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ABSTRACT
We study in-context learning (ICL) of linear regression in a deep linear self-
attention model, characterizing how performance depends on various computa-
tional and statistical resources (width, depth, number of training steps, batch size
and data per context). In a joint limit where data dimension, context length,
and residual stream width scale proportionally, we analyze the limiting asymp-
totics for three ICL settings: (1) isotropic covariates and tasks (ISO), (2) fixed
and structured covariance (FS), and (3) where covariances are randomly rotated
and structured (RRS). For ISO and FS settings, we find that depth only aids ICL
performance if context length is limited. Alternatively, in the RRS setting where
covariances change across contexts, increasing the depth leads to significant im-
provements in ICL, even at infinite context length. This provides a new solvable
toy model of neural scaling laws which depends on both width and depth of a
transformer and predicts an optimal transformer shape as a function of compute.
This toy model enables computation of exact asymptotics for the risk as well as
derivation of powerlaws under source/capacity conditions for the ICL tasks.

1 INTRODUCTION
In recent years, transformer models have become the backbone architecture for modern machine
learning systems (Vaswani et al., 2017; Dosovitskiy et al., 2020). The transformer architecture
consists of alternating self attention and multi-layer perceptron blocks in a deep residual network.
For a variety of tasks, increasing the size of transformers by increasing width and depth of the model
leads to empirically predictable improvements in model performance (Hestness et al., 2017; Kaplan
et al., 2020; Hoffmann et al., 2022; Achiam et al., 2023). Various protocols for scaling up the width
and depth of transformers have been developed that provide stable training limits (Yang et al., 2021;
Bordelon et al., b; 2024b; Chizat & Netrapalli, 2024). One common strategy is to scale width N and
depth L linearly with fixed aspect ratio L/N (Noci et al., 2023; Dey et al., 2025), however existing
theory cannot justify such a practice as compute optimal or distinguish relative performance gain
from width and depth from total parameter count. This leads us to our first open question:

Q1: What sets optimal Transformer shapes and scaling laws?

How should width and depth scale under a compute budget in a transformer? Do transformer
scaling laws only depend on total parameters or have different width and depth dependence?

We explore this for in-context learning (ICL) problems, specifically in-context linear regression
problems. In-context learning refers to the ability of models to condition their outputs on the past
sequence of inputs provided by the user without updating model parameters (Brown et al., 2020).
This contrasts with in-weight learning (IWL) where information about the dataset is encoded in the
model parameters during pre-training. Whereas prior theoretical works on neural scaling laws es-
sentially analyze the role of width, pretraining data, or pretraining time (Bahri et al., 2021; Maloney
et al., 2022; Simon et al., 2023; Bordelon et al., 2024a; Paquette et al., 2024; Lin et al., 2024; Bor-
delon et al., a), our work explores how depth, width, context length, and pretraining time influence
the quality of ICL. We find that the architectural requirements to perform ICL regression depend
significantly on the statistics of the pretraining ICL tasks. We are thus forced to investigate:

Q2: What task properties influence ICL solution

How does the statistical structure of ICL tasks provided during pretraining influence the
nature of the learned solution? Do these influence the optimal width/depth ratios?
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To address these questions, we develop a solvable model of deep linear attention for three distinct
ICL data covariance structures. Our concrete novel contributions and findings are as follows:
1.1 CONTRIBUTIONS

1. We identify a new asymptotic scaling for in-context regression with linear attention where
context length P , number of masked points per context K, and contexts per step B all scale
linearly with dimension D. This reduces the amount of compute and total data (by a factor
of D) to converge than prior works (Lu et al., 2025) and speeds up simulations.

2. We introduce three distinct ICL data models of increasing generality. We study isotropic
input data and task vectors (ISO). We then proceed to analyze fixed and structured (FS)
covariances for data and task vectors. Lastly, we examine an ICL distribution where data
covariances are randomly rotated and structured (RRS) across contexts.

3. We show with our asymptotic theory, that depth L benefits the first two data settings (ISO
+ FS) only if α ≡ context length/data dimension is finite. In the limit of α → ∞, there
is no benefit from depth for these ICL tasks. Further, the FS setting is brittle with respect
to variations in changes to the data covariance at test time. However, for the RRS setting,
increasing depth is beneficial for any distribution and a non-trivial width & depth scaling.

4. We introduce a model width N bottleneck to our ICL model and study the pretraining
scaling law for a model trained for t steps on a width N and depth L linear attention model
in the RRS setting. For powerlaw data, the scaling law takes the form of a Chinchilla
scaling law but with width and depth contributing separate terms

L(t,N, L, P ) = ct t
−βt + cN N−βN + cL L−βL + cP P−βP . (1)

5. From this scaling law, we consider compute optimal joint scaling of width and depth. De-
pending on the structure of the ICL covariates, we obtain different scalings of L ∼ Nν

where ν depends on properties of the data.
1.2 RELATED WORKS

Infinite Neural Network Width and Depth Limits and Commonly Used Joint Scalings. The
empirical fact that larger networks tend to perform better on natural data (Hestness et al., 2017;
Kaplan et al., 2020; Hoffmann et al., 2022) has led to development of scaling procedures to sta-
bly increase the size of a model to allow optimization. The mean-field or µP scaling theory (Geiger
et al., 2020; Mei et al., 2018; Chizat & Bach, 2018; Yang & Hu, 2021; Bordelon & Pehlevan, 2022b)
allows one to scale up the width of a model in a way that admits a feature learning infinite limit. Fur-
ther, this scaling protocol provides consistent optimal hyperparameters, while delivering monotonic
improvements in performance (Yang et al., 2021). The same program has been carried out for deep
residual models, such as transformers (Bordelon et al., b; Yang et al., 2023; Bordelon et al., 2024b;
Dey et al., 2025). However, while these infinite width and infinite depth scaling limits have been
established to exist and perform better than finite models, no theory currently captures the relative
gains in performance from scaling up width or depth at fixed compute. Understanding compute
optimal shapes could help guide architectural choices when training large transformer models.
Theories of Compute Optimal Neural Scaling Laws. Following the empirical scaling law results
of Kaplan et al. (2020) and Hoffmann et al. (2022), many theoretical works have examined the
generalization theory for fully trained kernel methods under power law features (Bordelon et al.,
2020; Spigler et al., 2020; Cui et al., 2021; Bahri et al., 2021; Maloney et al., 2022; Atanasov et al.,
2023; 2022; Defilippis et al., 2024). More recently, several efforts have begun to incorporate SGD
dynamics into these models to gain a notion of compute (and compute optimal tradeoffs between
parameters and training time) (Bordelon & Pehlevan, 2022a; Bordelon et al., 2024a; Paquette et al.,
2024; Lin et al., 2024; Kunstner & Bach, 2025; Bordelon et al., a). Lyu et al. (2025) recently
extended scaling law theory to ICL by analyzing a single layer linear attention model performing
ICL on a sparse multitask sparse feature regression problem, resulting in a neural scaling law in time
and context length. In these works, the model is essentially one or two layers and the notion of finite
model size is introduced with a random projection of the features to an N dimensional space. In
this way, existing theories more closely resemble scaling laws for width rather than a comparison
where depth and width serve different functions. Recent empirical works have pointed out the utility
of increasing depth (or virtual depth through looping) for tasks requiring reasoning such as solving
Sudoku puzzles (Wang et al., 2025) and solving math problems (Zhu et al., 2025; Geiping et al.,
2025). Merrill & Sabharwal (2025) study regular language recognition where a clear computational
advantage to scaling depth instead of width is established and experimentally verified.
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Empirical Studies of ICL. Brown et al. (2020) demonstrated that large pretrained language mod-
els such as GPT-3 exhibit remarkable in-context learning capabilities for natural language tasks.
Following this finding, Garg et al. (2022) empirically investigated the ability of transformers to
learn simple function classes such as linear regression, sparse regression, and two-layer neural net-
works. Various works have studied emergence of ICL beyond language tasks, focusing on what data
structures (from dynamical systems to classification problems) can be learned in-context (Liu et al.,
2024b; Chan et al., 2022; He et al., 2024; McCracken et al., 2025; Park et al., 2024; Chen et al.,
2024). Several works have offered experimental evidence that ICL implements Bayesian inference
(Xie et al., 2021; Wurgaft et al., 2025; Liu et al., 2024a; Panwar et al., 2024; Zhang et al., 2023b).
Further investigations questioned whether attention is even strictly necessary for ICL by studying
the performance of MLPs on these tasks (Tong & Pehlevan, 2025; Kratsios & Furuya, 2025).

Theoretical Studies of ICL. Inspired by empirical studies of ICL, many works have theoreti-
cally investigated how ICL algorithms such as in-context gradient descent can be implemented in
transformers (Zhang et al., 2023a; Ahn et al., 2023; Von Oswald et al., 2023; Li et al., 2023; Kim
et al., 2024; Akyürek et al., 2022; Pathak et al., 2023; Mahankali et al., 2023). Some works have
demonstrated flexibility of the transformer to adapt to changing statistics (Vladymyrov et al., 2024)
or performing model selection (Bai et al., 2023). Studies have pointed out the need for sufficient
pretraining task diversity for ICL generalization (Raventós et al., 2023; Wu et al., 2024) which was
theoretically analyzed in an asymptotic scaling limit for a shallow linear attention model by Lu
et al. (2025). Extensions to structured covariances and distribution shifts revealed the importance of
train-test task alignment Letey et al. (2025). Gatmiry et al. (2024) investigate the need for a suffi-
cient number of residual stream steps (either by increasing true depth or loops of attention layers)
to solve ICL distributions with multiple condition numbers with larger condition numbers requiring
more depth. While many of these works study a final construction of weights, recent theory has
described the training dynamics of one layer linear multi-head attention (Zhang et al., 2025).

2 DATA, ARCHITECTURE AND REDUCED MODEL

2.1 DEEP LINEAR ATTENTION ARCHITECTURE

The most general model we study is a depth L, residual linear attention model f that maps inputs
contexts to output predictions. The data are formed as P input-output pairs {(xµ, yµ)}Pµ=1 and K

evaluation points {(x⋆
µ, ∗)}P+K

µ=P+1 (which do not carry target outputs) into a data matrix D

D =

[
x1 ... xP xP+1 ... xP+K

y1 ... yP ∗ ... ∗

]
(2)

where ∗ indicates masked target values on the K evaluation points which are provided as 0 entries.
The evaluation tokens µ ∈ {P +1, ..., P +K} prevented from updating the model with a positional
masking matrix Mµν (Appendix B). The model fµ is computed from

h1
µ = Wxxµ +wyyµ, hℓ+1

µ = hℓ
µ +

1

LP

P∑
ν=1

Mµν

(
(kℓ

ν)
⊤qℓ

µ

)
vℓ
ν , ℓ ∈ [L] , µ ∈ [P +K]

qℓ
µ = W ℓ

qh
ℓ
µ , kℓ

µ = W ℓ
kh

ℓ
µ , vℓ

µ = W ℓ
vh

ℓ
µ, fµ = wo · hL

µ (3)

where Wx ∈ RN×D,wy,wo ∈ RN and Wj ∈ RN×N for j ∈ {q, k, v}. The loss function for
context D is L(D) = 1

K

∑P+K
µ=P+1(fµ − yµ)

2 and the full population loss is L = ⟨L(D)⟩D where
the average over D represents the distribution of context matrices. We stress that the operation qµ·kν

corresponds to linear attention rather than commonly used in soft-max attention. For the regression
tasks we consider, this model is sufficient to solve the ICL task (Ahn et al., 2023; Von Oswald et al.,
2023) and aids theoretical tractability (Lu et al., 2025; Zhang et al., 2025).

