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Abstract

Deep generative models, while revolutionizing fields like image and text generation,1

largely operate as opaque “black boxes”, hindering human understanding, control,2

and alignment. Current empirical interpretability tools often lack theoretical guaran-3

tees, risking subjective or unreliable insights. In this work, we tackle this challenge4

by establishing a principled foundation for interpretable and controllable generative5

models. We demonstrate that the principle of causal minimality – favoring the sim-6

plest causal explanation – can endow the latent representations of diffusion vision7

and autoregressive language models with clear causal interpretation and robust,8

component-wise identifiable control. We introduce a novel theoretical framework9

for hierarchical selection models, where higher-level concepts emerge from the10

constrained composition of lower-level variables, better capturing the complex11

dependencies in data generation. Under theoretically derived minimality conditions12

(manifesting as sparsity or compression constraints), we show that learned represen-13

tations can be equivalent to the true latent variables of the data-generating process.14

Empirically, applying these constraints to leading generative models allows us to15

extract their innate hierarchical concept graphs, offering fresh insights into their16

internal knowledge organization. Furthermore, these causally grounded concepts17

serve as effective levers for fine-grained steering of model outputs, paving the way18

for more transparent, reliable systems.19

1 Introduction20

The transformative power of deep generative models, including diffusion models [1–6] and language21

models [7–10], is reshaping numerous domains. However, their escalating complexity and scale22

frequently cast them as opaque “black boxes” [11, 12]. This opacity presents a formidable barrier23

to genuine human understanding, severely curtails our ability to exert precise control over their24

behavior [13–16], and complicates the crucial task of aligning them with human values and intentions.25

Although recent empirical tools, such as sparse autoencoders (SAEs) for Large Language Models26

(LLMs) [17–19] and diffusion models [20–24], offer avenues for probing these models, a fundamental27

gap persists. Without rigorous theoretical underpinnings, interpretations derived from these methods28

risk being subjective or susceptible to human biases, rendering them potentially untrustworthy for29

risk-sensitive applications [25–27]. In this work, we directly tackle this critical challenge, seeking to30

establish a principled foundation for interpretable and controllable generative models.31

Our investigation centers on two questions: Under what theoretical conditions can we reliably identify32

meaningful, interpretable latent concepts within the intricate architectures of modern generative33

models? And, crucially, what actionable, theoretically-grounded insights can empower us to advance34

both the interpretability and the controllability of these powerful systems?35
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Figure 1: Extracting hierarchical concept graphs. We view diffusion and language models as series of
“autoencoders” parameterized by t and enforce sparsity constraints on the “encoder” outputs (i.e., models’
intermediate features). For diffusion models (right), higher-level concepts correspond to features at timesteps
closer to the noise input. For language models (left), the hierarchical level depends on the token position in the
sequence – features generated at later token positions represent higher-level semantics.

We posit and demonstrate that the principle of causal minimality [28–30] offers a powerful and36

unifying lens for this endeavor. This principle, advocating for the simplest causal model consistent37

with observations, allows for the identification of latent hierarchical concept structures. In our38

context, minimality translates to either sparsity in the concept graphs or the most parsimonious set39

of active discrete concept states. We specifically explore its application to autoregressive language40

models (e.g., [7–9]) and text-to-image diffusion models (e.g., [31, 32, 3]). Our findings indicate41

that imposing sparsity constraints on internal representations (akin to SAEs) is instrumental for42

identifying continuous visual concepts and discrete textual concepts.43

A cornerstone of our contribution is establishing the first identifiability results for selection-based [33–44

40] hierarchical models. In such models, higher-level variables emerge as effects of compositions of45

lower-level variables, where higher-level variables control and select the configuration of lower-level46

ones. This fundamentally diverges from traditional hierarchical causal models [41–43], in which47

causal influence typically propagates from higher to lower levels. The selection model structure48

is particularly adept at capturing the intricate conditional dependencies among low-level features49

for forming coherent high-level concepts – it explains how specific arrangements of wheels, doors,50

and a roof constitute a recognizable “car”, rather than a disjointed collection of parts. Traditional51

hierarchical models often neglect such intra-level dependencies by assuming no within-layer causal52

edges, as explicitly modeling them would yield overly dense graphs. The selection mechanism, in53

contrast, offers a more parsimonious approach to this essential coordination. Its adherence to the54

minimality principle strongly favors it as a more accurate representation of the true model.55

Despite the appeal, their identifiability has been underexplored. Prior research has largely centered on56

traditional hierarchical structures. Moreover, their techniques often rest on simplifying assumptions57

(e.g., linearity [44–47] or achieve only subspace-level identifiability [48]). Such methods are generally58

inapplicable to the hierarchical selection models. Our framework is the first to establish component-59

wise identifiability for both continuous and discrete hierarchical selection models. Specifically, we60

demonstrate that under well-defined minimality conditions (Conditions 3.2-iv and 3.4-iii), the learned61

representations are equivalent to the true latent variables of the underlying hierarchical process.62

This disentanglement of individual, atomic concepts is what affords significantly more nuanced63

interpretability and precise control in the resulting generative models.64

We substantiate our theory empirically. By applying the derived sparsity constraints to state-of-the-art65

diffusion and language models, we successfully extract their innate hierarchical concept graphs66

(Figure 1). This not only illuminates their internal knowledge organization but also shows that these67

causally-grounded concepts serve as highly effective levers for steering generative outputs.68

Please refer to Appendix A for discussion with related work.69

2 Deep Generative Models as a Hierarchical Latent Variable Model70

Notations. We denote random variables with upper-case characters (e.g., X) and values with lower-71

case characters (e.g., x). We distinguish multidimensional objects with bold fonts (e.g., X) and refer72
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to their dimensionality as n(·). With a slight abuse of notation, we view multidimensional variables as73

sets when appropriate. Parents Pa(·) and children Ch(·) relations are defined based on the selection74

graph Figure 2. If X has only one child Y , we refer to X as a pure parent of Y , i.e., X ∈ PPa(Y ); if75

X has other children than Y , we refer to X as a hybrid parent of Y , i.e., X ∈ HPa(Y ). We denote76

the set of natural numbers {1, . . . ,M} as [M ]. More background information is in Appendix C.77
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Figure 2: Hierarchical selection models. We denote text as D, discrete textual concepts as S, continuous
visual concepts as Z, and the image as X. High-level concepts function as selection variables of low-level
variables, capturing the conditional dependence of low-level concepts given high-level concepts in natural data.

We denote the image as the continuous variable X ∈ Rn(X) and text as the discrete variable78

D ∈ Nn(D). Visual concepts are Z := [Z1, · · · ,ZLV ], where LV is the number of visual hierarchical79

levels and Zl ∈ Rn(Zl) are concepts at level l. Textual concepts are S := [S1, · · · ,SLT
], where LT80

is the number of textual hierarchical levels and Sl ∈ Ωl ⊂ Nn(Sl) are concepts at level l (Figure 2).81

Hierarchical processes and selection mechanisms. Our framework conceptualizes high-level82

concepts as emerging from or being effects of lower-level concepts. This is captured by a selection83

mechanism [33–40], where variables Vl at a higher level of abstraction (smaller l) is determined by84

its constituent, more detailed components Vl+1 (i.e., its “parents”). The selection function gVl
maps85

these lower-level constituents to the higher-level concept:86

Vl := gVl
(Vl+1). (1)

This can be viewed as: Vl is a selection variable over Vl+1. In many natural data distributions of87

interest, we can only observe the data points for which the selection criterion is met, i.e., Vl only88

takes on a strict subset of its range Ω. Therefore, the distribution of Vl+1 is always the conditional89

distribution P (Vl+1|Vl). This conditioning on Vl can induce dependencies among components in90

Vl+1. For instance, if Vl+1,i → Vl ← Vl+1,j , conditioning on Vl makes Vl+1,i and Vl+1,j dependent.91

Under this formulation, one can leverage the inverse process of (1) to sample observable data (images,92

text), proceeding from higher-level abstract concepts to lower-level concrete details:93

Z0 ∼ P (Z0) , Zl ∼ P (Zl|Zl−1) , l ∈ {1, . . . , LV + 1};
S1 ∼ P (S1) , Sl ∼ P (Sl|Sl−1) , l ∈ {2, . . . , LT + 1}, (2)

where we denote Z0 := D, ZLV+1 := X, and SLT+1 := D. While (2) defines the generative path-94

way, the underlying structure is shaped by the selection principle of (1): the conditional distributions95

in (2) are implicitly learned if one has learned selection mechanisms in (1) and vice versa.96

Why is this “selection” formulation? The “selection” perspective is critical for modeling how97

abstract concepts enforce coherence among their more concrete constituents. Consider generating98

an image of a “bicycle” (a high-level concept Zl). Its components – wheels, frame, handlebars99

