpart.
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where we denote Zg := D and Zp,, 41 := X.

Connections to text-to-image diffusion models. This hierarchical generation aligns with the iter-
ative denoising in diffusion models [63, 25]]. Each step f; can be seen as an autoencoder extracting
a representation Zs ). Representations from high-noise levels (large ¢) correspond to abstract con-
cepts (e.g., Z; with small [), while low-noise levels capture concrete details (large /). The text prompt
D guides the most abstract concepts (e.g., Z1). This motivates our core question: are these learned
representations identifiable with the true latent concepts?

3 Identifiable Representations under Causal Minimality

We posit that by adhering to the causal minimality principle [5516524], we can achieve component-
wise identifiability. For visual concepts, minimality manifests as sparse graphical dependencies.
For discrete text concepts, it translates to seeking the most compressed representation (see Ap-
pendix [A). We focus on hierarchical selection models, where high-level concepts are effects of



lower-level ones (colliders), rendering many existing identifiability results inapplicable. Our goal is
component-wise identifiability:

Definition 3.1 (Component-wise Identifiability). Let Z and 7 be variables under two model spec-
ifications. We say that Z and Z are identified component-wise if there exists a permutation 7 such
that for each i € [n(Z)], Z; = hi(Z(;)) where h; is an invertible function.

This strong form ensures a one-to-one mapping between learned and true concepts, which is vital for
unambiguous interpretation. We assume the standard faithfulness condition [64]. In the following,
we consider the identification of continuous latent visual concepts Z.

Condition 3.2 (Visual Concept Identification Conditions).

i Informativeness: There exists a diffeomorphism g; : (Z;,€) — X forl € [0, L], where €
denotes independent exogenous variables.

ii Smooth Density: The probability density function p(2z;41|2;) is smooth for any | € [Ly].

iii Sufficient Variability: For each Z and its parents y4 = Pa(Z), at any value z of Z, there
exist n(Z) + 1 distinct values of Z, denoted as {z(”)}"(z)

"%, such that the vectors w(z, 2(™)) —
w(Z, 2(0) are linearly independent where w (%, z) = (alogp(i‘z) mogp(ilz)).

821 yrtt 6277(2)

iv Sparse Connectivity (Minimality): For each parent concept Z, there exists a subset of its
children Z C Ch(Z) such that their only common parent is Z, i.e., ()44 Pa(Z) = {Z}.

Interpreting Condition [3.2] Conds. (Informativeness) and [3.2}fif] (Smooth Density) are stan-
dard regularity assumptions [29} 130,133} 132} [70} 39]. (Sufficient Variability) ensures concepts
respond distinctly. [3.2}fiv] (Sparse Connectivity) is our causal minimality constraint, positing a sparse
causal graph with unique connectivity "fingerprints,” crucial for disentanglement [80} 14473145/ 143]].

Theorem 3.3 (Visual Concept Identification). Assume the process for visual concepts in (I). If a
model specification Ov satisfies Condition and an alternative specification Oy satisfies Condi-
tionsand along with a sparsity constraint such that for corresponding Z and Z:

n(Pa(Z)) < n(Pa(Z2)), 2

then, if both models @y and Oy generate the same observed data distribution P (X), the latent visual
concepts Zy are component-wise identifiable for every level | € [Ly]|.

Proof sketch for Theorem 3.3} The proof (full details in Appendix [C) proceeds by identifying the
hierarchy level-by-level, from top to bottom. 1) Paired text data D acts as an auxiliary variable
for Z;, allowing identification of influenced subspaces [29, 130, i41]]. 2) Given Condition [3.2Hiv]
the intersections of these subspaces can be identified component-wise [70} [74} 140]. 3) Once Z; is
identified, it serves as the auxiliary variable to identify Z5, and this process is repeated.

Implications for text-to-image diffusion models. Theorem [3.3]underscores that the sparsity con-
straint () is pivotal for identifying true visual concepts. In practice, this constraint can be encour-
aged by techniques like SAEs applied to the internal representations (e.g., U-Net features at various
timesteps) of diffusion models. By sparsifying activations, SAEs promote the sparser conceptual
graphs required by our theory. Our experiments in Section ff] demonstrate this.

4 Experiments

We demonstrate our method’s hierarchical interpretation on T2I models. Full empirical results,
implementation details, and ablations are in Appendix [F

Hierarchical concept graph visualization. Figure |3| shows a hierarchical concept graph learned
by our method. Nodes from early timesteps (e.g., 899, brown) represent high-level concepts (node
3556, “full cat face”). Nodes from intermediate timesteps (e.g., 500, green) capture mid-level re-
gions (node 3044, “central face”), while nodes from late timesteps (e.g., 100, blue) encode fine
details (node 3066, “eyes”). This clearly illustrates a coarse-to-fine hierarchy.

Concept steering in hierarchical graphs. We perform concept steering by modifying the SAE
feature ' = z + AD(E(z)) and feeding it back into the diffusion process. As shown in Fig.
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Figure 3: Hierarchical concept graph for a text-to-image model. Our method recovers meaningful hier-
archical structures. On the right, we demonstrate feature steering: intervening on a high-level concept (“Full
face”) alters the cat’s entire facial structure, while intervening on a lower-level concept (e.g., “Eye”) produces
a localized edit. More examples in Appendix@

Method 2P| RING-A-BELL] P4ab| UATK] COCO
K77 K38 KIi6 AVG FID]| CLIPT

SD14 17.8 85.26 87.37 93.68 88.10 98.70 69.70 16.71 31.3
ESD 2.87 20.00 29.47 3579 28.42 1549 287 18.18 302
SA 2.81 63.15 56.84 56.84 58.94 12.68 2.81 2580 29.7
CA 1.04 86.32 91.69 94.26 90.76 5.63  1.04 24.12 30.1
MACE 151 2.10 0.00 0.00 070 282 151 16.80 28.7
UCE 0.87 1052 9.47 12.61 10.87 9.86 087 17.99 302
RECE 072 526 421 526 491 563 072 1774 302
SDID 3.77 94.74 95.79 90.53 93.68 69.54 3099 22.16 3I.1
SLD-MAX 1.74 23.16 32.63 42.11 32.63 9.14 244 2875 284
SD1.4-NegPrompt 0.74 17.89 40.42 34.74 31.68 10.00 146 1833 30.1
SAFREE 145 35.78 47.36 55.78 4631 10.56 145 1932 30.1
TRASCE 045 105 2.10 210 1.75 397 070 1741 299
ConceptSteer 036 3.16 842 947 7.02 199 211 1867 308
Ours 025 1.05 0.00 211 1.05 0.66 211 1702 313

Table 1: Model unlearning comparisons. Our method delivers competitive results on unlearning
tasks without compromising standard text-to-image generation.

(right), steering high-level node 3556 alters the entire cat face, while steering node 1026 adjusts
only the upper region, demonstrating localized, hierarchical control.