Recurrent Reduced-Γ Model Following prior works on ICL in linear regression (Zhang et al.,
2023a; Lu et al., 2025; Wu et al., 2024; Zhang et al., 2025), we examine the minimal (simplest)
reparameterization of the above model which can solve this task where the residual stream encodes
x information in a subspace orthogonal to wy = wo so that W⊤

x wy = 0 and Wv ∝ wyw
⊤
y . Instead

of optimizing separate hidden weight matrices, we consider looped / universal transformers where
each attention block is identical W ℓ

j = W ℓ′

j for j ∈ {k, q, v} (Dehghani et al., 2018; Gatmiry et al.,
2024). We relax this assumption in Section 5.1 and Appendix G.1 and show that untying layers does
not alter the dynamics in our settings of interest. The reduced model defines the predictor f(x⋆) in
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terms of a single matrix Γ ∈ RD×D

Γ ≡
(
w⊤

o Wvwy

)
W⊤

x W⊤
k WqWx , f(x⋆) =

1

LP
x⊤
⋆ Γ

L−1∑
ℓ=0

(
I − L−1Σ̂Γ

)ℓ
X⊤y, (4)

where Σ̂ = 1
P XX⊤ is the empirical covariance for the data matrix X ∈ RD×P constructed from

the first P context vectors {xµ}Pµ=1 with the first P target values y ∈ RP . Due to the simplicity of
this model and loss landscape structure, we will first focus on the gradient dynamics when we di-
rectly perform gradient descent on the matrix Γ. Then in Section 5.1 we consider learning dynamics
for untied parameters across depth (non-recurrent models) and in Section 5.2 analyze gradient flow
on decoupled attention blocks containing the full collection of parameters {Wj}j∈{k,q,v}.

3 LEARNING CURVES IN REDUCED LINEAR ATTENTION MODEL

3.1 ISOTROPIC COVARIATES AND TASKS (ISO)

To start our investigation, we begin by considering D dimensional isotropic data and isotropic task
distribution. For each context Dc and each data point µ ∈ [P ], the distribution of x and y are

xµ,c ∼ N (0, I) βc ∼ N (0, I) , yµc =
1√
D
βc · xµ

c + σϵµc , ϵµc ∼ N (0, 1). (5)

In Appendix C.1, we analyze SGD with batch of B contexts sampled at each step in the proportional
asymptotics P,K,B,D → ∞ , P/D = α , K/D = κ , B/D = τ , establishing that successful
pretraining requires a total of Bt = Θ(D) contexts, each of size P = Θ(D).
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(a) L = 16, Linear Transformer
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(b) α = 1, Linear Transformer
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(
)
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L=16

(c) Final Loss of The Transformer

Figure 1: Deep linear self attention models trained with SGD on the ICL task with isotropic covari-
ates with D = 32. (a) Training dynamics for varying α. (b) Increasing depth L can improve ICL
predictions, especially for α ≈ 1. (c) The final loss compared to a theory of L steps of GD.

These stochastic gradient descent fluctuation effects, while potentially interesting, are not the pri-
mary focus of the paper. Moving forward, we will instead focus on gradient flow in deeper models
L ≥ 1. For isotropic covariates, we have the following result.

Result 1: Gradient Flow for Isotropic Covariates (ISO)

Gradient flow ICL pretraining on isotropic data at any depth L ≥ 1 from zero init yields

Γ(t) = γ(t)I, (6)

where the dynamics obey a gradient flow for this scalar d
dtγ(t) = −∂γL(γ, α)|γ(t) for

L(γ, α) =
∫

dλ ρ(λ, α)

[(
1− L−1γλ

)2L
+

σ2

αλ

(
1−

[
1− L−1γλ

]L)2]
. (7)

The density ρ(λ, α) is the Marchenko-Pastur eigenvalue distribution with aspect ratio α ≡
P/D. The final loss L⋆(α) = minγ L(γ, α) can be interpreted as the loss for L steps of GD
with optimal step size. We illustrate this effective loss function in Figure 2.

To illustrate the utility of depth on ISO ICL covariates, consider the noise free setting σ2 = 0. For
L = 1, the loss saturates to L⋆ = (1 + α)−2 while for L → ∞, the L⋆ = [1 − α]+, illustrating
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significant gaps in performance between shallow model and deep models. We illustrate loss curves
of varying depth L compared to pretrained linear transformers (dots) in Figure 1 (c) and the loss
landscapes in Figure 2. Derivations are provided in App. C.2. For larger noise σ2 (Figure 2 c),
the optimal γ is smaller since early stopping acts as an effective regularization (Advani et al., 2020;
Sonthalia et al., 2024).
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(b) Loss Landscape α = 2.0
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Figure 2: The loss landscape for the reduced Γ model with Γ = γI corresponding to the gradient
flow limit. This limit is equivalent to optimal step size selection for in-context GD. (a)-(b) The
effect of depth L and context length α on the loss. (c) Larger noise σ decreases the optimal γ.

Result 2: Depth is Unnecessary for Long Contexts on Isotropic Covariates

If α = P/D → ∞ then L = 1 achieves the minimal ICL loss (among any depth L models).
Any larger depth L ≥ 2 achieves the same (zero if σ2 = 0) loss in the α → ∞ limit.

3.2 FIXED STRUCTURED COVARIANCE (FS) → PRECONDITIONED GRADIENT DESCENT

Next, we let the population covariance be arbitrary
〈
xx⊤〉 = Σ across all contexts and task corre-

lations be given by the matrix
〈
ββ⊤〉 = Ω. The ICL population loss takes the form

L = tr

(
Ω

〈[(
I − L−1ΓΣ̂

)L]⊤
Σ
(
I − L−1ΓΣ̂

)L〉)
(8)

Result 3: Depth Unnecessary for Long Contexts with Fixed Covariance Σ

When the ICL distribution involves fixed covariance across contexts, there is no benefit to
increasing depth L beyond L = 1 in the large context α → ∞ limit. For any L ≥ 1, zero
ICL loss can be achieved in the α → ∞ limit by setting Γ = LΣ−1.

We support this finding in Figure 3 (b) where we show that small depth models are not outperformed
by deeper models even after very long training horizons. When the ICL pretraining distribution for
Σ is fixed, the model will memorize statistical information about the covariance of the inputs from
the pretraining distribution. By preconditioning with the inverse of the data covariance Σ−1, the
model is capable of achieving zero loss after even a single step of in-context GD. The gradient flow
dynamics of the Γ matrix can be decomposed further in the case where Ω and Σ commute.

Result 4: Decoupled Eigenvalue Dynamics During Pretraining on Fixed Covariances

Suppose that Ω and Σ are codiagonalizable with respective eigenvalues {ωk} and {λk}.
Then, when training from zero initialization, Γ is diagonal in the same basis with eigenvalues
γk(t) that obey the following dynamics (see Appendix D)

d

dt
γk(t) = ωkλ

2
k

(
1− L−1λkγk(t)

)2L−1
. (9)

For L → ∞ these dynamics have solution γk(t) =
1

2λk
ln(1 + 4ωkλ

3
kt) generating the loss

dynamics limL→∞ L(t, L) =
∑

k
ωkλk

1+4ωkλ3
k t

. Under powerlaw conditions λk ∼ k−ν and∑
ℓ>k λℓωℓ ∼ k−νβ , the ICL loss scales as a powerlaw L(t) ∼ t−

β
ν+νβ+1 .
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(c) Brittleness to Distribution Shift

Figure 3: Pretraining on FS ICL covariates leads to a solution that does not require depth but is
brittle to distribution shift. (a) Evolution of the eigenvalues γk(t) of the Γ(t) matrix for depth L = 4
as a function of pretraining time t compared with infinite depth L → ∞ theory (dashed black). (b)
For powerlaw covariates, all depth models converge as a power law in t. There is no asymptotic
benefit to increasing depth beyond L = 1. (c) The ICL solution obtained when training from fixed
covariance is brittle to changes in the covariance Σ → exp(−θS)Σ exp(θS).

While pretraining the linear transformer in this setting can achieve zero loss for long contexts
P → ∞ even in shallow networks, the solution the model finds from gradient descent is brittle
to properties of the pretraining data. Rather than learning a generic algorithm that solves ICL re-
gression for any covariance Σ, its solution is specialized to the pretraining covariance.

Result 5: Brittleness of Fully Trained Model to Distribution Shift (OOD Loss)

A depth L model is pretrained on ICL tasks with fixed covariances Σ and Ω for inputs and
task vectors, but evaluated on new covariances Σ′,Ω′. The out-of-distribution loss is

LOOD = tr
(
Ω′
[(
I −Σ−1Σ′)L]⊤ Σ′ (I −Σ−1Σ′)L) (10)

We illustrate this brittleness in Figure 3 (c) where we define a family of new covariance matrices
Σ′ = exp(θS)Σ exp(−θS) where S is a random skew-symmetric matrix. As θ increases and Σ′

becomes more dissimilar to Σ, the OOD loss increases for all depths L.

3.3 RANDOM ROTATED AND STRUCTURED COVARIANCES =⇒ IN-CONTEXT GD

Next, we attempt to enhance the covariance diversity across contexts. To do so, we now allow that
each context c has a random data and task covariances which are randomly rotated

xµ
c ∼ N (0,Σc) , Σc = OcΛO⊤

c , Ωc = OcΩO⊤
c , (11)

where Oc is a random d×d orthogonal matrix sampled from the Haar measure. The idea to pretrain
with a diverse set of covariances Σc across contexts c is to encourage the model to learn a generic
in-context learning algorithm that is not specifically tailored to a particular data covariance Σ. By
introducing the random rotation across contexts, the model cannot encode a whitening transform of
the data in the matrix Γ which prevents a zero loss solution in a shallow model with depth L = 1.
Therefore, even the P/D → ∞ limit has the potential to exhibit a nontrivial scaling law in L.

