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Abstract: Visuomotor policies trained via imitation learning are capable of chal-
lenging manipulation tasks, but are often extremely brittle to lighting, visual dis-
tractors, and object locations. These vulnerabilities can depend unpredictably on
the specifics of training, and are challenging to expose without expensive hard-
ware evaluations. We propose predictive red teaming: discovering vulnerabilities
of a policy with respect to environmental factors, and predicting the corresponding
performance degradation without hardware evaluations in off-nominal scenarios.
In order to achieve this, we develop RoboART: an automated red teaming (ART)
pipeline that (1) modifies nominal observations using generative image editing
to vary environmental factors, and (2) predicts performance under each variation
using a policy-specific anomaly detector executed on edited observations. Experi-
ments across 500+ hardware trials in twelve off-nominal conditions for visuomo-
tor diffusion policies demonstrate that RoboART predicts performance degradation
with high accuracy (less than 0.19 average difference between predicted and real
success rates). We also demonstrate how predictive red teaming enables targeted
data collection: fine-tuning with data collected under conditions predicted to be
adverse boosts baseline performance by 2–7x. Website: URL.
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1 Introduction
Is it possible to expose the vulnerabilities of a given robot policy with respect to changes in en-
vironmental factors such as lighting, visual distractors, and object placement without performing
hardware evaluations in these scenarios? As we seek to deploy robots in environments with ever-
increasing complexity, it becomes imperative to develop scalable methods for predicting how well
they will generalize when faced with unseen scenarios. Performing hardware evaluations to dis-
cover vulnerabilities — which can depend in surprising ways on the specifics of policy training and
architecture — is often prohibitively expensive to set up and execute in diverse scenarios.

As an example, consider a visuomotor diffusion policy [1] trained for pick-and-place tasks (Fig. 1)
via behavior cloning using a large dataset: over 3K+ demonstrations with varied objects, locations,
and visual distractors. Can we predict that the policy will generalize well to a change in the table
height by a few centimeters (due to the presence of 2D spatial variations in training data) compared
to when a human is standing closer to the table than seen during training? If so, what is the absolute
degradation of success rates in each case? As it turns out, the prediction above is incorrect: the
success rate degrades from ∼ 65% under nominal conditions to ∼ 10% by changing the table height,
and remains roughly constant with a human close to the table. Predicting the relative and absolute
impact of other factors (e.g., lighting, distractors, etc.; Fig. 2) can be even more challenging.

In this paper, we formalize the problem of predictive red teaming: discovering vulnerabilities of a
given policy with respect to changes in environmental factors, and predicting the (relative or abso-
lute) degradation in performance without performing hardware evaluations in off-nominal scenarios.
The ability to perform predictive red teaming has a number of important consequences. First, it en-
ables targeted deployment: by understanding the envelope of conditions that will yield satisfactory
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Figure 1: We consider predictive red teaming: discovering vulnerabilities of a policy with respect to envi-
ronmental factors and predicting the corresponding performance degradation without hardware evaluations in
off-nominal scenarios. Our approach modifies nominal observations using generative image editing to reflect
changes in environmental factors (e.g., background, lighting, injecting humans and other distractors), and pre-
dicts the resulting performance degradation via anomaly detection.

performance, we can choose where the policy is deployed. Second, it enables policy comparison:
knowing the relative vulnerabilities of different policies allows us to select one that is more likely to
meet deployment needs. Third, it enables targeted data collection: if we know that certain environ-
mental conditions degrade performance more than others, we can re-train the policy with additional
data from the adverse conditions to patch vulnerabilities.

Contribution 1 (RoboART). We introduce RoboART— robotics automated red teaming (ART) — an
approach to predictive red teaming for visuomotor policies via generative image editing and anomaly
detection. In contrast to prior work on finding vulnerabilities of policies [2–4], RoboART does not
require hardware experiments in off-nominal scenarios or the ability to simulate such scenarios
(which can take months-long human effort to set up accurately in a new environment for RGB
policies). The pipeline for RoboART has two main steps: edit and predict (Fig. 1). We use generative
image editing [5–8] to modify a set of nominal observations by varying different environmental
factors of interest via language instructions, and then predict the degradation in performance induced
by each factor using anomaly detection. Specifically, we find that a simple anomaly detector that
computes distances in policy embedding space between edited observations and a set of nominal
observations (with an anomaly threshold computed using conformal prediction [9]) is surprisingly
predictive of both relative and absolute performance degradation.

Contribution 2 (Demonstration for visuomotor diffusion policies). We evaluate RoboART using
500+ hardware experiments that vary 12 environmental factors for two visuomotor diffusion policies
with significantly different architectures. We find that RoboART predicts performance degradation
with a high degree of accuracy, e.g., correctly predicting that the changed table height will degrade
performance significantly more than a human distractor. The difference between predicted and real
success rates averaged across the twelve factors is 0.1 and 0.19 respectively for the two policies.

Contribution 3 (Targeted data collection). We demonstrate how predictive red teaming enables
targeted data collection. Co-finetuning the policy with data from the three conditions predicted to be
the most adverse boosts performance in these conditions by 2–7x. Moreover, targeted data collection
also yields cross-domain generalization: the performance of the policy is improved by 2–5x even
for conditions where we did not collect data.
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Figure 2: We evaluate RoboART’s predictions using 500+ hardware trials in twelve off-nominal conditions.