Model unlearning. Table[T]reports quantitative results on four nudity-removal benchmarks
[61[79]. Our method achieves state-of-the-art performance. To verify generalization, we apply feature
steering on MSCOCO prompts; the resulting low FID and high CLIP scores indicate effective
unlearning without degrading overall text-to-image quality.

Ablation. As established in our theory, sparsity is crucial for identifiability. Fig. [6] empirically
validates this. When sparsity is not enforced (left), the resulting graph is overly dense and uninter-
pretable. Conversely, imposing excessive sparsity (right) leads to an overly pruned graph that fails
to capture the generation process. This highlights the importance of a balanced sparsity, as predicted
by our theory, to achieve an interpretable and meaningful concept hierarchy.

5 Conclusion

In this work, we present a theoretical framework using causal minimality for identifying latent con-
cepts in hierarchical selection models. We prove that generative model representations can map to
true latent variables. Empirically, applying these constraints enables extracting meaningful hierar-
chical concept graphs from leading models, enhancing interpretability and grounded control.
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Appendix for “Beyond the Black Box: Identifiable Interpretation
and Control in Generative Models via Causal Minimality”

A Formulation, Theory, and Experiments for Language Models

A.1 Formulation for Text Generation

51,1 Sl,2

Textual R y f \
Concepts

Sa1 Sao Sas Soa

AN

Text D1 D2 D3 D4 D5 DG

Figure 4: A textual concept graph. We denote text as D and discrete textual concepts as S. High-level
concepts function as selection variables of low-level variables.

Textual concepts are S := [Sy, -+ , S|, where Lt is the number of textual hierarchical levels and
S, € O ¢ N80 are concepts at level .

S1 ~P(S1), S ~P(SSi—1), le€{2,...,Lr+1}, 3)
where we denote Zg := D, Z,,+1 := X, and S+ := D.

Connections to autoregressive language models. An autoregressive language model can be seen
as learning an “encoder” that maps a sequence of input tokens (D;.;) to an internal state S; (e.g.,
activations within transformer layers). This internal state S; then informs the “decoder” to predict the

subsequent token. For optimal prediction, this learned representation S, should ideally capture the
information of the true concept S; that d-separates the input tokens D7 .; from the next token Dy 1.
To achieve this d-separation, S; should belong to a higher concept level for a larger span of text
D4 (i.e., larger t — smaller [, see Figure E]) Consequently, broad thematic or narrative structures
spanning larger text segments can be compressed into higher-level concepts in our hierarchy (e.g.,
S1), while more localized syntactic or lexical choices correspond to lower-level concepts (e.g., Sy..).

Intuition on ‘“‘compression” and higher-level concepts in language models. Our core intuition
is that an autoregressive model, at any token position ¢, compresses the all the preceding sequence
(tokens 1 to t) into a representation that is useful for predicting the next token at ¢t + 1. In a later
position, the model has access to more context and strictly more information. Consequently, the
minimality constraint promotes more abstract and compressed representations over the information
it has seen. This pressure to compress a growing context naturally gives rise to a hierarchy of
concepts. Let’s use an example for illustration. When a model reads, “He was secretly buying
balloons, sending coded messages to friends, and looking up cake recipes...”, it would hold onto this
list of disparate actions. The meaning is ambiguous; the model has to keep the details in memory.
However, once it has parsed the entire sentence, “He was secretly buying balloons, sending coded
messages to friends, and looking up cake recipes — he was getting ready for the surprise party for his
sister”, the model can now form a high-level concept - a celebratory plan — that organizes all the
previous, seemingly random actions into a coherent event. This final concept is more compressed
and abstract than the initial list of actions, illustrating the move from detailed memorization to a
clear, high-level summary as more context becomes available. In this example, the concepts that
exist at later stages of the sequence are not just additions but are fundamentally more abstract, as
they synthesize a larger body of information. This aligns directly with our theoretical framework
(Condition [A.T}fifi)), where we posit that concepts become more compressed (i.e., have minimal
support) as we move up the hierarchy.

A.2 Learning Textual Concepts via State Compression

We now turn to the identification of discrete textual concepts S.
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The minimality principle manifests as seeking the most “compressed” representation, namely,
achieving minimal support sizes for these discrete concepts while preserving full information.

Condition A.1 (Textual Concept Identification Conditions).

i Natural Selection: Each selection variable S; has a support supp(S;) that is a proper subset
of its potential range if its constituent parts (lower-level variables) were combined randomly.
That is, supp(S;) € fp_s, (225D where fp_,s, is the function from D to S).

ii Bottlenecks: The support size of any concept Sy is strictly smaller than the joint support size
of its parents Pa(S;) in the selection graph.

iii Minimal Supports: For any S, the condition distribution P (D \ Pa(S)|S = s, HPa(S) = §)
is a one-to-one function w.r.t. the argument s.

iv No-Twins: Distinct latent variables must have distinct sets of adjacent (parent/child) variables.

v Maximality: The identified latent structure is maximal in the sense that splitting any latent
concept variable would violate either the Markov conditions or the No-Twins condition.

Interpreting Condition [A.1} Condition posits that meaningful text (or textual concepts) oc-
cupies a small, structured subset of the vast space of all possible token combinations. We rarely
encounter truly random sequences of words in natural language. Conditions and are
direct manifestations of causal minimality for discrete concepts. [iflimplies an information compres-
sion moving up the hierarchy—abstract concepts are more succinct. [iif demands that each state of
a concept s offers unique information about the rest of the text, given its context. Therefore, the
representation is most compressed (minimal number of states) and each state contains unique infor-
mation. Conditions and are standard necessary conditions for discrete latent variable
model identification [36 37]], precluding redundant or fragmented latent structures.

Theorem A.2 (Textual Concept Identification). Assume the hierarchical process as per (3). Let the
true underlying parameters be Or. If O1 satisfies Condition and an alternative learned model

O+ satisfies Condition then if both models produce the same observed distribution P (D),
the latent textual concepts S; are component-wise identifiable for every level | € [Lr].

Proof sketch for Theorem [A.2] The identification for textual concepts proceeds from the bottom
level (tokens, Sz..) upwards to the most abstract concepts (S1). (1) At each level [ + 1, we make
use of the conditional independence relations that the high-level variable S; ; and its hybrid parents
HPa(S;;) d-separate its pure parents PPa(S; ;) from the other variables S; \ {Pa(S;;)} on level
l. This relation allows us to identify subsets of S;; that share children on level ! [8 38] and thus
reveals the connectivity between variables in S; and S;11. (2) Once the graphical connections are
known, we recover the function Pa(S; ;) — Si; (i.e., how lower-level concepts combine to form
S;.;). This is done by merging states of Pa(.S; ;) that are predictively equivalent. The “Minimal
Supports” (Condition [A.THifi) principle dictates that we choose the function that results in the largest
equivalence classes over the parent states (i.e., the most compressed representation for .S; ;). This

ensures that the learned concept Shi has the minimum number of necessary states. (3) This process
of structure learning and function recovery is repeated from Sy, (initially using observed tokens D
as Sr..+1) up to S, thereby identifying the entire hierarchy.