Result 6: Gradient Flow Generates Isotropic Γ

Gradient flow on the Γ-reduced model maintains the isotropy condition Γ(t) = γ(t)I with

d

dt
γ(t) = tr

(
Λ2Ω

(
I − L−1γ(t)Λ

)2L−1
)
. (12)

This indicates that, provided the covariance is randomly rotated across contexts, the behavior of the
learned solution is unconditioned in-context GD (see Appendix E). In the next section, we explore
the consequences of this finding for optimal shapes.
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4 MODEL OF COMPUTE OPTIMAL NEURAL SCALING LAWS

We consider the third setting with power law features and also introduce a notion of width through
a projection matrix A ∈ RN×D. Rather than training on D dimensional inputs x, the model has
access to N dimensional features x̃ = Ax, which leads to the following condition of Γ(t)

x̃ = Ax =⇒ Γ(t) = γ(t)
(
AA⊤) ∈ RN×N (13)

In this section, we consider arbitrary (non-proportional) but large values of N,P,D, which requires
an approximate non-proportional mean field theory (see Appendix F.1). This theory allows for the
possibility of trace class covariates

∑∞
k=1 λk < ∞ for D → ∞. As before, the loss can again

be viewed as a function of the scale parameter γ(t). We provide a recipe to compute it below by
computing the average over the random orthgonal matrix, resulting in a two-point deterministic
equivalent for free products 1 , in the same spirit of the results of (Bordelon et al., 2024a; Atanasov
et al., 2025), using a saddle point method (Appendix A, F.1). As the matrix M = O(A⊤A)2O⊤Σ̂
driving the dynamics is asymmetric, we characterize the loss landscape using dynamical mean field
theory, a technique from the physics of spin glasses which allows asymptotic descriptions of high
dimensional disordered dynamical systems (Sompolinsky & Zippelius, 1981).
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(a) Pretraining time t scaling
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(b) Loss landscape vs Depth
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L = 16
t /(2 + )

(c) Learning Curves Varying L

Figure 4: Loss dynamics for powerlaw RRS data. (a) Varying the source exponent β, we see that
the scaling with pretraining time has exponent β

2+β . (b) The loss landscape across depths L for the
scalar γ parameter exhibits minima at γ ≈ L. (c) The training dynamics of the reduced-Γ model
exhibit t−β/(2+β) decay before hitting an asymptote which scales as L−β .

Result 7: Two-Point Deterministic Equivalent (DMFT Correlation) for the Loss Landscape

The loss function L =
〈
|Λ1/2[I − γ(t)L−1O

(
A⊤A

)2
O⊤Σ̂]Lβ̄|2

〉
can be explicitly av-

eraged over the random orthogonal matrix O and expressed as a deterministic function

L(t,N, L, P ) =

∫
dωdω′

(2π)2
(
1 + L−1γ(t)iω

)L (
1 + L−1γ(t)iω′)L C(ω, ω′)

C(ω, ω′) ≃ Tr
(
Λ [iωI +Ψvχ(ω)Λ]

−1
[Ω−Ψχχ(ω, ω

′)I] [iω′I +Ψvχ(ω
′)Λ]

−1
)

(14)

where Ψvχ(ω) and Ψχχ(ω, ω
′) are deterministic functions that depend on the spectra of Σ̂

and A⊤A (Appendix A, F.1). For example to obtain Ψvχ(ω) we first solve

iω(A⊤A)2(τ)iωΣ̂(τ) =

(
−1 +

D

τ

)
iω =⇒ Ψvχ(ω) =

iω

iω(A⊤A)2(τ)
(15)

where τ and ωM for matrix M is defined as τ = Tr M (M + iωM )
−1.

In Appendix F.5 we provide formulas for Ψvχ(ω) and Ψvv(ω, ω
′) in the case that A⊤A ∈ RD×D

is a rank N projection (has N eigenvalues equal to 1) and Σ̂ = 1
P XX⊤ ∈ RD×D is a structured

1Two-point refers to the correlation function of two resolvents evaluated at different arguments, rather than
the one point function which is a single resolvent and determines only the spectrum of the random matrix.
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Wishart matrix. We can further extract Chinchilla scaling laws for powerlaw data. We demonstrate
the need for both width and depth in Figures 4 and 5. We verify the scaling exponents for time and
depth in Figure 4 and exhibit the compute optimal scaling law for width and depth in Figure 5.

Result 8: Scaling Law for Power Law Features and Optimal Shapes

Assume source and capacity conditions for the eigenvalues and target coefficients ωk ≡ Ωkk∑
ℓ>k

λℓ ωk ∼ k−νβ , λk ∼ k−ν , (16)

with source and capacity exponents (β, ν). Let the matrix A be rank N and frozen. Then the
loss follows a neural scaling law in the resources of time t, width N , depth L, and context
length P

L(t,N, L, P ) ≈ ct t
− β

2+β + cN N−νβ + cL L−β + cP P−νβ , (17)

in the sense that taking any three of the resources to infinity leaving the last fixed results in
a powerlaw in the remaining resource, e.g. limN,L,P→∞ L(t,N, L, P ) = Θ

(
t−

β
2+β

)
. As a

consequence, at fixed compute C = tP 2N2L the optimal width and depth scale as L ∝ Nν .
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(a) Fixed Depth L = 1
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(b) Fixed Width N = 8
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(c) Optimal Joint Scaling L ∝ Nν

Figure 5: Increasing width and depth alone is insufficient to obtain monotonic improvements on
powerlaw data with random covariance across contexts. (a) Scaling only width leads to a depth
bottleneck (dashed red line). (b) Scaling only depth leads to a width bottleneck (dashed red line).
(c) Increasing N and L simultaneously achieves monotonic improvement with compute.

5 MORE REALISTIC SELF ATTENTION MODELS

In this section, we discuss more realistic models which exhibit similar training dynamics and depth
dependence. First, we describe the dynamics when the Γℓ matrices are not tied. Second, we provide
a theory of training when each of the weight matrices is optimized separately. Lastly, we provide
experiments with softmax attention models trained with Adam.

5.1 GRADIENT FLOW WITH UNTIED Γ MATRICES

In this section, we consider the effect of untied Γℓ matrices across layers ℓ ∈ [L]. When each of
the weights are optimized separately with a learning rate that is upscaled by depth η = η0L, the
dynamics are actually equivalent to the recurrent model that we presented previously under the RRS
noise-free setting.
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Result 9: Gradient Flow with Untied Layers on RRS Covariates

Let the model prediction on evaluation point x⋆ for dataset D after gradient flow time t
for pretraining on RRS covariates with L decoupled matrices {Γℓ}Lℓ=1 and learning rate
η = η0L be written as funtied(x⋆, t). Let the predictor resulting from gradient flow on tied
matrices Γℓ = Γ (looped transformer) with learning rate η0 be ftied(x⋆, t). If the initial
condition for the matrices Γℓ|t=0 = γ(0)I are isotropic and equal for all ℓ, then

funtied(x⋆, t) = ftied(x⋆, t) ∀t ≥ 0, (18)

and consequently the ICL losses are also equivalent through time Luntied(t) = Ltied(t).

We prove this result in Appendix G.2, which relies on the permutation symmetry in the predictor
function f with respect to the variables {γℓ}Lℓ=1. Since under RRS covariates, the Γℓ matrices
remain isotropic through all gradient flow training Γℓ(t) = γℓ(t)I , all the matrices arising in the
predictor dynamics commute, resulting in the permutation symmetry.

In Figure 8 we provide a numerical demonstration that under equal identical conditions (such as
Γℓ = 0 for all ℓ), that the γℓ scalars remain equal for all training times t when pretraining on RRS
covariates. However, we also provide evidence that this symmetry requires a symmetric initial con-
dition. When starting from an asymmetric initial condition γℓ ̸= γk, the model does not necessarily
converge to a symmetric configuration.

5.2 GRADIENT FLOW FOR FULL LINEAR ATTENTION

In this section we consider gradient flow on all of the attention weights {Wk,Wq,Wv} separately
rather than gradient flow on the Γ matrix. This corresponds to the dynamical system

d

dt
Wj = − ∂

∂Wj
L , j ∈ {x, y, k, q, v, o} (19)

The dynamics of this model from small initialization are theoretically tractable as a set of low di-
mensional ODEs (see Appendix G.2), but suffers some defects due to transient blowup and recovery
in the scale of wy and wo. However, if we fix these weights to unit norm, the dynamics of the above
model reduces to a one-dimensional ODE much like the reduced-Γ model.

Result 10: Gradient Flow on Full Linear Attention Module

Consider pretraining a linear transformer on randomly rotated covariance ICL data distribu-
tion. Fix read-in weights wy and readout weights wo with wy = wo and |wy| = 1. Initialize
the other weights to be small 1

2 |Wx|2 = |Wk|2 = |Wq|2 = |Wv|2 = σ2 where σ ≪ 1. The
gradient dynamics will maintain a balanced condition where |Wj(t)| = |Wj′(t)| = w(t)
for j, j′ ∈ {x, k, q, v} where the scalar w(t) evolves as

d

dt
w(t) = w(t)4 tr

(
Λ2Ω

(
I − w(t)5Λ

)2L−1
)

(20)

This can be interpreted as gradient flow on the loss function for the reduced Γ model under
the reparameterization γ(t) → w(t)5. For powerlaw covariates with source exponent β, this
gives a powerlaw scaling with pretraining time t and depth L

L(t, L) ∼ ct t
− 5β

5β+2 + cL L−β . (21)

We show the learning curves for this full attention module for isotropic covariates and powerlaw
covariates in Figure 6. The theoretical dynamics and predicted powerlaw exponent for this new
dynamical system closely match the predictions.

5.3 NONLINEAR (SOFTMAX) ATTENTION, MULTIPLE HEADS, MLPS

We also provide experiments showing that similar scaling behavior holds in softmax attention
models trained with Adam. In this setting, the attention block has the form hℓ+1

µ = hℓ
µ +

L−1
∑P

ν=1 AµνWvh
ℓ
ν where Aℓ

µν = 1
Zµ

exp(h⊤
ν WkWqh

ℓ
µ) with Zµ =

∑
ν exp(h

⊤
ν WkWqh

ℓ
µ)
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Figure 6: (a)-(b) Dynamics of the full decoupled linear attention (decoupled att.) module with
separate {Wx,Wq,Wk,Wv} as a function of depth L agree with a theory generated through repa-
rameterization γ → w5 as described in Result 10. (c) Softmax attention dynamics across depths
L indicate similar improvements to performance from depth. We provide additional experiments
varying attention heads, depth, and the addition of MLP blocks in Figure 9.

as the normalization factor. We train with Adam and show depth is still beneficial to ICL perfor-
mance in Figure 6 (c) and 9, consistent with the phenomenology of our linear attention model. We
also provide additional experiments varying heads, introducing MLP blocks in softmax attention
models in Figure 10.

