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Fig. 1: Continual Autonomous Learning: We enable a legged mobile manipulator to learn a variety of tasks such as moving chairs (top,
left and right), righting a dustpan (top, middle), and sweeping (bottom) via practice in the real world with minimal human intervention.

Abstract—To build generalist robots capable of executing a
wide array of tasks across diverse environments, robots must be
endowed with the ability to engage directly with the real world
to acquire and refine skills without extensive instrumentation or
human supervision. This work presents a fully autonomous real-
world reinforcement learning framework for mobile manipulation
that can both independently gather data and refine policies
through accumulated experience in the real world. It has several
key components: 1) automated data collection strategies by guiding
the robot’s exploration toward object interactions, 2) using goal
cycles for real world RL such that the robot changes goals once
it has made sufficient progress, where the different goals serve as
resets for one another, 3) efficient control by leveraging basic task
knowledge present in behavior priors in conjunction with policy
learning and 4) formulating generic rewards that combine human-
interpretable semantic information with low-level, fine-grained
state information. We demonstrate our approach on Boston
Dynamics Spot robots in continually improving performance
on a set of four challenging mobile manipulation tasks and show
that this enables competent policy learning, obtaining an average
success rate of 80% across tasks, a 3-4× improvement over
existing approaches.

I. INTRODUCTION

As robots transition from the structured confines of fully
mapped industrial settings into the dynamic and unstructured
realm of our daily lives, there is an increasing need to
build generalist systems capable of executing a wide array

of tasks across diverse environments. While visuomotor poli-
cies trained with reinforcement learning (RL) have demon-
strated significant potential to bring robots into open-world
environments[28, 29, 34], in practice, they first require training
in simulation [3, 10, 11, 22, 53, 61]. However, it is challenging
and not scalable to build simulations that capture the unbounded
diversity of real-life tasks, especially involving complex ma-
nipulation. What if we instead adopt a strategy where learning
occurs through direct engagement with the real world, without
extensive environmental instrumentation or human supervision
during the training process? This would allow robots to acquire
and refine skills for various tasks continuously. In this work, we
present a fully autonomous real-world reinforcement learning
framework for mobile manipulation that can both independently
gather data and refine policies through accumulated experience.
We address multiple challenges for building an effective real-
world learning system.

Challenge 1: Automated collection of useful data: Consider
a complex, high-dimensional system like a legged mobile
manipulator operating in open spaces where undirected actions
often do not affect any meaningful change in the environment.
The first challenge in building an effective real-world learning
system is in autonomous, task-relevant data collection because
good robot autonomy does not imply the resulting data has a



useful learning signal. For example, we would like to avoid
the robot simply waving its arm in the air without interacting
with objects if its goal is to acquire manipulation skills. While
such a system could, in theory, learn sophisticated mobile
manipulation strategies given enough data, we propose using
off-the-shelf visual models to design automated strategies
that make learning in the real world feasible by guiding the
robot’s exploration toward object interactions. In particular, we
design automatic grasp and navigation procedures (described as
auto-grasp and auto-nav in Algorithm 2), which utilize
detection systems and pre-existing skills to move the robot
near and grasp task-relevant objects. But this is not sufficient
because the legged manipulator does not know what to do after
grasping, and in many cases, even grasps need to be applicable
to the particular task, e.g., holding a dustpan from its handle
to pick it up (see Figure 1).

Challenge 2: How to ensure diverse practice? The second
challenge is how to allow the robot to purposely practice
achieving goals from diverse initial states without human
resetting. That is, once the robot is close to its goal, it does
not get to practice the task from states that are further from the
goal. For instance, consider a robot tasked to move furniture.
The robot may learn to move a piece of furniture to its target
location; however, now that the furniture is very close to the
goal, continuing to practice the task from this starting state
will not yield further benefits. Instead, if the environment state
could be reset back to the initial state distribution, the robot
could practice repeating its success. In the absence of such
resets, how can we enable autonomous robots to return to
the harder initial state distribution for practicing tasks? The
approach we use is to set up ‘goal-cycles’ [18, 19, 23], where
we switch the goal once the robot has made sufficient progress
on the previous one, or spent a budget of a fixed interval of
trajectories attempting it. Hence, the goals serve as resets for
one another, and this multi-goal learning setup ensures that
the robot does not stagnate in a limited region of the state
space near any particular goal. One difficulty of this setup is
that learning potentially very different skills to achieve these
multiple goals increases the burden on the learning approach
and may slow down execution as the robot cannot practice
only one skill full-time. So, we devise a multi-robot setup (i.e.,
two Spot robots with arms) to mitigate this challenge, e.g.,
while one robot focuses on the task of sweeping, the other one
picks up the swept object and drops it further away.