2 Related Work
Red teaming. Red teaming refers to the process of finding vulnerabilities in systems, e.g., multi-
modal large language models (LLMs) [10–22]. Red teaming for robotics is still nascent, and has
largely focused on scenario generation for autonomous driving [23]. In the context of manipula-
tion, recent work has considered finding flaws in robotic foundation models in terms of instruction
generalization [24] in simulated environments and jailbreaking LLM-powered robots [25]. Unlike
[24, 25], our focus is on finding environmental factors (e.g., background colors, lighting, object
locations) that degrade the performance of a policy. In contrast to [2–4, 26] — which also assess
generalization with respect to exogenous factors — our approach does not require hardware exper-
iments in off-nominal scenarios or the ability to simulate such scenarios, which can take extensive
(e.g., months-long) human effort to set up accurately for RGB-based policies. To our knowledge,
RoboART is the first approach to predictive red teaming to rely only on access to the policy, training
data, and text descriptions of desired environmental changes.

Anomaly detection and failure prediction. Methods for failure prediction seek to foresee failures
as the robot is operating, e.g., via reachability analysis [27–29], control barrier functions [30], formal
methods [31], or learned predictors [32–35]. A related line of work on anomaly detection seeks to
detect conditions that are far from nominal and may thus induce failures [36–40]. Our approach
to predictive red teaming uses conformal prediction-based anomaly detection [9, 41–45], which
allows one to provide statistical assurances on the false positive rate of detection. All of the prior
work mentioned above on failure prediction and anomaly detection develops methods that operate
at runtime in order to detect possible failures and take remedial measures. To our knowledge, our
work is the first to demonstrate that anomaly detection techniques can be used offline to accurately
forecast performance in different off-nominal scenarios using generative image editing.

Generative image editing. Prior work in robotics uses generative image editing [5, 46–50] for data
augmentation [51–55], generating sub-goals for image-conditioned policies [56, 57], and runtime
observation editing for visual generalization [58]. In this work, we utilize a language-conditioned
image editing model (Imagen 3 [5]) to generate image observations that reflect changes in vari-
ous environmental factors (Fig. 1). By modifying real robot observations with targeted edits (e.g.,
“change the background to red” or “add a trash can to the scene”), we are able to generate synthetic
observations with a high degree of realism.

3 Problem: Predictive Red Teaming

We formally introduce the problem of predictive red teaming: exposing vulnerabilities of a given
policy with respect to environmental factors such as lighting, visual distractors, and object locations,
and predicting their impact on performance without performing any hardware evaluations in these
off-nominal scenarios.
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Nominal scenarios. In each episode, the robot is deployed in a scenario ξ, which is defined as a
partially observable Markov decision process (POMDP) initialized in a particular state. Let Dnom
be a distribution over scenarios that captures nominal variations in all environmental factors (e.g.,
objects that the robot may encounter, lighting conditions, background colors, etc.) and tasks (via
the reward function). We do not assume knowledge of Dnom, except a dataset Snom of observations
collected from nominal scenarios ξ ∼ Dnom.

Inputs to the red team. The red team is provided a deterministic or stochastic policy π that maps
observations ot ∈ O to actions at ∈ A, along with the dataset Snom of nominal observations. Our
focus in this paper will be on visuomotor policies trained via imitation learning; in this setting, Snom
can consist of observations from the training dataset for π. We also assume access to a set Sval of
nominal observations that were held out when training π. The specific approach we present in this
paper will only require nominal observations Snom ∪ Sval collected at the start of episodes. The red
team is provided the ability to query π on arbitrary observations, potentially with white-box access
to internal representations of the policy.

Goal: predictive red teaming. The red team’s goal is to expose vulnerabilities of π with respect to
various environmental factors f ∈ F chosen by the red team. These factors may be arbitrarily fine-
grained (e.g., the introduction of a particular distractor or specific background) and may go beyond
purely visual changes and require changes in actions (e.g., a change to the table height). Formally,
let Df be a distribution of scenarios where a factor f has changed relative to the nominal distribution
Dnom. Let Rπ

nom be the expected reward of π for scenarios ξ ∼ Dnom, and let Rπ
f be the expected re-

ward for Df . For simplicity, we will assume henceforth that rewards are bounded in [0, 1]. Knowing
Rπ

nom, we consider two problems: (1) rank the factors f ∈ F by performance degradation, and (2)
predict the absolute performance Rπ

f , ∀f ∈ F . The former problem is important for targeted data
collection, while the latter helps understand the envelope of acceptable performance.

4 Predictive Red Teaming via Image Editing and Anomaly Detection
We introduce RoboART (Robotics Auto-Red-Teaming): a method for predictive red teaming using
generative image editing and anomaly detection. We focus on visuomotor policies that rely on RGB
observations. The two main steps of RoboART are shown in Fig. 1. First, we use generative image
editing to modify the nominal observations in Sval to reflect changes in various factors of interest.
For each factor, we then predict the performance degradation of the policy using anomaly detection.

4.1 Generative Image Editing

Selection of environmental factors. The red team first selects a set F of environmental factors
that have the potential to degrade the performance of the given policy π. This set can be arbitrarily
fine-grained in its contents (e.g., specific lighting conditions, distractor objects, background colors,
etc.). The specific factors of interest will depend on the deployment needs of the policy and plausible
environmental changes that the robot may encounter.

