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Abstract

Vision-language (VL) models pretrained on
colossal image-text datasets have attained
broad VL competence, which is difficult to eval-
uate. A common belief is that a small number
of VL skills underlie the variety of VL tests.
In this paper, we perform a large-scale trans-
fer learning experiment aimed at discovering
latent VL skills from data. We reveal inter-
esting characteristics that have important im-
plications to test suite design. First, genera-
tion tasks suffer from a length bias, suggesting
benchmarks should balance tasks with different
output lengths. Second, we demonstrate that
factor analysis successfully identifies reason-
able yet surprising VL skill factors, suggesting
that VL test suites should consider similar anal-
ysis. Finally, we present a new dataset, OLIVE,
which simulates user instructions in the wild
and presents a unique challenge dissimilar to
all datasets we tested. Our findings contribute
to the design of balanced and broad-coverage
vision-language evaluation methods.

1 Introduction

Benefiting from enormous training data, large
model sizes, and pretrained large language models,
the current generation of vision-language models
(VLMs) (e.g., Dai et al. 2023; Zhu et al. 2023;
Liu et al. 2023c; Ye et al. 2023; Li et al. 2023a;
Awadalla et al. 2023) demonstrate competence in
a wide range of tasks, such as visual question-
answering, optical character recognition, spatial
relation recognition, and so on. However, their
broad competence poses a new challenge to the
design of evaluation benchmarks, as most previous
work focus on evaluating one or a few capabilities,
using data from a single distribution and annota-
tion pipeline. As a result, the test data may not be
representative of all possible user inputs, causing
potential discrepancy between benchmark scores
and actual user experiences.

A currently popular evaluation strategy is to test
on an ensemble of tasks and report an average
score (Bitton et al., 2023; Xu et al., 2023; Liu et al.,
2023d; Yu et al., 2023; Li et al., 2023d; Fu et al.,
2023). This type of benchmarks is usually justified
with a manual categorization of the test tasks, as
a benchmark that covers more categories is often
believed to be more comprehensive and more capa-
ble of measuring broad competence. For example,
TouchStone (Bai et al., 2023b) sort tasks into five
skills, ranging from visual recognition to visual sto-
rytelling. However, most categorizations are based
on human intuition and lack support from empirical
evidence.

In this paper, we promote an alternative approach
that identifies vision-language (VL) capabilities
that underlie various tests directly from data. In-
spired by the distributional hypothesis (Firth, 1957),
we characterize test tasks using neighborhood struc-
tures inferred from transfer learning. That is, trans-
fer learning between datasets that follow similar
distributions and require similar VL capabilities
will likely yield high performance. By analyzing
transfer performance between a large number of
source and target tasks, we can observe dataset
similarity, infer shared VL capabilities, and gain
insights into the VL benchmarks.

Specifically, we finetune four popular VLMs
with different strengths, BLIP-2 (Li et al., 2023c),
Mini-GPT4 (Zhu et al., 2023), LLaVA (Liu et al.,
2023c¢), and mPLUG-OwI (Ye et al., 2023), on 23
training (source) tasks and evaluate them on 29 test
(target) tasks. In total, we obtain a total of 2,784
performance measurements. After that, we exam-
ine the patterns and conduct Exploratory Factor
Analysis, which discovers six interpretable latent
factors underlying the measurements.

The analyses reveal a few surprising findings.
First, we find that a surface-form property, the
average output length, has surprisingly strong in-
fluences on transfer performance. This suggests



current evaluation results may be affected by this
length bias. Second, factor analysis is capable of
discovering unexpected yet reasonable factors that
explain model performance. For example, we iden-
tify factors that separate reading text off images
from multi-hop reasoning. These findings have im-
portant implications for the design of unbiased and
comprehensive VL benchmarks.

Finally, to simulate real-world user instructions,
we present a new vision-language dataset, Open-
world Language Instruction for Visual-language
Evaluation (OLIVE). OLIVE consists of 9,450 im-
ages, 30,120 unique instructions and 47,250 re-
sponses. Empirically, we show that OLIVE have a
transfer profile distinct from all other dataset that
we tested and hence provides a test complementary
to existing tasks.

We summarize our contributions as follows:

* We promote the approach of discovering VL
skills from data and demonstrate factor analy-
sis as a robust and effective technique for this
purpose. Our large-scale experiments lead to
findings that can inform future design of VLM
test suites.

¢ We introduce a new benchmark, OLIVE, to
evaluate open-ended model responses to di-
verse instructions.

2 Analysis Techniques

The transfer performance from /N source (training)
tasks to K target (test) tasks on model m is stored
as a matrix A(™) € RV*K  The performance num-
bers of different tasks cannot be compared directly
due to difference in scales of the evaluation met-
rics. Therefore, we first normalize the data so that
different test performances can be aggregated. Sub-
sequently, we apply Singular Value Decomposition
and Factor Analysis. Both techniques may be un-
derstood as decomposition of the matrices Alm)
albeit with different mathematical formulation.

2.1 Normalization
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where b(()n;) denotes the performance of the pre-
trained model m on target task j without finetun-

ing on any source task, which we refer to as the
zero-shot performance. If finetuning on source
(m)

i improves over the zero-shot performance, a; ;

is a positive number. Conversely, we have neg-
ative transfer from source i, and agy) is nega-
tive. The best source task, which in most cases
is the in-domain i.i.d. training task, has agzl) =1.
Hence, this normalization separates positive and
negative transfers and shows how source tasks per-
form relative to the in-domain training data. The
matrix A has aE?) as its components. After
separate normalization, we concatenate the four
matrices A(™), corresponding to the four models
we finetune, along the source-task dimension (the

rows) and obtain the aggregate performance matrix
A € RAVXK,

2.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is a classic
technique for learning distributed representations.
Levy and Goldberg (2014) show that SVD pro-
duces word embeddings comparable to word2vec
(Mikolov et al., 2013). The SVD of matrix A can
be written as

A=UxV" )

We perform truncated SVD using the D largest sin-
gular values. After that, we use VX1/2 ¢ RExD
as the features of the target tasks.

2.3 Factor Analysis

It is a widely held belief that a small number of
factors, known as cognitive abilities, underlie hu-
man performance on numerous mental activities
(Horn and McArdle, 2007). To uncover these latent
factors, Spearman (1904) developed the statistical
technique of Factor Analysis. For modern treat-
ments, we refer readers to Gorsuch (2014) and
Barber (2012).

In this paper, we start with a premise similar to
Spearman’s, that a small number of VL capabilities
are responsible for VLM performance on various
test tasks. This belief is in fact implicitly shared,
though often not explicitly stated, by most recent
VLM evaluation papers (e.g., Bitton et al. 2023; Xu
et al. 2023; Liu et al. 2023d; Bai et al. 2023b) that
attempt to categorize VLM test scenarios based on
intuitive justifications. In contrast, we apply Ex-
ploratory Factor Analysis (EFA) to uncover these
factors from empirical data.

Mathematically, we treat the i™ column of A,
a; € RN as the characteristic of the target task ¢,



which we try to explain with L latent factors,
a;=Wh; +p+e, 3)

where W € R*VXL reflects how source tasks load
to the L latent factors and h; € R” reflects how
target task ¢ decompose to the latent factors. g is
the average vector across target tasks and € is Gaus-
sian noise. EFA differs from PCA by assuming the
covariance of € is diagonal rather than spherical.
Note that the above formulation is invariant up to
a rotational matrix R, as Wh; = (WR)(R"h;).
We apply the Varimax rotation (Kaiser, 1958) to
find R so that h; is as concentrated on a few factors
as possible.

Our preliminary analysis suggests that the cap-
tioning and VQA tasks are highly correlated and
predominantly load onto a single factor, likely in-
dicative of a general VL capability. To isolate and
examine other factors, we apply linear regression
to control for the influence of the dominant factor.
Specifically, we first perform EFA with one factor,
so that W becomes a 4N-by-1 vector w. We then
perform regression from w to A by solving the
following problem,

2
minimize HA — 'wBT — ’leHF , 4

where 3,~ € R*" are trainable parameters. Af-
ter that, we conduct EFA on the residuals, A =
A—wpBT —~1T, which contain information about
other factors indicative of more specific VL capa-
bilities than the first factor.

We employ both parallel analysis and Velicer’s
Minimum Average Partial (MAP) test to determine
the optimal number of factors to extract. Paral-
lel analysis compares eigenvalues from our sam-
ple correlation matrix against those from random
data of the same size, identifying factors that ex-
plain more variance than expected by chance. Con-
versely, Velicer’s MAP test evaluates the average
squared partial correlation for each possible num-
ber of factors, pinpointing where additional factors
no longer meaningfully increase variance explana-
tion. Both these methods converge on the decision
to extract 6 factors.