Challenge 3: Efficient control in the real world: Even with
a favorable initial state distribution, policy learning poses a
daunting challenge due to large observation and action spaces.
This challenge is especially severe in the case of legged
mobile manipulation, where the robot needs to move and
simultaneously maintain contact with objects and retain control.
Our approach expedites learning control policies by leveraging
basic task knowledge present in behavior priors. These priors
can take the form of planners with a simplified incomplete
model or automated procedurally generated behaviors. It is
important to note that while these priors bootstrap learning

and help provide a signal for learning, particularly in the early
stages, the priors might not be very competent at performing
the task, owing to their simplicity. For example, an RRT*
planner [33] for moving in the x-y plane does not have a
model of robot-chair or chair-table interaction dynamics and
will not be able to recover effectively from collisions. Similarly,
such a planner will struggle trying to sweep a paper bag which
requires maintaining contact with the bag, adapting to different
ways the bag might move, and still moving the robot towards the
goal. In our experiments, the average success rate of the prior
is just 20% across tasks but as low as 5% for the challenging
task of sweeping. In contrast, our learning-based approach
enables an average success rate of 80%, a 4× improvement.
Hence, the priors are not a substitute for learning controllers
but rather serve to expedite learning by structuring exploration.
Challenge 4: Defining rewards in the real world: For the
system to benefit from the previously described structure and
get better at performing tasks, it must evaluate the relative
benefit of different actions by receiving reward feedback
from the environment. Providing reward supervision in the
real world often requires physical instrumentation in the
form of specialized sensors [43, 60] or needs humans in the
loop [13, 36, 46]. Furthermore, the ability of these robots to
keep collecting data and learning to improve is bottlenecked by
how expensive or difficult it is to scale these approaches. There
has been some work on completely self-supervised learning
systems with some extensions to robotics [39, 41], but these
approaches are challenging to deploy on complex tasks due
to intractability, underspecification, and misalignment. In this
work, we seek a flexible way for humans to specify objectives
for arbitrary tasks. To this end, we devise a generic reward
modeling recipe that combines human-interpretable, semantic
information, i.e., text-based detection and segmentation models,
along with low-level, fine-grained state information, i.e., vision
and depth-based observations for object estimation. Despite
yielding noisy estimates, we find the resulting reward is
sufficient to allow the robot to learn challenging tasks.

The main contribution of this work is a general approach for
continuously learning mobile manipulation skills directly in
the real world with autonomous RL. The main components of
our approach involve: (1) task-relevant autonomy for collecting
data with useful learning signals, (2) efficient control by
integrating priors with learning policies, and (3) flexible reward
specification combining high-level visual-text semantics with
low-level depth observations. Our approach enables a Boston
Dynamics Spot robot to continually improve in performance
on a set of 4 challenging mobile manipulation tasks, including
moving a chair to a goal with the table in the corner or
center of the playpen, picking up and vertically balancing
a long-handled dustpan, and sweeping a paper bag to a target
region. Our experiments show that our approach gets an average
evaluation success rate of about 80% across tasks, which is a 4×
improvement over using either RL or the planner individually.
Notably, on the challenging sweeping task, our method is the
only one to learn a competent policy compared to using just a
prior, offline RL on the prior data or RL without priors.
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Fig. 2: Method Overview: The main components of our approach for robots to continually practice tasks in the real world. Left: Efficient
control by aiding policy learning with basic task knowledge present in behavior priors in the form of planners with a simplified model or
automated behaviors. Center: Task-relevant autonomy to ensure collection of useful data via auto-grasp, and maintaining state diversity
via automated resets using multi-goal and multi-robot setups. Right: Flexible reward supervision that combines human-interpretable semantic
detection-segmentation information with low-level, fine-grained depth observation.