(lower-level concepts Zl+1) – must not only be present but also be arranged in a specific, structurally100

sound configuration. Traditional hierarchical models [42, 49, 43] assume independent low-level101

concepts Zl+1,i given high-level concepts Zl and stochastically sample these components, which102

could potentially lead to unrealistic arrangements (e.g., wheels detached from the frame if the learned103

conditional is not perfect). Therefore, these models must additionally incorporate causal edges within104

each hierarchical level to capture this conditional dependency, resulting in highly dense causal graphs.105

In contrast, the selection model, by positing that Zl is an effect of a specific configuration of Zl+1,106
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emphasizes that the “bicycle” concept arises from a coherent selection and composition of its parts.107

This structured dependency, induced by the selection mechanism, yields a much simpler graphical108

model to describe the natural data distribution, thus preferred by the minimality principle.109

Connections to text-to-image diffusion models. The iterative denoising process in diffusion aligns110

with our hierarchical data construction. These models involve a sequence of transformations {ft}Tt=1,111

parameterized by timestep t, that progressively restore a less noisy image Xt from a more corrupted112

version Xt+1. As interpreted by Kong et al. [50], each ft+1 can be viewed as an autoencoder: it113

extracts a representation ZS(t+1) (S(t+ 1) indexes U-Net features associated with timestep t+ 1)114

from the noisy input Xt+1, and uses this representation to produce the less noisy Xt. In this view,115

representations ZS(t+1) from higher noise levels (larger t, where Xt+1 is closer to pure noise)116

correspond to higher-level, more abstract concepts in our hierarchy (e.g., Zl with smaller l), as117

fine-grained details are obscured by noise. Conversely, representations from lower noise levels118

(smaller t) capture more concrete, lower-level details (e.g., Zl with larger l). The diffusion model’s119

step-wise refinement thus mirrors our hierarchical generation P (Zl+1|Zl), with the initial text prompt120

D typically guiding the most abstract visual concepts (e.g., Z1 ∼ P (Z1|D), see Figure 1).121

Connections to autoregressive language models. An autoregressive language model can be seen122

as learning an “encoder” that maps a sequence of input tokens (D1:t) to an internal state Ŝl (e.g.,123

activations within transformer layers). This internal state Ŝl then informs the “decoder” to predict the124

subsequent token. For optimal prediction, this learned representation Ŝl should ideally capture the125

information of the true concept Sl that d-separates the input tokens D1:t from the next token Dt+1.126

To achieve this d-separation, Sl should belong to a higher concept level for a larger span of text127

D1:t (i.e., larger t→ smaller l, see Figure 1). Consequently, broad thematic or narrative structures128

spanning larger text segments can be compressed into higher-level concepts in our hierarchy (e.g.,129

S1), while more localized syntactic or lexical choices correspond to lower-level concepts (e.g., SLT
).130

Identifiability and interpretability. In light of the connection, a crucial question remains: are the131

internal representations learned by these models (e.g., U-Net features, transformer activations) truly132

reflective of the ground-truth concepts of the data, or are they merely effective for the generation task133

without being inherently interpretable and controllable? This motivates the need for identifiability134

guarantees that affirm the equivalence between the two worlds, which we present in Section 3.135

3 Identifiable Representations under the Causal Minimality Principle136

In this section, we establish the theoretical underpinnings for achieving interpretable and controllable137

generative models. Our central idea is that by adhering to the causal minimality principle [28–30],138

which favors the simplest causal explanation consistent with observations, we can endow the latent139

representations of complex generative models with component-wise identifiability. This identifiability,140

in turn, is crucial for meaningful human understanding and precise intervention.141

We realize the causal minimality principle differently for continuous visual concepts and discrete142

textual concepts. For visual concepts, minimality manifests as a preference for sparse graphical143

dependencies within the latent hierarchy. This implies that concepts are formed through a limited set144

of direct causal influences, making the underlying structure easier to discern. For textual concepts,145

minimality translates to seeking the most compressed representation, which corresponds to achieving146

minimal support sizes for these discrete concepts while preserving full information.147

A key challenge we address is the identifiability of hierarchical selection models. In these models,148

higher-level concepts are effects of lower-level concepts. This contrasts with traditional hierarchical149

models where causality often flows from abstract to concrete, and where latent variables typically act150

as confounders [49, 43, 42, 51, 50, 44–46, 48, 47]. In our selection framework, latent variables act as151

colliders, rendering many existing identifiability results inapplicable. This distinction necessitates the152

novel theoretical development presented herein. Our goal is to achieve component-wise identifiability:153

Definition 3.1 (Component-wise Identifiability). Let Z and Ẑ be variables under two model specifi-154

cations. We say that Z and Ẑ are identified component-wise if there exists a permutation π such that155

for each i ∈ [n(Z)], Ẑi = hi(Zπ(i)) where hi is an invertible function.156

This strong form of identifiability ensures that each learned latent component Ẑi corresponds to a157

single true latent component Zπ(i). This is vital for unambiguous interpretation and targeted control.158
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We assume the standard faithfulness condition [52–54, 44], meaning the graphical model accurately159

reflects all conditional independence relations in the data.160

3.1 Learning Visual Concepts via Graph Sparsification161

We first consider the identification of continuous latent visual concepts Z.162

Condition 3.2 (Visual Concept Identification Conditions).163

i Informativeness: There exists a diffeomorphism gl : (Zl, ϵl) 7→ X for l ∈ [0, L], where ϵl164

denotes independent exogenous variables.165

ii Smooth Density: The probability density function p(zl+1|zl) is smooth for any l ∈ [LV].166

iii Sufficient Variability: For each Z and its parents Z̃ := Pa(Z), at any value z̃ of Z̃, there167

exist n(Z̃) + 1 distinct values of Z, denoted as {z(n)}n(Z̃)
n=0 , such that the vectors w(z̃, z(n))−168

w(z̃, z(0)) are linearly independent where w(z̃, z) =
(

∂ log p(z̃|z)
∂z̃1

, . . . , ∂ log p(z̃|z)
∂z̃n(z̃)

)
.169

iv Sparse Connectivity (Minimality): For each parent concept Z̃, there exists a subset of its170

children Z ⊆ Ch(Z̃) such that their only common parent is Z̃, i.e.,
⋂

Z∈Z Pa(Z) = {Z̃}.171

Interpreting Condition 3.2. Condition 3.2-i ensures that the observed data X (e.g., an image)172

fully captures the information about the latent concepts Zl. This is a natural assumption as high-173

dimensional observations contain rich information. Condition 3.2-ii is a standard regularity as-174

sumption for analysis. Both are common in nonlinear ICA literature [55–59, 48]. Condition 3.2-iii175

formalizes the idea that distinct lower-level concepts (e.g., "wheel," "door") respond in sufficiently176

distinct ways to changes in a shared higher-level concept (e.g., "car"), thus facilitating the identifi-177

cation of these lower-level concepts. Condition 3.2-iv is an instantiation of causal minimality for178

visual concepts. It posits that the causal graph of concepts is sparse – each concept has a somewhat179

unique "fingerprint" in terms of its connections. This sparsity is crucial for disentanglement [60–65]180

and is a less restrictive assumption than, for example, purely observed children for each latent vari-181

able [66–68]. This condition formalizes a core principle: concepts are learned through comparison. A182

concept is identifiable only if the data is rich enough to distinguish it from alternatives. For instance,183

if “Knight” and “Horse” always co-occur, they are learned as a single, fused concept; learning them184

separately requires data that breaks this correlation.185

Theorem 3.3 (Visual Concept Identification). Assume the hierarchical process for visual concepts186

in (2). If a model specification θV satisfies Condition 3.2, and an alternative specification θ̂V satisfies187

Conditions 3.2-i and 3.2-ii, along with a sparsity constraint such that for corresponding Ẑ and Z:188

n(Pa(Ẑ)) ≤ n(Pa(Z)), (3)

then, if both models θV and θ̂V generate the same observed data distribution P (X), the latent visual189

concepts Zl are component-wise identifiable for every level l ∈ [LV].190

Proof sketch for Theorem 3.3. The proof proceeds by identifying the hierarchical model level by191

level, from the top (most abstract concepts) Z1 downwards to ZLV
. 1) The paired text data D acts as an192

auxiliary variable, providing diverse “influences” on the top-level Z1. Condition 3.2-iii ensures these193

interventions have distinguishable effects. Analogous to techniques in nonlinear ICA [55, 56, 69],194

each component D allows the identification of the subspace of Z1 variables it influences. 2) With195

these subspaces identified, one can identify the intersection of these subspaces [59, 70, 71]. Therefore,196

if the graphical structure is sufficiently sparse, as specified in Condition 3.4-iv, one can identify the197

top-level latent variable Z1 component-wise. 3) Once Z1 is identified, its components can serve as198

the auxiliary variables for identifying the next level, Z2. This process is repeated iteratively down the199

hierarchy, identifying Zl using the already identified Zl−1, until all LV levels are identified.200