3 Source and Target Tasks

We gather 27 publicly available VL datasets and
create variations, yielding 23 source tasks and 29
target tasks. We show the full list of tasks in Tab. 1
and describe them below. The performance metrics

Intuitive

Category Task Source  Target
COCO Caption v v
Image Flickr30k 4 v
Captioning Web CapFilt v X
TextCaps v v
Generic VQA VQAV2 G G, MC
OK-VQA G G, MC
I;;ls"evglf/dgz A-OKVQA  G,MC G, MC
ScienceQA MC MC
TextVQA G G, MC
OCRVQA  5cr-vQA G  G.MC
GQA G G, MC
Visual VSR MC MC
R oo IconQA MC MC
casomng CLEVR X  GMC
RAVEN-FAIR X MC
Classification ~ Hateful Memes MC MC
New Yorker
Ranking X v
Humor & New Yorker X v
Sarcasm Explanation
MORE X v
Chart OpenCQA G G
Reading ChartQA X G, MC
OLIVE (Ours) v v
LLaVA Con- % X
Open-ended versation
Generation LLaVA Rea-
. v X
soning
LLaYA De- % X
scription
Question VQAvV2 QG v X
Generation OK-VQA QG v X
(QG) A-OKVQA QG v X

Table 1: The list of source and target tasks used in
experiments. G and MC indicate the generative and
multiple-choice versions of the VQA tasks respectively.

used are AUC for Hateful Memes, CIDEr (Vedan-
tam et al., 2015) for OpenCQA, OLIVE, and all
captioning datasets, and accuracy for the remain-
ing tasks. To focus on end-to-end performance,
we do not perform any separate optical character
recognition.

Image Captioning. Image captioning is one of the
most popular image-text tasks and is commonly
used as a pretraining task for VLMs (Chen et al.,
2022; Tiong et al., 2022). Here we select two clas-
sic datasets: COCO Caption (Lin et al., 2014) and
Flickr30k (Young et al., 2014). In addition, we
include TextCaps (Sidorov et al., 2020), which in-
volves description of textual content in images. We
also include as a source task Web CapFilt, a set of
synthetic image captions on a large variety of web



images. Web CapFilt was generated by BLIP (Li
et al., 2022b) for self-training. We hypothesize that
its diversity could be beneficial in transfer learning.

Visual Question-answering (VQA). VQA is
another very popular image-text task due to
the versatility of the question-answering for-
mat. VQAv2 (Goyal et al., 2017) is proba-
bly the most prominent VQA benchmark, with
more than 200,000 COCO images and 1 million
questions. Other variations include knowledge-
grounded VQA, OCR VQA, Chart VQA, and so
forth, which we discuss below.

Performance measurement in VQA can be tricky,
as there are often many correct answers to the same
question. As a remedy, we create two target tasks
for every VQA dataset. The first is the genera-
tive (G) version, which considers an answer to be
correct only when it matches exactly one of the
ground-truth answers. The second is the multiple-
choice (MC) version, where the model chooses one
from five options. To convert a generative VQA
dataset to the MC version, we create five options
for every question. We include at most two correct
answers to account for their linguistic variations.
After that, we add incorrect choices by sampling
answers from other questions and picking those
with top-k probabilities according to InstructBLIP
(Dai et al., 2023). During inference, we feed all
options to the model and choose the option with
the highest average word probability as the model
prediction.

Knowledge-grounded VQA. These tasks require
the model to apply world knowledge not present
in the input to answer questions. ScienceQA (Lu
et al., 2022) focus on contents of science textbooks.
OK-VQA (Marino et al., 2019) is mainly about
visual recognition and knowledge recall, whereas
A-OKVQA (Schwenk et al., 2022) often needs one
additional step of reasoning.

OCR VQA. TextVQA (Singh et al., 2019) and
OCR-VQA (Mishra et al., 2019) are two VQA
datasets that requires recognition of text on im-
ages. OCR-VQA is about reading text from book
covers, whereas TextVQA often requires locating
an object before reading the text on it.

Chart Reading. OpenCQA (Kantharaj et al., 2022)
and ChartQA (Masry et al., 2022) contain ques-
tions regarding the content of diagrams and charts.
OpenCQA expects descriptive long-form answers,
whereas ChartQA is mainly about data extraction

and comparison using short answers.

Visual Reasoning. The word reasoning is often
used very broadly in the VLM literature. It some-
times refers to shallow tasks like counting (e.g.,
how many apples are in the image?) as well as spa-
tial relations and grounding (e.g., what is adjacent
to the cylinder?), but could also include logical
or algebraic operations. In this category, we in-
clude five datasets, GQA (Hudson and Manning,
2019), VSR (Liu et al., 2023a), CLEVR (Johnson
et al., 2017), IconQA (Lu et al., 2021), RAVEN-
FAIR (Benny et al., 2021). GQA and VSR mainly
contain natural images, whereas IconQA contains
cartoons and Raven-fair features abstract diagrams.
CLEVR contains synthetically rendered images of
3D objects. Among these, RAVEN-FAIR is the
most difficult, as the data come from the Raven’s
test (Raven, 1938), an intelligence test designed for
humans that requires complex reasoning.

Image Classification. Hateful Memes (Kiela et al.,
2020) is a binary classification task that distin-
guishes hateful memes from other meme images.

Humor and Sarcasm Understanding. Hessel
et al. (2023) show that VLMs perform poorly at
humor understanding. From their apper, we adopt
New Yorker Ranking, which involves selecting of
the best humorous caption for a cartoon from the
New Yorker magazine, and New Yorker Explana-
tion, which asks the model to explain why the car-
toon and its caption invoke humor. The MORE
dataset (Desai et al., 2022) involves explaining why
a textual statement associated with a natural image
is sarcastic.

Question and Open-ended Generation. We adapt
three datasets, VQAv2, OK-VQA, A-OKVQA, for
the task of question generation from an image and
an answer. Further, we take the three subsets of
LLaVA-Instruct-150K (Liu et al., 2023c), which
respectively focus on free-form conversation, de-
tailed description and reasoning. We use these as
source tasks but not target tasks, since these arti-
ficial data may not be representative of real use
cases.

OLIVE. Additionally, we include a new dataset,
OLIVE, a highly diverse, human-corrected mul-
timodal dataset, which we create to simulate in-
the-wild user queries to VLMs. Once a VLM is
publicly released, it tends to receive substantially
more diverse and idiosyncratic inputs than the avail-
able academic datasets. OLIVE is our attempt to



Instruction: What is the item in
the image?

Output: The item in the image is a
solar sail, which is a device that is
designed to harness the energy
from sunlight to propel a
spacecraft through space without
the use of fuel. It is a square
shaped piece of cloth that acts
like a sail and captures the
radiation pressure from the sun to
propel the spacecraft forward.

Instruction: What could be the possible
cultural significance of this typical tree
to the Japanese people?

Output: The cherry blossom tree, also
known as "sakura", holds great cultural
significance in Japanese society. Its
delicate and ephemeral beauty is
associated with the transience of life
and the seasonal cycle of rebirth and
renewal. Every year, Japan celebrates
Hanami, a national festival where
people gather under the cherry blossom
trees to appreciate their beauty and
contemplate the impermanence of life.

Instruction: What kind of material is used
to create a unique mode of transportation
and what other materials could be used?

Output: The motorcycle used wood for
the body parts which is a unique material
for this transportation. While wood is
certainly a unique material for a
motorcycle, there are many other
materials that could also create a one-of-
a-kind mode of transportation. For
example, a motorcycle made from
recycled materials like metal scraps, old
car parts, or discarded plastic could be
both sustainable and visually striking.

Figure 1: Examples of the OLIVE benchmark for different categories. From left to right: visual recognition,

knowledge-based, and creative writing.

simulate such user queries, so that we may train
and evaluate the VLMs under conditions similar to
the ultimate use case.

We briefly describe the data curation process
here and refer readers to the Appendices A and B
for more details. First, we randomly sample 9,450
images from LAION-Aesthetics (Schuhmann et al.,
2022), consisting of diverse web images. We take
the original LAION caption from the dataset and
a few generated image captions from BLIP-2 as
the complete image description. Next, we feed
customized prompts to ChatGPT (OpenAl, 2023a)
to generate instructions conditioned on the image
description and five responses to each instruction.
After that, a team of data annotators are recruited to
verify the data and remove errors, shortcut biases,
and harmful content. The procedure yields 30,120
unique instructions and 47,250 responses. We use
6,750 instruction-response pairs for training and
another 6,750 for validation, and leave the rest as
the test set. Fig. 1 shows some examples'.

4 Experiments

4.1 Setup

Considering that different VLMs may exhibit dif-
ferent training behaviors, we base our analysis of
test data using a four popular VLMs that, for the
most part, have not been exposed to the datasets
in focus: BLIP-2 (Li et al., 2023c), MiniGPT-4

'OLIVE will be released upon acceptance.

(Zhu et al., 2023), LLaVA (Liu et al., 2023c), and
mPLUG-Owl (Ye et al., 2023). As minor excep-
tions, BLIP-2 and MiniGPT-4 are pretrained on
COCO Caption and Web CapFilt. mPLUG-OwlI is
exposed to COCO Caption. LLaVA is pretrained
on the three LLaVA datasets. We avoid models that
have been finetuned on many VQA datasets such
as InstructBLIP (Dai et al., 2023), LLaVA 1.5 (Liu
et al., 2023b), and Qwen-VL (Bai et al., 2023a).

For each model, we finetune the parameters
that are trainable during their respective vision-
language pretraining. On each source task, we
train for 10K steps with a batch size of 192 for
BLIP-2 and 128 for MiniGPT-4, mPLUG-Owl1 and
LLaVA. Other model details and hyperparameters
are in the Appendices C and D.