II. RELATED WORK

A. Autonomous Real-World RL

A large number of works have focused on directly training
robots with RL in the real world [28, 29, 34, 40]. To enable
autonomous systems, prior works have studied reset-free RL
with forward-backward policies [45], and a graph structure of
sub-tasks that serve as resets for one another [18, 59]. This has
been studied in table-top settings involving arms and dexterous
hands, and in our work, we aim to adapt these ideas for mobile
manipulation problems. There has been work on real-world RL
training for legged locomotion [20, 48, 56], where steps have
been taken to address autonomy, such as training reliable reset
policies [47]. Approaches have also aimed to tackle autonomous
mobile manipulation [24, 51, 58], but are mostly constrained
to single tasks. Moreover, task specification is a big challenge
[66] if one wants to enable autonomy. A natural way to specify
tasks is to leverage language goals and combine these with
large-scale visual models [30], conditioned on open-vocabulary
prediction [6, 35, 64]. However, these approaches require some
level of prompting and guidance from a human.

B. Mobile Manipulation

Mobile manipulation methods balance many trade-offs to
enable complex reasoning and control over both manipulation
and navigation. In the 2015 DARPA Robotics Challenge Finals,
mobile manipulation solutions primarily relied on pre-built
object models and task-specific engineering to enable mobile
manipulation [32]. More recent work modularizing tasks into
skill primitives and interacting with those primitives using
flexible planners, including large language models, has enabled
more generalization outside of pre-coded tasks [4, 51, 54, 55].
Imitation learning approaches to mobile manipulation enable
joint reasoning over manipulation and navigation actions
and generalize across broad sets of tasks [2, 8, 15, 17, 44].

However, imitation learning requires an expensive collection
of expert trajectories. In contrast, RL methods can learn from
experience and have also enabled whole-body control of mobile
manipulators [14, 27, 61]. Decomposing the action space
over which the RL policy operates enables more tractable
and efficient learning of long-horizon mobile manipulation
skills [16, 38, 57, 63]. In our work, we move beyond tasks that
involve picking and placing to instead learn skills that require
more coordination between the legs and arms, e.g., moving
chairs or sweeping. Doing so in simulation is challenging due
to the difficulty in modeling robot-object dynamics. Hence
we train our system directly in the real world. Learning is
made feasible and efficient using task-relevant autonomy and
by incorporating behavior priors.

III. CONTINUOUSLY IMPROVING MOBILE MANIPULATION
VIA AUTONOMOUS REAL-WORLD RL

We design our approach to allow robots to autonomously
practice and efficiently learn new skills, without task demon-
strations or simulation modelling and with minimal human
involvement. To our knowledge, the paradigm of real world
RL for manipulation has so far only been shown for table-top
settings [25, 28, 29], or much simpler pick-place tasks for
mobile robots [24, 51]. The key contribution of this work
is showing that it is possible to extend this paradigm to
accomplish much more difficult manipulation tasks including
tool use and constrained manipulation of large and heavy
objects, with a complex legged mobile manipulator. The main
idea is the threefold consideration of task-relevant autonomy,
efficient control using available prior data, and flexible reward
specification. The first ensures the data collected is likely to
have learning signal, the second utilizes signal from data to
collect even better data to quickly improve the controller, and
the third describes how to define learning signal for tasks.



Algorithm 1 Autonomous RL for Legged Mobile Manipulation

Require: Third person image IC , egocentric images {IEC}
Require: Detection-segmentation models M(.)
Require: Behavior prior P (.)

1: Initialize Data buffer D, RL policy πθ

2: Initialize task goal GT with goal object state gT
3: Initialize trajectories per task K, episode horizon H
4: while training do
5: for trajectory 1:K do
6: Approach object using Autograsp or AutoNav (Alg. 2)
7: for timestep 1:H do
8: Use policy πθ(.) and prior P (.) for either separate

(Eq. 1), sequential (Eq. 2) or residual (Eq. 3) control.

9: Compute reward rt using M(IC , {IEC})
10: Add (ot, at, ot+1, rt) 7→ D
11: Sample batch β ∼ D to update policy π via RL
12: end for
13: (optional) If distance(x, gT ) ≤ ϵ, break
14: end for
15: Switch task goal GT
16:
17: end while

Algorithm 2 Autograsp/AutoNav

Require: Third person image IC , egocentric images {IEC}
Require: Detection-segmentation models M(.)
Require: Navigation skill N(.), Grasping skill G(.)