Implications for text-to-image diffusion models. Theorem 3.3 underscores that the sparsity201

constraint (3) is pivotal for identifying true visual concepts. In practice, this constraint can be202

encouraged by techniques like SAEs applied to the internal representations (e.g., U-Net features at203

various timesteps) of diffusion models. By sparsifying activations, SAEs promote sparser conceptual204

graphs required by our theory. Our experiments in Section 4.1 demonstrate that this sparsity constraint205

allows for constructing the hierarchical visual concept model from frontier diffusion models and206

direct controls over the generating process.207
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3.2 Learning Textual Concepts via State Compression208

We now turn to the identification of discrete textual concepts S.209

Condition 3.4 (Textual Concept Identification Conditions).210

i Natural Selection: Each selection variable Sl has a support suppSl that is a proper subset of211

its potential range if its constituent parts (lower-level variables) were combined randomly. That212

is, suppSl ⊊ fD→Sl
(Ωn(Pa(Sl))), where fD→Sl

is the function from D to Sl.213

ii Bottlenecks: The support size of any concept Sl is strictly larger than the joint support size of214

its parents Pa(Sl) in the selection graph.215

iii Minimal Supports: For any S, the condition distribution P (D \ Pa(S)|S = s,HPa(S) = s̃)216

is a one-to-one function w.r.t. the argument s.217

iv No-Twins: Distinct latent variables must have distinct sets of adjacent (parent/child) variables.218

v Maximality: The identified latent structure is maximal in the sense that splitting any latent219

concept variable would violate either the Markov conditions or the No-Twins condition.220

Interpreting Condition 3.4. Condition 3.4-i posits that meaningful text (or textual concepts)221

occupies a small, structured subset of the vast space of all possible token combinations. We rarely222

encounter truly random sequences of words in natural language. Conditions 3.4-ii and 3.4-iii are direct223

manifestations of causal minimality for discrete concepts. ii implies an information compression224

moving up the hierarchy—abstract concepts are more succinct. iii demands that each state of a225

concept s offers unique information about the rest of the text, given its context. This forces the model226

to learn the most compressed (minimal number of states) representation so that each state contains227

unique information. Conditions 3.4-iv and 3.4-v are standard necessary conditions in discrete latent228

variable model identification [53, 72], precluding redundant or fragmented latent structures.229

Theorem 3.5 (Textual Concept Identification). Assume the hierarchical process as per (2). Let the230

true underlying parameters be θT. If θT satisfies Condition 3.4, and an alternative learned model231

θ̂T satisfies Condition 3.4-iii, then if both models produce the same observed distribution P (D), the232

latent textual concepts Sl are component-wise identifiable for every level l ∈ [LT].233

Proof sketch for Theorem 3.5. The identification for textual concepts proceeds from the bottom234

level (tokens, SLT) upwards to the most abstract concepts (S1). (1) At each level l + 1, we make235

use of the conditional independence relations that the high-level variable Sl,i and its hybrid parents236

HPa(Sl,i) d-separate its pure parents PPa(Sl,i) from the other variables Sl \ {Pa(Sl,i)} on level l.237

This relation allows us to identify subsets of Sl+1 that share children on level l [73, 50] and thus238

reveals the connectivity between variables in Sl and Sl+1. (2) Once the graphical connections are239

known, we recover the function Pa(Sl,i) 7→ Sl,i (i.e., how lower-level concepts combine to form240

Sl,i). This is done by merging states of Pa(Sl,i) that are predictively equivalent. The “Minimal241

Supports” (Condition 3.4-iii) principle dictates that we choose the function that results in the largest242

equivalence classes over the parent states (i.e., the most compressed representation for Sl,i). This243

ensures that the learned concept Ŝl,i has the minimum number of necessary states. (3) This process244

of structure learning and function recovery is repeated from SLT
(initially using observed tokens D245

as SLT+1) up to S1, thereby identifying the entire hierarchy.246

Implications for autoregressive language models. Theorem 3.5 suggests that by enforcing a247

minimality regularization for the most compressed representation (Condition 3.4-iii), the learned248

internal states Ŝ of a language model can become equivalent to the underlying textual concepts S.249

SAEs, when applied to transformer activations, can be seen as a practical way to approximate this250

minimality. By forcing most latent units to be inactive, SAEs force the model to encode information251

with the minimal active units, which aligns with our theoretical condition for state compression. This252

result provides a principled justification for the observed interpretability of SAE-derived features and253

guides our empirical approach in Section 4.2 to extract hierarchical textual concept graphs.254

4 Experiments255

In this section, we present experimental results on both text-to-image diffusion models and autore-256

gressive language models. Our model learns concepts at different levels of abstraction. For a complex257
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Figure 3: Examples of hierarchical concept graphs for text-to-image models. Our method successfully
recovers meaningful hierarchical structures, where each node encodes distinct semantic concepts. On the right,
we demonstrate feature steering, where manipulating individual nodes leads to changes in the output that align
with their position in the hierarchy. Intervening on a high-level concept in the learned graph (“Full face”) alters
the cat’s entire facial structure and fur pattern. In contrast, intervening on a learned lower-level concept (e.g.,
“Eye”) produces a much more localized edit, changing only the shape and color of the eyes while leaving the rest
of the face intact. More examples in Appendix E.

Method I2P ↓ RING-A-BELL ↓ P4D ↓ UATK ↓ COCO
K77 K38 K16 AVG FID ↓ CLIP ↑

SD 1.4 [3] 17.8 85.26 87.37 93.68 88.10 98.70 69.70 16.71 31.3
ESD [75] 2.87 20.00 29.47 35.79 28.42 15.49 2.87 18.18 30.2
SA [76] 2.81 63.15 56.84 56.84 58.94 12.68 2.81 25.80 29.7
CA [77] 1.04 86.32 91.69 94.26 90.76 5.63 1.04 24.12 30.1
MACE [78] 1.51 2.10 0.00 0.00 0.70 2.82 1.51 16.80 28.7
UCE [79] 0.87 10.52 9.47 12.61 10.87 9.86 0.87 17.99 30.2
RECE [80] 0.72 5.26 4.21 5.26 4.91 5.63 0.72 17.74 30.2
SDID [81] 3.77 94.74 95.79 90.53 93.68 69.54 30.99 22.16 31.1
SLD-MAX [82] 1.74 23.16 32.63 42.11 32.63 9.14 2.44 28.75 28.4
SLD-STRONG [82] 2.28 56.84 64.21 61.05 60.70 33.10 3.10 24.40 29.1
SLD-MEDIUM [82] 3.95 92.63 88.42 91.05 90.70 24.00 1.98 21.17 29.8
SD1.4-NegPrompt [3] 0.74 17.89 40.42 34.74 31.68 10.00 1.46 18.33 30.1
SAFREE [83] 1.45 35.78 47.36 55.78 46.31 10.56 1.45 19.32 30.1
TRASCE [84] 0.45 1.05 2.10 2.10 1.75 3.97 0.70 17.41 29.9
ConceptSteer [22] 0.36 3.16 8.42 9.47 7.02 1.99 2.11 18.67 30.8
Ours 0.25 1.05 0.00 2.11 1.05 0.66 2.11 17.02 31.3

Table 1: Model unlearning comparisons. Our method delivers state-of-the-art results on unlearning
tasks without compromising standard text-to-image generation. Detailed comparison in Appendix C.

object like a “textured tree stump,” we can independently steer the “stump” (a mid-level concept) and258

its “texture” (a low-level concept). In contrast, a non-hierarchical SAE may learn entangled features259

for every combination (e.g., one feature for “textured stump,” another for “mossy stump”), making260

fine-grained, compositional editing difficult. By identifying a concept’s hierarchical level, our model261

can intervene at diffusion timesteps corresponding to suitable concept levels. In contrast, a standard262

SAE applies steering across all timesteps, potentially introducing unwanted artifacts.263

4.1 Text-to-image Diffusion Models264

Implementation. We analyze the feature representations in stable diffusion (SD) 1.4. We use prompts265

from the Laion-COCO dataset [74]. Following Surkov et al. [20], we extract residual features from266

three key blocks within the UNet architecture of SD 1.4—namely, down.2.1, mid.0, and up.1.0.267

To enforce the sparsity constraint, we plug in SAEs into the pretrained model. In particular, we collect268

features at timesteps 899, 500, and 100. We then train K-sparse autoencoders on the features from269

each timestep. We consider the causal relationships among features captured at different timesteps,270

as they encode varying levels of semantic information. To this end, we apply a causal discovery271

algorithm (i.e., PC [34]) over these learned features. More details in Appendix D.272
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Metric SD 1.4 SD1.4 (SAE w/o hier.) SD1.4 (Ours)
Add tabby pattern – CLIP-I ↓ 0.91 ± 0.05 0.83 ± 0.07 0.93 ± 0.04
Add tabby pattern – CLIP-T ↑ 0.27 ± 0.00 0.28 ± 0.02 0.28 ± 0.01
Add mountains – CLIP-I ↓ 0.84 ± 0.06 0.83 ± 0.04 0.91 ± 0.03
Add mountains – CLIP-T ↑ 0.33 ± 0.01 0.32 ± 0.01 0.33 ± 0.01
Replace rock w/ stump – CLIP-I ↓ 0.93 ± 0.02 0.95 ± 0.02 0.96 ± 0.02
Replace rock w/ stump – CLIP-T ↑ 0.31 ± 0.01 0.29 ± 0.01 0.31 ± 0.01

Table 2: Controllable imgae generation results. Our method achieves the best CLIP-I metric,
demonstrating greater fidelity to the input images, while reliably executing the target edits.