Implications for autoregressive language models. Theorem suggests that by enforcing a
minimality regularization for the most compressed representation (Condition [A.T}ii), the learned
internal states S of a language model can become equivalent to the underlying textual concepts S.
SAEs, when applied to transformer activations, can be seen as a practical way to approximate this
minimality. By forcing most latent units to be inactive, SAEs force the model to encode information
with the minimal active units, which aligns with our theoretical condition for state compression. This
result provides a principled justification for the observed interpretability of SAE-derived features and
guides our empirical approach in Section[A.3]to extract hierarchical textual concept graphs.

A.3 Experiments on Autoregressive Language Models
Implementation. In this section, we present our implementation for analyzing autoregressive lan-
guage models. We utilize pretrained SAEs [3]] for Gemma-2-2b-it [68]. We partition tokens into

three parts based on the their positions in their positions in the input sequence. This segmentation
reflects the expectation that tokens convey increasingly abstract or high-level information as the
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Figure 5: The learned hierarchical concept graph for autoregressive language models. By modeling the
hierarchy of concepts based on the token sequence order, we recover a meaningful hierarchical graph. The
brown nodes (corresponding to later tokens) capture global, high-level information, while the green nodes
(from intermediate tokens) represent more localized, lower-level concepts.

sequence progresses. Finally, we apply causal discovery algorithms to uncover the relationships
among features across the different SAEs. More details in Appendix [E]

Results. Figure[5|shows a learned hierarchical graph (more in Appendix [F). Nodes 1555 and 12082
are mostly activated for final tokens in the sequence, and thus capture high-level semantics. Specif-
ically, node 1555 is associated with the humorous tone, while node 12082 represents the role of
the dog. Interestingly, node 11028, derived from intermediate tokens, emerges as a causal factor
for both 1555 and 12082. This node encodes pronouns and references to individuals, which play a
critical role in shaping both the humor and the characterization of the dog.

B Related Work

Hierarchical models. Complex real-world data distributions frequently exhibit inherent hierarchi-
cal structures among their underlying latent variables, a characteristic that has motivated exten-
sive research. Initial explorations primarily focus on continuous latent variables with linear inter-
actions [72} [26, 113} [1]. Other lines of work have centered on discrete latent variables; however,
these approaches are often constrained in their applicability to continuous data modalities like im-
ages [53} 78l [7, |20} 138]]. Furthermore, prevalent latent tree models, which connect variables via
a single undirected path [53| (78 [7]], risk oversimplifying the multifaceted relationships present in
complex systems. More recently, while Park et al. [52]] make progress in capturing geometric prop-
erties of language model representations using hierarchical models, their work does not address the
critical issue of latent variable identification. Kong et al. [39] tackle nonlinear, continuous latent
hierarchical models, but their framework, operating under rather opaque functional conditions, falls
short of component-wise identifiability, thereby leaving room for concept entanglement. Our work
distinctively investigates selection hierarchical models, contending that their structural properties
yield a more faithful representation of latent concepts in natural data distributions. In these models,
latent variables function as colliders, a significant departure from their role as confounders in the
aforementioned prior art. This critical distinction renders existing identification techniques largely
inapplicable. To the best of our knowledge, we are the first to provide component-wise identifiability
for both continuous and discrete hierarchical selection models.

Interpretability for generative models. Despite the remarkable advancements of generative mod-
els, their internal mechanisms often remain opaque. This presents a significant challenge to un-
derstanding and control. Considerable research has focused on obtaining interpretable features to
enable more controllable generation. Early efforts center on analyzing the latent space of generative
adversarial networks, e.g., [21}[71}61]]. Recently, sparse autoencoders (SAEs) have gained promi-
nence for interpreting hidden representations, particularly in language models. These studies show
that SAEs trained on transformer residual-stream activations can identify latent units corresponding
to linguistically meaningful features [[11,[28,|18,|511162]. These interpretability techniques have also
been successfully extended to diffusion models. Recent work [[67] reveals interpretable features and
specialization across diffusion model blocks. Other work trains SAEs with lightweight classifiers
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on diffusion model features [35]] or steers generation away from undesirable visual attributes [27].
Distinctly, our work offers a new perspective by framing the concepts learned by generative models
within a hierarchical, causal structure. This viewpoint motivates an analytical approach that moves
beyond a flat analysis of features. Instead of training a single SAE on aggregated features, our frame-
work suggests dedicating separate SAEs to different stages of the generative process (e.g., distinct
diffusion timesteps) to capture concepts at different levels of abstraction. Our theoretical work then
provides the formal basis for applying causal discovery across these learned concept layers. This
allows for the construction of an explicit hierarchical graph, shifting the focus from an unstructured
dictionary of features to an interpretable model of how abstract concepts compose from simpler
ones.

C Proofs

C.1 Proof for Theorem 3.3

Lemma C.1 (Base Case Visual Concept Identification). Assume the following data-generating pro-
cess:

C~P(CIU),V~P(V), X:=g(C,V). 4
We have the following conditions.
i Informativeness: The function g(-) is a diffeomorphism.
ii Smooth Density: The probability density function p(c, v|u) is smooth.

iii Sufficient Variability: At any value c of C, there exist n(C) + 1 distinct values of U, denoted
as {u(”)}z(:%), such that the vectors w(c,u™) — w(c,u’) are linearly independent where

— ( 9logp(clw) dlogp(c|u)
w(c,u) = ( Bor 0 Denie

If a specification 0 satisfies and another specification 6 satisfies EI and they generate
matching distribution P (X), then we can verify that C and C can be identified up to its subspace.

Proof. Since we have matched distributions, it follows that:
p(x[u) = p(x[u). 5
As the generating function ¢ has a smooth inverse (i), we can derive:
plg(c,v)[u) = p(g(€,v)[u) —
p(c, V|u) ‘J_zf1 | = ﬁ(g_l © g(é’ ‘A")|u) ‘J_zf1 | .
Notice that the Jacobian determinant |J g1 | > 0 because of g(-)’s invertibility and let h := g~ o :

(¢,V) — (c,v) which is smooth and has a smooth inverse thanks to those properties of g and g. It
follows that

p(c,viu) = p(h(¢, V)[u) =
p(c,viu) = p(e, v[u) [Jp-1].

The independence relation in the generating process implies that

logp(clu) + Y logp(Vi) =logp@lu) + Y logp(Vi) +log|Tp-1]. (6)
ie[n(v)] i€[n(¥)]

For any realization u®, we subtract (6) at any u # u® with that at u’:

log p(clu) — log p(cu’) = log j(&[u) — log p(&|u). (7)
Taking derivative w.r.t. 0; for j € [n(¥)] yields:
8 0 aci
> o lomplel) ~ logp(elu) - 2 =0 ®)

i€[n(c)]
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The left-hand side zeros out because ¢ is not a function of v.