Generating edited observations. For each factor f ∈ F , we modify observations in the nominal set
Sval to reflect a change in f . We leverage state-of-the-art generative image editing tools, which have
the capacity to take detailed language instructions as input in order to produce realistic and globally
consistent edits. In this work, we specifically utilize Imagen 3 [5], which can generate edits with a
high degree of realism and precision, e.g., changing the color of the background, adding a human in
the scene, and changing lighting conditions. For robots with multiple cameras (e.g., a wrist camera
in addition to an overhead camera), we edit each observation independently with the same prompt.
As seen in Fig. 1, the edited images are highly realistic and maintain per-view global consistency in
lighting, shadows, and overall composition of the scene (see Sec. 7 for a discussion of multi-view
consistency). Full prompts along with additional examples are provided in Appendix A.

VLM critic. Diffusion-based image editing models can generate multiple edited images given the
same input image and prompt. These variations often differ in terms of their quality and adherence
to the prompt. In order to ensure that edited observations accurately reflect the desired change, we
generate a batch of four edited images per input, and utilize a vision-language model (VLM) as a
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critic. We prompt the VLM with the original and edited images, and ask it to judge if any of the
options accurately reflect the desired change; if so, the VLM is tasked with choosing the best one (if
not, we simply discard the observation from our set). See App. B for an example and the prompt.

4.2 Predicting Performance via Anomaly Detection

At the end of the image editing process, the red team has a set Sf of edited observations for each
environmental factor f ∈ F . The second component of RoboART (Fig. 1) uses Sf to predict the per-
formance degradation induced by each factor f . Our key idea is to utilize techniques from anomaly
detection: for each observation in Sf , we quantify how “close” it is to nominal observations in Snom
from the perspective of the policy π. If this distance is above a threshold computed using conformal
prediction [9], the observation is flagged as an anomaly. The primary hypothesis is that one can de-
fine such a policy-specific anomaly detector that predicts performance degradation: Rπ

f ≈ 1 − απ
f ,

where Rπ
f is the expected reward under factor f (Sec. 3) and απ

f is the anomaly rate for f , i.e., the
proportion of edited observations in Sf flagged as anomalous according to a threshold chosen to en-
sure Rπ

nom ≈ 1−απ
nom (where απ

nom is the proportion of nominal observations flagged as anomalous).

Anomaly detection. Next, we further describe how to compute the anomaly rate απ
f for each factor

f using the edited observations Sf . In this work, we utilize policy embedding distances as a method
for quantifying how far from nominal a given observation is. This choice is motivated by the prior
success of embedding-based methods in anomaly detection (see, e.g., [39, 59]) and the simplicity of
implementation. Let ϕπ(o) be a latent representation produced by the policy π for a given observa-
tion o (e.g., the output of an intermediate layer of the network). In our experiments in Sec. 5, we
employ policies parameterized using diffusion models and utilize the context vector provided to the
denoising process as our latent representation; see Appendix C for details. Using ϕπ , we can define
a policy-specific anomaly score sπ(o, Snom) that quantifies how far from nominal the observation o
is. A simple choice is to define sπ as the mean of the k-nearest neighbor (k-NN) cosine distances
between the embedding ϕπ(o) and the embeddings computed for the nominal observations in Snom.
Intuitively, this anomaly score quantifies how dissimilar a given observation is compared to similar
training observations from the perspective of the policy.

For each factor f ∈ F , we compute the anomaly score for all edited observations o ∈
Sf . The anomaly rate for a factor f is then defined as the proportion of observations
flagged as anomalous according to a threshold τ : απ

f := |{o ∈ Sf | sπ(o, Snom) > τ}| /|Sf |.

Algorithm 1 RoboART: Robotics Auto Red Teaming

1: Input: Policy π with nominal performance Rπ
nom, nom-

inal observations Snom ∪ Sval
2: Select environmental factors F
3: Conformal prediction:
4: Compute anomaly scores for Sval using π embeddings:
5: Λval := {sπ(o, Snom) | o ∈ Sval}
6: Compute anomaly threshold τ using Λval to bound the

nominal anomaly rate to απ
nom := 1−Rπ

nom
7: for f ∈ F do
8: Generate edits Sf and filter with VLM
9: Compute anomaly rate:

10: απ
f := |{o ∈ Sf | sπ(o, Snom) > τ}| /|Sf |

11: Predict performance:
12: Rπ

f,pred := 1− απ
f

13: end for

Anomaly threshold. The anomaly
threshold τ is chosen to ensure that
απ

nom (the anomaly rate for nomi-
nal observations) predicts the nom-
inal success rate Rπ

nom of the pol-
icy: Rπ

nom ≈ 1 − απ
nom. Given ac-

cess to a validation set Sval with nval
nominal observations, one can sim-
ply choose τ such that the propor-
tion of these flagged as anomalous is
1 − Rπ

nom. A more sophisticated ap-
proach uses conformal prediction [9],
which chooses τ as the ⌈(nval +
1)Rπ

nom⌉/nval empirical quantile of
the set of anomaly scores for the vali-
dation set. This choice upper bounds
the probability that unseen nominal
observations are flagged as anomalous to 1 − Rπ

nom [60]. The use of the same threshold τ for
predicting failures across different factors is justified by the fact that we are always computing k-
NN distances of a given observation to the same set of nominal observations: if an observation is far
from nominal (as quantified by τ ), it is predicted to lead to failure. We summarize the key steps of
RoboART in Algorithm 1.
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5 Experiments
We evaluate our framework using 500+ hardware trials that vary twelve environmental factors
(Fig. 2) for two visuomotor diffusion policies with significantly different architectures. These ex-
periments investigate: (1) How well does RoboART identify vulnerabilities and predict policy per-
formance when relevant environmental factors are varied? (2) How effective is RoboART in enabling
policy improvement via targeted data collection? (3) How good of a proxy is anomaly detection for
performance degradation in different environmental conditions?