6 DISCUSSION

Conclusion In this work we analyzed a solvable model of in-context learning with deep linear
attention. We showed that the pretraining statistics strongly determine the type of solution the model
converges to and under what conditions scaling depth is necessary at large context lengths. When
training on fixed covariance structures, large depth is not necessary (at infinite context length) as
the model learns a preconditioner that whitens the data. However, this learned solution is brittle
to changes in the data covariance. When training on tasks where the data covariance is randomly
rotated across contexts, the model learns a general purpose in-context gradient descent algorithm and
exhibits a separable Chinchilla neural scaling law where limited width and depth can both bottleneck
performance. Lastly, we show these results are robust to reparameterization of the attention blocks.

Limitations and Future Directions While our work presents an advance in the solvable models
of neural scaling laws and the structure of ICL in linear attention, there are many current limitations.
The primary limitation is that we focus on linear regression tasks solved with linear attention. Char-
acterization of more general ICL problems such as nonlinear function approximation and nonlinear
attention could provide more insights into realistic in-context function approximation. Further, our
analysis is focused on online learning in the present work. Future work could investigate overfitting
effects caused by repeating tasks or context matrices during training, perhaps with dynamical mean
field theory techniques (Mignacco et al., 2020; Bordelon et al., 2024a; Montanari & Urbani, 2025).
While this current work identifies heterogeneity in data covariances as necessary for self-attention
models to discover ICL solutions that utilize depth to generalize across covariances, future work
could explore diverse covariances beyond the RRS construction that our work focuses on including
data domain shift, changes in label noise level, and hierarchical data structure. Future work could
also examine the role of large learning rate effects during pretraining dynamics. Another direction
that could be interesting to explore in future works is scaling up the number of loops dynamically as
the network trains to significantly reduce the total compute required.
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APPENDIX

A TWO POINT DETERMINISTIC EQUIVALENT FOR GENERAL FREE
PRODUCT FROM DYNAMICAL MEAN FIELD THEORY

In this section, we describe a method to handle two-point correlation properties of free products
of random matrices. Similar results were provided in a simple random feature model of (Bordelon
et al., 2024a; Atanasov et al., 2025). This computation provides the necessary technical results to
establish the behavior of ICL in the randomly rotated context setting. Note throughout that we will
use trM for normalized trace of the matrix M so that for N ×N matrix trM = 1

N

∑N
k=1 Mkk. We

instead study arbitrary (possibly trace class) covariates in Appendix F.1.

Intuitive Motivation for this Section Before working out this random matrix result, we first want
to motivate it. To do so, we start by considering the infinite depth limit L → ∞ of the model
in Section 4 before describing how our results will also cover finite depth L. In the infinite depth
L → ∞ limit, the loss can be expressed as the as a dynamical system in layer-time τ (not gradient
descent time) evaluated at τ = γ

L(γ) = trΛ
〈
v(γ)v(γ)⊤

〉
, ∂τv(τ) = −Mv(τ) + δ(τ)β. (22)

where the average ⟨⟩ is over both the matrix M and the initial condition β which has correlation〈
ββ⊤〉 = Ω. We note that for the RRS setting, the matrix M is generally an asymmetric free

product of the form M = OBO⊤A where B and A have known spectrum. A key idea is to
examine the Fourier transform of the correlation matrix for v(τ)〈

v(γ)v(γ)⊤
〉
=

∫
dωdω′

(2π)2
eiγ(ω+ω′)

〈
[iω +M ]

−1
Ω
[
iω′ +M⊤]−1

〉
(23)

We therefore see that the loss depends on a two-point interaction of the resolvent matrices
[iω +M ]

−1 evaluated at different frequencies ω, ω′. For finite depth L the result can again be
expressed in terms of this two-point resolvent correlation using Cauchy’s Integral formula〈

vL(vL)⊤
〉
=

∫
dωdω′

(2π)2
(1− γL−1iω)L(1− γL−1iω′)L

〈
[iω +M ]

−1
Ω
[
iω′ +M⊤]−1

〉
.

(24)

Thus for any depth L the ICL loss is governed by the correlation function in frequency space

C(ω, ω′) =
〈
v(ω)v(ω′)⊤

〉
=
〈
[iω +M ]

−1
Ω
[
iω′ +M⊤]−1

〉
(25)

is a valuable summary statistic to compute the test loss when averaging over the RRS model’s ran-
dom rotation matrix O. We can therefore consider a simple linear dynamical system in continuous
time and taking a Fourier transform to obtain C(ω, ω′).

To compute the pretraining dynamics for the general random M , one must compute gradients of
the effective loss with respect to γ. For example, at infinite depth, the gradient flow pretraining
dynamics are

d

dt
γ(t) = −

∫
dωdω′

(2π)2
i(ω + ω′)eiγ(ω+ω′) tr Λ C(ω, ω′). (26)

Now that we have motivated computing the C(ω, ω′) object, we will now give a very simple Gaus-
sian example before deriving the general free product result necessary for the RRS covariates.

Dynamical Mean Field Theory Illustrative Example To illustrate what Dynamical Mean Field
Theory computes, we will start by deriving a deterministic equivalent result for a simple N × N
Gaussian Orthogonal Ensemble (GOE) matrix Mij = Mji ∼ N (0, 1/N) 2.

d

dt
v(t) = −Mv(t) + δ(t)v0. (27)

2Because this matrix is symmetric the two-point equivalent is not necessary since
exp(−M t) exp(−M⊤t) = exp(−2M t) allowing for a Fourier transform in a single time variable.
We still compute the two point function as an illustrative example.
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As N → ∞, this dynamical system can be replaced with an uncoupled dynamical system which
depends on some summary variables known as correlation C(t, t′) and response function R(τ)

d

dt
v(t) = ξ(t) +

∫
dt′R(t− t′)v(t′) + δ(t)v0 (28)

〈
ξ(t)ξ(t′)⊤

〉
= C(t, t′)I , C(t, t′) = tr

〈
v(t)v(t′)⊤

〉
, R(τ) = tr

〈
∂v(t+ τ)

∂ξ(t)⊤

〉
(29)

Taking a Fourier transform of the above equation v(ω) =
∫
dte−iωtv(t), we find

v(ω) = [iω +R(ω)]
−1

[v0 + ξ(ω)] (30)
where R(ω) is the Fourier transform of the response function. This function

iωR(ω) = 1 +R(ω)2 (31)

The correlation function C(ω, ω′) =
〈
v(ω)v(ω′)⊤

〉
thus satisfies the equation

C(ω, ω′) = [iω +R(ω)]
−1

[iω′ +R(ω′)]
−1 [〈

v0v
⊤
0

〉
+C(ω, ω′)

]
. (32)

We see that the DMFT description enabled an average over the random matrix to compute C(ω, ω′).
This result is exact as the matrix size N → ∞. We would now like to perform a similar analysis
for a general free product matrix (to deal with our RRS ensemble) which involves averaging over
orthogonal rather than Gaussian matrices.

Tracking Linear Dynamics Generated by Free Product Taking this dynamical approach, we
consider the following dynamical system which depends on a random matrix M ∈ RN×N

∂tv(t) = −Mv(t) + δ(t)v0 , M = OBO⊤A (33)
where O is a random N × N orthogonal matrix drawn from the Haar measure for the orthogonal
group. Our starting point is to express the above dynamical system with an integral representation of
Dirac-Delta functions 1 =

∫
dzδ(z) =

∫
dzdχ
2πi e

−χz where the integration variable χ ∈ (−i∞, i∞)
runs along the imaginary axis. Performing this for each time t of the dynamics yields

Z =

∫
DvDχ

〈
exp

(
−
∫

dtχ(t) [∂tv(t) +Mv(t)− v0δ(t)]

)〉
= 1 (34)

where DvDχ = limδt→0

∏∞
n=−∞

dv(n·δt)dχ(n·δt)
2πi is the flat measure over v(t),χ(t) in the contin-

uous time limit δt → 0. The average ⟨·⟩ is computed over the random orthogonal matrix O.

To simplify the calculation, we transform our dynamics into Fourier space

v(t) ≡
∫

dω

2π
exp (iωt)v(ω) , χ(t) ≡

∫
dω

2π
exp (iωt)χ(ω), (35)

which transforms the original integral over t into an integral over ω as
∫
dωχ(ω) · [(iω)v(ω) +

Mv(ω)− v0].

Disorder Average Averaging the resulting expression over the orthogonal matrix O, we obtain
the following representation of Z as an integral over order parameters {Σ,Ψ}

Z =

∫
DΣDΨ exp (−NS[Σ,Ψ]) . (36)

In the above expression, the action S has the form

S[Σ,Ψ] = −TrΣΨ− 1

N
lnZA(Ψ)− TrΣΣ̂⋆ −

1

N
ln det

(
Σ̂⋆ ⊗ I + V ⊗B

)
+ ln detΣ

(37)

where Σ̂⋆ solves the implicit equation ∂S
∂Σ̂⋆

= −Σ+ tr
(
Σ̂⋆ ⊗ I + V ⊗B

)−1

= 0 and the single
site measure ZA has the form

ZA(Ψ) =

∫
DvDχ exp

(
−
∫

dωχ(ω) ·
[
(iω)v(z)− v0 −

∫
dω′Ψvχ(ω, ω

′)Av(ω′)

])
exp

(
−1

2

∫
dωdω′ [Ψvv(ω, ω

′)v(ω)⊤A2v(ω′) + Ψχχ(ω, ω
′)χ(ω) · χ(ω′)

])
(38)
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Taking the Large System Size Limit To study the limit of N → ∞, the saddle point equations
over Σ and Ψ give

∂S
∂Ψ(ω, ω′)

= −
[
Σvv(ω, ω

′) Σvχ(ω, ω
′)

Σχv(ω, ω
′) Σχχ(ω, ω

′)

]
+

[
1
N

〈
v(ω)⊤A2v(ω′)

〉
1
N

〈
v(ω)⊤Aχ(ω′)

〉
1
N

〈
χ(ω)⊤Av(ω′)

〉
1
N ⟨χ(ω) · χ(ω′)⟩

]
∂S

∂Σ(ω, ω′)
= −Ψ(ω, ω′)− Σ̂⋆(ω, ω

′) + [Σ−1](ω, ω′) = 0 (39)

The average over ⟨·⟩ represents an average over the Gaussian measure defined by ZA. The solution
to these equations has the following block structure

Σ(ω, ω′) =

[
Σvv(ω, ω

′) Σvχ(ω, ω
′)

Σvχ(ω, ω
′) 0

]
(40)

Σ̂(ω, ω′) =

[
0 Σ̂vχ(ω, ω

′)

Σ̂vχ(ω, ω
′) Σ̂χχ(ω, ω

′)

]
(41)

Ψ(ω, ω′) =

[
0 Ψvχ(ω, ω

′)
Ψvχ(ω, ω

′) Ψχχ(ω, ω
′)

]
(42)

Off Diagonal Blocks The off diagonal blocks decouple over different frequencies Σvχ(ω, ω
′) =

δ(ω − ω′)Σvχ(ω) and satisfy the following equations

Σvχ(ω) = trA (iω +Ψvχ(ω)A)
−1

= tr
(
Σ̂vχ(ω) +B

)−1

, (43)

Ψvχ(ω)Σvχ(ω) = 1− Σ̂vχ(ω)Σvχ(ω) (44)
Introduce the τ -transform τM of a matrix M as

τM (iω) ≡ trM(iω +M)−1 (45)

as well as its inverse function iωM (τ) 3. Then our saddle point equations give us
τ = Σvχ(ω)Ψvχ(ω) = τA(iωA) = τB(iωB) (46)

where iωA = iω
Ψvχ(ω) and iωB = (τ−1 − 1)Ψvχ(ω). Putting these equations together, we find

(iωA(τ))(iωB(τ)) =
1− τ

τ
(iω) (47)

This equation is to be solved for τ(ω). Once this function is determined we can use it to compute
the diagonal blocks of Σ,Ψ as we describe in the next section.