Conditionensures the existence of at least n2(c) such equations with u', . .., u™©) that are linearly
independent, constituting a full-rank linear system. Since the choice of j € [v] is arbitrary. It follows
that

(961‘ . .
5. = 0,Vi € [n(c)],j € [n(v)]. 9)
Uj
Therefore, the Jacobian matrix J, is of the following structure:

ov oy

_|lov e
J, = de  oe (10)

ov oc’

() suggests that the block g—g = 0. Since J}, is full-rank, we can deduce that 6—2 must have full

row-rank and n(c) < n(¢). The sparsity constraint in () further implies that nfc) = n(¢). That

is, we can correctly identify the dimensionality of the changing subspace c. Moreover, since J,
de

is full-rank and the block g—g is zero, we can derive that the corresponding block 32 in its inverse

matrix Jp -1 is also zero. Therefore, there exists an invertible map ¢ — ¢, which concludes the
proof. O

Lemma C.2 (Determining Intersection Cardinality from Union Cardinalities). Ler A =
{A1, Ay, ..., A} be a finite collection of finite sets. If for any non-empty subset of indices
K C{1,2,...,n}, the cardinality of the union |Uk6K Ak‘ is known, then for any non-empty subset

of indices S C {1,2,...,n}, the cardinality of the intersection |ns€S As| can be determined.

Proof. We proceed by induction on the size of the set of indices .S, denoted by |S|, for which we
want to determine the intersection cardinality.

Base Case: |S| = 1. Let S = {i} forsome ¢ € {1,2,...,n}. We aim to determine the cardinality
|ﬂ565' AS| = |A;|. The union of a single set A; is simply A; itself. That is, A; = Uke{i} Ag. By
the premise of the theorem, the cardinality ‘U kefi} Ak’ is known. Therefore, |4;| is known. The
base case holds.

Inductive Hypothesis: Assume that for some integer m > 1, the cardinality of any intersection of
J sets, ’ﬂ e Aj ‘, can be determined from the known union cardinalities for all non-empty index
sets J such that 1 < |J| < m.

Inductive Step: We want to show that the cardinality of any intersection of m + 1 sets can be
determined. Let S,, 1 be an arbitrary non-empty subset of indices from {1,2,...,n} such that

|Sma1| = m + 1. Our goal is to determine ﬂsesm+1 Asl.

Consider the Principle of Inclusion-Exclusion (PIE) applied to the union of the sets whose indices
are in Sy, 41:

U As = Z (_1)‘K‘_1

SESm+41 0#KCSm41

This sum runs over all non-empty subsets K of S,,,+1. We can separate the term where K = S,,, 41
(which corresponds to the intersection of all m + 1 sets) from the other terms in the sum:

U 4= S (=pEEH A A

SESmy1 0#KCSmt1 keK

N

keK

FEnsmat | () 4,

sE€ESm11

Here, the sum is now over all non-empty proper subsets K of S, 1. We can rearrange this equation

to solve for the term ‘ﬂsesmﬂ Agl:
Cosetl O oal= U oal- S ot a
SESmi1 s€ESm11 D#KCSm+1 keK
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Multiplying both sides by (—1)/Sm+11=1 (noting that ((—1)ISm+11=1)2 = 1):

N 4f=cos=t ] U al- 3 e

SESm+1 SESm+1 0#K CSm+1

(] 4

keK

Let us analyze the terms on the right-hand side of this equation:
1. The factor (—1)I%m+11=1 is a known sign, since |S,,, 11| = m + 1.

2. The term ‘Usesmﬂ Ag| is the cardinality of a union of m + 1 sets. Since S,,+1 is a

non-empty subset of indices, this value is known by the premise of the theorem.

3. Considerthe sum Y- g (=171 |, Ag|. Bach K in this summation is a non-
empty proper subset of S,, 1. Therefore, the size of each such K satisfies 1 < |K| < m.
By the Inductive Hypothesis, for any such K (i.e., for any intersection of j sets where
1 < j < m), the cardinality |ﬂ Bk Ak| can be determined from the known union cardi-
nalities. Consequently, every term in this summation, including its sign factor (—1)‘K =1
is determinable.

Since all components on the right-hand side of the equation are known or can be determined based on

Ag| can be determined.

the theorem’s premise and the inductive hypothesis, the value of ‘ﬂg €Smin

In conclusion, by the principle of mathematical induction, for any non-empty subset of indices
S C {1,2,...,n}, the cardinality of the intersection |, As| can be determined if the cardinality

of any union |Uk€K Ag| (for any non-empty K C {1,2,...,n}) is known. O

Lemma C.3 (Intersection Block Identification [40]). We assume the following data-generating pro-
cess:

[v1,va] = g(c,s1,82), (11)

Vi :gl(casl)a (12)

Va2 ZQQ(C;SZ)a (13)

wherec € C C R, 51 € S C R%1, and sy € S C R%2. Both g1 and go are smooth and
have non-singular Jacobian matrices almost everywhere, and g is invertible. If g1 : Z — V;
and Go : Z — Vs assume the generating process of the true model (g1, g2) and match the joint
distribution py, v, then there is a one-to-one mapping between the estimate ¢ and the ground truth
coverC x 8§ x &, that is, ¢ is block-identifiable.

Lemma C.4 (One-level Visual Concept Identification). Assume the process for visual concepts in
(I with Ly = 1. If a model specification v satisfies Condition[3.2} and an alternative specification
Ov satisfies Conditions and along with a sparsity constraint such that for corresponding
Z and Z:

n(Pa(2)) < n(Pa(Z2)), (14)

then, if both models O~ and év generate the same observed data distribution P (X), the latent
visual concepts Z1 are component-wise identifiable for every level.

Proof. For notational convenience, we denote Z; as S and D as U in this proof. This proof consists
of two steps. In step one, we identify the connectivity between U and S variables. In step two, we
further show the identifiability of the blocks resulting from intersecting the parent sets Pa(U) of
multiple U variables.

Step 1: connectivity identification. Since we have access to the joint distribution P (S, U), we can
derive conditional distributions P (S|{U; }ic#) for any index subset % C [n(U)]. By Lemma|C.1]
we can identify the dimensionality of the set of variables S that are connected to any variable in
{U;}ien forany # C [n(U)]. Lemmal[C.2]implies that we can identify the dimensionality of the set
of variables S that are connected to all variables in {U; };c3 for any H C [n(U)]. This information
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gives rise to a partition of S components, in which each part is connected to the same set of U
variables. Therefore, we have identified the bipartite graph between S and U up to a permutation.