4.2 Results

We defer the transfer performance tables to Ap-
pendix E due to space constraints. With these re-
sults, we first examine the transfer learning power
of source tasks. For every target task, we rank the
source tasks in descending order of transfer perfor-
mance. After that, we compute the harmonic mean
of all rankings and show the results in Tab. 3. A-
OKVQA (MC), VQAV2, ScienceQA, A-OKVQA
and OCR-VQA hold the top-5 positions.

In addition, we examine the effects of output
lengths. We partition the source and target tasks
into three mutually exclusive and collectively ex-
haustive groups according to their average output
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Figure 2: Cosine similarity between target tasks com-
puted using SVD features.

lengths: 1-3 words, 6-12 words, and more than 40
words. We show the average normalized transfer
performance across these groups and the top-5 best
source tasks for each group in Tab. 2.

Next, we investigate the similarity of target tasks.
We perform truncated SVD on A with the first
D = 8 singular values. After that, we compute
cosine similarity between target tasks and visualize
the results in Fig. 2. With a mean similarity of
—0.06, OLIVE is the third least similar to other
target tasks (see details in Appendix F).

Finally, we run EFA on the residual matrix, A,
and present the outcomes in Fig. 3. We plot the
most significant factor loading for each target task,
retaining only those that exceed an absolute value
threshold of 0.3. Loadings close to 1 or -1 signify
strong influences of a factor on a target task. Three
tasks, New Yorker Explanation and Ranking, and
Hateful Memes, do not have loadings more than 0.3
on any discovered factor, suggesting they do not
share with the other tasks VL capabilities that can
be discovered by EFA. The full results are available
in Appendix H.

4.3 Discussion

In this section, we highlight important findings
from our experiments.

The output length bias. Tab. 2 demonstrates that
the transfer performance is strongly influenced by
the output lengths. In the top section, mismatch
between the output lengths results in significant
performance drops. In the bottom section, the
best source tasks almost always have similar output
lengths to the target tasks. This surprising finding

Factors

| Factor 1 I

Target Tasks

0.83

ScienceQA (MC)

IconQA (MC)

OCR-VQA (G)

A-OKVQA (MC)

MORE (G)

OpenCQA (G)

OLIVE (G)

CLEVR (G)

CLEVR (MC)
VSR (MC)
NY Ranking (MC)

Hateful Memes (MC)

Figure 3: Results of EFA on the residuals A. Black
arrows indicate positive loadings; red arrows indicate
negative loadings. Cut-off for factor loadings = 0.3.

shows that output length may be a shortcut feature
for VLM, suggesting that future test suites need a
balance among tasks with different output lengths.

EFA Overview. The six EFA factors bear resem-
blance to hierarchical clusters from SVD features
(Appendix G). For example, both techniques iden-
tify a factor (Factor 1) or a cluster around the three
captioning tasks, COCO, Flickr30k, and TextCaps.
However, EFA reveals both the positive and the
negative ends of the same factor, which render the
factors more interpretable. EFA also picks up more
VL skills than SVD, like text reading vs. reasoning.



Source Task ‘ Target Task Output Length

Output Length ‘ 13 6-12 40

13 -0.03/1.00 0.78/0.79 0.85/0.44

6-12 -0.49/0.64 0.43/0.75 -0.43/0.48

>40 0.90/0.43 0.87/0.28 0.26/0.55
VQAV2 (1) Web CapFilt (12) LL;Z.’:S&‘;‘;”
TT‘;Eki (S;;[f:: A-OKVQA (MC) (I) COCO Caption (10)  OpenCQA (56)
Length, A-OKVQA (1) OCR-VQA (3) TextCaps (12)
< OK-VQA (1) Flickr30K (12) Flickr30K (12)

TextVQA (1) ScienceQA (3)  A-OKVQA (MC) (1)

Table 2: Mean normalized model performance for
source and target tasks with different mean output length.
In-domain sources are excluded. We reported the mean
normalized model performance across all (left) and top-
5 (right) source tasks in the output length category.

Source Task Harmonic Mean Score

A-OKVQA (MC) 1.3
VQAV2 (G) 1.3
ScienceQA (MC) 3.8
A-OKVQA (G) 4.6
OCR-VQA (G) 6.0
GQA (G) 6.2
Flickr30k (G) 7.2
OK-VQA (G) 7.8
Web CapFilt (G) 7.9
IconQA (MC) 8.4
OpenCQA (G) 9.5
TextVQA (G) 9.5
VSR (MC) 10.0
Hateful Memes (MC) 11.7
COCO Caption (G) 13.3
TextCaps (G) 15.0
VQAV2 QG (G) 15.9
LLaVA Conversation (G) 17.6
OLIVE (G) 17.8
A-OKVQA QG (G) 17.9
OK-VQA QG (G) 19.7
LLaVA Reasoning (G) 21.1
LLaVA Description (G) 22.5

Table 3: Harmonic mean ranking score for source tasks.

We note that EFA is affected by the length bias.
For example, it does not find a humor factor shared
by the two New Yorker tasks. This is because
the similarity between the two tasks is masked by
their differences in output lengths and MC-vs-G
evaluation, resulting in drastically different transfer
profiles in Fig. 2. Nonetheless, EFA does find rea-
sonable factors, and we discuss Factors 2-6 below.

Factors 2 and 3: Generative vs. MC evalua-
tion. Factors 2 and 3 capture the contrast between
generative and MC evaluation of VQA. Genera-
tive VQAs exhibit positive loadings on both fac-
tors, whereas MC VQAs load negatively on these
factors. Further, generic VQAs, such as VQAv2
and GQA, show negative loadings on Factor 2 and
positive loadings on Factor 3. In contrast, VQAs
that require specialized OCR capabilities, such as

Factors for
Multiple Choice Tasks

0.64

Factors for
Generative Tasks

OKVQA
0.63 A-OKVQA
60 0.69
0.68 ChartQA
{ TextVQA )
0.65

Target Datasets

0.78

OCR-VQA

Figure 4: EFA results when we extract 3 factors from
the 7 generative VQA tasks and the 7 MC VQA tasks
separately. We merge the results for display. Cut-off for
factor loadings = 0.6.

TextVQA and ChartQA, load positively on Factor
2 and negatively on Factor 3.

We identify two reasons for the differences be-
tween generative evaluation and MC evaluation.
First, generative evaluation requires an exact match
with at least one ground-truth answer, leading to
false negatives on good answers phrased differently.
In comparison, the MC evaluation, which compares
average word probabilities, does not require strictly
word matching. Second, the exact match require-
ment means that the generative evaluation is more
sensitive to the output lengths of the source tasks,
which has severe effects as discussed earlier.

Nevertheless, when we analyze factors internal
to the generative and MC tasks (Fig. 4), we ob-
serve very similar structures. In both groups, we
observe a knowledge-based QA factor, which in-
cludes OKVQA and A-OKVQA, a OCR-related
factor, which includes OCR-VQA and ChartQA,
as well as a generic or spatial relation factor, which
includes GQA and VQAv2. We observe that EFA
can identify robust structures when the input data
are conducive.

Factors 4 & 5: Text Reading vs Reasoning. Fac-
tors 4 and 5 distinguish between tasks that in-
volve merely text extraction and those that require
deeper and multi-hop reasoning. RAVEN-FAIR,
ScienceQA, and IconQA, which require strong log-
ical reasoning skills, show negative loadings on
Factor 4. Positively associated with Factor 5, A-
OKVQA, MORE, and OpenCQA demand reason-
ing about external knowledge or contextual under-
standing. In comparison, OCR-VQA and ChartQA
mostly involve locating and directly reading text or
numbers off the images. The fact that EFA can find
these reasonable skills demonstrates the its power.

Factor 6: Spatial reasoning. Factor 6 is charac-



terized by spatial reasoning, as CLEVR and VSR
are both designed for this purpose. Notably, while
OLIVE shows the highest loading on Factor 6, its
communality (overall variance explained) is only
0.4. The remaining variance in OLIVE is not ex-
plained by the factors identified in our analysis.
This implies that although OLIVE requires spa-
tial reasoning skills, these skills only account for a
small portion of skills required by OLIVE.

OLIVE presents a unique test. Intended to simu-
late real-world user instructions, OLIVE features
a unique transfer profile and has very low cosine
similarity with other tests (Fig. 2). In addition, EFA
only explains 0.4 of the total variance of OLIVE,
indicating that the identified factors cannot well
explain model behaviors on OLIVE. These facts
corroborates our thesis that OLIVE measures an
aspect of VL capabilities that few existing datasets
test for.

A-OKVQA and VQAV2 are effective source
tasks. These two are among the sources with the
highest transfer performance (Fig. 3); they trans-
fer well to VQA tasks but also to other complex
tasks such as NY Ranking. We hypothesize that
the large and diverse data in VQAv2 contributes to
its strong transferability. Interestingly, even though
A-OKVQA is 24 times smaller than VQAV2, it
still transfers well. We hypothesize that the main
skill that A-OKVQA is designed for, knowledge-
enabled reasoning, is an important skill for VL
compentence. In comparison, OK-VQA is de-
signed for only knowledge recall, which is not as
beneficial to target tasks.