Diagonal Blocks Now, we can determine the diagonal blocks, which determine the covariance
structure of the v(ω) variables

Σvv(ω, ω
′) =

1

N
v⊤
0 (iω +Ψvχ(ω)A)

−1
A2 (iω′ +Ψvχ(ω

′)A)
−1

v0

−Ψχχ(ω, ω
′) trA2 (iω +Ψvχ(ω)A)

−1
(iω′ +Ψvχ(ω

′)A)
−1︸ ︷︷ ︸

A(ω,ω′)

Σvv(ω, ω
′) = −Σ̂χχ(ω, ω

′) tr
(
Σ̂vχ(ω) +B

)−1 (
Σ̂vχ(ω

′) +B
)−1

︸ ︷︷ ︸
B(ω,ω′)

Ψχχ(ω, ω
′) = −Σ̂χχ(ω, ω

′)− Σvv(ω, ω
′)Σvχ(ω)

−1Σvχ(ω
′)−1 (48)

where we introduced functions A and B which can be determined from the (already obtained) off-
diagonal blocks. Combining these equations

Σvv(ω, ω
′) =

1
N v⊤

0 (iω +Ψvχ(ω)A)
−1

A2 (iω′ +Ψvχ(ω
′)A)

−1
v0

1− [Σvχ(ω)−1Σvχ(ω′)−1 − B(ω, ω′)−1]A(ω, ω′)
(49)

From this expression, both Σ̂χχ(ω, ω
′) = −B(ω, ω′)Σvv(ω, ω

′) and Ψχχ(ω, ω
′) = −Σ̂χχ(ω, ω

′)−
Σvv(ω, ω

′)Σvχ(ω)
−1Σvχ(ω

′)−1 are determined.
3Up to a change in signs and iω → −z this is equivalent to the t-transform of a random matrix (Potters &

Bouchaud, 2020).
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Deterministic Equivalent From the functions Ψvχ(ω) and Ψχχ(ω, ω
′) we obtain the following

determinstic equivalent for the outer product of v variables

v(ω)v(ω′)⊤ ≃ (iω +Ψvχ(ω)A)
−1

[v0v0 −Ψχχ(ω, ω
′)I] (iω′ +Ψvχ(ω

′)A)
−1 (50)

where the ≃ expression holds under trace against a test matrix (i.e. M1 ≃ M2 =⇒ trCM1 =
trCM2) (Potters & Bouchaud, 2020). This function will be used in subsequent expressions to give
an exact result for the loss landscape of our randomly rotated ICL loss function. Approximations of
this will give rise to our scaling law results as we discuss in Appendix F.5.

B MODEL DEFINITION, MASKING MECHANICS, REDUCED-Γ MODEL

B.1 LINEAR ATTENTION AND POSITIONAL MASKING FOR OUR TASK

In this section, we provide more detail on the structure of the masking used in our task. First, we note
that the target values yµ are only provided for the P labeled examples within each context matrix.
Second, we note that the residual attention operations are masked differently for the P labeled
examples and the K evaluation points. To define our masking operation precisely, we introduce the
notation 1k ∈ Rk as a vector consisting of all k entries equal to one. We introduce the masking
matrix M ∈ R(P+K)×(P+K) for the residual stream which has the following block structure

M =

[
−1P 1⊤

P 0
1K 1⊤

P 0

]
. (51)

Now that this positional masking matrix is introduced, we can conveniently express our update rule
for the residual stream

hℓ+1
µ = hℓ

µ +
1

PL

P+K∑
ν=1

Mµν

(
kℓ
ν · qℓ

µ

)
vℓ
ν

= hℓ
µ +

1

PL

P∑
ν=1

Mµν

(
kℓ
ν · qℓ

µ

)
vℓ
ν , µ ∈ [P +K] (52)

where kℓ
µ = Wk · hℓ

µ, q
ℓ
µ = Wqh

ℓ
µ,v

ℓ
µ = W ℓ

vh
ℓ
µ and we dropped the sum over evaluation points

{P + 1, ..., P + K} due to the structure of the positional mask M . We thus see that the masked
update rule has two properties

1. It prevents the test points xµ for µ ∈ {P + 1, ..., P +K} from being used in the residual
stream updates. Only the first P training points are utilized.

2. It provides an opposite sign for the updates on training points and on testing points. We
will see that this will enable the model to implement an in-context gradient descent rule. In
such a rule, a subspace of the residual variables will encode residual errors yµ − f ℓ

µ for the
training predictions and +f ℓ

µ for the test points µ ∈ {P +1, .., P +K}. Instead, one could
use the same signs for training points and test points in M and simply negate the output of
the model at the end f → −f .

B.2 DERIVATION OF REDUCED GAMMA MODEL

In this section, we describe the conditions under which a linear attention transformer model can be
reparameterized as the recurrent reduced-Γ model we discuss in the main text.

Alignment Assumptions Following Von Oswald et al. (2023); Zhang et al. (2025); Lu et al.
(2025), we study configurations of weights that encode information about inputs x and targets y
in orthogonal subspaces of the residual stream. Concretely, the following assumptions are made on
the input weights, which implement in-context preconditioned gradient descent

W⊤
x wy = 0 , W⊤

x wo = 0 , wy ·wy = |wy||wy|. (53)
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Collectively these assumptions imply that read-in weights for the targets wy and readout weights wo

perfectly align and that the read-in weights for x Wx project input data to an orthgonal subspace.
Next we study the following set of alignment conditions for the key, query and value matrices

W⊤
x

(
W ℓ

k

)⊤
W ℓ

qWx ∝ Γℓ ∈ RD×D (54)

WvWx = 0 , Wvwy ∝ wy (55)

Under these assumptions, we can define a collection of D ×D matrices Γℓ

Γℓ ≡
(
w⊤

o W
ℓ
vwy

)
W⊤

x (W ℓ
k )

⊤(W ℓ
q )Wx ∈ RD×D, (56)

which gives rise to the following residual stream dynamics for ∆ℓ
µ ≡ wo · hℓ

∆ℓ+1
µ = ∆ℓ

µ +
1

LP

P∑
ν=1

Mµνx
⊤
ν Γ

ℓxµ∆
ℓ
ν . (57)

We note that this can be separated into two distinct dynamical systems, one for the first P training
points

∆ℓ+1
µ = ∆ℓ

µ − 1

LP

P∑
ν=1

x⊤
ν Γ

ℓxµ∆
ℓ
ν , µ ∈ {1, ..., P} (58)

which form a closed dynamical system on the P labeled training points. From these P variables
{∆ℓ

µ}µ∈[P ], we can describe how the remaining K points evolve

∆ℓ+1
µ = ∆ℓ

µ +
1

LP

P∑
ν=1

x⊤
ν Γ

ℓxµ∆
ℓ
ν =

1

LP

L∑
ℓ=1

P∑
ν=1

x⊤
ν Γ

ℓxµ∆
ℓ
ν , µ ∈ {P + 1, ..., P +K}.

(59)

Recurrence Instead of defining separate Γℓ matrices for each layer ℓ, we instead can examine a
recurrent model where the weights are tied Γℓ = Γ for all ℓ ∈ [L]. We relax this assumption in Ap-
pendix G.1 and in many of the settings we analyze recurrence has no impact compared to decoupling
layers. Under this constraint, the residual stream of the model has the following dynamics

∆ℓ+1
µ = ∆ℓ

µ − 1

LP

P∑
ν=1

x⊤
µΓxν ∆ℓ

ν , µ ∈ {1, ..., P}

∆ℓ+1
µ = ∆ℓ

µ +
1

LP

P∑
ν=1

x⊤
µΓxν ∆ℓ

ν , µ ∈ {P + 1, ..., P +K} (60)

Let ∆ℓ ∈ RP represent the residual stream variables restricted to the P unmasked training points in
the context. This vector has the residual stream dynamics

∆ℓ =

(
I − 1

LP
X⊤ΓX

)ℓ

y. (61)

However, the recursion is different for the test set since these points only receive attention signals
from the P unmasked training tokens. For one of the test points x⋆, the prediction of the model f⋆
satisfies

f⋆ =
1

LP
x⊤
⋆ ΓX

L−1∑
ℓ=0

hℓ =
1

LP
x⊤
⋆ ΓX

L−1∑
ℓ=0

(
I − 1

LP
X⊤ΓX

)ℓ

y (62)

Equivalence to Preconditioned In-Context Gradient Descent This update rule is equivalent to
implementing preconditioned in-context gradient descent steps for a linear regression model f =
1√
D
β · x. To see this, define an in-context training loss L̂(β,D) on the P labeled training points

for context D

L̂(D) =
1

2P
||D−1/2X⊤β − y||2 (63)
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Preconditioned gradient descent with learning rate D/L and a preconditioner matrix Γ generates the
following dynamics on the learned ICL weights β

βℓ+1 = βℓ − L−1Γ∇L(βℓ,D) = βℓ −
√
D

LP
ΓX

(
D−1/2X⊤βℓ − y

)
(64)

Defining a variable hℓ ≡ y −D−1/2X⊤βℓ, we note that this variable satisfies the same recursion
as the residual stream variables hℓ on the training points described above which gives the identical
solution hℓ =

(
I − 1

LP X⊤ΓX
)ℓ

y. The function f⋆ on a test point x⋆ takes the form

f⋆ =
1√
D
βL · x⋆ =

1

LP
x⊤
⋆ ΓX

L−1∑
ℓ=0

hℓ =
1

LP
x⊤
⋆ ΓX

L−1∑
ℓ=0

(
I − 1

LP
X⊤ΓX

)ℓ

y. (65)

Test Error Formula for Linear Models We now desire to compute the expected test loss (aver-
aged over the dataset X and noise ϵ) for (noisy) linear target function y(x)

y(x) =
1√
D
β⋆ · x+ σϵ ,

〈
xx⊤〉 = Σ ,

〈
ϵ2
〉
= 1 (66)

where Σ is the (population) covariance of the inputs. The expected loss under this assumption is

L =
1

D

〈(
βL − β⋆

)⊤
Σ
(
βL − β⋆

)〉
X,ϵ

+ σ2 (67)

Letting ϵ ∈ RP represent the noise on the P labeled training points, the target weights have the form

βL =

√
D

LP
ΓX

L∑
ℓ=0

(
I − 1

LP
X⊤ΓX

)ℓ [
1√
D
X⊤β⋆ + σϵ

]

= L−1ΓΣ̂

L−1∑
ℓ=0

(
I − L−1ΓΣ̂

)ℓ
β⋆ +

σ
√
D

LP
Γ

L−1∑
ℓ=0

(
I − L−1Σ̂Γ

)ℓ
Xϵ

= β⋆ −
(
I − L−1ΓΣ̂

)L
β⋆ +

σ
√
D

LP
Γ

L−1∑
ℓ=0

(
I − L−1Σ̂Γ

)ℓ
Xϵ (68)

where we defined Σ̂ = 1
P XX⊤ ∈ RD×D. Then we note that for α ≡ P/D that the reducible loss

L − σ2 has the form

L − σ2 =
1

D

〈(
β⋆ − βL

)⊤
Σ
(
β⋆ − βL

)〉
=

1

D
β⊤
⋆

〈(
I − L−1ΓΣ̂

)L⊤
Σ
(
I − L−1ΓΣ̂

)L〉
β⋆

+
σ2

αL2
Tr Γ⊤Γ

L−1∑
ℓ,ℓ′=0

〈(
I − L−1ΓΣ̂

)ℓ
Σ̂

[(
I − L−1ΓΣ̂

)ℓ′]⊤〉
(69)

In the next sections, we will compute this quantity for various distributions for Σ̂ and β⋆.