Step 2: intersection block identification. Denote the indices of S variables that are connected to
Ui as Z(i) C [n(S)]. We denote the block of S components connected to all variables in {U; }ic3 as
Snicqz(iy for any H C [n(U)]. Thanks to Lemma we can identify the block Sz(;) connected
to the variable U; for any i € [n(U)]. Lemma [C.3|allows us to identify the intersection of any two
blocks Sz(;)nz(;) for i # j. Therefore, repeated applications of Lemmaleads to the identifica-
tion of the intersection block Sq, _,, 7(;) for any H C [n(U)]. This concludes the proof. O

Condition 3.2 (Visual Concept Identification Conditions).

i Informativeness: There exists a diffeomorphism g; : (Z;,€;) — X forl € [0, L], where €
denotes independent exogenous variables.

ii Smooth Density: The probability density function p(z;41|2;) is smooth for any | € [Ly].

iii Suﬁ‘icient Variability: For each Z and its parents Z := Pa(Z), at any value z of Z, there

exist n(Z) + 1 distinct values of Z, denoted as {z(”)}n_ , such that the vectors w(z, z(") —

0 log p(Z|z) dlogp(z|2)
0z L 627:.(%) :

w(z, 2(0)) are linearly independent where w (%, z) = (

iv Sparse Connectivity (Minimality): For each parent concept Z, there exists a subset of its
children Z C Ch(Z) such that their only common parent is Z, i.e., Nzez Pa(Z) = (Z}.
Theorem 3.3 (Visual Concept Identification). Assume the process for visual concepts in (). Ifa
model specification 8v satisfies Condmon and an alternative specification Oy sansﬁes Condi-

tions ﬂ E and|3 m along with a sparsity constraint such that for corresponding Z and Z:

n(Pa(Z)) < n(Pa(Z)), )

then, if both models @y and Oy generate the same observed data distribution P (X), the latent visual
concepts Zy are component-wise identifiable for every level | € [Ly]|.

Proof. By Lemma we can identify the set of variables Z; that are directly connected to the
text variables D and their causal graph. Treating the identified Z, as the U in Lemma[C.4] we can
further identify Z,. Repeating this procedure yields the identifiability of the entire model. O

C.2 Proof for Theorem

Definition C.5 (Non-negative Rank). The non-negative rank of a non-negative matrix A € R™*"
is equal to the smallest number p such that there exists a non-negative m X p-matrix B and a non-
negative p x n-matrix C such that A = BC.

Lemma C.6 (Conditional Independence and Nonnegative Rank [8]). Let P € R™*" be a bi-variate
probability matrix. Then its non-negative rank rank (P) is the smallest non-negative integer p such
that P can be expressed as a convex combination of p rank-one bi-variate probability matrices.

Lemma C.7 (One-level Textual Concept Identification). Assume the hierarchical process as per
with Lt = 1. Let the true underlying parameters be 01. If Ot satisfies Condition and

an alternative learned model O satisfies Condition then if both models produce the same
observed distribution P (D), the latent textual concepts Sy are component-wise identifiable.

Proof. For each observed variable D, we search for the minimal set of variables C C (D \ D) such
that the following conditional independence holds:
D 1 D\({D}uUC)|(C,Ch(D)). (15)
R

Note that all D, C, and R belong to observed variables, and Ch(D) is latent. Thanks to Condi-
tion and Lemma we can select C with which the nonnegative rank of the probability
table T pp\({D}UC)|c is strictly smaller than the support size of D.

———

R
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We argue that such C is the group of variables adjacent to the same variable S at the next level as
D. In other words, they are the co-parents of D, CoPa(D).

This is because such C makes [15|hold and thus CoPa(D) C C. Otherwise, there would be open
paths passing S that induce dependence between D and CoPa(D), violating the conditional inde-
pendence relation in (T3). Therefore, the minimality constraint would enforce that C = CoPa(D).
Repeating this procedure to all D € D, we can construct S variables at the next level and the
adjacency relations between S and D.

We proceed to identify the function D +— S. We refer to D as a pure parent if D is adjacent to only
one variable S in the discovered graph. For each S, we denote its pure parents as D and non-pure

parents as D°. We employ the conditional independence relation D® 1L D \ Pa(D%)|(S,D?) and
Condition to identify the value of S, i.e., the function fs := (d°,d?) + s.

We first make use of the conditional independence
DS I D\ Pa(S)|(S,D¥) (16)
to merge the states of pure parents D conditioned on the non-pure parents DS, Specifi-

cally, we condition on non-pure parents DS = 4d% for any ds present in the support. We
define an equivalence relation ~ over values of (D, D?) where (df,d®) ~ (d3,d®) iff

they give rise to an identical conditional distribution P (D \ Pa(S)|D® = df, DS = d° ) =
P (D \ Pa(S)[DS = d§, DS = &S).

We further resort to a more global conditional independence by considering (D, D* ) as a meta-
variable and all the children Ch(D*®) associated with this meta-variable:

(D°,D%) L D\ Pa(Ch(D®))|(Ch(D®), Pa(Ch(D%)) \ {D% D*}), a17)

=Ds
where (D%, D%) has become a pure parent of the latent variable Ch(D¥).
We further group values ([d®],d®) following the rule that ([qs ]1,d9) ~
(@) it P(D\Pa(Ch(D?)|(D?],D%) - (4%,.).D° —a¥) -
P (D \ Pa(Ch(D))|([D%], D%) = ([d®],,d5), DS = és) for each dS on the support. That is,
conditioning on any d on the support, ([d%]1, 5115 ) and ([d®]y, d$) cannot be distinguished. Thus,
we group them into an equivalence class [(d®,d?)].

Finally, for each equivalent class [(d*”, ds )], we assign a distinct value 8. This constitutes a function

fs = (d¥, ds ) — §. Due to the deterministic relation from latent variables and their children, fs
is well-defined. We denote the random variable S := fg(D*, D).

In the following, we show that S and S are equivalent up to a bijection. We show this by con-
tradiction. Suppose that there existed (sg, 8g) on their respective support, such that their pre-
images partially overlapped (d,d5) € fg'(50) N fg'(s0) and fg'(30) # fg'(s0), where
fs : (d%,d%) — s represents the true model. Suppose that fg'(so) missed some elements in
5t (30), ie., 3(d7,dY) € f5'(30) \ f5'(s0). In this case, (dj,ds) and (d7,d7) would lead
to distinct values sy and s; under model fg ! By the construction of fs ! this would indicate
P (D \ Pa(S)|S = so) = P (D \ Pa(8)|S = s,) and P (D \ Pa(Ch(D%))|S = so, DS = aS) =

P (D \ Pa(Ch(D?%))|S = s;,D% = &S) for each d* on the support. Since sy # s1, this violates
Condition[A.T}fifi] giving rise to a contradiction.

Suppose that fg'(sg) contains additional elements, ie., 3(d5,d5) €  fg'(so) \

f5'(30). In this case, (dj,dj) and (d5,d5) would lead to one value
5o under model fg L By the construction of f g 1 this would indicate ei-
ther IP’(D\Pa(S)|DS = d5, DS :&5) £ IP’(D\Pa(S)|DS = d5, DS :&g)

17



or P (D\ Pa(Ch(D))|(IDS], D¥) = ([d%];, d5), DS = a*) +
]P(D\Pa(Ch(f)S))K[DS],f)S):([dS]Q,&QS),[:)S:(:iS) for some dS on the support.

By construction of fg, this would violate conditional independence or (I7) which the graphical
structure implies, which leads to a contradiction.