Humor, sarcasm, and abstract reasoning remain
difficult. All models we tested struggle to under-
stand humor and sarcasm, as captured by the New
Yorker datasets and MORE. The models also per-
form barely above chance level on RAVEN-FAIR,
an abstract reasoning task. Surprisingly, EFA is
able to correctly place RAVEN-FAIR in the rea-
soning factor (negative Factor 4) despite the tiny
variance caused by overall poor performance.

Implications. Our findings have the following
implications for the design of VL benchmarks.
First, to prevent shortcut learning and giving un-
fair advantages to any source training task, VL
benchmarks should contain tasks of different out-
put lengths and use both generative and MC evalua-
tion. Second, instead of intuition-based categories,
VL benchmarks may group tasks based on statis-

tically discovered VL factors, and score VLMs
accordingly.

5 Related Work

Relationships among Tasks. Relationships be-
tween machine learning tasks has been studied
from the perspective of transfer learning and multi-
task learning. A number of works focus on identify-
ing transfer relationships from empirical data (Za-
mir et al., 2018; Achille et al., 2021; Dwivedi and
Roig, 2019; Achille et al., 2019; Xi et al., 2023).
A typical strategy is to train a base network on
multiple source tasks and test the resulting net-
works on target tasks. In multi-task learning, the
research focuses on identifying optimal grouping
of tasks that should be learned together to maxi-
mize synergy (Standley et al., 2020; Fifty et al.,
2021; Ben-David and Schuller, 2003; Kumar and
Daume II1, 2012; Song et al., 2022). Different from
the above, our work focuses on vision-language
tasks and identifying latent factors and potential
biases responsible for the observed performance.

Broad-coverage Multimodal Test Suites. As
VLMs begin to excel on an ever growing set of
tasks, the test suites have also grown in size. Early
benchmarks contain only a few tasks. For exam-
ple, Zhou et al. (2022) use 4 tasks and Su et al.
(2021) use 8 tasks in 4 groups. More recent bench-
marks (Bugliarello et al., 2022; Bitton et al., 2023;
Bai et al., 2023b; Yu et al., 2023; Xu et al., 2023;
Li et al., 2023d) utilize increasingly more tasks in
order to achieve broader coverage of VL capabili-
ties, and group tasks into VL capabilities based on
human intuition. For instance, Li et al. (2023b) cat-
egorized tasks into 12 aspects focusing on spatial
and temporal understanding. To our knowledge,
our work is the first data-driven approach to iden-
tify the VL capabilities.

6 Conclusions

In this work, we aim to empirically discover la-
tent factors and biases that contribute to the per-
formance of diverse VLMs on VL tasks. Using
Exploratory Factor Analysis, we identify six highly
interpretable factors, as well as biases that affect
performance. We also contribute a new dataset,
OLIVE. We hope this research will lead to the cre-
ation of VL benchmarks with more balanced and
complete coverage of VL capabilities.



7 Ethical Considerations

The potential risks of large language models have
been discussed in literature, including Chung et al.
(2022), Touvron et al. (2023), and (Chiang et al.,
2023). We neither propose nor release new models
in this work. For easy replication, we use open-
source visions-language models to analyze publicly
available, academic datasets.

We consider issues of privacy, toxicity, and fair
compensation in the production of OLIVE. We uti-
lize images from LAION-aesthetics, whose privacy
policy is in compliance with GDPR. For a given im-
age, we generate an instruction and outputs using
ChatGPT. To mitigate the potential issues of hallu-
cination, toxicity, and harmful content in ChatGPT
generated content, we hire an annotation company,
Flitto, to thoroughly review and correct any errors
presented in the data. We establish specific guide-
lines for annotations, prioritizing content that is
free from harmful information. The identity of the
annotators are anonymized to safeguard their pri-
vacy. We pay Flitto $3 USD per image to ensure
fair compensation.

8 Limitations

We focus our study of transfer performance using
only one source task instead of multi-task learning
setting due to the computational constraint. Thus,
we do not investigate the interaction of multiple
source tasks on the target tasks. To assess the
model transfer performance, our work requires a
substantial amount of computation and scaling our
approach to diverse models and datasets is ineffi-
cient.
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A Data Collection Protocol for OLIVE

OLIVE comprises 9,450 images, 30,120 unique in-
structions and 47,250 reponses. The examples can
be broadly categorized into 4 groups: visual recog-
nition, creative writing, knowledge-based, and elab-
orated description. Some examples are shown in
Figure 1.

In our benchmark OLIVE, we use the text-only
version of ChatGPT to generate instructions and
outputs for each image. Specifically, we sample
images from LAION-Aesthetics (Schuhmann et al.,
2022) and use the BLIP-2 (Li et al., 2023c) cap-
tioning model to encode the visual information in
each image into captions. These generated captions,
along with the original LAION captions - which
may contain entity-specific knowledge useful for
generating varied instruction-output data - are then
fed into ChatGPT. Additionally, for each of the
aforementioned categories, we manually annotate
a few seed examples, and use these as in-context
examples to guide ChatGPT.

The instructions and outputs generated by Chat-
GPT could contain incorrect information due to
model hallucination, which undermines their relia-
bility for use as an evaluation benchmark. Recog-
nizing this, we hire an annotation company, Flitto
which recruits human annotators to thoroughly in-
spect and correct any erroneous data. They are
task to: 1) ensure that the instructions contain min-
imal shortcut information, which could enable the
model to produce correct outputs without having
to understand the image, 2) verify the accuracy of
the output and confirm that it is free from harmful
content, and 3) fact-check knowledge-based infor-
mation. This comprehensive review process helps
to enhance the overall quality and reliability of the
data.

B ChatGPT Prompts for OLIVE

Following (Liu et al., 2023c) and (Taori et al.,
2023), we construct prompts for ChatGPT (Ope-
nAl, 2023a) to generate instructions and outputs
for different categories: visual recognition, elab-
orated description, knowledge-based and creative
writing. For elaborated description, we randomly
sample from a list of instructions which inquire
about image description.

13

Prompt for generating creative writing in-
structions

You are given several image captions,
each describing the same image you are
observing. Using your creativity and
imagination, think of a new instruction that
can be induced from the image captions.

Here are the requirements:

1. Try not to repeat the verb for each instruc-
tion to maximize diversity.

2. The language used for the instruction
also should be diverse. Either an imperative
sentence or a question is permitted.

3. The type of instruction should be diverse.
4. The instruction must not involve count-
ing.

5. Make the instruction challenging by not
including the visual content details in the
instruction so that one must use the captions
to understand the instruction.

6. Replace the name of the object entity
with a generic term or category, for exam-
ple replace bus as this vehicle, dress as this
clothing, etc.

7. The format of the instruction should fol-
low the examples shown below. Make sure
it is numbered and end with "### .




Prompt for generating knowledge-based in-
structions

You are given several image captions,
each describing the same image you are
observing. Using your creativity and
imagination, think of a new instruction that
can be induced from the image captions.

Here are the requirements:

1. Try not to repeat the verb for each instruc-
tion to maximize diversity.

2. The language used for the instruction
also should be diverse. Either an imperative
sentence or a question is permitted.

3. The instruction should be diverse and ask
a question that requires reasoning, not just
simple visual recognition.

4. Given the instruction, one should require
first understanding the visual content, then
based on the background knowledge or rea-
soning, either explain why the things are
happening that way, or provide guides and
help to user’s request.

5. Make the instruction challenging by not
including the visual content details in the
instruction so that the user must use the cap-
tions to understand the instruction.

6. Replace the name of the object entity
with a generic term or category, for exam-
ple replace bus as this vehicle, dress as this
clothing, etc.

7. The instruction must not involve count-
ing.

8. The format of the instruction should fol-
low the examples shown below. Make sure
it is numbered and end with *###.
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Prompt for generating visual recognition
instructions

You are given several image captions,
each describing the same image you are
observing. Using your creativity and
imagination, think of a new instruction that
can be induced from the image captions.

Here are the requirements:

1. Try not to repeat the verb for each instruc-
tion to maximize diversity.

2. The language used for the instruction
also should be diverse. Either an imperative
sentence or a question is permitted.

3. The instruction should ask about the vi-
sual content of the image, including the ob-
ject types, object actions, object locations,
etc. Only include instruction that has defi-
nite answers founded in the captions.

4. Include complex instruction that is rele-
vant to the content in the image, for exam-
ple, asking about background knowledge of
the objects in the image, asking to discuss
about events happening in the image, etc.
Again, do not ask about uncertain details.
5. Make the instruction challenging by not
including the visual content details in the
instruction so that the one must use the cap-
tions to understand the instruction.

6. Replace the name of the object entity
with a generic term or category, for exam-
ple replace bus as this vehicle, dress as this
clothing, etc.

7. The instruction must not involve count-
ing.

8. The format of the instruction should fol-
low the examples shown below. Make sure
it is numbered and end with *### .




List of instructions for elaborated descrip- List of instructions for elaborated descrip-
tion (part 1) tion (part 2)

* Provide a vivid description of the im-
age.

* What is a suitable paragraph that de-
scribes this image?

» Compose a passage that depicts this
image.

* What is this image about?
* What’s happening in the scene?

* Can you describe the main features of
this image for me?

* What are the key details in this picture?

* Can you elaborate on the elements of
the picture provided?

* What do you think is going on in this
photo?