C ISOTROPIC (ISO) SETTING THEORY

In this section, we consider isotropic covariates and tasks so that the data covariance Σ and the task
vector covariance Ω are both identity

Σ =
〈
xx⊤〉 = I , Ω =

〈
β⋆β

⊤
⋆

〉
= I. (70)

where the average for target vectors β⋆ is over different contexts. We further operate in the high
dimensional asymptotic limit where both context length P and input dimension D diverge with
fixed ratio

P,D → ∞ , P/D = α. (71)

In this setting, the spectrum of the empirical covariance matrix Σ̂ = 1
P XX⊤ follows the well-

known Marchenko-Pastur law, where the eigenvalue density ρ(λ) depends explicitly on the aspect
ratio α (Potters & Bouchaud, 2020; Advani et al., 2020). We will first describe an asymptotic limit
of SGD for the shallow L = 1 case where the dynamics on the matrix Γ are linear. We will then
pursue a description of gradient flow dynamics in an arbitrary depth L model.
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C.1 SHALLOW SGD THEORY

In this section, we consider the SGD dynamics of the shallow architecture L = 1. This excercise
will establish at what rate our dynamics will converge to gradient flow and how finite batchsize B,
context length P and number of masked evaluation points K impact the SGD dynamics. In this
case, the updates have the form

Γ(t+ 1) = Γ(t) + η G(t)

G(t) =
1

B

∑
n

Σ̂⋆,n

[
(I − ΓΣn)βn − σP−1

√
DΓXnϵn

] [
Σnβn + σP−1

√
DXnϵn

]⊤
Σ̂n =

1

P
X⊤

n Xn , Σ̂⋆,n =
1

K
X⊤

⋆,nX⋆,n (72)

where X ∈ RP×D is the set of training points and X⋆ ∈ RK×D represents the set of K evaluation
points and ϵ ∈ RP represents the label noise on the provided targets y. We remind the reader that
we will operate in the joint scaling limit

P,B,K,D → ∞ , P/D = α , K/D = κ , B/D = τ (73)

The population ICL loss has the form

L(t) = 1

D

〈
|Γ(t)− I|2

〉
, (74)

where the average is performed over all possible draws of data and tasks. This function admits the
recursion

L(t+ 1) = L(t)− 2ηtr[Γ(t)− I]⊤ ⟨G(t)⟩+ η2tr
〈
G(t)⊤G(t)

〉
(75)

We have the following mean for the gradient

⟨G(t)⟩ = (I − (1 + α−1 + σ2α−1)Γ) (76)

Thus if we only updated using mean gradients the model would relax to a fixed point Γ⋆ =(
1 + α−1 + σ2α−1

)−1
I . However, we will see momentarily that SGD noise in the gradients im-

pact the Γ that SGD converges to

tr
〈
G(t)⊤G(t)

〉
=

1

B2

∑
nm

tr
〈
unv

⊤
n vmu⊤

m

〉
(77)

where un = Σ̂⋆,n

[
(I − ΓΣn)βn − σp−1

√
dΓXnϵn

]
and vn = Σnβn + σp−1

√
dXnϵn. Doing

the averages

1

D
⟨un · um⟩ = δmntr

[
I − 2Γ+ (1 + α−1)Γ2 + σ2α−1Γ2

]
(1 + κ−1) (78)

= δmn(1 + α−1(1 + σ2))(1 + κ−1)tr
[
(Γ− Γ⋆)

2 +
α−1(1 + σ2)

(1 + α−1(1 + σ2))2
I

]
(79)

1

D
⟨vn · vm⟩ = δmn(1 + α−1(1 + σ2)) (80)

From the above results, we get the following second moment structure

tr
〈
G(t)⊤G(t)

〉
= tr ⟨G(t)⟩⊤ ⟨G(t)⟩

+
1

τ
(1 + κ−1)(1 + α−1(1 + σ2))2

[
(Γ− Γ⋆)

2 +
α−1(1 + σ2)

(1 + α−1(1 + σ2))2
I

]
. (81)

Thus we get a recursion

Γ(t+ 1) = Γ(t) + η(1 + α−1(1 + σ2)) [Γ⋆ − Γ(t)] + η Ξ(t) (82)
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where Ξ ∈ RD×D is the noise process with variance given above. We define a quantity C(t) which
measures the relaxation of Γ to Γ⋆

C(t) =
1

D
|Γ(t)− Γ⋆|2 , Γ⋆ =

[
1 + α−1(1 + σ2)

]−1
I (83)

This function exhibits the following linear dynamics

C(t+ 1) =
[
1− η

(
1 + α−1(1 + σ2)

)]2
C(t)

+
η2

τ
(1 + κ−1)(1 + α−1(1 + σ2))2

[
C(t) +

α−1(1 + σ2)

(1 + α−1(1 + σ2))2

]
(84)

This recursion again takes the form
C(t+ 1) = a(η, α, κ, τ)C(t) + b(η, α, κ, τ)

a(η, α, κ, τ) =
[
1− η

(
1 + α−1(1 + σ2)

)]2
+

η2

τ
(1 + κ−1)(1 + α−1(1 + σ2))2

b(η, α, κ, τ) =
η2

τ
(1 + κ−1)α−1(1 + σ2) (85)

Now we need to compute the ICL loss
L(t) = tr[Γ(t)− Γ⋆ + Γ⋆ − I]2 = C(t) + 2tr(Γ⋆ − Γ(t))(I − Γ⋆) + tr(Γ⋆ − I)2

= C(t) +
2α−1(1 + σ2)

(1 + α−1(1 + σ2))2
[
1− η(1 + α−1(1 + σ2))

]t
+

(1 + σ2)2

(α+ 1 + σ2)2
(86)
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(c) Varying Evaluation Size κ

Figure 7: Pretraining SGD loss dynamics in the shallow L = 1 reduced Γ model for (a) α, κ = 1
and varying τ (b) varying α with τ = κ = 1 (c) varying κ with α, τ = 1. The loss monotonically
improves with all three quantities τ, α, κ and is well predicted by the asymptotic theory.

Putting this all together, we summarize our findings below.

Result 10: Online SGD Dynamics for Shallow ICL with Isotropic Covariates

Consider the reduced Γ model with a single layer L = 1 and proportional asymptotics

P,K,B,D → ∞ , P/D = α , K/D = κ , B/D = τ (87)

Then the ICL test loss L(t) = 1
d ||Γ(t)− I||2 after t SGD iterations is

L(t) = C(t) +
2α−1(1 + σ2)

(1 + α−1(1 + σ2))2
[
1− η(1 + α−1(1 + σ2))

]t
+

(1 + σ2)2

(α+ 1 + σ2)2
(88)

C(t) = a(η, α, τ, κ)t +
1− a(η, α, τ, κ)t

1− a(η, α, τ, κ)
b(η, α, τ, κ) (89)

where a(η, α, κ, τ) =
[
1− η

(
1 + α−1(1 + σ2)

)]2
+ η2

τ (1 + κ−1)(1 +α−1(1 + σ2))2 and

b(η, α, κ, τ) = η2

τ (1 + κ−1)α−1(1 + σ2) capture the dependence on batchsize through τ .
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We verify the validity of these learning curves for shallow pretraining dynamics in Figure 7.

We thus see that deviations from gradient flow in the L = 1 model come in at a scale of η/τ . The
purpose of this result is to stress that only O(D2) total tokens are required (unlike the prior work of
Lu et al. (2025) which required O(D3) tokens) for an ICL learner in this regime 4. We verify these
theoretical learning curves in Figure 7.

We also indicate the following facts about SGD effects

• The number of masked evaluation points per batch κ ≡ K/D only alters the SGD noise
terms (the terms involving 1/τ ) and its effect vanishes in the gradient flow limit η/τ → 0.

• Unlike offline training, in this online SGD setting the model regularizes the final value of
γ(t) = based on label noise σ2 to reduce overfitting.

• SGD fluctuations can impact the final loss through limt→∞ C(t) = b(η,α,τ,κ)
1−a(η,α,τ,κ) .

One nice consequence of this result is that the gradient flow limit can be accessed simply by con-
trolling the scale of η/τ in a limit where batch size is linear in the dimension B = τD.