Visualization. Figure 3 illustrates a hierarchical graph learned through our approach (more in273

Appendix E). On the left, we display activation maps of different SAE features. The brown nodes274

indicate features from the SAE trained on representations extracted at timestep 899, green nodes275

correspond to features from timestep 500, and blue nodes represent features from timestep 100. We276

observe that the brown nodes capture high-level, global information about the generated image; for277

instance, node 3556 captures the entire face of a cat. In contrast, green nodes reflect intermediate-278

level features, such as node 3044, capturing the central part of the face. Blue nodes correspond to279

fine-grained details—node 3066 activates on the eyes, while node 762 corresponds to the mouth. This280

demonstrates a clear progression from coarse to fine-grained concepts across timesteps.281

Qualitative results. We conduct concept steering using our discovered features, as shown on the right282

side of Fig. 3 (more in Appendix E). Given a model intermediate feature x, the SAE encoder E and283

decoder D are trained to reconstruct x. To steer a specific concept, we obtain the latent representation284

z = E(x), and extract the steering vector v corresponding to the desired feature. We then modify285

the original feature to create a steered version x′ = x+ λD(v), where λ modulates the strength. By286

feeding the steered x′ back into the diffusion process at the same timestep, we generate images that287

reflect the influence of the selected concept. For example, steering node 3556 – associated with the288

entire face of a cat – results in a significantly altered cat face. Steering the green node 1026 modifies289

only the upper part of the face, illustrating that it encodes localized information specific to that region.290

Quantitative results. Thanks to our proposed theoretical framework, we can per-291

form both controllable image generation and model unlearning tasks naturally.292

We provide quantitative results of model unlearning on four benchmark datasets:293

IP2P [82], three splits of RING-A-BELL [85], P4D [86], and UnlearnDiffATK [87].294

Input SD1.4

w/o hier Ours

Figure 4: Examples of
controllable image gener-
ation.

These benchmarks focus on removing nudity-related concepts, and we295

report the accuracy of a pretrained nudity detector. Our method achieves296

the best results across all benchmarks. In addition, to assess whether our297

method preserves general text-to-image capability, we apply feature steer-298

ing on normal prompts from MSCOCO [88]. The 10K results, reflected in299

low FID and high CLIP scores, demonstrate that our method successfully300

identifies and removes nudity concepts without affecting unrelated con-301

cepts. We also provide results on style removal in the appendix (Table 3)302

and we achieve superior performance across different metrics and tasks.303

We also evaluate controllable image generation on three editing tasks:304

adding tabby patterns to cat faces, adding mountains to landscape images,305

and replacing rocks with textured tree stumps. Our method achieves306

superior results compared to both the standard text-guided model and307

SAE without hierarchical modeling. In particular, for the rock-to-stump308

task (as shown in Fig.4), we first apply feature steering on the mid-level309

node 3933 to replace the rock with a stump, and then refine the result by310

modifying the low-level node 4374 to add texture. This highlights the importance of hierarchical311

modeling for fine-grained image generation.312

Ablation. As established in the theoretical framework, sparsity is crucial for identifiability. To313

empirically validate this, we visualize the resulting causal graphs under varying levels of sparsity, as314

shown in Fig. 5 (more in Appendix E). When sparsity is not enforced, the resulting graph becomes315

overly dense, making it difficult to interpret and diminishing its semantic clarity. Conversely, imposing316

excessive sparsity leads to an overly pruned graph that lacks sufficient structure to meaningfully317

explain the generation process, such as in the case of the cat image. These observations highlight the318

importance of balancing sparsity to preserve interpretability while maintaining explanatory power.319
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Figure 5: Ablation studies on the sparsity constraint. We control feature sparsity at timestep 500. Without
enforcing sparsity, the resulting concepts tend to be dense, and the features are less interpretable. Conversely,
increasing sparsity leads to a more interpretable, sparser graph. However, when sparsity becomes too high, the
resulting graph may become overly sparse and fail to adequately capture or explain the generation of the cat face.
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(5803)”, and cited “Section 12.4 (7373) of 
the Civil Code”, all forming the basis of its 
legal terminology. (4346)

Figure 6: The learned hierarchical concept graph for autoregressive language models. By modeling the
hierarchy of concepts based on the token sequence order, we recover a meaningful hierarchical graph. The
brown nodes (corresponding to later tokens) capture global, high-level information, while the green nodes (from
intermediate tokens) represent more localized, lower-level concepts.

4.2 Autoregressive Language Models320

Implementation. In this section, we present our implementation for analyzing autoregressive321

language models. We utilize pretrained SAEs [89] for Gemma-2-2b-it [90]. We partition tokens322

into three parts based on the their positions in their positions in the input sequence. This segmentation323

reflects the expectation that tokens convey increasingly abstract or high-level information as the324

sequence progresses. Finally, we apply causal discovery algorithms to uncover the relationships325

among features across the different SAEs. More details in Appendix D.326

Results. Figure 6 shows a learned hierarchical graph (more in Appendix E). Nodes 1555 and 12082327

correspond to features from SAEs trained on the final tokens of the sequence, and thus capture328

high-level semantics. Specifically, node 1555 is associated with the humorous tone, while node 12082329

represents the role of the dog. Interestingly, node 11028, derived from intermediate tokens, emerges330

as a causal factor for both 1555 and 12082. This node encodes pronouns and references to individuals,331

which play a critical role in shaping both the humor and the characterization of the dog.332

5 Conclusion333

In this work, we present a theoretical framework using causal minimality for identifying latent334

concepts in hierarchical selection models. We prove that generative model representations can335

map to true latent variables. Empirically, applying these constraints enables extracting meaningful336

hierarchical concept graphs from leading models, enhancing interpretability and grounded control.337
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Appendix for “Beyond the Black Box: Identifiable Interpretation644

and Control in Generative Models via Causal Minimality”645

A Related Work646

Hierarchical models. Complex real-world data distributions frequently exhibit inherent hierar-647

chical structures among their underlying latent variables, a characteristic that has motivated ex-648

tensive research. Initial explorations primarily focus on continuous latent variables with linear649

interactions [44–47]. Other lines of work have centered on discrete latent variables; however,650

these approaches are often constrained in their applicability to continuous data modalities like im-651

ages [49, 43, 42, 51, 50]. Furthermore, prevalent latent tree models, which connect variables via652

a single undirected path [49, 43, 42], risk oversimplifying the multifaceted relationships present653

in complex systems. More recently, while Park et al. [91] make progress in capturing geometric654

properties of language model representations using hierarchical models, their work does not address655

the critical issue of latent variable identification. Kong et al. [48] tackle nonlinear, continuous latent656

hierarchical models, but their framework, operating under rather opaque functional conditions, falls657

short of component-wise identifiability, thereby leaving room for concept entanglement. Our work658

distinctively investigates selection hierarchical models, contending that their structural properties659

yield a more faithful representation of latent concepts in natural data distributions. In these models,660

latent variables function as colliders, a significant departure from their role as confounders in the661

aforementioned prior art. This critical distinction renders existing identification techniques largely662

inapplicable. We address this gap by leveraging the minimality principle alongside other transparent663

conditions. To the best of our knowledge, we are the first to provide component-wise identifiability664

for both continuous and discrete hierarchical selection models.665

Latent variable identification. Identifying latent variables is a cornerstone of representation learning.666

A significant body of work establishes identifiability for single-level latent variable models, often667

assuming the availability of auxiliary information like domain or class labels [58, 57, 55, 56, 92].668

Recently, research into language models has explored the linear representation hypothesis, yielding669

linear-subspace identifiability for latent variables [93–97]. Another research direction [98, 99, 62,670

63, 65, 64, 60, 100] leverages sparsity for identification but overlooks the causal relationships671

among latent variables. Distinct from these approaches, our work formulates the concept space672

using hierarchical models that allow for the explicit modeling of intricate, multi-level conceptual673

interactions.674

Interpretability for generative models. Despite the remarkable advancements of generative models,675

their internal mechanisms often remain opaque. This presents a significant challenge to understanding676

and control. Considerable research has focused on obtaining interpretable features to enable more677

controllable generation. Early efforts center on analyzing the latent space of generative adversarial678

networks, e.g., [14, 101, 102]. Recently, sparse autoencoders (SAEs) have gained prominence679

for interpreting hidden representations, particularly in language models. These studies show that680

SAEs trained on transformer residual-stream activations can identify latent units corresponding to681

linguistically meaningful features [17–19, 103, 104]. These interpretability techniques have also682

been successfully extended to diffusion models. Surkov et al. [20] reveal interpretable features and683

specialization across diffusion model blocks. Other work includes training SAEs with lightweight684

classifiers on diffusion model features [21] and steering generation away from undesirable visual685

attributes [24]. Distinctly, our work employs a unifying minimality principle to enhance the inter-686

pretability of both vision and language generative models. Our theory provides a theoretical basis687

for latent concept identification, complementing sparsity-based techniques, and allows for extracting688

hierarchical concept graphs, offering new insights into the representational structures of black-box689

generative models.690
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B Proofs691