Therefore, we have shown that for each pair (s, 5) on their respective support, their pre-images
should be identical as long as they intersect: fg'(3) N fg'(s) #0 = f5'(8) = f5'(s), which
is equivalent to that S and S are equivalent up to a bijection. O

Condition A.1 (Textual Concept Identification Conditions).

i Natural Selection: Each selection variable S; has a support supp(S;) that is a proper subset
of its potential range if its constituent {mrts (lower-level variables) were combined randomly.
That is, supp(S)) € fp_s, (225D where fp_,s, is the function from D to S).

ii Bottlenecks: The support size of any concept Sy is strictly smaller than the joint support size
of its parents Pa(S;) in the selection graph.

iii Minimal Supports: For any S, the condition distribution P (D \ Pa(S)|S = s, HPa(S) = §)
is a one-to-one function w.r.t. the argument s.

iv No-Twins: Distinct latent variables must have distinct sets of adjacent (parent/child) variables.

v Maximality: The identified latent structure is maximal in the sense that splitting any latent
concept variable would violate either the Markov conditions or the No-Twins condition.

Theorem A.2 (Textual Concept Identification). Assume the hierarchical process as per (3). Let the
true underlying parameters be @r. If O satisfies Condition and an alternative learned model

O satisfies Condition then if both models produce the same observed distribution P (D),
the latent textual concepts S| are component-wise identifiable for every level | € [L].

Proof. By Lemma|C.7] we can identify the set of variables S; adjacent to D and the bipartite causal
graph between these two sets of variables. We then employ the identified S; to serve as D in the
first step to identify So. Repeating this procedure yields the identifiability of the entire model. [

D Key Concept Discussions

The roles and purposes of “‘Selection-based hierarchy and causality minimality”. The selection-
based hierarchy and causal minimality are constraints on the natural data distribution (images or
text), which is a standard modeling practice in causal representation learning [57]]. Specifically, the
selection-based hierarchy considers concepts as effects of their constituent parts [81], while causal
minimality assumes this underlying causal graph is sparse in a specific way (e.g., Condition 3.2}jiv)).

“Innate” hierarchical concept graphs. “Innate” refers to the causal structure inherent in the natural
data-generating process itself. Latent concepts in the real world interact (e.g., ‘eyes’ and ‘nose’ are
components of a ‘face’), forming a pre-existing causal structure which we refer to as the “innate
concept graph.”

True latent variables and their verifications. “True latent variables” follow the standard notion
in causal representation learning [57]: they are the disentangled, interpretable, semantic factors
of the real-world data-generating process (e.g., age, object pose). This is in contrast to a deep
learning model’s learned features, which are often an entangled, uninterpretable mixture optimized
for a specific training objective. Aligning learned features with true latent variables (referred to as
“identification”) is the central goal, as it enables reliable interpretation (e.g., “this feature is age”) and
precise control (e.g., “increase this feature to make the face older”). This is a fundamental question
that our work addresses through both theoretical guarantees and empirical validation. Our work
provides the guarantee that if the data-generating process fulfills the property of causal minimality
and our learning objective enforces this (e.g., via sparsity), the model’s learned features are provably
equivalent to the true latent variables. We then validate this empirically via intervention, a standard
practice in causal research [57]. Our experiments (Figure [3] and Figure [5)) show that manipulating
the theoretically identified features provides semantic control over the generated output, providing
evidence that these features are the meaningful causal levers of the generative process.
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Validity of the conditions. While assumptions on the unobserved data-generating process may not
be validated directly, we have reasoned for the plausibility of our conditions by reflecting on natural
properties of real-world data. Beyond standard regularity assumptions like smoothness and vari-
ability [32,133} 1291 130, [77]], our key minimality conditions—Sparse Connectivity (Condition [3.2Hiv)
for vision and Minimal Supports (Condition for text—are motivated by the observation
that concepts typically arise from a sparse set of causes [44)} (73] 45 [80, |50] and that language is
inherently structured and compressible [60} [10]. Perhaps a more convincing validation is the empir-
ical results. Our experiments provide strong indicative support for these assumptions: by actively
enforcing sparsity/compression via SAEs, we successfully extract meaningful concept hierarchies
in both vision (Figure [3)) and text (Figure [5) that are otherwise dense and not easily interpretable.
This success provides support for the usefulness of our overall approach and the validity of our as-
sumptions. We acknowledge that these assumptions, like any in this field, may not hold universally.
Fortunately, our strong empirical results suggest they seem effective and plausible for the complex,
real-world data we study.

Concept variable interpretation. Our theory proves the existence of a clean, one-to-one mapping
between a learned feature and a true latent variable. This guarantee is what makes a principled
interpretation possible in the first place. The subsequent step—assigning a human-understandable
description to this now-identified concept—is intrinsically a task that requires human validation.
This is a fundamental aspect of all interpretability research (perhaps modern vision-language models
have the potential to automate this process).

Comparison with recent work [12]. On the technique side, Cywinski et al. [12]] feature an ele-
gant concept location technique by utilizing the score function, which could significantly benefit
our algorithm. For example, we could employ SAeUron [12] to confirm whether our features at
various timesteps match the concept location it identifies. Our causal learning algorithm explicitly
learns the inter-connectivity among concepts across hierarchical levels. Thus, to modify a part of a
high-level concept, we could focus our scope on only the variables connected to this specific high-
level concept, which lowers the search complexity. In our experiment example, to implement two
changes, “replacing the rock with tree stump” and “adding texture to tree stump”, SAeUron may
need to perform two independent searches across all timesteps and node indices. Our method can
help reduce the search space to only the low-level nodes connected to “tree stump”. In addition,
pinpointing specific diffusion timesteps to intervene on potentially aids in managing undesirable
artifacts. Moreover, our explicit concept graph could also give an interpretable, intuitive character-
ization of the model’s knowledge. On the message side, Cywinski et al. [12] propose a novel score
function to select the timestep and node index for accurate concept unlearning. Our work’s focus
is to provide concise and informative theoretical conditions to understand concept learning in both
vision and language modalities, with potential applications like concept easing or controllable gen-
eration. With this work, we hope the theoretical insights will facilitate the development of refined
and dedicated methods in the community.

Comparison with recent work [35]. Revelio [35]] relies on training a classifier on a specific clas-
sification dataset. Revelio trains SAEs and a classifier on a specific dataset (e.g., Caltech-101) to
evaluate which features and timesteps are most correlated with class labels. Our work, in contrast,
does not involve class labels. Our primary contribution is a hierarchical, causal framework designed
to interpret the generative process itself. We apply causal discovery algorithms to discover the causal
relationships across different levels of concepts without any class labels. We are able to understand
how semantic concepts causally relate to one another across different levels of abstraction to form a
coherent output (e.g., how “ear” and “mouth” features causally contribute to a “cat face”’). Moreover,
the work [35]] neither performs interventions nor analyzes the compositional structure of generation,
which are the central themes of our paper.

E Implementation Details

We present the diagram of our method in Fig[9]

Computing resources. We use one L40 GPU for training the SAEs and a standard MacBook Pro
with an M1 chip for causal discovery. Training one SAE takes around 8 hours.