* Can you provide a comprehensive de-
scription of the image?

* Describe the following image in detail.

* Provide a detailed portrayal of what’s
captured in this image.

* Offer an intricate description of the im-
age you see.

* Please share a thorough run down of
the image that has been presented.

e Could you elaborate on the contents
of the displayed image with thorough-
ness?

e Clarify the contents of the displayed
image with elaborate detail.

15

* Can you offer a comprehensive por-
trayal of the image?

* Could you highlight and elaborate on
the details of the image?

* Portray the image with a vivid compre-
hensive narrative.

* Analyze the image in a descriptive
manner.

» Write an well-detailed depiction of the
given image.

* How would you describe this photo in
great detail?

* Can you give a detailed account of
what you see in this image?

* Describe this image using your own
words.

* Please describe what you see in the
image with as much detail as possible.

* I need you to depict the image with
utmost detail.

* Can you describe the image below in
exhaustive detail?

* Please provide a complete description
of what is shown in the picture.

* [ would like you to give a detailed clari-
fication of the contents of the displayed
image.

* Could you provide a detailed and com-
prehensive representation of the im-
age?

* Provide a comprehensive illustration
of the image.

e [llustrate the image using a well-
detailed description.

* Write a rich narrative for this image.

* Give a thorough description for the
given image.

» Write a vivid account of the moment
captured in this image.

e Create a narrative that is rich and vivid
based on the image presented.




Prompt for generating visual recognition,
knowledge-based and creative writing out-

puts

You are given an instruction and several
image captions, each caption describing the
same image you are observing. Generate
an output resulting from following the
instruction.

Here are the requirements:

1. The output is the response to the instruc-
tion and the caption.

2. The output must utilize the information
in the caption and must not contradict the
caption.

3. If the output is unknown without further
context, generate "unknown" as the output.
4. When using the information from the
caption, directly explain the scene, do not
mention that the information source is the
caption. Always answer as if you are di-
rectly looking at the image.

5. Provide detailed output when answer-
ing complex instruction. For example, give
detailed examples or reasoning steps to
make the content more convincing and well-
organized.

6. The format of the output should follow
the examples shown below. Make sure it is
numbered and end with "###.
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Prompt for generating elaborated descrip-
tion outputs

You are given several image captions, each
caption describing the same image you are
observing.

Here are the requirements:

1. Generate an output that describes the im-
age in detail.

2. The output must utilize the information
in the caption and must not contradict the
caption. Do not include description of ob-
jects that is not presented in the caption.

3. When using the information from the
caption, directly explain the scene, do not
mention that the information source is the
caption. Always answer as if you are di-
rectly looking at the image.

4. The format of the output should follow
the examples shown below. Make sure it is
numbered and end with *###’.

\

C Model Details

We experiment with 4 different VLMs as follows:

e BLIP-2 utilizes ViT-G/14 (Fang et al., 2023)
as the image encoder and FlanT5x (Chung
et al., 2022) as the LLM. We initialize BLIP-2
from the pretrained checkpoint and only fine-
tune the Q-former parameters. Both the image
encoder and the LLLM are frozen. The total
and trainable parameters are 4B and 187M
respectively.

* MiniGPT-4  adopts  ViT-G/14  (Fang
et al., 2023) as the image encoder and
Vicunayg (Chiang et al., 2023) as the LLM.
It consists of the BLIP-2 Q-former and a
linear layer connecting the image encoder
and the LLM. The Q-former is initialized
from BLIP-2. All parameters are frozen
except the linear layer. The total and trainable
parameters are 8B and 3M respectively.

* mPLUG-Owl adopts ViT-L/14 (Radford
et al., 2021) as the image encoder and
LLaMA~7g (Touvron et al., 2023) as the LLM.
It consists of a visual abstractor module be-
tween the image encoder and the LLM. All
parameters are frozen except LoRA (Hu et al.,
2022) parameters on the LLM. The total and



trainable parameters are 7B and 4M respec-
tively.

LLaVA adopts ViT-L/14 (Radford et al., 2021)
as the image encoder and LLaMA~7p (Touvron
et al., 2023) as the LLM. It consists of a linear
layer in between the image encoder and the
LLM. All parameters are frozen except the
linear layer and LoRA (Hu et al., 2022) pa-
rameters on the LLM. The total and trainable
parameters are 7B and 164M respectively.

D Additional Hyperparameters

We individually finetune models for each task us-
ing datasets in the instruction format. Only one
instruction template is used per task, as preliminary
experiments show using multiple templates per task
degrades performance.

For all experiments using the same model archi-
tecture, we keep the hyperparameters constant. We
set the training iteration to 10K steps. The batch
size for BLIP-2 is 192 and 128 for the other three
models. For BLIP-2, MiniGPT-4 and mPLUG-
Owl, we train the model using AdamW optimizer
with a weight decay of 0.05. The learning rate is
linearly increased from le—8 to le—5 in the first
200 steps and then cosine decayed to 0. For LLaVA,
we use a weight decay of 0. The learning rate is
linearly rises from 0 to 2e—5 across the initial 200
steps and then cosine decay to 0.

We output model performances at intervals of
1,000 iterations and select the best checkpoint using
the validation set for evaluation.

All experiments are performed on a machine
with 8 or 16 Nvidia A100 GPUs. On average,
each experiment involves around 2 hours of train-
ing and another 2 hours of evaluation. We uti-
lize LAVIS (Li et al., 2022a) library for training
of BLIP-2, MiniGPT-4 and mPLUG-Owl. For
LLaVA, we utilize LLaVA original author’s code-
base for training. All evaluations are performed on
LAVIS.

E Complete Results

In this section, we show all the experimental re-
sults from all four models. Tables 4-7 show the raw
transfer learning performance, where rows denote
the source tasks and columns are target tasks. Ta-
bles 8-11 show the normalized performance, where
the rows (source tasks) are sorted in a descending
order of average performance.
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Among the source tasks, LLaVA Conversation
shows strong transfer to OLIVE for BLIP-2 and
LLaVA. The relatively good transferability could
attribute to the fact that LLaVA Conversation and
OLIVE share some similarities in data distribu-
tion since the instruction-response pairs are gener-
ated using OpenAl GPT models (OpenAl, 2023a,b).
However, the key difference is that OLIVE is in-
spected by human annotators to rectify erroneous
data, while LLaVA Conversation does not undergo
this correction process.



"paI pue A3URIO ‘MO[[AA ‘UIDI3 :IOPIO JUIPUIISAP UT SANTBA JUISAIdAT SIO[0D Y, "UWN[0D Yo SUO[e PIZI[EWLIOU ST 9[eds JO[0D Y], "UONRIUIT popud-uado sajoudp
0) pue 2o10Y0-a[dnnw sajouap DA ‘uoneraual uonsanb sojousp HO) eourwIofrad 193399 9JeIIpUL sanyeA IOYSIH 7-dI 14 JO eouewioyrod Surured| Iofsuen) pazIjewiouu() 4 9[qe],

09 SII S8 095 09¢ S6C 8T 66 STl I'tvh L'99 1T . 0°LS ML 20 VOANOV
'L 001 80S STE vy L91 | st 0've LSk Thr M6 DO VOA-NO
€LE S19 661 Sk 0FE  TS9 699 0ST TSS T6I S ¥ D0 TAVOA
M€t uondiosaq VARTT
M LL Suuoseay VARTT
M LS UONeSIAUOD VARTT
v'8E  L'L9 ML AAI'TO
60c 1.9 M6 WWH
39 vODudo
3208 VOA-400
M se VOAIXL
M€ USA
6'L9 S8E 695 M6l VQuod|
689 [0F €09 8€€ M €46 vOD
769 8€r 06 M9 VQaoualog
¥'8S MLl (O VOANO-V
MLl VOAMNO-Y
M6 VOA-3O
STl M vy TAVOA
LL 8IS 90I 095 09C tvTl  6SE I'IE SI19 TTS Itk Lve  T89  LOL 1'LE TS €1€ 79 S 67S sdeDixay,
6 $TS €6 T9S 079 61C ¥Tl  vEe 9IE 6€9 68y I'Lh vy 989 SIL S€F 9LS S8 069 6'8L M LYIET NeIded qam
09 8Tl 8IS 86  99S TT9 LST  pTl SSE IS S9% €0y 189  8TL STH LLS €SE TS9 6LS 008 S spl OEDPIA
6L Il ¥€S  S6 9SS v9r 08 901 SIL 9LE LLS €81  ¥TI 6% OI€ 61S 6Sy T€€ 889 LOL TLT 195 8€ €€9 STE ISL 3 L9S uonde) 0D0D
s [ wwl | ses vs 0SS [ TIS T6 69 [9TL 69 LT9 99T  vTI  69¢ LS9 08y 89y 6€k 969 TOL 9€h T6S 60y L9 0€9 VIL - 10ys-0137
DN D OJ$N D DJOWN D JAN D N D OJN D ON D OJOW D
yuey  uredxg vO vOD VOA VOA AV vO vO sded  yog  uonded
HAIT0 HMOW ) N WH e wdo 290 oL NAAvy  SAIDASA oo VOO souapg VOAMOV  VOA-JO TAVOA 2oL SPmd 0900
oz1g
jse[, 193], Josereq jSe], 921n0§