B.1 Proof for Theorem 3.3692

Lemma B.1 (Base Case Visual Concept Identification). Assume the following data-generating693

process:694

C ∼ P (C|U) , V ∼ P (C) , X := g(C,V). (4)

We have the following conditions.695

i Informativeness: The function g(·) is a diffeomorphism.696

ii Smooth Density: The probability density function p(c,v|u) is smooth.697

iii Sufficient Variability: At any value c of C, there exist n(C) + 1 distinct values of U, denoted698

as {u(n)}n(C)
n=0 , such that the vectors w(c,un) − w(c,u0) are linearly independent where699

w(c,u) =
(

∂ log p(c|u)
∂c1

, . . . , ∂ log p(c|u)
∂cn(c)

.
)

700

If a specification θ satisfies i,ii, and iii, another specification θ̂ satisfies i,ii, and they generate701

matching distribution P (X), then we can verify that C and Ĉ can be identified component-wise.702

Proof. Since we have matched distribution, it follows that:703

p(x|u) = p̂(x|u). (5)

As the generating function g has a smooth inverse (i), we can derive:704

p(g(c,v)|u) = p(ĝ(ĉ, v̂)|u) =⇒
p(c,v|u)

∣∣Jg−1

∣∣ = p̂(g−1 ◦ ĝ(ĉ, v̂)|u)
∣∣Jg−1

∣∣ .
Notice that the Jacobian determinant

∣∣Jg−1

∣∣ > 0 because of g(·)’s invertibility and let h := g−1 ◦ ĝ :705

(ĉ, v̂) 7→ (c,v) which is smooth and has a smooth inverse thanks to those properties of g and ĝ. It706

follows that707

p(c,v|u) = p̂(h(ĉ, v̂)|u) =⇒
p(c,v|u) = p̂(ĉ, v̂|u) |Jh−1 | .

The independence relation in the generating process implies that708

log p(c|u) +
∑

i∈[n(v)]

log p(Vi) = log p̂(ĉ|u) +
∑

i∈[n(v̂)]

log p̂(V̂i) + log |Jh−1 | . (6)

For any realization u0, we subtract (6) at any u ̸= u0 with that at u0:709

log p(c|u)− log p(c|u0) = log p̂(ĉ|u)− log p̂(ĉ|u0). (7)

Taking derivative w.r.t. v̂j for j ∈ [n(v̂)] yields:710 ∑
i∈[n(c)]

∂

∂ci
(log p(c|u)− log p(c|u0)) · ∂ci

∂v̂j
= 0. (8)

The left-hand side zeros out because ĉ is not a function of v̂.711

Condition iii ensures the existence of at least n(c) such equations with u1, . . . ,un(c) that are linearly712

independent, constituting a full-rank linear system. Since the choice of j ∈ [v] is arbitrary. It follows713

that714

∂ci
∂v̂j

= 0,∀i ∈ [n(c)], j ∈ [n(v)]. (9)

Therefore, the Jacobian matrix Jh is of the following structure:715

Jh =

[
∂v
∂v̂

∂v
∂ĉ

∂c
∂v̂

∂c
∂ĉ .

]
(10)

18



(9) suggests that the block ∂c
∂v̂ = 0. Since Jh is full-rank, we can deduce that ∂c

∂ĉ must have full716

row-rank and n(c) ≤ n(ĉ). The sparsity constraint in (3) further implies that n(c) = n(ĉ). That717

is, we can correctly identify the dimensionality of the changing subspace c. Moreover, since Jh is718

full-rank and the block ∂c
∂v̂ is zero, we can derive that the corresponding block ∂ĉ

∂v in its inverse matrix719

Jh−1 is also zero. Therefore, there exists an invertible map ĉ 7→ c, which concludes the proof.720

Lemma B.2 (Determining Intersection Cardinality from Union Cardinalities). Let A =721

{A1, A2, . . . , An} be a finite collection of finite sets. If for any non-empty subset of indices722

K ⊆ {1, 2, . . . , n}, the cardinality of the union
∣∣⋃

k∈K Ak

∣∣ is known, then for any non-empty723

subset of indices S ⊆ {1, 2, . . . , n}, the cardinality of the intersection
∣∣⋂

s∈S As

∣∣ can be determined.724

Proof. We proceed by induction on the size of the set of indices S, denoted by |S|, for which we725

want to determine the intersection cardinality.726

Base Case: |S| = 1. Let S = {i} for some i ∈ {1, 2, . . . , n}. We aim to determine the cardinality727 ∣∣⋂
s∈S As

∣∣ = |Ai|. The union of a single set Ai is simply Ai itself. That is, Ai =
⋃

k∈{i} Ak. By728

the premise of the theorem, the cardinality
∣∣∣⋃k∈{i} Ak

∣∣∣ is known. Therefore, |Ai| is known. The729

base case holds.730

Inductive Hypothesis: Assume that for some integer m ≥ 1, the cardinality of any intersection of j731

sets,
∣∣∣⋂j∈J Aj

∣∣∣, can be determined from the known union cardinalities for all non-empty index sets732

J such that 1 ≤ |J | ≤ m.733

Inductive Step: We want to show that the cardinality of any intersection of m + 1 sets can be734

determined. Let Sm+1 be an arbitrary non-empty subset of indices from {1, 2, . . . , n} such that735

|Sm+1| = m+ 1. Our goal is to determine
∣∣∣⋂s∈Sm+1

As

∣∣∣.736

Consider the Principle of Inclusion-Exclusion (PIE) applied to the union of the sets whose indices are
in Sm+1: ∣∣∣∣∣∣

⋃
s∈Sm+1

As

∣∣∣∣∣∣ =
∑

∅̸=K⊆Sm+1

(−1)|K|−1

∣∣∣∣∣ ⋂
k∈K

Ak

∣∣∣∣∣
This sum runs over all non-empty subsets K of Sm+1. We can separate the term where K = Sm+1

(which corresponds to the intersection of all m+ 1 sets) from the other terms in the sum:∣∣∣∣∣∣
⋃

s∈Sm+1

As

∣∣∣∣∣∣ =
 ∑

∅̸=K⊂Sm+1

(−1)|K|−1

∣∣∣∣∣ ⋂
k∈K

Ak

∣∣∣∣∣
+ (−1)|Sm+1|−1

∣∣∣∣∣∣
⋂

s∈Sm+1

As

∣∣∣∣∣∣
Here, the sum is now over all non-empty proper subsets K of Sm+1. We can rearrange this equation
to solve for the term

∣∣∣⋂s∈Sm+1
As

∣∣∣:
(−1)|Sm+1|−1

∣∣∣∣∣∣
⋂

s∈Sm+1

As

∣∣∣∣∣∣ =
∣∣∣∣∣∣

⋃
s∈Sm+1

As

∣∣∣∣∣∣−
∑

∅̸=K⊂Sm+1

(−1)|K|−1

∣∣∣∣∣ ⋂
k∈K

Ak

∣∣∣∣∣
Multiplying both sides by (−1)|Sm+1|−1 (noting that ((−1)|Sm+1|−1)2 = 1):∣∣∣∣∣∣

⋂
s∈Sm+1

As

∣∣∣∣∣∣ = (−1)|Sm+1|−1

∣∣∣∣∣∣
⋃

s∈Sm+1

As

∣∣∣∣∣∣−
∑

∅̸=K⊂Sm+1

(−1)|K|−1

∣∣∣∣∣ ⋂
k∈K

Ak

∣∣∣∣∣


Let us analyze the terms on the right-hand side of this equation:737

1. The factor (−1)|Sm+1|−1 is a known sign, since |Sm+1| = m+ 1.738

2. The term
∣∣∣⋃s∈Sm+1

As

∣∣∣ is the cardinality of a union of m + 1 sets. Since Sm+1 is a739

non-empty subset of indices, this value is known by the premise of the theorem.740
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3. Consider the sum
∑

∅̸=K⊂Sm+1
(−1)|K|−1

∣∣⋂
k∈K Ak

∣∣. Each K in this summation is a741

non-empty proper subset of Sm+1. Therefore, the size of each such K satisfies 1 ≤742

|K| ≤ m. By the Inductive Hypothesis, for any such K (i.e., for any intersection of j743

sets where 1 ≤ j ≤ m), the cardinality
∣∣⋂

k∈K Ak

∣∣ can be determined from the known744

union cardinalities. Consequently, every term in this summation, including its sign factor745

(−1)|K|−1, is determinable.746

Since all components on the right-hand side of the equation are known or can be determined based on747

the theorem’s premise and the inductive hypothesis, the value of
∣∣∣⋂s∈Sm+1

As

∣∣∣ can be determined.748

In conclusion, by the principle of mathematical induction, for any non-empty subset of indices749