C.2 GRADIENT FLOW IN DEEP MODELS

From the previous section, we saw that in the absence of SGD noise, gradient dynamics generated
an isotropic Γ matrix. This fact is true for larger depth L ≥ 1 as well. The gradient flow dynamics
generate is Γ(t) = γ(t)I . To see this, we note that the gradient has the form

∂

∂Γ
L = −

〈
2

L

L∑
ℓ=1

[(
I − L−1ΓΣ̂

)ℓ]⊤
Σ̂

[(
I − L−1ΓΣ̂

)L−1−ℓ
]⊤ (

I − L−1ΓΣ̂
)L〉

+
2σ2

αL2
Γ
∑
ℓ,ℓ′

〈(
I − L−1ΓΣ̂

)ℓ
Σ̂

[(
I − L−1ΓΣ̂

)ℓ′]⊤〉

+
2σ2

αL3
Γ⊤Γ

∑
ℓ,ℓ′,k

〈(
I − L−1ΓΣ̂

)k
Σ̂
(
I − ΓΣ̂

)ℓ−1−k

Σ̂

[(
I − L−1ΓΣ̂

)ℓ′]⊤〉
(90)

Now, evaluating this at Γ = γI we find

∂

∂Γ
L|Γ=γI = −2

〈
Σ̂
(
I − L−1γΣ̂

)2L−1
〉
+

2σ2γ

αL2

〈
Σ̂
∑
ℓℓ′

(1− L−1γΣ̂)ℓ+ℓ′

〉

+
2σ2γ2

αL2

∑
ℓ,ℓ′

〈
Σ̂
(
I − L−1γΣ̂

)ℓ+ℓ′−1
〉

∝ I (91)

where we recognize through rotational invariance, that the above averages are proportional to the
identity. Thus if Γ is currently in an isotropic configuration, it will remain in one throughout gradient
flow. Further, we can compute the scalar γ(t) = trΓ(t) under gradient flow ∂tΓ(t) = − 1

2∂ΓL(Γ).

d

dt
γ(t) = − ∂

∂γ
tr

[(
I − L−1γΣ̂

)2L
+

σ2

α
Σ̂−1

[
I −

(
I − L−1γΣ̂

)L]2]
(92)

Now, we note that this expression can be rewritten in terms of the bulk Marchenko-Pastur eigenvalue
density ρ(λ) = 1

D

∑D
k=1 ⟨δ(λ− λk)⟩ = α

2πλ

√
(λ+ − λ)(λ− λ−) where λ± = (1± α−1/2)2 as

d

dt
γ(t) = − ∂

∂γ

∫
dλρ(λ)

[(
1− L−1γλ

)2L
+

σ2

αλ

[
1−

(
1− L−1γλ

)L]2]
(93)

which shows that we can view the dynamics as a gradient flow on a one dimensional loss landscape.

4The gap is caused by suboptimal scaling of the number of evaluation points K per context (usually K = 1
in prior works). Note realistic LLMs get multiple error signals per context (one per token).
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D FIXED AND STRUCTURED COVARIANCE (FS) SETTING

In this section we discuss the case where the data covariance is structured but potentially structured.
We consider the noise free setting and P/D → ∞ for simplicity where the loss has the form

L = tr Ω
〈[(

I − L−1ΓΣ
)L]⊤

Σ
(
I − L−1ΓΣ

)L〉
(94)

In this case, gradient flow will generate dynamics that cause Γ to pick up anisotropy from the
structure of Ω and Σ. We analyze the case where Ω and Σ are simultaneously diagonalizable with
eigenvalues ωk and λk. In this case, Γ will share the same eigenbasis. Let the eigenvalues be γk

∂

∂t
γk(t) = 2ωkλ

2
k

(
1− L−1λkγk(t)

)2L−1
. (95)

The fixed point of the above dynamics is γk = Lλ−1
k . In the large depth limit L → ∞, we can solve

the dynamics exactly
d

dt
γk(t) = 2ωkλ

2
ke

−2λkγk(t) =⇒ e2λkγkdγk = ωkλ
2
kdt

=⇒ 2λkγk(t) = ln(1 + 4ωkλ
3
kt) (96)

Plugging this solution into the loss function we find

L(t) = 1

D

∑
k

ωkλke
−2γkλk =

1

D

∑
k

ωkλk[1 + ωkλ
3
kt]

−1 (97)

Under powerlaw (source/capacity) assumptions on the structure of the data

λk ∼ k−ν , ωkλk ∼ k−νβ−1, (98)
the loss scales in a powerlaw as

L(t) =
∑
k

k−νβ−1[1 + k−2ν−νβt]−1 ∼ t−
β

ν+νβ+1 (99)

This powerlaw provides a decent approximation to large but finite depth models L as we show in
Figure 3.

E RANDOMLY ROTATED AND STRUCTURED COVARIANCE (RRS) SETTING

E.1 EXPLOITING SYMMETRY IN THE GRADIENT UPDATES

Utilizing the definition of the RRS setting, we can massage the placement of the orthogonal matrices
so that the loss function can be expressed as

L =

〈
|Λ1/2

(
I − L−1O⊤ΓOΣ̂

)L
β⋆|2

〉
. (100)

From this expression, it is immediately clear that this function is rotationally invariant with respect
to Γ since the transformation Γ → V ΓV ⊤ for orthogonal V leaves the Haar average unchanged.
The form of the loss gradients also reveals a symmetry

∂

∂Γ
L = −2L−1

∑
ℓ

〈
OΣ̂M ℓβ⋆β

⊤
⋆

(
ML

)⊤
Λ
(
ML−1−ℓ

)⊤
O⊤
〉

, M = I −O⊤ΓOΣ̂

(101)
Note that starting from zero initialization, we have M = 0 which implies isotropic gradients
∂
∂ΓL|Γ=0 ∝ I . To see this note that

〈
OCO⊤〉 ∝ I for any matrix C that is independent of

O. Further, suppose that we evaluated the loss gradient at any isotropic Γ = γI , then M = I−γΣ̂
and the gradients remain isotropic

∂L
∂Γ

= −2L−1
∑
ℓ

〈
OΣ̂M ℓβ⋆β

⊤
⋆

(
ML

)⊤
Λ
(
ML−1−ℓ

)⊤
O⊤
〉

(102)

= −2L−1
∑
ℓ

tr
〈
Σ̂M ℓβ⋆β

⊤
⋆

(
ML

)⊤
Λ
(
ML−1−ℓ

)⊤〉× I (103)
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where we explicitly performed the average over the only remaining factors of O since M = I−γΣ̂
is independent of O. Further, we can express the dynamics of γ(t) as a gradient flow on the reduced
one-dimensional loss landscape

L(γ) = tr Ω
(
I − γL−1Σ̂

)L
Λ
(
I − γL−1Σ̂

)L
(104)

F SCALING LAW THEORY

In this section, we consider the scaling law theory with a finite projection matrix A, following
Bordelon et al. (2024a). In this case, our RRS setting requires utilizing the free product result in
Appendix A. However, we will first describe a modification of the two point deterministic equivalent
outside of the proportional scaling limit.

F.1 NON-PROPORTIONAL SCALING LIMITS

To make contact with more realistic scaling law theory, we are interested in varying large but finite
N and P for an arbitrary (trace class) spectrum

Tr Λ < ∞. (105)

This is the setting, for instance, where kernel methods and power-law random feature models have
been analyzed successfully Bordelon et al. (2020; 2024a); Defilippis et al. (2024). In this case, the
order of limits is to first take D → ∞ at finite (but large) N and P . We stress that (unlike the
proportional limit), this result gives an approximation rather than an exact description, as traces
remain random variables for finite rank A or Σ̂. However, as demonstrated empirically in Bordelon
et al. (2024a) this provides an excellent agreement at even very modest values for N,P on powerlaw
features.

We now work out a deterministic equivalent for M = OBO⊤A ∈ RD×D 5. This requires a slight
modification of the two-point deterministic equivalent equations from Appendix A. The action in
this case has the form

S[Σ,Ψ] = −TrΣΨ− lnZA(Ψ)− TrΣΣ̂⋆ − ln det
(
Σ̂⋆ ⊗ I + V ⊗B

)
+D ln detΣ (106)

The saddle point of this action satisfies the following equations

Ψ = Σ−1 − Σ̂⋆ , Σ(ω, ω′) =

〈[
v(ω)A2v(ω′) v(ω)Aχ(ω′)
χ(ω)A⊤v(ω′) χ(ω) · χ(ω′)

]〉
(107)

Σ = Tr
[
Σ̂⋆ + V ⊗B

]−1

(108)

The off-diagonal blocks give

Σvχ(ω) = TrA (iω +Ψvχ(ω)A)
−1 ≡ τA(iω) (109)

Ψvχ(ω) = Σ−1
vχ (ω)− Σ̂vχ(ω) (110)

Introducing the notation τM = TrM (iωM +M)
−1 we have

iωA(τ)iωB(τ) =

(
D

τ
− 1

)
iω (111)

We note the saddle point value for Ψvχ(ω) = iω
iωA

can now be expressed entirely in terms of iω.
Similarly, we can express Ψχχ(ω, ω

′) in terms of iω, iω′ alone. The key deterministic equivalent is
thus the same structure as before

v(ω)v(ω′)⊤ = (iω +Ψvχ(ω)A)
−1 [

v0v
⊤
0 −Ψχχ(ω, ω

′)I
]
(iω′ +Ψvχ(ω

′)A)
−1

. (112)
5In this section, we use D for the dimension of A and B to avoid confusion with the projection dimension

(width) N .
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F.2 DYNAMICS AT INFINITE N,L, P

The gradient flow in the limit of N,L, P → ∞ has the form
d

dt
γ(t) = − ∂

∂γ

∑
k

λkωke
−2γ(t)λk ≈ − ∂

∂γ
γ(t)−β = βγ(t)−β−1 (113)

This is a separable ODE with solution (under the assumption that γ(0) = 0) up to constants

γ(t) ∼ t
1

β+2 . (114)
This implies a powerlaw loss scaling with exponent set by the rate of growth of γ(t)

L(t) ∼ γ(t)−β ∼ t−
β

2+β . (115)
We expect these dynamics to hold in the limit of N,L, P → ∞. At finite N,L, P the model will
saturate at some finite maximal value of γ.

F.3 DEPTH SCALING LAW AT INFINITE TIME, WIDTH, AND CONTEXT LENGTH

We now explore the scaling law in depth L. In this case, we can consider taking all other resources
to infinity t,N, P → ∞. The value of γ will stabilize, resulting in a final loss

L(γ) =
∑
k

λkωk

(
1− γL−1λk

)2L
(116)

While γ(t) diverges as t
1

2+β in the infinite depth limit, we see that at large but finite depth, there is
a maximal γ which enables stability along the top eigendirection. Specifically we need γ < 2L

λ1
and

approximate the optimal value s
γ⋆ ≈ L/λ1. (117)

where λ1 is the top (maximal eigenvalue). At γ⋆, the error takes the form

L ≈
∑
k

λk(β
⋆
k)

2 (1− λk/λ1)
L ≈

∫
dkk−νβ−1 exp(−Lk−ν) ≈ L−β . (118)

which matches the scaling of L steps of gradient descent on a problem with source exponent β
Bordelon & Pehlevan (2021).

F.4 MAPPING THE LOSS FUNCTION TO A TWO POINT DETERMINISTIC EQUIVALENT

We utilize dynamical mean field theory (DMFT) result of Appendix A to compute the effective loss
as a function of N,L and γ. We start with a representation of the relevant polynomial in M with
the Cauchy integral formula(

I − γL−1M
)L

=

∫
C

dω

2π
[iω +M ]

−1 (
1 + γL−1iω

)L
, (119)

where the contour C encloses the positive imaginary axis in complex plane (Bender & Orszag, 2013).
Next, we define v(γ) =

(
I − γL−1M

)L
β⋆

L =
〈
v(γ)⊤Λv(γ)

〉
= Tr Ω

[(
I − γL−1M

)L]⊤
Λ
(
I − γL−1M

)L
(120)

The loss can thus be expressed as a double integral involving the resolvents

L =

∫
C×C

dωdω′

(2π)2
(1 + γL−1iω)L(1 + γL−1iω′)L Tr Ω

[
[iω +M ]

−1
]⊤

Λ [iω′ +M ]
−1 (121)

The main result needed is the following deterministic equivalent from Appendix A.