18



"paI pue A3URIO ‘MO[[AA ‘UIDI3 :IOPIO JUIPUIISAP UT SANTBA JUISAIdAT SIO[0D Y, "UWN[0D Yo SUO[e PIZI[EWLIOU ST 9[eds JO[0D Y], "UONRIUIT popud-uado sajoudp
0) pue 2o10Y0-o[dn[nu sjoudp HA ‘UoneIouds uonsonb sajousp NHQ) ~oourwIoIad 191399 AJLIIPUI SAN[BA JYSIH "VALTT JO 2oueutojrod Surured] Jojsuen) pazijewiouu() G 9[qe],

0l 01 0'1g €s LTl ThE 8€S 10F 90€ 611 ML 20 VOANOV
1T 9°9¢ 7’8 LTE Ter ] 36 90 VOA-O
£0S "6 ¢SS L8 : i Tl PPE I'Th 16€ r 09 9T 9Th €€ LLY P : i S ¥ D0 TAVOA

9¢  S0S i €6 0'1g b E4 uonduosag VARTT
09 €05 g vS e i vTr Sve T : : g 9'67 6T O0€h T | M LL Suruoseay VARTT
os [yl o vLE i ¥Tl i L34 11z S LS | uonesIeAuod VARTI
S9 8IS . TLE : : i i i ) S'8C ML AAI'TO
$S S0 ; i : i i ¥l ] THE €SE Lvh S M6 WWH
0'1S i i i ¥l i i g : ;i 9vy TIE SSy OvE ver 18 LT M9 vOoudo
901 i 0'8 STl ) : i i A I'IS 8¢ SeF 0Ty Lty 9¥S 8€S 3208 VOA-ID0
L't STl ’ P i i g . §Sy LYS Stb 019 S se VOARL
0TS L8 i j i ? I'ly €Tr 68¢ 6Ly IS M€ USA
001  8¥S TYE 68 I'vS T'sh I'6F STh 1SS 19 TOT M6l VQuod|
66 |9LS TSE ¥ ; 9 ; ? i P i i : i M €r6 VOO
L6 Ve €LE H a A P i i i i P P i M9 VORUAIS
6'CS €6 9SS 3 } X : : } ’ MLl Q) VOANO-V
€S 9 LEE : i i : i F ; : i ML VOANOV
95 9'LE F i i i i F : i i : i P : M6 VOA-IO
06T A j Tl i j i i F M vy TAVOA
9TS i TC €SS vzl i P i 9¢r ¥9T 'Lk I'HC N 675 sdeDixal,
SPS szl : ‘tr o 6°€E L'ES THT v8y 01T €Ly M LYIET neIded gam
9'8¢ ¥l ‘vr 6LE TTE LSy TY9E 9Ly 8¥E TOS T S spl OEDPIA
8T vl i ‘w Lee Mgl 6 ﬁl oLy [06 | 90s 319§ uonde) 000D
9¢  €TS  88 : vl 8Sh 6 ¢TI 8SE ST Tre Il S9¢ 60F P9E SHh LSE - 10Us-0107
DN D OJ$N D DJOWN D JAN D N D OJN D ON D OJOW D
yuey  uredxg vO vOD VOA VOA AV vO vO sded  yog  uonded
HAIT0 HMOW ) N WH e wdo 290 oL NAAvy  SAIDASA oo VOO souapg VOAMOV  VOA-JO TAVOA 2oL SPmd 0900
oz1g
yse], 193], Josereq SB], 90In0S

19



‘pai1 pue 93ueIO ‘MO[[oA ‘U913 1I9PIO SUIPUIISIP UI SAN[BA JudsaIdar sI0[00 9], "UwN|od Yora SUO[e PIZI[BULIOU ST J[BIS I0[0D Y], “UoneIauas papuo-uado sajousp nH
pue 2o10yd-o[dinw sajouap HIA ‘UoneIdud3 uonsanb sajousp HO) ‘ourwIo}Iad 191399 9)BIIPUL SAN[BA JYSIIH “H-LdDIUIA JO 2ourwIo}1ad SUIuIes] J9jsuel} pazijewiouu ) 9 9[qe],

¥SI 611 €6v Tl ¥IS 866 §S SII I¥S ¥0 IThk I  ¥el |99 95y 08 SLE 9ST MLl 90 VOAMNO-Y
'St 9T  €6¢ 611 8€ 00y 8¢ 8SI eS| g0 LS8 9T Tl T i TeE ST ovr DT oce 81T 6 90 YOA-NO
0’6t T0S 0¥ 0l 8€S 60 6vr 8 ? . q L€l TSE €I S€h ISl 805 +TS N b D0 TAVOA
TL T8y SOl T9€¢ 06 ; e | uonduosoq VARTT
L6 €8¢ v6 €Sk g 53¢ Eata 191 M LL Butoseay VARTT
LS  88% 601 (R4 691 86t : f I'€e MLS | UONESIAUOD VARTT
8L L0T 6LE ¥'SI T'6b TH THE '8¢ CRas L91 ML HAI'TO
601 YLE 9L ¥iv 07T 8y L6E 061 0Ty €0T THS 1°0S M6 WH
€81 €01 0'ZS : : : : o1s  18e L0 oz [20 605 S0z S8 M9 vOOudo
I'L 601 18t T0S Slv 18 | i 9Ty 60F 06 97 Sty ¢TI Sk '€l I'LS 891 S8y €96 I 3208 VOA-¥D0
[gT e ssry 6'ce 96¢ I'ST  9%S VIS TSE v0S ¥Te 0SS LEE M sE VOAIL
i i ] I'ly 6Se €€  ¥St Ty TT €0r 1T ¥ES 6€ 6T OLE  00S M€ ASA
0€e Ity ¥'8 00y ¥8 TLy TLI ¥LE 8§95  TSS 361 VOuoo
¥'8€ M Ev6 VOO
OIS L€ 9 . i THS 96h 9 Tor  SSh 009 M9 VOR0uaI§
TIS 6T 9 : g 3 LLS LvE TLT 96 LT (D) VOANO-V
97 00F ? ; ] 881 08T MLl VOANO-V
90 i : €56 M6 VOA-MO
'8t IS 0°6€ ] ; i 7 : 6TC  LIE | Mty TAVOA
86 8IS I'vE i YTy Th €8y 3 65 sdeDixar,
76 96  I'St S0S 0rE 9'6€ v'zs 68y 91 §€S N LPI'ET NAdeD gom
0Tl €01 08y 80l €08 Lgg SLE i 0’61 99 ¥1 €IS 3 Spl NOSTOIA
66 001 L6 Ss §Tl 0s¢E 6€€ 7 6'6€ . 6 3 L9S uonde) 000D
o6t €11 L'Ly vl IYE 8's¢ 9cy  tEe $'6¢ 98 Sl - 10ys-0197
DN D DN D OWN D DN D DN D DN D DN D DN D
Juey  urepdxy vO V0D VOA VOA R IVAL vO vO sded  yo¢  uonde)
HAIT0 H¥OW ) N e e wdo 0 oL NEAvy  AAITDASA o VOO souspog VOAMNO-Y  VOA-JIO AVOA WL DO 0MOD
MNmm

yse], 1981e],

JosEIR(

ySeL, 90Inog

20



“paI pue A3UBIO ‘MO[[AA ‘UIIS :IOPIO JUIPUSISIP UT SINTBA JUISAIdI SI0[0D Y, "UWN[0D YL SUO[e PIZI[EWLIOU ST 3[EIS JO[0D ], "UONRISUIT popuR-uado s9joudp O pue
Qoroyo-o[dnnu sejouap DN ‘uonerauss uonsanb sojousp H) oourwIOIAd 19139q AJLIIPUI SAN[BA JIYSIH [MO-D() TdW Jo dsouewrojrad Surures] Jojsuen} pazijewiouu() :/ 9[qe],

961  TII €6F 16 9€ 8§¥E Il €68 ¥S 69 91S Tt 6y ser 96y IIL MLl D0 VOANO-V
L8y tvor ¥1S  TTE 611 %ﬁ €Ty gLy €79 M6 DO VOA-NO
€81 P11 605 Tl 00t 101 8L 'ty S b 00 TAVOA
L ov | 6L 88F 90l 3 Tog Mer | uonduosaq VARTT
(¥t 99  vevr L6 9L¢ 6 M LL Suoseay VAT
l 9L S6v €0l 9'6¢ 66 I'ly UL t¥S MLS | UONESIAUOD VATTT