S ⊆ {1, 2, . . . , n}, the cardinality of the intersection
∣∣⋂

s∈S As

∣∣ can be determined if the cardinality750

of any union
∣∣⋃

k∈K Ak

∣∣ (for any non-empty K ⊆ {1, 2, . . . , n}) is known.751

Lemma B.3 (Intersection Block Identification [71]). We assume the following data-generating752

process:753

[v1,v2] = g(c, s1, s2), (11)
v1 = g1(c, s1), (12)
v2 = g2(c, s2), (13)

where c ∈ C ⊂ Rdc , s1 ∈ S ⊂ Rds1 , and s2 ∈ S2 ⊂ Rds2 . Both g1 and g2 are smooth and have non-754

singular Jacobian matrices almost anywhere, and g is invertible. If ĝ1 : Z → V1 and ĝ2 : Z → V2755

assume the generating process of the true model (g1, g2) and match the joint distribution pv1,v2 , then756

there is a one-to-one mapping between the estimate ĉ and the ground truth c over C × S × S , that is,757

c is block-identifiable.758

Lemma B.4 (One-level Visual Concept Identification). Assume the process for visual concepts in (2)759

with LV = 1. If a model specification θV satisfies Condition 3.2, and an alternative specification θ̂V760

satisfies Conditions 3.2-i and 3.2-ii, along with a sparsity constraint such that for corresponding Ẑ761

and Z:762

n(Pa(Ẑ)) ≤ n(Pa(Z)), (14)

then, if both models θV and θ̂V generate the same observed data distribution P (X), the latent visual763

concepts Z1 are component-wise identifiable for every level.764

Proof. For notational convenience, we denote Z1 as S and D as U in this proof. This proof consists765

of two steps. In step one, we identify the connectivity between U and S variables. In step two, we766

further show the identifiability of the blocks resulting from intersecting the parent sets Pa(U) of767

multiple U variables.768

Step 1: connectivity identification. Since we have access to the joint distribution P (S,U), we can769

derive conditional distributions P (S|{Ui}i∈H) for any index subset H ⊆ [n(U)]. By Lemma B.1,770

we can identify the dimensionality of the set of variables S that are connected to any variable in771

{Ui}i∈H for anyH ⊆ [n(U)]. Lemma B.2 implies that we can identify the dimensionality of the set772

of variables S that are connected to all variables in {Ui}i∈H for anyH ⊆ [n(U)]. This information773

gives rise to a partition of S components, in which each part is connected to the same set of U774

variables. Therefore, we have identified the bipartite graph between S and U up to a permutation.775

Step 2: intersection block identification. Denote the indices of S variables that are connected to Ui776

as I(i) ⊆ [n(S)]. We denote the block of S components connected to all variables in {Ui}i∈H as777

S∩i∈HI(i) for any H ⊆ [n(U)]. Thanks to Lemma B.1, we can identify the block SI(i) connected778

to the variable Ui for any i ∈ [n(U)]. Lemma B.3 allows us to identify the intersection of any two779

blocks SI(i)∩I(j) for i ̸= j. Therefore, repeated applications of Lemma B.3 leads to the identification780

of the intersection block S∩i∈HI(i) for anyH ⊆ [n(U)]. This concludes the proof.781

Condition 3.2 (Visual Concept Identification Conditions).782

i Informativeness: There exists a diffeomorphism gl : (Zl, ϵl) 7→ X for l ∈ [0, L], where ϵl783

denotes independent exogenous variables.784
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ii Smooth Density: The probability density function p(zl+1|zl) is smooth for any l ∈ [LV].785

iii Sufficient Variability: For each Z and its parents Z̃ := Pa(Z), at any value z̃ of Z̃, there786

exist n(Z̃) + 1 distinct values of Z, denoted as {z(n)}n(Z̃)
n=0 , such that the vectors w(z̃, z(n))−787

w(z̃, z(0)) are linearly independent where w(z̃, z) =
(

∂ log p(z̃|z)
∂z̃1

, . . . , ∂ log p(z̃|z)
∂z̃n(z̃)

)
.788

iv Sparse Connectivity (Minimality): For each parent concept Z̃, there exists a subset of its789

children Z ⊆ Ch(Z̃) such that their only common parent is Z̃, i.e.,
⋂

Z∈Z Pa(Z) = {Z̃}.790

Theorem 3.3 (Visual Concept Identification). Assume the hierarchical process for visual concepts791

in (2). If a model specification θV satisfies Condition 3.2, and an alternative specification θ̂V satisfies792

Conditions 3.2-i and 3.2-ii, along with a sparsity constraint such that for corresponding Ẑ and Z:793

n(Pa(Ẑ)) ≤ n(Pa(Z)), (3)

then, if both models θV and θ̂V generate the same observed data distribution P (X), the latent visual794

concepts Zl are component-wise identifiable for every level l ∈ [LV].795

Proof. By Lemma B.4, we can identify the set of variables Z1 that are directly connected to the text796

variables D and their causal graph. Treating the identified Z1 as the U in Lemma B.4, we can further797

identify Z2. Repeating this procedure yields the identifiability of the entire model.798

B.2 Proof for Theorem 3.5799

Definition B.5 (Non-negative Rank). The non-negative rank of a non-negative matrix A ∈ Rm×n800

is equal to the smallest number p such that there exists a non-negative m × p-matrix B and a801

non-negative p× n-matrix C such that A = BC.802

Lemma B.6 (Conditional Independence and Nonnegative Rank [73]). Let P ∈ Rm×n be a bi-variate803

probability matrix. Then its non-negative rank rank+(P) is the smallest non-negative integer p such804

that P can be expressed as a convex combination of p rank-one bi-variate probability matrices.805

Lemma B.7 (One-level Textual Concept Identification). Assume the hierarchical process as per806

(2) with LT = 1. Let the true underlying parameters be θT. If θT satisfies Condition 3.4, and807

an alternative learned model θ̂T satisfies Condition 3.4-iii, then if both models produce the same808

observed distribution P (D), the latent textual concepts S1 are component-wise identifiable.809

Proof. For each observed variable D, we search for the minimal set of variables C ⊆ (D \D) such810

that the following conditional independence holds:811

D ⊥⊥ D \({D} ∪C)︸ ︷︷ ︸
R

|(C,Ch(D)). (15)

Note that all D, C, and R belong to observed variables, and Ch(D) is latent. Thanks to Condition 3.4-812

ii and Lemma B.6, we can select C with which the nonnegative rank of the probability table813

T
D,D\({D} ∪C)︸ ︷︷ ︸

R

|C is strictly smaller than the support size of D.814

We argue that such C is the group of variables adjacent to the same variable S at the next level as D.815

In other words, they are the co-parents of D, CoPa(D).816

This is because such C makes 15 hold and thus CoPa(D) ⊆ C. Otherwise, there would be open paths817

passing S that induce dependence between D and CoPa(D), violating the conditional independence818

relation in (15). Therefore, the minimality constraint would enforce that C = CoPa(D). Repeating819

this procedure to all D ∈ D, we can construct S variables at the next level and the adjacency relations820

between S and D.821

We proceed to identify the function D 7→ S. We refer to D as a pure parent if D is adjacent to only822

one variable S in the discovered graph. For each S, we denote its pure parents as DS and non-pure823

parents as D̃S . We employ the conditional independence relation DS ⊥⊥ D \ Pa(D̃S)|(S, D̃S) and824

Condition 3.4-iii to identify the value of S, i.e., the function fS := (dS , d̃S) 7→ s.825
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We first make use of the conditional independence826

DS ⊥⊥ D \ Pa(S)|(S, D̃S) (16)

to merge the states of pure parents DS conditioned on the non-pure parents D̃S . Specifically, we con-827

dition on non-pure parents D̃S = d̃S for any d̃S present in the support. We define an equivalence re-828

lation ∼ over values of (DS , D̃S) where (dS
1 , d̃

S) ∼ (dS
2 , d̃

S) iff they give rise to an identical condi-829

tional distribution P
(
D \ Pa(S)|DS = dS

1 , D̃
S = d̃S

)
= P

(
D \ Pa(S)|DS = dS

2 , D̃
S = d̃S

)
.830

We further resort a more global conditional independence by considering (DS , D̃S) as a meta-variable831

and all the children Ch(D̃S) associated to this meta-variable:832

(DS , D̃S) ⊥⊥ D \ Pa(Ch(D̃S))|(Ch(D̃S),Pa(Ch(D̃S)) \ {DS , D̃S})︸ ︷︷ ︸
:= ˜̃DS

, (17)

where (DS , D̃S) has become a pure parent of the latent variable Ch(D̃S).833

We further group values ([dS ], d̃S) following the rule that ([dS ]1, d̃
S
1 ) ∼834