Vision experiments. For the diffusion sampling process, we utilize the sde-dpmsolver++ [48]
sampler, which adds stochasticity between successive steps. We train the K-sparse autoencoder
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Figure 6: Ablation studies on the sparsity constraint. We control feature sparsity at timestep 500. Without
enforcing sparsity, the resulting concepts tend to be dense, and the features are less interpretable. Conversely,
higher sparsity leads to a more interpretable, sparser graph. However, when sparsity becomes too high, the
resulting graph may become overly sparse and fail to adequately capture the generation of the cat face.

using a latent dimension of 5120, a batch size of 4096, and the Adam optimizer with a learning
rate of 0.0001, setting K = 10. A 10k subset of prompts is selected from LAION-COCO [359].
We then extract SAE features from layers down.2.1, mid.0, and up.1.0 at timesteps 899,500,100
respectively. We use prompts from the Laion-COCO dataset [59]]. The PC algorithm subsequently
uses all resulting feature indices for causal discovery. For the sparsity ablation study, we control the
top-K value used in the SAE. Specifically, we train additional SAEs with K=4 and K=100 at timestep
500. To evaluate the effect of sparsity (Figure[6), we then perform causal discovery by replacing the
SAE features with K=10 with those from the K=4 or K=100 models. Table[T|evaluates the following
baselines: SD1.4 [56], ESD [15], SA [22], CA [42], MACE [49], UCE [16], RECE [19], SDID [46]],
SLD-MAX [58]], SLD-STRONG [58], SLD-MEDIUM [58]], SD1.4-NegPrompt [56], SAFREE [75]],
TRASCE [31]], and ConceptSteer [34]].

LLM experiments. We utilize the pretrained SAEs for gemma-2-2b-it available from Gemma-
Scope [68]]. To collect features, we use the pile-10k corpus [[17]. For each sample, we first exclude
padding tokens and divide the remaining meaningful tokens into three sequential segments. The first
segment is processed through the SAE at layer 18 to obtain feature indices representing lower-level
information. The second segment is passed through the SAE at layer 19 to capture intermediate-
level features. The final segment is input to the SAE at layer 20 to extract higher-level features.
We then apply the PC algorithm for causal discovery using the feature indices from these three
representational levels.

F Additional Empirical Results

Hierarchical causal analysis. Our theoretical framework motivates an empirical analysis that dif-
fers from standard interpretability approaches. To empirically instantiate our theory, we first analyze
feature representations in Stable Diffusion (SD) 1.4 at distinct timesteps (899, 500, and 100) that
our theory posits correspond to different levels of abstraction. Our approach involves two key steps:
1) Level-specific concept learning: In line with our hierarchical model, we train a separate K-sparse
autoencoder for each timestep’s feature set, allowing us to learn concept dictionaries specific to each
level. 2) Cross-level causal discovery: subsequently, to map the relationships predicted by our the-
ory, we apply a causal discovery algorithm (PC [66]) on the learned sparse features across these
levels to construct the hierarchical concept graph.

Benefits. This hierarchical perspective provides two main benefits. First, it enables compositional
editing. For a complex object like “a textured tree stump”, our analysis can distinguish the ”stump”
(a mid-level concept) from its “texture” (a low-level one), allowing for independent steering. This is
a fine-grained control challenging for non-hierarchical methods that tend to learn entangled features
(see Table ). Second, it allows for targeted intervention. By identifying a concept’s level, we can
inject a steered feature back into the diffusion process only at its corresponding timestep, which
helps in reducing the unwanted artifacts that can arise from applying steering globally across all
timesteps (see Figure[7). More details in Appendix [E|and Figure[9]
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Metric SD 1.4 SD1.4 (SAE w/o hier.) SD1.4 (Ours)

Add tabby pattern — CLIP-1 | 0.91 £ 0.05 0.83 £ 0.07 0.93 £+ 0.04
Add tabby pattern — CLIP-T 1 0.27 £ 0.00 0.28 £+ 0.02 0.28 + 0.01
Add mountains — CLIP-I | 0.84 £ 0.06 0.83 £ 0.04 0.91 £ 0.03
Add mountains — CLIP-T 1 0.33 + 0.01 0.32 £ 0.01 0.33 + 0.01
Replace rock w/ stump — CLIP-I | 0.93 + 0.02 0.95 +0.02 0.96 + 0.02
Replace rock w/ stump — CLIP-T 1+ 0.31 & 0.01 0.29 £0.01 0.31 + 0.01

Table 2: Controllable image generation results. Our method achieves the best CLIP-I metric,
demonstrating greater fidelity to the input images, while reliably executing the target edits.

Before SAE, w/o hier Before SAE, w/o hier

Figure 7: Generated samples with P4D prompts [6]. The Stable Diffusion model is vulnerable to
the prompts in the p4d dataset, producing unsafe images. When the hierarchical relationship across
timesteps is not considered, negative steering with SAE results in drastic changes to the output. In
contrast, our method learns to apply modifications to the nudity feature at a suitable timestep without
introducing additional distortions.

Ablation. As established in the theoretical framework, sparsity is crucial for identifiability. To em-
pirically validate this, we visualize the resulting causal graphs under varying levels of sparsity, as
shown in Fig. [6] (more in Appendix [F). When sparsity is not enforced, the resulting graph becomes
overly dense, making it difficult to interpret and diminishing its semantic clarity. Conversely, impos-
ing excessive sparsity leads to an overly pruned graph that lacks sufficient structure to meaningfully
explain the generation process, such as in the case of the cat image. These observations highlight the
importance of balancing sparsity to preserve interpretability while maintaining explanatory power.

of adorned dog
e

A variation of iced drink

SAE,
w/o hier

Figure 8: Examples of multi-level editing (best viewed with zoom). High-level node 2212 con-
tains all information about the cup, while mid-level node 3372 focuses primarily on the ice cubes.
Similarly, high-level node 1531 encompasses all information about the dog (including the crown),
and mid-level node 5079 is dedicated to the crown. By modeling hierarchical relationships, we can
perform edits that are often difficult to achieve with a single-layer edit. For instance, if we want
to generate a variation of the cup while removing the ice cubes, we can apply feature steering on
high-level node 2212 to create a new version of the cup, and simultaneously apply negative feature
steering on mid-level node 3372 to remove the ice cubes.

F.1 Downstream Tasks

Thanks to our theoretical framework, we can naturally perform a range of image generation and
editing tasks, including model unlearning, controllable image generation, and multi-level editing.
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Figure 9: Diagram of our interpretability method. We train SAEs to capture features at different
levels (timesteps for diffusion models and token positions for LLMs), and apply causal discovery to
construct a hierarchical concept graph.

Input SD1.4

w/o hier Ours

Figure 10: Examplés of controllable ige generation.