98 | 88y  LOI vLE TS ey viy ML HATTO
TeL  TOl 66 Il £€E 8T Sey €T 68 Ty STE 98y A6 WH
T08 ¥sS iy 9 I'S €9 €8 oy L't9 M9 vODuado
€11 gey TS 868 3208 VOA-¥D0
¥'SS §IE T'SS SHS S se VOARL
€IS 80l 0§ ¥l 605 T'LT TSy 0y S99 M€ USA
905 ¥II 0% TIE 80S LIE 89S Yoy ver  T09 361 vOuooy
L'sE (79 M €6 VOO
S0S 8T S0E 9'LS 6€S 86y 169 M9 VORUAIS
€S 1'0S LSS 6588 LT (O) VOAMNO-Y
LLS 'Y€ 908 MLl VOANO-V
895 T8¢ 8€E  TE  OFS 16 VOA-MO
T8y 1'8S 06E 00y 019 | Mib TAVOA
IRz S9I LSE 09 LE€S 601 RS ey T8 6Ir S8 €W 6% 3 6tS sdeixal,
¥'6 805 61 L1 [0Le L+ 6%S € T Ley S8y 16l €Ly v91 L€S 9Tl N LYI'ET NAdeD) gom
T6y €11 8IS 9%y LT €91 8y 85 €8S 9Tl 0¥ Sy v8y SL Thr 89 67TS E 3 SpI NOEDONA
ey 011 ! Ity $'8S vTr o Sse 9TH i 0’61 869 319§ uonde) 000D
90S 801 TOS 9T 8IS 6Ly vl pIE ver 0’8t - 10ys-0137
DN D DN O ON O DN D DN 9 DA D ON D
yuey  uredxg vO vOD VOA VOA AV vO sded  yog  uonded
HAIT0 HMOW ) N WH e wdo 290 oL NAAvy  SAITD ESA souapg VOAMOV  VOA-JO TAVOA 2oL SPmd 0900
jse[, 193], oS YSB], 201n0S§

jasereq

21



‘pa1 pue A3URIO ‘MO[[oA ‘UAIT :I9PIO SUTPUIISIP UI san[eA JudsaIdal SIO[0d Y], "UWn[od yora SUo[e PIZI[BUWLIOU SI 9[BIS IO[0J Y[, "UoneIaua3 papus-uado sajouap
D pue 10yd-9[dnnuw saouap DA ‘uonerauas uonsanb sajousp HO "] SI UWN[OD YoB Ul duewIo1ad 1sayS1Y Y], "UORZI[ENSIA PIe 0} ()] JO 10108] ® AQ sanjea ay) A[dnnw
M oouewI0}1od 9FRIOAR JO JOPIO SUIPUIISIP UL PAJIOS I8 SMOI Y], AI[IqRIdJSULI) 19339q 9)edIpul sanjea IYSIH "g-dI1d JO douewro)rod Suruied] Jojsuel) paZIfewioN :§ 9[qe],

61 €1 Mg | uonduosad VARTI
61 ST M6 20 VOA-O
00 €81~ 01 0T ML Sutoseay VALTT
61 T TT- 0T M€ ASA
T8 €91~ 61 9l L1z 61 €T 3 208 VOA-MDO0
9'69-  £5¢- SEl- LLI- 61 08- 0 €C MLl D0 VOANO-V
TSt 891- 86| 61 70~ vz M LS | UOnEsIOAUOD VARTT
6'€9- LT €1- Ly 9T L0I- 60" 67 S i 00 TAVOA
$99- 66 0 9 € M6 WH
TI- Pl 61 9€-  TO- 6¢ ML AAITO
1 98- TIE- Ly 3 se VOAIXL
90 00 e vl Ly 3 6¥S sdeoiaL,
L9 88~ 00 S6 ST 8y 319§ wonde) 0000
;- IR 9€l- 88 6v 36 VOA-3O
9L TTI- €L 0's 3 €46 V0D
L89- 6¥I 1°0S- Tr | TE €6 €S M6l VOuoa
0'Ly- 9GII- ¥0I- TS- 0I- 9'67- Ls M9 vOOudo
L0S- SsT- TO- O01-  €1- Ls LT VOANO-V
S SEe The  €1- 61~ €1 'S M9 VOo0UAS
6T L 681- Le €1 €0 60" 9 N spl NOETOIL
'l L9 6L 60 91~ 0°6- 08 | MLpI'se AdeD QoM
96~ 1€ S0 SL- 6 N iy TAVOA
0" ? 90- €01 ML (OW) YOAMNO-V
) )
yuey  urepdxg vO vOO VOA YOA AV YO vO sded  yog  uonde)
dAIT0 G0N\ o AN e wdo 00 oL NAAVY AATTO ASA oo VOO souorog VOAMOV  VOA-O TAVOA XL P 0900
102§
yse], 1051e], Sunjuey oS YSBL, 20In0g
: JENILq ]

dHV

22



“pa1 pue 93urIO ‘MO[[oA ‘UaIS :19pI0 SUIPUADSAP UT San[ea JuasaIdar s10[00 YT, "UWN[OD Yord SUO[e PAZI[EULIOU SI 9[8JS JO[0D Y], "uonelouas papua-uado sojouap
0 pue do10y0-9[dnnu sajousp DA ‘uonerauas uonsonb sojousp HO) Q[ ST UWN[OD Yoes ur doueurioyrad JsoySiy oy, ‘uonezIfensiA pre o) ()] Jo Ioyoe] e Aq sonyea oy A[dnnuw
M "eouewtofrod aSeIoAe JO JOPIO SUIPUSISIP UT PAYIOS ATe SMOI AU, “AII[IqeIoJSue) 19))aq 2JedIpul sanfea JOUSTH "VART] Jo eouewtofrod Surures] Jojsuel) pazI[ewlIoN :6 9[qeL,

09-  TT The- [Siva €Tl €T €T uondusa VAERTT
88 0Ot vIE- 98- 6T ML D0 VOANO-V
91~ 3 S0T- 0¢ L HAI'IO
S0 91T e M6 D0 YOA-MO
99- 80 96 € M LL Suruoseay VARTT
SI- 9¢ | MLvl'eT LdeD gom
9'¢ S v D0 TAVOA
8¢ S 6vS sdeDixa,
8¢ 3 L9S uonded 000D
8¢ M LS | uonesiauo) VAERTT
6¢ 39 vODudo
Ly M6 WH
86T 61 61 VOuod[
661- 0§ M6 VOA-JIO
€yl- 0 3 208 VOA-4D0
10 91~ ¥'S syl OB
80~ ¥'s Mg ASA
8'LT- ¥'s 3 sE VOAXL
€0 | 99z~ 8'c M LI VOANO-V
0'¥¢- 8¢ 3 €76 VOO
90 £0T- €9 M9 A{OLRICIEN
0°09- 60 TT $9 LI (OW) VOANO-V
fomorE e v 6'1E- 01- 69 N iy TAVOA
. DN D DN O DA D DN D DN O D$N O ON O OW D . .
yuey  urerdxg vO VOO VOA VOA Arvd vO VO sdey  so¢  uwonden
JAIT0 MIOW o AN WH e wdo 90 e Naavy  AETO ASA ooy vOD sousog VOAMOV  VOA-JO TAVOA ML I 0000
21008
yse[, 1o81e], Suryuey oS sk, 2210g
N esereq

dHV

23



"paI pue 23URIO ‘MO[[A ‘UIDIS3 1IOPIO JUIPUSISIAP UI SANTBA JUISAIdAT SIO[0D Y, "UWN[OD Yo SUO[e PIZI[EWLIOU ST 9[edS JO[0D 9], "'UONRIUdT popud-uado sajoudp
0 pue 2o10Y0-o[dn[nNu sj0uUdp HIA ‘UoneIouds uonsanb sajousp HY) (] ST UWN[OD Yorad Ur aourwIofad 1soy3Iy oy ], "uonezIfensia pre o) ()] Jo I030e} ® £q sanfea oy} Ajdnnur opp
-9ourwIo)I1ad 9FeI9AR JO IOPIO SUIPUIISIP UL PALIOS e SMOI Y[, “AI[IqeIjsue) 191Jaq 2)edIpUl san[eA JIUSIIH “H-LdOWIA JO 9ouewiojiad Jurures] Jojsuel) pazijewioN 0] 2[qe],

e €T uonduosaq VARTT
9°¢ M LL Suruoseay VARTT
6'¢ LS UONESIdAUO0D) VARTT
"4 3 6vS sdeDixay,
0 ML HAI'TO
'y | MLplee eIded gom
Iy 3 L9S uonded 000D
a4 M6 D0 VOA-NO
a4 MLt DO VOANO-V
[522 b 8744 DO TAVOA
Sy M se YOAIOL
Sy Mg ASA
Sy M6l YOuod[
Sy sl AOEDPIA
9Y 39 vOOudo
8P M6 NH
6 3 €6 VOO
0§ 31208 VOA-4D0
s M6 VOA-JO
90 [ M LT VOAMNO-V
e 0F S M9 A{eERLEIEN
9T 91 9¢ LI (OW) YOANO-V
L0 61 | : L1 Tl LS S vy TAVOA
. DN D ON 5 DN D ON O ON O oEooEoqua .
Suey  urepdxg VO V0D VOA VOA A1V vO vO sdedp  og  uwonded
A0 TIOW P w0 wdo A0 oL Naavy  IAFO ASA o0 vOD sousIog VOAMNOV  VOA-MO TAVOA X Do 0900
100§
az1§
ysey, 1oSre, Suryuey Yse], 2210§

dHV

JoseIR(

24



"paI pue 23URIO ‘MO[[A ‘UIDIS3 1IOPIO JUIPUSISIAP UI SANTBA JUISAIdAT SIO[0D Y, "UWN[OD Yo SUO[e PIZI[EWLIOU ST 9[edS JO[0D 9], "'UONRIUdT popud-uado sajoudp
0 pue 2o10Y0-o[dn[nNu sj0uUdp HIA ‘UoneIouds uonsanb sajousp HY) (] ST UWN[OD Yorad Ur aourwIofad 1soy3Iy oy ], "uonezIfensia pre o) ()] Jo I030e} ® £q sanfea oy} Ajdnnur opp
-9ouew10}1od 93eI0A® JO J9PIO SUIPUIISIP UL PAIIOS AIB SMOI A, AN[IqeI)SUeI] 19139q JBIIPUI SanjeA JOYSIH [MO-DN TdW Jo soueuniojrod Jurures] Jojsuesy pazifewIoN ][ 9[qe],