([dS ]2, d̃
S
2 ) iff P

(
D \ Pa(Ch(D̃S))|([DS ], D̃S) = ([dS ]1, d̃

S
1 ),

˜̃DS =
˜̃
dS

)
=835

P
(
D \ Pa(Ch(D̃S))|([DS ], D̃S) = ([dS ]2, d̃

S
2 ),

˜̃DS =
˜̃
dS

)
for each ˜̃

dS on the support. That is,836

conditioning on any ˜̃
dS on the support, ([dS ]1, d̃

S
1 ) and ([dS ]2, d̃

S
2 ) cannot be distinguished. Thus,837

we group them into an equivalence class [(dS , d̃S)].838

Finally, for each equivalent class [(dS , d̃S)], we assign a distinct value ŝ. This constitutes a function839

f̂S := (dS , d̃S) 7→ ŝ. Due to the deterministic relation from latent variables and their children in (1),840

f̂S is well-defined. We denote the random variable Ŝ := f̂S(D
S , D̃S).841

In the following, we show that Ŝ and S are equivalent up to a bijection. We show this by con-842

tradiction. Suppose that there existed (s0, ŝ0) on their respective support, such that their pre-843

images partially overlapped (dS
0 , d̃

S
0 ) ∈ f̂−1

S (ŝ0) ∩ f−1
S (s0) and f̂−1

S (ŝ0) ̸= f−1
S (s0), where844

fS : (dS , d̃S) 7→ s represents the true model. Suppose that f−1
S (s0) missed some elements in845

f̂−1
S (ŝ0), i.e., ∃(dS

1 , d̃
S
1 ) ∈ f̂−1

S (ŝ0) \ f−1
S (s0). In this case, (dS

0 , d̃
S
0 ) and (dS

1 , d̃
S
1 ) would lead846

to distinct values s0 and s1 under model f−1
S . By the construction of f̂−1

S , this would indicate847

P (D \ Pa(S)|S = s0) = P (D \ Pa(S)|S = s1) and P
(
D \ Pa(Ch(D̃S))|S = s0,

˜̃DS =
˜̃
dS

)
=848

P
(
D \ Pa(Ch(D̃S))|S = s1,

˜̃DS =
˜̃
dS

)
for each ˜̃

dS on the support. Since s0 ̸= s1, this violates849

Condition 3.4-iii, giving rise to a contradiction.850

Suppose that f−1
S (s0) contains additional elements, i.e., ∃(dS

2 , d̃
S
2 ) ∈ f−1

S (s0)\f̂−1
S (ŝ0). In this case,851

(dS
0 , d̃

S
0 ) and (dS

2 , d̃
S
2 ) would lead to one value s0 under model f−1

S . By the construction of f̂−1
S , this852

would indicate either P
(
D \ Pa(S)|DS = dS

0 , D̃
S = d̃S

0

)
̸=P

(
D \ Pa(S)|DS = dS

2 , D̃
S = d̃S

2

)
853

or P
(
D \ Pa(Ch(D̃S))|([DS ], D̃S) = ([dS ]0, d̃

S
0 ),

˜̃DS =
˜̃
dS

)
̸=854

P
(
D \ Pa(Ch(D̃S))|([DS ], D̃S) = ([dS ]2, d̃

S
2 ),

˜̃DS =
˜̃
dS

)
for some ˜̃

dS on the support.855

By construction of f̂S , this would violate conditional independence (16) or (17) which the graphical856

structure implies, which leads to a contradiction.857

Therefore, we have shown that for each pair (s, ŝ) on their respective support, their pre-images should858

be identical as long as they intersect: f̂−1
S (ŝ) ∩ f−1

S (s) ̸= ∅ =⇒ f̂−1
S (ŝ) = f−1

S (s), which is859

equivalent to that Ŝ and S are equivalent up to a bijection.860

Condition 3.4 (Textual Concept Identification Conditions).861

i Natural Selection: Each selection variable Sl has a support suppSl that is a proper subset of862

its potential range if its constituent parts (lower-level variables) were combined randomly. That863

is, suppSl ⊊ fD→Sl
(Ωn(Pa(Sl))), where fD→Sl

is the function from D to Sl.864
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ii Bottlenecks: The support size of any concept Sl is strictly larger than the joint support size of865

its parents Pa(Sl) in the selection graph.866

iii Minimal Supports: For any S, the condition distribution P (D \ Pa(S)|S = s,HPa(S) = s̃)867

is a one-to-one function w.r.t. the argument s.868

iv No-Twins: Distinct latent variables must have distinct sets of adjacent (parent/child) variables.869

v Maximality: The identified latent structure is maximal in the sense that splitting any latent870

concept variable would violate either the Markov conditions or the No-Twins condition.871

Theorem 3.5 (Textual Concept Identification). Assume the hierarchical process as per (2). Let the872

true underlying parameters be θT. If θT satisfies Condition 3.4, and an alternative learned model873

θ̂T satisfies Condition 3.4-iii, then if both models produce the same observed distribution P (D), the874

latent textual concepts Sl are component-wise identifiable for every level l ∈ [LT].875

Proof. By Lemma B.7, we can identify the set of variables S1 adjacent to D and the bipartite causal876

graph between these two sets of variables. We then employ the identified S1 to serve as D in the first877

step to identify S2. Repeating this procedure yields the identifiability of the entire model.878

C Key Concept Discussions879

The roles and purposes of “Selection-based hierarchy and causality minimality”. The selection-880

based hierarchy and causal minimality are constraints on the natural data distribution (images or881

text), which is a standard modeling practice in causal representation learning [27]. Specifically, the882

selection-based hierarchy considers concepts as effects of their constituent parts [33], while causal883

minimality assumes this underlying causal graph is sparse in a specific way (e.g., Condition 3.2-iv).884

“Innate” hierarchical concept graphs. “Innate” refers to the causal structure inherent in the natural885

data-generating process itself. Latent concepts in the real world interact (e.g., ‘eyes’ and ‘nose’ are886

components of a ‘face’), forming a pre-existing causal structure which we refer to as the "innate887

concept graph."888

True latent variables and their verifications. “True latent variables” follow the standard notion889

in causal representation learning [27]: they are the disentangled, interpretable, semantic factors890

of the real-world data-generating process (e.g., age, object pose). This is in contrast to a deep891

learning model’s learned features, which are often an entangled, uninterpretable mixture optimized892

for a specific training objective. Aligning learned features with true latent variables (referred to as893

“identification”) is the central goal, as it enables reliable interpretation (e.g., “this feature is age”) and894

precise control (e.g., “increase this feature to make the face older”). This is a fundamental question895

that our work addresses through both theoretical guarantees and empirical validation. Our work896

provides the guarantee that if the data-generating process fulfills the property of causal minimality897

and our learning objective enforces this (e.g., via sparsity), the model’s learned features are provably898

equivalent to the true latent variables. We then validate this empirically via intervention, a standard899

practice in causal research [27]. Our experiments (Figure 3 and Figure 6) show that manipulating900

the theoretically identified features provides semantic control over the generated output, providing901

evidence that these features are the meaningful causal levers of the generative process.902

Validity of the conditions. While assumptions on the unobserved data-generating process may903

not be validated directly, we have reasoned for the plausibility of our conditions by reflecting on904

natural properties of real-world data. Beyond standard regularity assumptions like smoothness and905

variability [58, 57, 55, 56, 92], our key minimality conditions—Sparse Connectivity (Condition 3.2-906

iv) for vision and Minimal Supports (Condition 3.4-ii,iii) for text—are motivated by the observation907

that concepts typically arise from a sparse set of causes [62–64, 60, 68] and that language is inherently908

structured and compressible [105, 106]. Perhaps a more convincing validation is the empirical results.909

Our experiments provide strong indicative support for these assumptions: by actively enforcing910

sparsity/compression via SAEs, we successfully extract meaningful concept hierarchies in both vision911

(Figure 3) and text (Figure 6) that are otherwise dense and not easily interpretable. This success912

provides support for the usefulness of our overall approach and the validity of our assumptions. We913

acknowledge that these assumptions, like any in this field, may not hold universally. Fortunately, our914

strong empirical results suggest they seem effective and plausible for the complex, real-world data915

we study.916
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Concept variable interpretation. Our theory proves the existence of a clean, one-to-one mapping917

between a learned feature and a true latent variable. This guarantee is what makes a principled918

interpretation possible in the first place. The subsequent step—assigning a human-understandable919

description to this now-identified concept—is intrinsically a task that requires human validation. This920

is a fundamental aspect of all interpretability research (perhaps modern vision-language models have921

the potential to automate this process).922

Comparison with recent work [23]. On the technique side, Cywiński and Deja [23] feature an923

elegant concept location technique by utilizing the score function, which could significantly benefit924

our algorithm. For example, we could employ SAeUron Cywiński and Deja [23] to confirm whether925

our features at various timesteps match the concept location it identifies. Our causal learning algorithm926

explicitly learns the inter-connectivity among concepts across hierarchical levels. Thus, to modify927

a part of a high-level concept, we could focus our scope on only the variables connected to this928

specific high-level concept, which lowers the search complexity. In our experiment example, to929

implement two changes, “replacing the rock with tree stump” and “adding texture to tree stump”,930