1: Use M(IC) to attempt object state (x) estimation
2: while object not detected do
3: Use M({IEC})) to attempt x estimation
4: Step robot base by (x, y, θ) ∼ Unif.[−1, 1]
5: end while
6: Use N(.) to navigate close to x
7: Use G(.) to grasp the object (optional)

The overview of the approach we use is presented in Alg. 1.
Task-relevant autonomy ensures that the the robot interacts
with objects and prevents it from stagnating in any part of the
state space. The former is enabled using the auto-grasp or
auto-nav procedures, and the latter using goal cycles, which
automatically resets tasks. Efficient control learning involves
using model-free RL along with priors to quickly improve
the policy. The reward specification for this optimization can
be easily extended to many tasks, and is based on estimating
object position, using a combination of text-prompted detection,
visual segmentation, and depth observations. Next, we describe
further details of each of these components.

A. Task-Relevant Autonomy

Auto-Grasp/Auto-Nav: We outline the process for this
procedure in Alg. 2. Every episode begins with the system
attempting to estimate, move to, and/or grasp the object of
interest for the task. Given an image, object estimation consists
of first running open-vocabulary text-based detection (e.g.

Detic [65] or Grounding DINO [37]) to obtain bounding boxes,
which are then used to prompt a vision segmentation model,
like Segment Anything (SAM [30]). The resulting object mask
can be used along with depth observation from calibrated
cameras in the environment (including the robot’s egocentric
vision sensors) to obtain the 3-D pointcloud of the object
(see Fig.5). Detection is first run on the image from the fixed
camera, and if the object is not detected, we look at images
from the egocentric cameras and move the robot by a random
step (x, y, θ) ∼ Unif.[-1,1] in the SE(2) plane until the object
is found.

Fig. 4: Collision map of the
playpen used by the SE(2) naviga-
tion planner. The table is added to
this map when included in experi-
ments.

Once the object position has
been detected, we can use pre-
existing navigation and grasp-
ing skills to move the robot
close to the object. For navi-
gation we use RRT* to plan
in SE(2) space given the obsta-
cles, using the collision map of
the playpen as shown in Fig. 4.
The red region denotes the es-
timate of the robot’s position
in the x-y plane, with the blue

marking denoting its heading. The map is generated before
experiments as part of calibration, by walking the robot around
different parts of the playpen.

For grasping, we use the grasp API from the Boston
Dynamics Spot SDK. This grasp is generated via a geometric
algorithm that fits a grasp location with a geometric model
of the gripper, scores different possible grasps and picks the
best one. We do not constrain the type of grasp, or on which
portion of the object the grasp is performed. We found that
this allows the robot to keep practicing regardless of which
position or orientation the object might end up in as a result
of continual interaction.

Goal-Cycles: To ensure that autonomous robots can keep
learning effectively after initial success, we set up ‘goal-cycles’
within tasks. Here the goal is switched once the robot has
made sufficient progress on the previous one, or spent a budget
of a fixed interval of trajectories attempting it. We show the
different goal states used in each of the 4 tasks we consider
in Fig.3. For certain tasks like Long Handled Dustpan PickUp
(Fig.3 e,f), we do not need an explicit goal cycle, since the
handle can be picked up both from the ground and when it is
standing, and the robot can continue to practice the task from
roughly the same starting state distribution. In the case of the
chair moving tasks (Fig.3: a-d), the robot alternates between
goals that are far apart in the x-y plane. For the sweeping task
(Fig.3: g-h), we use a multi-robot setup for the goal cycle,
where one robot holds the broom and needs to sweep the paper
bag into the target region (denoted by the blue box), while
the other needs to pick up the bag and drop it back into the
region where it can be swept. Since we only need learning for
the sweeping skill, the robot that picks up the bag runs the
auto-grasp procedure.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Task Goals: Visualization of the states that form goal-cycles for each of the 4 tasks we consider - (a-b): Chair Moving with a table
in the corner, (c-d): Chair Moving with a table in the middle, (e-f): Long Handled Dustpan Pickup, (g-h): Sweeping

B. Prior-guided Policy Learning

Incorporating Priors: We enable efficient learning by
leveraging priors that utilize basic knowledge of the task. This
removes the burden from the learning algorithm from having to
rediscover this knowledge, and instead focus on learning other
additional behavior needed for solving the task. The priors
can take the form of a planner or automated, procedurally
generated behavior. For example, an RRT* planner with a
simplified 2D model can help an agent move between two
points in the x-y plane while avoiding obstacles. Starting with
this prior, using RL can help the robot learn to recover from
collisions and deal with dynamic constraints not represented in
the model. Concretely, the prior is a function P (.) that takes
in an observation ot and produces an action at, similar to a
policy π(at|ot). We have three ways of incorporating this - the
prior and policy can be executed separately, where we alternate
between the two, we can execute them sequentially, where the
policy is executed after the planner or we can adopt residual
control of the policy around a planner constraint.