Hardware setup. Fig. 1 visualizes the hardware platform: a bimanual manipulator with two Kuka
IIWA arms and Weiss grippers (the experiments only utilize the left arm). For sensing, we use a dual
camera setup with a fixed overhead camera and another camera mounted on the left wrist.

Training data. We use trajectory optimization to automatically collect training data: 3K+ demon-
strations for grasping objects in a broad set of nominal conditions, i.e., with fixed lighting, with a
fixed pink background on a table, and an object set that consists of blocks, plush toys, small cans,
and artificial fruits. Data augmentation is performed via random crops and color jittering. Addi-
tional details are in Appendix C. We highlight that the chosen task (grasping) is relatively easy to
learn, and hence makes the problem of red teaming more challenging; trained policies demonstrate
a nontrivial degree of generalization, but are also vulnerable in ways that are hard to intuit.

Policies. We consider two policies that vary significantly in their overall architecture. The first
policy, πhyb, uses a hybrid policy architecture inspired by [61], which combines the benefits of
trajectory optimization for free-space planning with the reactive nature of closed-loop visuomotor
diffusion policies [1]. The latent embedding (used by RoboART for anomaly detection) is a vector in
R512 that encodes the robot’s visual and proprioceptive observations, along with a keypoint selected
by the robot’s operator to specify the object to grasp. We also separately train a vanilla diffusion
policy [1], πdfn, with a latent embedding vector in R515×513. Details of the policies are provided in
Appendix C. Both policies achieve approximately 65% success for nominal conditions, as measured
by 30 trials (each) that vary objects, their locations, and the target object.

Environmental factors. We choose a set F of twelve environmental factors that reflect common
vulnerabilities of visuomotor policies trained via behavior cloning. These are shown in Fig. 2,
and include: (1–3) three changes to the lighting conditions (red, green, blue), (4–6) three changes
to the color (red, green, blue) of the table background on which objects are placed, (7–10) four
distractor objects (black and white trash can, laptop, candle) that partially occlude other objects,
(11) a distractor in the form of a person close to the table, and (12) a change to the height of
the table (which changes the location of objects relative to the overhead camera). We highlight
that these factors include both purely visual changes and ones that impact the robot’s actions (e.g.,
moving around the large distractors or adjusting to a different table height). We evaluate predictions
from RoboART by executing both policies in 20+ episodes for each factor; this allows us to estimate
the success rates Rπhyb

f and Rπdfn
f ,∀f ∈ F . The subsequent results thus include 500+ hardware trials.

5.1 How accurately does RoboART identify vulnerabilities and predict policy performance?

We first evaluate how well RoboART predicts the performance degradation induced by each of the
twelve environmental factors for the different policies. We utilize two metrics to evaluate RoboART,
which correspond to the two versions of predictive red teaming described in Sec. 3: (1) Spear-
man rank correlation [62]: which is a value ρ ∈ [−1, 1] that measures how accurately RoboART

ranks the different factors by performance degradation, and (2) Average prediction error: which
measures how accurately RoboART predicts the absolute success rates for the different factors by
computing 1

|F |
∑

f∈F |Rπ
f −Rπ

f,pred|.

Implementation. In order to make predictions using RoboART, we generate a set Sf of 100 edited
observations for each factor f using first time-step observations from a held-out portion of training
episodes. Examples of edits and complete prompts are provided in Fig. 1 and Appendix A. We
compute the resulting anomaly rates απ

f using Sf for each policy as described in Alg. 1. We take
the anomaly score sπ(o, Snom) to be the mean of the k-nearest neighbor cosine distances (in the
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Figure 3: Evaluating predictions from RoboART for πhyb (top panel) and πdfn (bottom panel). Left: Comparison
of true (estimated) rankings of different environmental factors by performance degradation with predictions
made by RoboART. Right: Comparison of true (estimated) success rates with predictions from RoboART.

respective policy embedding space) to a set Snom, which is chosen to be a subset of first-time-step
observations from the training episodes.

Results. Fig. 3 evaluates predictions made by RoboART for πhyb (top row) and πdfn (bottom row).
Fig. 3-left compares the rankings of different environmental factors f ∈ F predicted by RoboART

with the true rankings as measured by the 20+ hardware evaluations for each factor (a lower rank
corresponds to a lower success rate). Fig. 3-right compares the absolute success rates predicted by
RoboART with the true (estimated) success rates. As the figure illustrates, the predictions for both
rankings and absolute performance are strongly correlated with the true rankings and success rates.
For example, RoboART successfully predicts that the performance of πhyb is relatively robust to ob-
ject or person distractors, moderately degraded by background and lighting changes, and strongly
degraded by changing the table height. RoboART also successfully predicts that πdfn is more vulner-
able than πhyb to certain factors such as blue lighting and a change in the table height.

RoboART πhyb πdfn

Spearman ρ ∈ [−1, 1] 0.8 (↑) 0.7 (↑)
Av. prediction error ∈ [0, 1] 0.10 (↓) 0.19 (↓)

Table 1: Quantitative evaluation of success rates pre-
dicted by RoboART compared with real success rates.

Table 1 evaluates the predictions made by
RoboART for both policies. The Spearman ρ in-
dicates a strong correlation between predicted
and actual rankings of factors, while the aver-
age prediction error is under 0.19 for both poli-
cies (roughly in the range of noise when esti-
mating success rates from ∼ 20 trials).