SAeUron may need to perform two independent searches across all timesteps and node indices. Our931

method can help reduce the search space to only the low-level nodes connected to “tree stump”.932

In addition, pinpointing specific diffusion timesteps to intervene on potentially aids in managing933

undesirable artifacts. Moreover, our explicit concept graph could also give an interpretable, intuitive934

characterization of the model’s knowledge. On the message side, Cywiński and Deja [23] propose a935

novel score function to select the timestep and node index for accurate concept unlearning. Our work’s936

focus is to provide concise and informative theoretical conditions to understand concept learning in937

both vision and language modalities, with potential applications like concept easing or controllable938

generation. With this work, we hope the theoretical insights will facilitate the development of refined939

and dedicated methods in the community.940

Comparison with recent work Kim et al. [21]. Revelio [21] relies on training a classifier on941

a specific classification dataset. Revelio trains SAEs and a classifier on a specific dataset (e.g.,942

Caltech-101) to evaluate which features and timesteps are most correlated with class labels. Our943

work, in contrast, does not involve class labels. Our primary contribution is a hierarchical, causal944

framework designed to interpret the generative process itself. We apply causal discovery algorithms945

to discover the causal relationships across different levels of concepts without any class labels. We946

are able to understand how semantic concepts causally relate to one another across different levels of947

abstraction to form a coherent output (e.g., how “ear” and “mouth” features causally contribute to948

a “cat face”). Moreover, Kim et al. [21] do not perform interventions or analyze the compositional949

structure of generation, which are the central themes of our paper.950

D Implementation Details951

Computing resources. We use one L40 GPU for training the SAEs and a standard MacBook Pro952

with an M1 chip for causal discovery. Training one SAE takes around 8 hours.953

Vision experiments. For the diffusion sampling process, we utilize the sde-dpmsolver++ [107]954

sampler, which adds stochasticity between successive steps. We train the K-sparse autoencoder955

using a latent dimension of 5120, a batch size of 4096, and the Adam optimizer with a learning956

rate of 0.0001, setting K = 10. A 10k subset of prompts is selected from LAION-COCO [74].957

We then extract SAE features from layers down.2.1, mid.0, and up.1.0 at timesteps 899,500,100958

repectively. The PC algorithm subsequently uses all resulting feature indices for causal discovery.959

For the sparsity ablation study, we control the top-K value used in the SAE. Specifically, we train960

additional SAEs with K=4 and K=100 at timestep 500. To evaluate the effect of sparsity, we then961

perform causal discovery by replacing the SAE features with K=10 with those from the K=4 or962

K=100 models.963

LLM experiments. We utilize the pretrained SAEs for gemma-2-2b-it available from Gemma-964

Scope [90]. To collect features, we use the pile-10k corpus [108]. For each sample, we first exclude965

padding tokens and divide the remaining meaningful tokens into three sequential segments. The first966

segment is processed through the SAE at layer 18 to obtain feature indices representing lower-level967

information. The second segment is passed through the SAE at layer 19 to capture intermediate-level968

features. The final segment is input to the SAE at layer 20 to extract higher-level features. We then969

apply the PC algorithm for causal discovery using the feature indices from these three representational970

levels.971
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Figure 7: Discovered hierarchical concept graphs and feature steering visualization for text-to-
image generation. We can observe that features on the hierarchical model represent a part-whole
relation, and steering a feature yields corresponding visual variation (e.g., the panda’s ears).

E Additional Empirical Results972

More examples for Figure 3. Figure 7 and Figure 8 contain more examples of Figure 3. For example,973

node 3641 in the SAE at timestep 899 contains comprehensive information about the panda, as974

illustrated by the heatmap. When feature steering is applied, it results in the generation of a new975

panda. Meanwhile, nodes 1026 and 511 in the SAE at timestep 500 represent different components976

of the panda. At a finer level of detail, nodes 3489, 3880, and 451 in the SAE at timestep 100 capture977

specific image features. These hierarchical concept graphs effectively illustrate how the panda is978

generated.979

More results for model unlearning In addition to the four benchmark datasets in the main paper, we980

report results on another commonly used benchmark dataset with two tasks: Remove Van Gogh and981

Remove Kelly McKernan in Table.3. We evaluate performance using four metrics: LPIPSe (similarity982

for prompts with the target style), LPIPSu (similarity for prompts without the style), Acce (how well983

the target style was removed), and Accu (how well other styles were preserved), with accuracy ratings984

assessed using GPT-4o. Our method achieves competitive performance across all metrics and tasks.985

Understanding the sparsity constraint. Figure 9 and Table 4 contain the ablation study for the986

sparsity constraint. We can observe that a proper sparsity strength can indeed give rise to desirable987
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Figure 8: More examples of the learned hierarchical concept graphs for text-to-image models. Under
appropriate sparsity and noise conditions, our method successfully recovers meaningful hierarchical structures,
where each node encodes distinct semantic concepts. On the right, we demonstrate feature steering, where
manipulating individual nodes leads to changes in the output that align with their position in the hierarchy –
higher-level nodes produce broader semantic shifts, while lower-level nodes control more fine-grained aspects.

Method LPIPSe ↑ LPIPSu ↓ Acce ↓ Accu ↑
Task: Remove “Van Gogh”
SD-v1.4 – – 0.95 0.95
CA [77] 0.30 0.13 0.65 0.90
RECE [80] 0.31 0.08 0.80 0.93
UCE [79] 0.25 0.05 0.95 0.98
SLD-Medium [82] 0.21 0.10 0.95 0.91
SAFREE [83] 0.42 0.31 0.35 0.85
Ours 0.53 0.26 0.30 0.88

Task: Remove “Kelly McKernan”
SD-v1.4 – – 0.80 0.83
CA [77] 0.22 0.17 0.50 0.76
RECE [80] 0.29 0.04 0.55 0.76
UCE [79] 0.25 0.03 0.80 0.81
SLD-Medium [82] 0.22 0.18 0.50 0.79
SAFREE [83] 0.40 0.39 0.40 0.78
Ours 0.48 0.20 0.35 0.81

Table 3: Results on style removal. We apply negative feature steering to the node to suppress the
styles in the image.

interpretability results, while too small and too large sparsity constraints may be harmful in practice.988

As shown in Table 4, a low sparsity penalty results in visualized maps with significant overlap. On989

the other hand, applying a strong sparsity penalty leads to low node coverage, indicating that the990

nodes alone are insufficient to fully explain the generation of the entire image.991

More examples for Figure 6. Figure 10 contains more examples for Figure 6. As discussed in992

the main paper, we divide the tokens into three segments based on their sequence order, with later993

tokens expected to encode higher-level information—consistent with the behavior of autoregressive994

language models. At the highest level, node 11859 represents the "yell mode," characterized by995

capitalized words conveying a strong tone. The green node 1033, located at an intermediate sequence996

position, emphasizes importance or intensity—typically a component of the yell mode. At the lowest997

level, nodes 304, 2009, and 2818 capture various aspects and meanings related to the concept of998

importance.999
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Overlap ↓ Coverage ↑
K=4 0.108 ± 0.128 26.37± 17.24

K=10 0.089 ± 0.079 47.90 ± 12.50
K=100 0.235 ± 0.132 37.46 ± 17.31

Table 4: Quantitative ablation results. We generate 100 panda images using different random seeds
and visualize the feature heatmaps at timestep 500. We adjust the top-K value in the SAE at timestep
500 to control the level of sparsity. To evaluate, we compute the intersection-over-union (IoU) of
intermediate heatmaps to measure concept disentanglement, and the union of all features to assess
coverage. IoU reflects how distinctly the intermediate concepts are represented, while coverage in
percentage indicates the extent to which the intermediate nodes collectively account for the image
generation.

3489

1026 511

3880 451

3641

2093

451

3641

3390 3951

3641

3880451 2488 762

Sparsity Increasing

3499

Figure 9: Understanding the sparsity constraint. We adjust the top-K value in the SAE at timestep
500 to control the level of sparsity, effectively modifying the sparsity strength of the SAE at this
middle layer. As sparsity decreases, the resulting graph becomes denser, introducing many redundant
and semantically irrelevant edges. This reduces the overall interpretability of the concept graph.
Conversely, increasing sparsity yields a cleaner, more concise graph. However, if sparsity is too
high, it may hinder the formation of a complete and interpretable concept graph necessary for image
generation.

11859

1033
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capitalized words, acronyms, and 

code identifiers in technical or 

structured text.

comparative phrases that express 

degrees of importance or intensity

phrases related to 
accessibility and 
membership in 
organizations

detailed descriptions 

of injuries and 

physical sensations

2009 2818

technical terms 
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Here'S HOW I THINK IT IS IMPORTANT 
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Example:

Figure 10: An example of a discovered hierarchical concept graph for autoregressive language
modeling. Node 11859 represents a "yell mode," characterized by capitalized words that convey a
strong tone. The green node 1033 captures the concept of emphasizing importance or intensity. Blue
nodes correspond to lower-level information—for instance, node 304 represents entities mentioned
throughout the text.
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