1. Separate: Trajectories are collected independently using
either the prior or the policy.

Prior: {P (a0|o0), . . . , P (aT |oT )}
Policy: {π(a0|o0), . . . , π(aT |oT )} (1)

Instead of learning entirely from scratch, we incorporate the
(potentially) suboptimal data from the prior into the robot’s
data buffer to bootstrap learning. Intuitively, the prior is likely
to see a higher reward than a completely randomly initialized
policy, especially for sparse reward tasks. In fact, previous work
has found incorporating data from expert demonstrations [42]
or even from other policies that are suboptimal with respect to
a new task [5, 25, 49, 50, 52] to vastly decrease the amount
of online data required to learn. We adopt the latter strategy,

making no assumptions on the optimality of the prior, and
bootstrap learning via incorporating its data. In practice, we
first collect trajectories using the prior and use it to initialize
the data buffer used for training the online RL policy π(.).

2. Sequential: In addition to providing data with better signals
to the learning process, priors can reliably make reasonable
progress on a task. This is because they often generalize well,
for example, an SE(2) planner will make reasonable progress in
moving a robot between any two points in the x-y plane, even
when it performs constrained manipulation. We would need to
sample many times from the prior to distill this information
purely via the data buffer. Hence a more direct approach is
to utilize the prior along with the policy for control. We do
this by sequentially executing the prior, followed by the policy.
That is, trajectories collected in this manner take the form:

{P (a0|o0), .., P (aL|oL), π(aL+1|oL+1), .., π(aT |oT ).} (2)

This effectively uses the prior to structure the initial state
distribution of the policy, which makes learning easier. The
data collected by the prior is also added to the data buffer,
allowing the policy to learn from these transitions.

3. Residual: In certain cases, the prior might not be robust
enough to deploy directly but nonetheless provide reasonable
bounds on what actions should be executed. For example, for
sweeping an object, the robot’s base should roughly be in the
vicinity of the trash being swept, but this does not prescribe
what exact actions to take. An approach to utilizing such a
prior is to use residual control, where a policy adjusts the
actions of the prior at every time step before being executed.
These trajectories take the form:

{P (a0|o0) + π(a0|o0), . . . , P (aT |oT ) + π(aT |oT )} (3)

RL Policy Training: The RL objective is learn parameters



θ of a policy πθ to maximize the expected discounted sum of
rewards R(st, at):

J(πθ) = E s0∼p0

at∼πθ(at|st)
st+1∼P(st+1|st,at)

[
T∑

t=0

γtR(st, at),

]
(4)

where p0 is the initial state distribution, P is the transition
function and γ is the discount factor. For sample efficient
learning that effectively incorporates prior data, we use the
state-of-the-art model-free RL algorithm RLPD [5]. RLPD is an
off-policy method based on Soft-Actor Critic (SAC) [21], which
samples from a mixture of data sources for online learning.
Since our observations consist of raw images, we incorporate
the image augmentations added by DrQ [62] to the base RL
algorithm. Like REDQ [9], RLPD uses a large ensemble of
critics and in-target minimization over a random subset of the
ensemble to mitigate over-estimation common in TD-Learning
(we refer the reader to the RLPD paper for further explanation).
In our experiments, we use an ensemble of 10 critics and an
update-to-data ratio of 4. For dense reward tasks, we minimize
over two critics, while for sparse reward tasks, we simply
sample one critic for the target value. The observation space
for our policy training consists of three image sources: the
fixed, third-person camera, the egocentric front-left and front-
right cameras on the quadruped, and the body position, hand
position, and goal image. The policy sees the three most recent
images for each image source at each timestep. We use the
JAX implementation [7] of this algorithm open-sourced by Ball
et al. [5], which allows for fast training.