Ablations. For the results above, we use k = 5, |Snom| = 3000 for πhyb and k = 10, |Snom| = 500
for πdfn. We provide results from ablating the values k and |Snom| in Appendix D. Generally, we
find that predictions for πhyb remain accurate when varying |Snom| with small k, while predictions
for πdfn (which has a significantly higher dimensional embedding space) benefit from either having
a smaller value of |Snom| or larger values of k.
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5.2 How effective is RoboART in enabling policy improvement via targeted data collection?

Next, we evaluate how well RoboART enables policy improvement via targeted data collection. We
collect around 1hr of training data (≈ 100 trajectories) for πhyb with the three environmental factors
that RoboART predicts the highest performance degradation for: blue lighting, change in the table
height, and blue table background. We then co-finetune our initial policy πhyb on the nominal data
combined with the small amount of new off-nominal data. During co-finetuning, each mini-batch
consists of 80% of the original data mixture and 20% from the new off-nominal data.

Figure 4: Fine-tuning with data collected under conditions pre-
dicted to be adverse shows cross-domain generalization and boosts
baseline performance by 2–7x.

The fine-tuned policy πft
hyb is evalu-

ated in nominal conditions, the three
conditions for which we collected
data, and also the other background
and lighting conditions. Videos of
πft

hyb are available in the supplement.
Fig. 4 shows improved performance
in nominal conditions and a 2–7x im-
provement in off-nominal conditions
under which training data was col-
lected. Significantly, the targeted data
collection also yields cross-domain
generalization: the policy improves
by 2–5x even for background and
lighting conditions where we did not
collect additional data. This highlights the benefits of targeting data collection towards adverse
scenarios via predictive red teaming.

5.3 How accurately does anomaly detection predict performance degradation?

Our final set of experiments evaluate the anomaly detection component of RoboART in isolation
from the image editing pipeline. To this end, instead of executing the embedding-based anomaly
detector on the set Sf of edited observations, we execute the detector on the set Sreal

f composed
of real robot observations collected from the first time step of the 20+ episodes where the fac-
tor f is varied. We then compute the corresponding anomaly rates απ

f,real (∀f ∈ F ). Predicted
success rates for each factor are computed as Rπ

f,anom := 1 − απ
f,real and compared with the

(estimated) true success rates. Additional implementation details are provided in Appendix E.

Anomaly detector πhyb πdfn

Spearman ρ ∈ [−1, 1] 0.6 (↑) 0.8 (↑)
Av. prediction error ∈ [0, 1] 0.20 (↓) 0.21 (↓)

Table 2: Evaluating predictions of success rates made
from anomaly rates computed using real observations.

Table 2 presents the Spearman ρ and average
prediction errors. Appendix E presents figures
analogous to Fig. 3. While we observe high val-
ues of ρ and low values of the prediction error
for both policies, we note that the predictions
Rπ

f,anom are made using 5× fewer observations
than predictions from the full RoboART pipeline (∼ 20 real observations vs. 100 edited observa-
tions), thus making them significantly more susceptible to noise.

6 Conclusions

We have considered the problem of predictive red teaming: given access to observations from nomi-
nal scenarios, discovering vulnerabilities of a policy with respect to unseen changes in environmen-
tal factors and predicting the resulting performance degradation. Our approach — Robotics Auto
Red Teaming (RoboART) — modifies nominal observations via generative image editing to reflect
changes in environmental factors, and then uses a policy embedding-based anomaly detector to pre-
dict performance. Experiments across 500+ trials for visuomotor policies demonstrate RoboART’s
ability to (i) identify factors that significantly impact performance, (ii) predict the relative and abso-
lute impact of factors, and (iii) enable policy improvement via targeted data collection.
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7 Limitations and Future Work

We discuss limitations of our approach and promising future directions that may address them.

Edit-to-real gap. While state-of-the-art image editing tools are capable of producing realistic edits
(especially with careful prompting), there are still gaps in realism for certain environmental factors.
For example, edits that reflect lighting changes (Fig. 1) do not modify the shadows of objects as
real lighting changes do. We expect that our method will benefit from the significant investments
in improving image editing models for commercial applications. Beyond single-view realism, a
more challenging limitation is ensuring multi-view consistency. As seen in Appendix A, edited
observations from the overhead and wrist cameras do not represent a consistent geometry for the
new object. One exciting possibility is to utilize recent 3D scene editing tools based on Gaussian
Splatting [63, 64] that allow for edits with multi-view consistency. Scene editing may also allow us
to go beyond RGB observations and edit depth channels.

Anomaly-to-failure gap. Our approach utilizes the anomaly rate as a predictor for performance
degradation. However, as seen in Sec. 5.3, these predictions are not perfectly accurate. One avenue
for future work is to perform edits on observations from multiple time-steps within each episode,
and to compute anomaly rates based on these sequences (rather than only utilizing the first time-
step from episodes, as we currently do). We are also interested in exploring other methods from
the vast literature on anomaly detection to identify techniques that may serve as better predictors of
performance degradation (see, e.g., [65] for a recent empirical study).

Hidden environmental factors. One limitation of RoboART is that it requires changes in environ-
mental factors to be reflected in visual observations of the robot. As such, RoboART will not identify
vulnerabilities with changes that are completely hidden (e.g., changing the mass of objects without
changing their visual appearance). In such cases, predictive red teaming via simulation is a promis-
ing avenue. We note that our method is not meant to provide more accurate predictions compared
to a carefully constructed simulator that faithfully simulates policy execution under a range of con-
ditions. Instead, our work is motivated by the challenge of constructing a faithful simulator, which
can take months-long effort for RGB-based policies, e.g., by matching visual backdrops via green-
screening and matching dynamics via extensive system-id [3]. In contrast, our method does not
require any raw materials other than a set of nominal observations and a generative image editing
tool. To our knowledge, our work is the first to provide such a light-weight method for predictive
red teaming.