3 M LL Suruoseay VAR
3 M6 DO VOA-JO
43 M€ uondussaq VALTT
¥'e LS | UONESIOAUOD VAETT
X3 ML HAI'1O
9¢ MLI D0 VOAMNO-V
6'¢ My DO TAVOA
0t | M LpI'eT aaded gam
't M6 WH
[ M 6vS sdeDixay,
[ M syl NOEPOILA
9t M L9S uondey 0D0D
9t M9 VOOudo
LY 3 s¢e VOAIXOL
8Y M6 YOA-JIO
0 M€ ASA
49 3 €6 VOO
TS 61 VOuod[
Y M9 A{eERLEIEN
96 M LT VOAMNO-V
LS 3208 VOA-¥D0
6'S My TAVOA
09 MLt (OW) VOANO-V
. DN D DN 5 ON D DN D DN O ozoozoozom .
Suey  urepdxg vO VOO VOA VOA AV vO vO sdedp  og  uwonded
A0 TIOW P w0 wdo 20 oL NEAvy AT ASA o VOO souapg VOAMOV  VOA-JIO TAVOA X Do 0900
100§

ysey, 1oSre, Suryuey oS Yse], 2210§

N 19sereq
dHY

25



F Mean Cosine Similarity of Target Tasks

In this section, we rank the average cosine sim-
ilarity among the target tasks. We first compute
pairwise cosine similarity using the SVD features
of target tasks. For each target task, we take the
average of all pairs that it is involved in. Finally,
we rank all target tasks in a descending order.

Target Task Cosine Similarity
OK-VQA (MCO) 0.54
VQAV2 (G) 0.54
A-OKVQA (MC) 0.54
GQA (G) 0.53
OK-VQA (G) 0.53
A-OKVQA (G) 0.53
TextVQA (MC) 0.52
VQAvV2 (MC) 0.51
TextVQA (G) 0.50
CLEVR (G) 0.50
ChartQA (G) 0.48
OCR-VQA (G) 0.45
ScienceQA (MC) 0.45
GQA (MCO) 0.44
Hateful Memes (MC) 0.42
VSR (MC) 0.41
NY Ranking (MC) 0.37
IconQA (MC) 0.35
OCR-VQA (MC) 0.32
TextCaps (G) 0.29
RAVEN-FAIR (MC) 0.27
Flickr30k (G) 0.25
COCO Caption (G) 0.22
ChartQA (MC) 0.15
MORE (G) 0.15
CLEVR (MC) 0.14
OLIVE -0.06
NY Explanation (G) -0.09
OpenCQA (G) -0.27

Table 12: Mean cosine similarity, computed from the
SVD features, for each target task. The tasks are ranking
by descending similarity.

G Hierarchical Clustering of SVD
Similarity

In this section, we perform hierarchical clustering
on the SVD similarity features of target tasks using
the Ward’s linkage criterion which minimizes the
total intra-cluster variance. In Figure 5, we show
that hierarchical clustering forms meaningful clus-
ters. For example, captioning tasks are clustered
together. Generative and multiple-choice evaluated
target tasks are grouped into different groups. This
cluster supports the generative vs multiple-choice
evaluation factor from factor analysis. However,
the clusters are not as comprehensive as common
factors extracted by factor analysis. For example,
hierarchical clustering does not elucidate factors
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such as reading vs reasoning, and spatial reasoning.

CLEVR (MC)
OLIVE (G)
ChartQA (MC)
MORE (G)

NY Ranking (MC)
VSR (MC)
OCR-VQA (MC)
Flickr30k (G)
COCO Caption (G)
TextCaps (G)
OpenCQA (G)

NY Explanation (G)
TextVQA (MC)
OK-VQA (MC)
A-OKVQA (MC)
GQA (MC)

VQAv2 (MC)
Hateful Memes (MC)
ScienceQA (MC)
RAVEN-FAIR (MC)
IconQA (MC)
A-OKVQA (G)
OK-VQA (G)

GQA (G)

TextVQA (G)
OCR-VQA (G)
CLEVR (G)

VQAv2 (G)
ChartQA (G)

L
L
s
e

Figure 5: Hierarchical clustering of target tasks.

H Factor Analysis Details

Here we show all the factor loadings of the six
factors from the residual matrix A. Communal-
ity quantifies the proportion of variance in each
target task that is accounted for by the identified
factors. A low communality value indicates that a
task differs significantly from others in the mix.



Target Tasks Factor 1 Factor2 Factor3 Factor4 Factor5 Factor6 Communality

Flickr30k 0.97 -0.02 0.00 0.07 0.06 -0.08 0.96
COCO Caption 0.93 -0.05 0.00 0.10 -0.02 -0.12 0.90
TextCaps 0.83 0.12 -0.20 0.07 0.10 -0.10 0.77
TextVQA (G) -0.19 0.87 0.04 -0.10 -0.14 -0.16 0.85
VQAvV2 (MC) -0.34 -0.74 -0.34 -0.01 0.24 -0.02 0.83
ChartQA (G) -0.08 0.67 -0.16 0.31 -0.12 -0.23 0.65
OK-VQA (G) -0.24 0.60 0.51 -0.20 0.20 0.15 0.78
GQA (MC) -0.32 -0.55 -0.18 -0.26 -0.02 0.00 0.50
OK-VQA (MC) -0.43 -0.49 -0.30 0.07 0.22 -0.20 0.62
VQAvV2 (G) 0.08 0.06 0.85 0.23 0.05 -0.25 0.86
GQA (G) -0.22 -0.01 0.75 -0.05 -0.21 0.12 0.66
A-OKVQA (G) -0.28 0.54 0.59 -0.26 0.23 0.17 0.87
TextVQA (MC) -0.38 -0.12 -0.49 0.02 0.36 -0.23 0.58
OCR-VQA (MC) 0.20 -0.14 -0.04 0.65 -0.19 -0.27 0.60
ChartQA (MC) -0.14 0.07 -0.02 0.65 0.19 0.29 0.57
RAVEN-FAIR (MC) 0.02 -0.01 0.08 -0.40 -0.04 0.17 0.20
ScienceQA (MC) -0.07 0.00 -0.07 -0.39 -0.05 -0.06 0.17
IconQA (MC) -0.01 -0.09 -0.08 -0.34 -0.05 -0.10 0.14
OCR-VQA (G) -0.01 0.11 -0.04 -0.12 -0.66 0.01 0.46
A-OKVQA (MC) -0.21 -0.35 -0.38 -0.18 0.63 -0.07 0.74
MORE (G) 0.22 0.47 -0.22 0.21 0.54 -0.03 0.65
OpenCQA (G) 0.17 -0.07 -0.09 0.11 0.32 -0.24 0.21
OLIVE (G) -0.05 0.06 0.09 0.10 -0.08 0.61 0.40
CLEVR (G) -0.17 0.20 0.16 -0.44 -0.34 0.59 0.74
CLEVR (MC) -0.18 -0.13 -0.05 -0.07 0.01 0.55 0.36
VSR MC) 0.15 -0.26 -0.10 0.10 -0.06 0.50 0.37

NY Explanation (G) 0.13 -0.03 -0.04 0.26 0.21 -0.10 0.14
NY Ranking (MC) -0.24 -0.30 0.13 0.08 -0.23 0.04 0.22
Hateful Memes (MC) 0.05 -0.09 -0.16 -0.14 -0.24 0.05 0.12

Table 13: Results of EFA on the residuals A. Cut-off for factor loadings = 0.3.

Target Tasks Factor 1 Factor 2 Factor3 Communality

OK-VQA (G) | 0.78 0.43 0.44 1.00
A-OKVQA (G)  0.74 0.44 0.49 0.98
ChartQA (G) 0.59 0.68 0.31 0.91
TextVQA (G) 0.63 0.66 0.38 0.97
OCR-VQA (G)  0.30 0.65 0.46 0.73
GQA (G) 0.51 0.46 0.73 1.00
VQAV2 (G) 0.60 0.46 0.60 0.93

Table 14: Results of EFA on generative VQAs. Cut-off for factor loadings = 0.6.

Target Tasks Factor 1 Factor 2 Factor3 Communality

OCR-VQA (MC) 0.81 0.31 0.28 0.82
ChartQA (MC) 0.72 0.38 0.21 0.70
A-OKVQA (MC) 0.51 0.69 0.44 0.93
TextVQA (MC) 0.53 0.69 0.39 0.90
OK-VQA (MC) 0.59 0.64 0.44 0.95
GQA (MC) 0.23 0.28 0.93 1.00
VQAv2 (MC) 0.50 0.55 0.64 0.96

Table 15: Results of EFA on multiple-choice VQAS A. Cut-off for factor loadings = 0.6.
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