C. Flexible Supervision via Text-Prompted Segmentation

Fig. 5: Grounded SAM/Detic Visusalization: We run open-
vocabulary text-based detection to obtain bounding boxes, followed
by a segmentation model to obtain an object mask, visualized for
chair (left) and sweeping (right). This can be used along with depth
observation from calibrated cameras in the environment (including
the robot’s egocentric vision sensors) to obtain 3D object point cloud.

Each task has a corresponding object of interest that needs
to be manipulated into a target configuration. Given the
text label of this object, we can use detection models like
Detic [65] to obtain the corresponding bounding box. This can
then be used to condition segmentation models like Segment-
Anything [30] to obtain the corresponding object mask. Using
depth observations and the calibrated camera system for either
the egocentric or fixed third-person cameras, we can then obtain
the point cloud of the object. This can then be used to obtain an
estimate of the object’s state, and compared to the desired goal

state. We provide more detail on the form of the rewards used
in Section IV and provide full details on the exact prompts,
detection and segmentation models, and reward functions for
each task in the supplemental materials. We find that even if
this estimation is noisy, it is good enough to enable us to learn
effective control policies.

IV. EXPERIMENTAL SETUP

For our experiments, we run continual autonomous RL in
a playpen of about 6×5 meters using the Boston Dynamics
Spot robot with an arm and simple gripper for manipulation.
The playpen is enclosed with metal railings for safety since
the robots inside operate continuously and autonomously. We
use an IntelRealSense D455 mounted above the playpen for
third-person fixed RGBD camera observations. The Spot has 5
egocentric body cameras that detect images along with depth
from the front-left, front-right, left, right, and back, as well
as a hand-camera located inside its gripper. We use all the
body camera images when searching for objects as part of
auto-nav, and use the hand-camera for grasping. Only the
front-left and front-right images are used when training control
policies. There is a docking station for the robot within the
playpen, and it has the ability to autonomously auto-dock when
it runs low on charge, and continue practicing the task once
its battery has recharged.

While we use fixed camera views to train policies, this de-
pendence can be subsequently removed to train pure egocentric
policies, using policy distillation. This follows prior work that
studies using privileged information to learn an initial policy,
which is then used to train a deployment policy via teacher-
student learning [1, 12, 26]. Since the focus of this work is
on acquiring skills via autonomous practice, our experiments
include the fixed view in the observations. Furthermore, since
autonomous practice is more practical in cordoned off areas
due to safety considerations, fixed cameras are not a limiting
setup constraint especially since they make learning easier.

We set up four different mobile manipulation tasks that move
beyond simple picking and placing of small objects, requiring
control of both the body as well as the arm: chair moving,
with a table either in the 1) corner or the 2) center of the
playpen, 3) vertically balancing a long-handled dustpan, and
4) sweeping. Mobility of the robot system is also essential for
automated resets critical for continual practice. The states that
depict the endpoints of the goal cycles are shown in Fig. 3.

Chair Moving - Corner Table: This task requires the robot
to grasp a chair, and move it to a goal location. We first consider
moving the chair to align with a table placed against the wall
and the corresponding reset goal state on the other side of
the playpen (Fig.3 a-b). The action space for this task is 5
dimensional, with base (x, y, θ) control and (x, y) control for
the hand relative to the base. The prior used in the task is the
RRT* planner in the x-y plane, with no knowledge of the chair.
This planner is useful for navigating from one point to another,
but it does not consider object dynamics or interaction. The
prior is executed sequentially, i.e., we first run the planner, and
then the RL policy for every episode, and the data it samples is
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Fig. 6: Continual training improvement: Success rate vs number of samples for our approach and RL without priors, and average
performance of the planner across all samples. We see that our approach continuously improves with experience across tasks, learning much
faster than RL without priors, and attaining significantly higher performance than just using the prior.

0 1000 2000 3000
Steps

2

1

0

M
ea

n 
Re

wa
rd

Chair Move - Table Corner

0 1000 2000 3000
Steps

2

1

0

1

M
ea

n 
Re

wa
rd

Chair Move - Table Middle

RL + Prior (Ours) RL (without prior) Prior

Fig. 7: Training mean reward: Mean reward vs number of samples
for the chair moving tasks. The negative average reward for RL without
priors indicates that the robot is often far from the goal location.

added to the data buffer used for RL training. The reward takes
into account the position and yaw distance between the current
chair position and the target chair position at each timestep.