Multi-round predictive red teaming. RoboART currently chooses a single set F of environmental
factors at the beginning of predictive red teaming. A more sophisticated approach could iteratively
explore the space of environmental factors: choose an initial set F , make predictions for these, and
expand the set iteratively to include factors that are similar to ones that were predicted to yield poor
performance.

As we seek to deploy robots in challenging real-world applications, it is essential that we develop
scalable methods for predicting the limits of their performance. We hope that formalizing the prob-
lem of predictive red teaming and providing a baseline in the form of RoboART spurs further research
along this underexplored direction.
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A Image Editing: Examples and Prompts

Examples of different edits applied to both the overhead camera and the wrist camera are shown in
Figure 5. Below, we provide complete prompts used to generate the edited observations for each
environmental condition.

(a) Nominal overhead (left) and wrist (right) cameras. (b) Distractor: person.

(c) Distractor: trash can. (d) Distractor: candle.

(e) Distractor: laptop. (f) Background: blue.

(g) Lighting: red. (h) Table height (changed color followed by zoom).

Figure 5: Examples of different edits applied to nominal overhead and wrist camera observations.
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Full prompts for edits
Person:
Add a person to the image. Specifically, add a person behind the blue platform, realistically
interacting with the platform and fitting seamlessly into the existing environment. Preserve all
other aspects of the image, including the different objects on the mat, other background ele-
ments, and the overall composition. The lighting should remain consistent. The new person
should be realistically rendered with all details of the person including their face, clothing, and
any other visible parts shown in exquisite clarity and detail. Only the person should be added.
Large distractor (e.g., trash cans):
Add a large <target color> <target object> at the edge of the pink mat, so that it
doesn’t modify or occlude any of the objects on the pink mat. Specifically, add a <target
color> <target object> that is larger than any objects at the edge of the pink mat, fitting
realistically and seamlessly into the existing scene. Preserve all details of the objects on the
mat, their poses, and the overall composition of the image. The <target color> <target
object> should be realistically and exquisitely rendered and should not occlude any of the
objects on the pink mat. The lighting should remain consistent. Only the <target color>
<target object> at the edge of the pink mat should be added.
Small distractor (e.g., candle):
Modify image <image> as described below: Add a small scented candle on the pink mat, so
that it doesn’t modify or occlude any of the objects on the mat. Specifically, add a scented can-
dle with roughly the same size as the objects on the pink mat, fitting realistically and seamlessly
into the existing scene. Preserve all details of the composition of the image. The scented candle
should be realistically and exquisitely rendered and should not occlude any of the objects on the
pink mat. The lighting should remain consistent. Only the scented candle should be added.
Background color:
Modify image <image> as described below: change the color of the pink mat that objects are
on to <target color>. Preserve the different objects on the mat, and all other aspects of the
image including the lighting and the overall composition.
Lighting (overhead camera):
Modify image <image> as described below: Colorize the bottom half of the image with an ex-
tremely intense <target color> hue. Preserve the existing composition, details, and textures
of the objects in the scene, including the ones on the pink mat and the background. Only the
shadows and color palette should be altered to reflect an extremely intense <target color>
light, maintaining the style of the original image. The overall lighting should remain consistent,
with shadows and highlights adjusted to match the new color palette. Make sure that the hue for
the bottom half of the image is changed to intense <target color>, including for the objects
on the table.
Lighting (wrist camera):
Modify image <image> as described below: Colorize the entire image with an extremely in-
tense <target color> color tone. Preserve the existing composition, details, and textures
of the objects in the scene, including the ones on the pink mat and the background. Only the
shadows and color palette should be altered to reflect an extremely intense <target color>
light, maintaining the style of the original image. The overall lighting should remain consistent,
with shadows and highlights adjusted to match the new color palette. Make sure that the color
for the entire image is changed to intense <target color>.
Table height:
Change the color of the pink mat to <target color>. Preserve all other aspects of the image,
including the different objects on the mat, the lighting, and the overall composition. Only the
color of the pink mat should be altered to <target color>, maintaining its shape, size, and
position. [We then apply a zoom to the portion of the image that contains the table in order to
simulate a change in the height of the table.

B Filtering Edits with a Vision-Language Model

For each nominal observation, we generate a batch of four candidate edited observations via the
image editing model. We then use a vision-language model (VLM) in order to judge if any of the
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Do any of {Img1}, {Img2}, {Img3}, or {Img4} accurately re!ect an edited version of {Img0} with the instruction: {instruction}? 
If so, which one is the best?

Img0

Img2 adds a {target object} that does not occlude anything, which matches with the instructions.

VLM

Img1 Img2 Img3 Img4

Figure 6: A vision-language model ensures that the edited image reflects the desired change.

options accurately reflect the desired change; if so, the VLM is tasked with choosing the best one
(if not, we simply discard the observation from our set). An example is shown in Fig. 6. The full
prompt for the VLM — which involves chain-of-thought reasoning — is provided below. We use
the Gemini Pro 1.5 VLM [11] for our experiments.

Prompt for filtering edits with a VLM
Here is the original image I have: <original image>. Do any of Image 0: <Image 0>,
Image 1: <Image 1>, Image 2: <Image 2>, or Image 3 <Image 3> accurately reflect an
edited version of the original image with the instruction “<short edit instruction>”?
Give your reasoning and then answer with a True or False. If True, provide the index (0,1,2,3)
of the best image.