Model unlearning. We provide quantitative results of model unlearning on four benchmark
datasets: IP2P [58]], three splits of RING-A-BELL [69], P4D [6]], and UnlearnDiffATK [79]. These
benchmarks focus on removing nudity-related concepts, and we report the accuracy of a pretrained
nudity detector. Our method achieves the best results across all benchmarks. In addition, to assess
whether our method preserves general text-to-image capability, we apply feature steering on nor-
mal prompts from MSCOCO [47]. The 10K results, reflected in low FID and high CLIP scores,
demonstrate that our method successfully identifies and removes nudity concepts without affecting
unrelated concepts. We also provide results on style removal in the appendix (Table [3) and we
achieve superior performance across different metrics and tasks.

Controllable image generation. We also evaluate controllable image generation on three editing
tasks: adding tabby patterns to cat faces, adding mountains to landscape images, and replacing rocks
with textured tree stumps. As shown in Table 2] and Fig[I0} our method achieves superior results
compared to both the standard text-guided model and SAE without hierarchical modeling.

Multi-level image editing. A key advantage of the hierarchical concept graph is that it can com-
bine nodes across different levels for fine-grained image editing. In Fig.[8] to obtain a new drink
without ice (while preserving the background), we can apply multi-level editing by steering features
at both high-level node 2212 and mid-level node 3372 simultaneously. Without such hierarchical
relationship modeling, conventional methods struggle to produce this combination, which can result
in undesired changes such as the drink being replaced by a person or the dog’s background.

More examples for Figure [3| Figure [T1] and Figure [I2] contain more examples of Figure [3] For
example, node 3641 in the SAE at timestep 899 contains comprehensive information about the
panda, as illustrated by the heatmap. When feature steering is applied, it results in the generation
of a new panda. Meanwhile, nodes 1026 and 511 in the SAE at timestep 500 represent different
components of the panda. At a finer level of detail, nodes 3489, 3880, and 451 in the SAE at timestep
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Figure 11: Discovered hierarchical concept graphs and feature steering visualization for text-
to-image generation. We can observe that features on the hierarchical model represent a part-whole
relation, and steering a feature yields corresponding visual variation (e.g., the panda’s ears).

100 capture specific image features. These hierarchical concept graphs effectively illustrate how the
panda is generated.

More results for model unlearning In addition to the four benchmark datasets in the main paper,
we report results on another commonly used benchmark dataset with two tasks: Remove Van Gogh
and Remove Kelly McKernan in Table[3] We evaluate performance using four metrics: LPIPSe
(similarity for prompts with the target style), LPIPSu (similarity for prompts without the style),
Acce (how well the target style was removed), and Accu (how well other styles were preserved),
with accuracy ratings assessed using GPT-40. Our method achieves competitive performance across
all metrics and tasks.

Understanding the sparsity constraint. Figure [[3]and Table [ contain the ablation study for the
sparsity constraint. We can observe that a proper sparsity strength can indeed give rise to desirable
interpretability results, while too small and too large sparsity constraints may be harmful in practice.
As shown in Table[d] a low sparsity penalty results in visualized maps with significant overlap. On
the other hand, applying a strong sparsity penalty leads to low node coverage, indicating that the
nodes alone are insufficient to fully explain the generation of the entire image.

More examples for Figure 5, Figure [I4] contains more examples for Figure 5} As discussed in
the main paper, we divide the tokens into three segments based on their sequence order, with later
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Figure 12: More examples of the learned hierarchical concept graphs for text-to-image models. Under
appropriate sparsity and noise conditions, our method successfully recovers meaningful hierarchical structures,
where each node encodes distinct semantic concepts. On the right, we demonstrate feature steering, where
manipulating individual nodes leads to changes in the output that align with their position in the hierarchy —
higher-level nodes produce broader semantic shifts, while lower-level nodes control more fine-grained aspects.

Method LPIPSet LPIPSul] Acce] Accut
Task: Remove “Van Gogh”

SD-v1.4 - - 0.95 0.95
CA 0.30 0.13 0.65 0.90
RECE [19] 0.31 0.08 0.80 0.93
UCE [16] 0.25 0.05 0.95 0.98
SLD-Medium [58] 0.21 0.10 0.95 0.91
SAFREE (73] 0.42 0.31 0.35 0.85
Ours 0.53 0.26 0.30 0.88
Task: Remove “Kelly McKernan”

SD-v1.4 - - 0.80 0.83
CA [42] 0.22 0.17 0.50 0.76
RECE [19] 0.29 0.04 0.55 0.76
UCE [16] 0.25 0.03 0.80 0.81
SLD-Medium [58] 0.22 0.18 0.50 0.79
SAFREE [73]] 0.40 0.39 0.40 0.78
Ours 0.48 0.20 0.35 0.81

Table 3: Results on style removal. We apply negative feature steering to the node to suppress the
styles in the image.

tokens expected to encode higher-level information—consistent with the behavior of autoregressive
language models. At the highest level, node 11859 represents the “’yell mode,” characterized by
capitalized words conveying a strong tone. The green node 1033, located at an intermediate sequence
position, emphasizes importance or intensity—typically a component of the yell mode. At the lowest
level, nodes 304, 2009, and 2818 capture various aspects and meanings related to the concept of
importance.

24



Overlap | Coverage T

K=4 | 0.108 £0.128 26.374+ 17.24

K=10 | 0.089 £0.079 47.90 &+ 12.50

K=100 | 0.235£0.132 37.46 £ 17.31
Table 4: Quantitative ablation results. We generate 100 panda images using different random
seeds and visualize the feature heatmaps at timestep 500. We adjust the top-K value in the SAE at
timestep 500 to control the level of sparsity. To evaluate, we compute the intersection-over-union
(IoU) of intermediate heatmaps to measure concept disentanglement, and the union of all features
to assess coverage. IoU reflects how distinctly the intermediate concepts are represented, while
coverage in percentage indicates the extent to which the intermediate nodes collectively account for
the image generation.

2093

3489 3880 451

Sparsity Increasing

Figure 13: Understanding the sparsity constraint. We adjust the top-K value in the SAE at
timestep 500 to control the level of sparsity, effectively modifying the sparsity strength of the SAE
at this middle layer. As sparsity decreases, the resulting graph becomes denser, introducing many
redundant and semantically irrelevant edges. This reduces the overall interpretability of the concept
graph. Conversely, increasing sparsity yields a cleaner, more concise graph. However, if sparsity is
too high, it may hinder the formation of a complete and interpretable concept graph necessary for
image generation.

capitalized words, acronyms, and
code identifiers in technical or Example:
structured text.

Here'S HOW I THINK IT IS IMPORTANT
comparative phrases that express TO BE CLEAR AND
degrees of importance or intensity I

It is more important than ever.

phrases related to technical terms

accessibility and detailed descriptions  rejated to Anyone Atthe level of The cold, you or
membership in of injuries and engineering or heart kill me!
organizations physical sensations manufacturing

nrocesses

Figure 14: An example of a discovered hierarchical concept graph for autoregressive language
modeling. Node 11859 represents a "yell mode,” characterized by capitalized words that convey a
strong tone. The green node 1033 captures the concept of emphasizing importance or intensity. Blue
nodes correspond to lower-level information—for instance, node 304 represents entities mentioned
throughout the text.
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