Tr Ω
[
[iω +M ]

−1
]⊤

Λ [iω′ +M ]
−1

≃ Tr (iω +Ψvχ(ω)A)
−1

[Ω− IΨχχ(ω, ω
′)] (iω′ +Ψvχ(ω

′)A)
−1

Λ (122)
where Ψvχ(ω) = iω/iω(A⊤A)2 can be determined from the equation

iω(A⊤A)2(τ)iωΣ̂(τ) =
1− τ

τ
(iω) (123)

Once τ is identified as a function of ω, we can compute Ψvχ and Ψχχ from the formulae in A.
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F.5 ORTHOGONAL PROJECTION AND STRUCTURED GAUSSIAN EMPIRICAL COVARIANCE

In this section, we describe what these relations imply for a product matrix that arises in our RRS
setting, which is a free product of the width projection matrix (A⊤A)2 where A ∈ RN×D has rank
at most N and the empirical covariance for data in the context Σ̂ = 1

P XX⊤ ∈ RD×D,

M = O
(
A⊤A

)2
O⊤ Σ̂, (124)

where O is a random orthogonal matrix sampled from the Haar measure. The data X ∈ RP×D are
comprised of random iid vectors with covariance Λ, which we take to be diagonal without loss of
generality. Further, we let A⊤A be a rank N projection matrix

A⊤A =

N∑
k=1

eke
⊤
k ∈ RD×D (125)

where ek ∈ RD are Cartesian (one-hot) unit vectors. To utilize the result in Appendices A and F.1,
we first need to compute the necessary resolvents for these two matrices.

τ = Tr(A⊤A)2
(
iω(A⊤A)2 + (A⊤A)2

)−1
=

N

iω(A⊤A)2 + 1
=⇒ iω(A⊤A)2 = −1 +

N

τ
(126)

The other matrix can be easily worked out for a structured empirical covariance with P samples
following the techniques of Bordelon et al. (2024a) which reveals that

τ = Tr Σ̂
(
iωΣ̂ + Σ̂

)−1

= TrΛ
(
iωΣ̂(1− P−1τ)−1 +Λ

)−1
= τΛ

(
iωΣ̂(1− P−1τ)−1

)
. (127)

Using our result for products we find(
−1 +

N

τ

)(
iωΣ̂(τ)

)
=

(
−1 +

D

τ

)
iω

τ = TrΛ
(
iωΣ̂(1− P−1τ)−1 +Λ

)−1

= TrΛ
(
iω (−1 +Dτ−1)(−1 +Nτ−1)−1(1− τP−1)−1 +Λ

)−1
. (128)

This final equation provides τ(ω) which can be inverted to derive the final deterministic equivalent
as we outline in F.1.

Width Bottleneck Now we obtain the scaling of the loss with width N in the regime where
t, P, L,D → ∞. To do, we examining the structure of the equations at P → ∞ and iω → 0,
which correspond to taking gradient flow time γ → ∞ (which is the correct solution for noise free
problems at infinite depth). In this limit τ = N so we have that

τ = N = TrΛ
(
iωΣ̂ +Λ

)−1
. (129)

For powerlaw features λk ∼ k−ν we find an approximate solution for iωΣ̂

λk ∼ k−ν =⇒ iωΣ̂ ≈ N−ν . (130)

Thus the loss at width N and context length P can be approximated as

lim
t,L,P→∞

L(t,N, P, L) =
∑
k

(iωΣ̂)
2λk(β

⋆
k)

2

(iωΣ̂ + λk)2
∼
∑
k

k−νβ−1

(1 + k−νNν)
≈ N−νβ (131)

Context Bottleneck Following the same logic, we can investigate the regime where performance
is limited by context P . To access an approximation for this regime, we take N → D and iω → 0.
In this case, we have iω = iωΣ̂. Since 1 − τ

P → 0 as iω → 0, we introduce the leading order
behavior for small iω

1− τ

P
∼ r−1iω , iω → 0 (132)
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where r is a (currently) unknown value. Plugging this into the self consistency equation, we identify
the value of r

P = TrΛ[r +Λ]−1 =
∑
k

λk

r + λk
≈ r−

1
ν (133)

which gives the scaling r ≈ P−ν . We can now use the final value of the resolvent
limω→0 iω (iω +Λ)

−1
= (r +Λ)−1

L =
∑
k

r2λk(β
⋆
k)

2

(r + λk)2
≈
∑
k

k−νβ−1

(1 + k−νP ν)2
∼ P−νβ . (134)

Rank Deficiency/Null Space Interpretation These last two scaling laws express the simple fact
that rank N or rank P matrices only allow the top N or P eigendirections to be learned (Bordelon
et al., 2024a).

G ENHANCING REALISM OF THE MODEL

G.1 DIFFERENT PARAMETERS FOR EACH LAYER

In this section, we analyze the case where the model is allowed L distinct attention layers along
the residual stream {Γℓ}Lℓ=1 instead of a single attention layer matrix Γ which is applied L times
recurrently. We focus our attention on the RRS setting at large width and large context length where
the model still exhibits nontrivial depth and pretraining time scaling laws. We first consider the noise
free setting σ2 = 0 before considering the role of target noise.

G.1.1 RRS COVARIATES → ISOTROPIC Γ→ LAYERS REMAIN IDENTICAL

First, we note that by the rotational invariance, each of the matrices is isotropic Γℓ = γℓI if they are
initialized as isotropic (such as zero initialization). As a consequence, the predictor on dataset X,y
and test point x⋆ has the form

f(x⋆) =
1

LP
x⊤
⋆ X

L∑
ℓ=1

γℓ

ℓ−1∏
k=0

(
I − 1

LP
γkX

⊤X

)
y (135)

We note through a simple inductive argument, that the matrix product can be rearranged into a form
that is clearly permutation symmetric in the variables {γℓ}Lℓ=1

L∑
ℓ=1

γℓ

ℓ−1∏
k=0

(
I − 1

LP
γkX

⊤X

)
=

L∑
n=1

(−1)n−1

[
1

LP
X⊤X

]n−1 ∑
k1 ̸=k2... ̸=kn

γk1 ...γkn (136)

Thus because the predictor is permutation symmetric, the loss function is also permutation sym-
metric in the {γℓ} variables. We therefore expect permutation symmetric dynamics and a solution
where γℓ = γ provided the initial condition is symmetric γℓ(0) = γ(0). Indeed, analyzing the
gradient flow from γℓ = 0 for all ℓ leads to a balanced solution where all of these are equal since

∂

∂γℓ
L({γℓ})|γ=γ1 =

∂

∂γℓ′
L({γℓ})|γ=γ1 , ∀ℓ, ℓ′ ∈ {1, ..., L}. (137)

Thus gradient flow will maintain a balance in these parameters. Further, this flow will exactly match
the dynamics of the recurrent model if the learning rate is upscaled by L. We plot these dynamics
and show balancing of the γℓ(t) variables in Figure 8.

G.2 DECOUPLING WEIGHTS IN ATTENTION LAYERS

We note that for the ISO and RRS settings, we can exploit similar symmetry arguments as in C.2
and E to argue that the gradient updates for Wx,Wk,Wq are isotropic and that Wv gets an update
in the wow

⊤
y direction. The gradient flow can be expressed in terms of the original gradients on Γ

∂tWi = −∂L
∂Γ

· ∂Γ

∂Wi
, i ∈ {x, k, q, v, o, y} (138)
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(a) Equal Initial Condition γℓ(0) = 0
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(b) Unequal Initial Condition γℓ(0) ̸=
γk(0)
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(c) RRS Powerlaw Scaling
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(d) Effective Step Sizes Across ℓ and L

Figure 8: Pretraining on population gradient flow with RRS covariates under decoupled layers
{Γℓ} is equivalent to coupled layers (Γℓ = Γ) if the initial condition is symmetric. We plot γℓ for a
depth L = 120 trained on D = 120 dimensions with P = 100 and σ = 0.5. (a) If the ICL model
is initialized with all γℓ = γ and pretrained with RRS covariates, then the symmetry is maintained
throughout pretraining. (b) In the absence of symmetry in the initial condition, there is not symmetry
in the final configuration. (c) Dynamics for layer-decoupled reduced Γ model. The loss dynamics
under powerlaw RRS covariates exhibit the same powerlaws. (d) The different scale factors remain
balanced throughout gradient flow γk(t) = γ(t) for all k ∈ {1, ..., L} due to permutation symmetry.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

100 101 102 103 104
t

10 3

10 2

10 1

100

(t)

Softmax only

100 101 102 103 104
t

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Softmax and MLP

100 101 102 103 104
t

10 1

100

MHA Softmax only

100 101 102 103 104
t

10 3

10 2

10 1

100
MHA Softmax and MLP

L = 1 L = 2 L = 4 L = 8 L = 16

Figure 10: Varying depth in softmax, softmax+MLP, multihead attention and all three. Softmax
attention networks exhibit clear depth separation. The dynamics become more consistent across
depths for increasing number of heads with softmax attention.

As before, under the assumption of small initial conditions, we can reduce the loss to a collection of
ODEs on scalars representing the scale of each weight matrix

L(wo, wv, wq, wk, wx, wy) = tr ΩΛ
[
I − wowy

(
I −

[
1− L−1wvwkwq(wx)

2Λ
]L)]2

(139)

Gradient flow dynamics on this loss function can reproduce the dynamics of the decoupled self
attention model. Under the further assumption that wo = wy = 1, we can simplify the loss further
to

L(wv, wq, wk, wx) = tr ΩΛ
[
I − L−1wvwkwq(wx)

2Λ
]2L

(140)

We note that wx will be updated twice as quickly as the other weights under gradient flow. To achieve
balance, we can initialize it to have wx(0) =

√
2wk(0) and have wq(0) = wk(0) = wv(0) = σ. In

this case, the loss can be further reduced to a function of a single variable

L(wv, wq, wk, wx) = tr ΩΛ
[
I − L−1w(t)5Λ

]2L
(141)

Under source and capacity assumptions, this will generate the following dynamics at large depth L

w(t) = t
5

5β+2 =⇒ L ∼ t−
5β

5β+2 . (142)
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Figure 9: Softmax attention model with
MLP Blocks on the residual stream also
benefit from increasing the depth.

G.3 SOFTMAX ATTENTION

We also provide numerical experiments with non-
recurrent softmax attention, decoupled layers, and
Adam. In this context we use CompleteP scaling for
the learning rate ΘL(1) (Dey et al., 2025). The results
are provided in Figure 6 (c).

Supplementing this figure is an equivalent figure for a
non-recurrent architecture with alternating softmax at-
tention and MLP with GELU activation, given by Fig-
ure 9.
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