The variable <short edit instruction> contains a shortened version (e.g., “Change the color
of the pink mat to <target color>”) of the full prompt provided to the image editing model. We
find that providing the full prompt (instead of a shortened version) can lead the VLM to be overly
critical and filter out many acceptable edits.

C Training and Policy Details

C.1 Training Data Collection

Training data collection. For training our policies, we collect 3K+ demonstrations for grasping
tasks on the hardware. Specifically, we use trajectory optimization-based motion planners to auto-
matically collect a large set of training data. Our data collection pipeline uses the overhead camera
to obtain a 3D point cloud of the scene. We segment the point cloud into multiple objects and ran-
domly choose different objects to pick using the left arm. We use automated success detection to
segment these trajectories. For each episode, we further automatically annotate keypoints for the
object the policy should grasp; these are used as additional context for the robot policy in addition
to camera and proprioceptive observations. All demonstrations are collected in nominal conditions,
i.e., with fixed lighting, with a fixed pink background on a table, and an object set that consists of
blocks, plush toys, small cans, and artificial fruits.

C.2 Hybrid Policy Architecture

Hybrid policy. We consider two policies that vary significantly in their overall architecture. The
first policy πhyb uses a hybrid policy architecture inspired by [61], which aims to utilize the benefits
of trajectory optimization-based approaches for free space planning together with the reactive nature
of closed-loop visuomotor diffusion policies. We achieve this by using two separate heads in our
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Figure 7: The policy architecture used for two different — hybrid and diffusion — policy implementation.
Our unified architecture consists of a trajectory mode which predicts the continuous joint space actions and
a waypoint mode which predicts a single SE(3) waypoint that the arm should reach to. We use two different
policies. 1. hybrid policy uses both the trajectory and waypoint mode and selects between them to execute the
action. 2. diffusion policy only uses the trajectory mode and directly predicts the joint space trajectory for the
robot to follow.

policy architecture (see Fig. 7), where each head represents an action mode. These two different
action modes correspond to:

1. a waypoint action mode which outputs a single waypoint (w ∈ SE(3)), and

2. a trajectory action mode which outputs a dense sequence of robot joint angles (qi ∈ R14).

In addition to these policy heads we also output a mode selection scalar which defines which action
mode should be executed at any given time. In order to execute the waypoint action we use a
trajectory optimization approach based on sequential quadratic programming (SQP), and execute
the output trajectory for a fixed number of steps before re-querying the policy. By contrast, in order
to execute the trajectory action we simply interpolate through the joint commands outputted by the
network. Importantly, during training both policy heads are trained simultaneously, i.e., each input
data item is labelled with a waypoint action (extracted using an object closeness heuristic) and a
dense trajectory action (which we directly extract from the robot logs). We supervise the mode
selection scalar to output the waypoint action mode when the arm is far away from any object and
the trajectory action mode in all other scenarios.

Vision encoder. Our policy architecture uses pre-trained ViT [66] encoders to encode the image
observations from each image. We use separate models for each camera observation (overhead and
wrist). We reduce the number of tokens from each ViT using a TokenLearner layer [67]. We encode
proprioceptive features using a multi-layer perceptron (MLP) with a single hidden layer.

Instruction encoder. The robot is instructed to grasp a target object using semantic keypoints.
Specifically, we extract a small patch (64 × 64) from the overhead camera view around a keypoint
that is selected by the robot operator. We encode this patch using a small coordinate convolution-
based neural network. Since we train a multi-skill policy we encode the skill that the robot needs to
perform using a continuous embedding. The semantic keypoint representation is concatenated with
the skill embedding to form the instruction tokens.

Context Fuser. The observation tokens, the instruction tokens and proprioceptive tokens are fused
together using a context fuser which uses a stack of self-attention based transformer layers. We also
additionally add a readout token, which we refer to as the waypoint-mode token. At the end of the
context fuser we get a set of fused observation-instruction embeddings as well as the embedding
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Hyperparam Value

train steps 500K
optimizer AdamW
warmup linear upto 10K steps
learning rate 1e-4
learnign rate decay constant
weight decay 1e-4
trajectory (action) horizon 10

Table 3: Hyperparameters used to train the different policies used.

for the readout token. The observation-instruction embeddings are used to predict the trajectory and
thus passed into the trajectory diffusion transformer. Alternatively, the waypoint-mode embedding
is used by the waypoint diffusion transformer to predict the SE(3) waypoint as well as to predict
the current mode for the robot. The observation-instruction embeddings are used by RoboART for
anomaly detection.

Diffusion. For both trajectory diffusion and waypoint diffusion we use a Transformer decoder-
based denoiser [68]. The denoiser takes as input noisy action embeddings together with a diffusion
timestep embedding. These noisy actions and timestep embeddings cross-attend to the context em-
beddings (either the context tokens for trajectory diffusion or waypoint embedding for waypoint
prediction). After multiple layers of alternating between self-attention and cross-attention the diffu-
sion transformer outputs the denoised trajectory or waypoint action (as desired).

C.3 Diffusion Policy

Our diffusion policy architecture πdfn uses a standard diffusion policy [1, 69] to directly output
the joint angles to control the robot. Our base architecture is similar to πhyb (described above)
wherein we only use the trajectory mode, i.e., only the trajectory diffusion head is used to predict
robot trajectories. The rest of the architecture including the vision encoders and the multi-modal
instruction encoder are common between πdfn and πhyb. However, unlike πhyb, πdfn does not include
a readout token (waypoint/mode token) within the context fuser.

C.4 Training and Inference Details

Table 3 shows the common set of hyper-parameters used to train each of our policies. We use a batch
size of 256 during training. As shown in Figure 7 for the high dimensional image observations we
use an additional token learner to reduce the number of image tokens. We use 128 tokens for each
image observation. For our diffusion model we use a continuous time implementation based on [70].
Similar to [70] we use a second order Heun solver to solve the flow ODE. We use 30 ODE steps
during inference. As shown in Table 3, we use an action horizon of 10. Since we collect our training
data at 10Hz this corresponds to 1 second of robot motion. During inference, we open-loop rollout
entire 10 steps before querying the policy again. During evaluation we use a maximum of 30 policy
steps before we stop policy evaluation. For our targeted data collection experiment Section 5.2, we
use a much smaller learning rate of 5e− 6 and a linear warmup of 4K steps. We finetune the policy
for a total 20K steps.

D Ablations: Score Function and Size of Nominal Rerence Set

D.1 Ablations for RoboART

RoboART uses an anomaly score function sπ(o, Snom) that computes the mean of the k-nearest neigh-
bor cosine distances in policy embedding space. The set Snom consists of embeddings computed for
a random subset of the training data. Intuitively, this anomaly score quantifies how dissimilar a given
observation is compared to similar training observations from the perspective of the policy. In the
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tables below, we provide results from varying the size of Snom and the value of k for each policy.
Each table compares the predictions made by RoboART with the actual (empirically measured) per-
formance by computing the Spearman rank correlation and the average prediction error, as described
in Sec. 5.1. Generally, we find that predictions for πhyb remain accurate when varying |Snom| with
small k, while predictions for πdfn (which has a significantly higher dimensional embedding space)
benefit from either having a smaller value of |Snom| or larger values of k.

Hybrid policy πhyb

|Snom| = 3000 k = 1 k = 5 k = 10

Spearman ρ (↑) 0.72 0.78 0.78
Av. pred. err. (↓) 0.12 0.1 0.12

|Snom| = 2000 k = 1 k = 5 k = 10

Spearman ρ (↑) 0.72 0.79 0.68
Av. pred. err. (↓) 0.12 0.12 0.13

|Snom| = 1000 k = 1 k = 5 k = 10

Spearman ρ (↑) 0.76 0.65 0.63
Av. pred. err. (↓) 0.12 0.13 0.17

|Snom| = 500 k = 1 k = 5 k = 10

Spearman ρ (↑) 0.69 0.63 0.56
Av. pred. err. (↓) 0.12 0.16 0.19

|Snom| = 200 k = 1 k = 5 k = 10

Spearman ρ (↑) 0.72 0.65 0.49
Av. pred. err. (↓) 0.14 0.18 0.23

Vanilla diffusion policy πdfn

|Snom| = 3000 k = 1 k = 5 k = 10 k = 25 k = 50 k = 100 k = 200

Spearman ρ (↑) 0.59 0.52 0.56 0.66 0.59 0.67 0.66
Av. pred. err. (↓) 0.22 0.21 0.21 0.20 0.20 0.19 0.20

|Snom| = 2000 k = 1 k = 5 k = 10 k = 25 k = 50 k = 100 k = 250

Spearman ρ (↑) 0.55 0.52 0.53 0.64 0.64 0.69 0.17
Av. pred. err. (↓) 0.21 0.20 0.20 0.20 0.20 0.20 0.25

|Snom| = 1000 k = 1 k = 5 k = 10 k = 25

Spearman ρ (↑) 0.63 0.52 0.60 0.59
Av. pred. err. (↓) 0.21 0.20 0.19 0.20

|Snom| = 500 k = 1 k = 5 k = 10

Spearman ρ (↑) 0.58 0.66 0.71
Av. pred. err. (↓) 0.21 0.19 0.19
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|Snom| = 200 k = 1 k = 5 k = 10

Spearman ρ (↑) 0.61 0.64 0.75
Av. pred. err. (↓) 0.19 0.20 0.19

E Predicting Performance From Anomalies

Fig. 8 compares the true (estimated) rankings of different environmental factors and success rates
with rankings and success rates predicted by executing the anomaly detector on ∼ 20 real ob-
servations collected from each of the twelve off-nominal settings. Specifically, predicted success
rates for each factor are computed as Rπ

f,anom := 1 − απ
f,real. For anomaly detection, we use

k = 10, |Snom| = 3000 for πhyb and k = 10, |Snom| = 200 for πdfn. The anomaly threshold for
πhyb is computed using conformal prediction as described in Sec. 4.2 in order to bound the anomaly
rate in nominal conditions to 1 − R

πhyb
nom . For πdfn, we found this procedure to yield an anomaly

threshold that is too conservative (i.e., flagging most observations in the different off-nominal sce-
narios as anomalous). This sensitivity may be due to the relatively small number nval = 70 of
nominal observations we used to compute the anomaly threshold and the very high dimensionality
of the embedding space (R515×513) of πdfn. In order to correct for this, we computed the anomaly
threshold with a slightly higher estimate of the nominal success rate (0.8 vs. 0.65), i.e., using con-
formal prediction to bound the anomaly rate in nominal conditions to 1 − 0.8 rather than 1 − 0.65.
Fig. 8 shows a strong correlation between predicted and realized performance. We note that the
predictions Rπ

f,anom are made using 5× fewer observations than predictions from the full RoboART
pipeline (∼ 20 real observations vs. 100 edited observations), thus making them significantly more
susceptible to noise.

Figure 8: Evaluating predictions made from anomaly rates computed using real observations.
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