Chair Moving - Middle Table: We next consider a more
challenging variant of the above task, where the robot needs to
maneuver around the table placed in the middle of the playpen,
with goal states as shown in Fig.3 c-d.The increased difficulty
is because collisions between the chair and table base are much
more frequent, and also because the robot has to operate in a
much tighter space. The action space, prior used, and reward
are the same as in the previous task, except that the RRT*
planner has the 2D occupancy of the table to avoid collisions.

Long-handled dustpan Pickup: The task is to lift up the
long handle of a dust-pan, and then to vertically balance it
so that it can stay upright on its base. The action space is
3 dimensional, consisting of (z, yaw, gripper) commands for
the hand. The gripper open action is used to terminate the
episode earlier since the system resets if the grasp is lost. This
task has sparse rewards since the handle is not detectable by
segmentation models when the robot is interacting with it,
so rewards cannot be computed during the episode. Instead,
we detect the object at the end of the episode and then use
its estimated height to provide a reward if it is upright. We
include a small penalty at every time step to encourage learning

faster solutions, and a large bonus if the handle is detected to
be upright at the end of the episode. The prior used for this
task is an automated procedure that tries to place the dustpan
vertically. This is used independently from the policy; we first
collect a large number of rollouts from the prior and use this
to initialize the data buffer for RL training.

Sweeping: This task involves two robots, where one of the
robots holds a broom in its gripper and needs to use it to sweep
a paper bag into a goal region. The robot does not maintain
firm contact with the paper bag but rather interacts with it using
the broom. The other robot is tasked with resetting the paper
bag by picking it up and dropping it close to the initial position
for sweeping. Note that we only use learning for the robot that
performs sweeping, while the other robot uses off-the-shelf
visual models and the auto-grasp procedure to reset the
bag. The action space for this task is 5 dimensional similar to
the chair tasks, with base (x, y, θ) control and (x, y) control
for the hand relative to the base. The prior involves detecting
the paper bag’s position and then staying within some distance
of it while trying actions. Hence, this prior just biases the
robot to stay close to the paper bag instead of moving to a
different region of the playpen. The policy is executed in a
residual manner around this prior constraint. For training the
sweeping policy, we design a reward that takes into account
the current distance of the paper bag to the goal region, the
progress made since the last timestep (i.e., the improvement in
how close the bag has moved to the goal), and a large bonus
reward for when the paper bag ends up inside the goal region.

In our experiments, we use the elements from task-relevant
autonomy (i.e., auto-grasp and goal-cycles via multi-goal
or multi-robot setups) for all methods, since this is essential to
collect data and learn. Our investigation is primarily focused on
evaluating if our combination of RL and the prior is effective.
In addition to comparing to using only RL or only the prior,
we also run offline RL on the data collected by the prior,
specifically using IQL[31]. For each task, we specify success
criteria corresponding to task completion. This corresponds to
the chairs being moved to the goal locations shown in Fig.3:a-



Ours Only RL Only Prior Offline RL

Chair-tablecorner 1 0.2 0.22 0.1
Chair-tablemiddle 0.8 0.5 0.38 0.2
Long-handle dustpan 0.6 0.2 0.18 0.6
Sweeping 0.8 0 0.05 0.1

TABLE I: Evaluation Comparison: The success rate of the
final policy evaluated on different tasks. For evaluation, we use
the deterministic policy instead of sampling from the stochastic
distribution like in training. Our approach gets an average success
rate of 80%, about 4X improvement over using only the prior or only
RL.

d, standing up the dustpan (Fig.3-f), and sweeping the paper
bag into the goal region (Fig.3-g). Performance for the chair
tasks is averaged across both location goals in each setting.
We use the same network architectures for image processing,
critic functions, policy, etc., for our approach, RL from scratch,
and offline RL. Please see supplementary materials for further
details, including the full reward functions, success criteria,
procedural functions for priors, hyper-parameters for learning,
and network details.

V. RESULTS

Our real-world experiments test whether autonomous real-
world RL can enable robots to continuously improve mobile
manipulation skills for performing various tasks. Specifically,
we seek to answer the following questions:

1) Can a real robot learn to perform tasks that require both
manipulation and mobility in an efficient manner?

2) Does performance continually improve as the robot
collects more data?

3) How does the approach of structured exploration using
priors along with RL, compare to solely using the prior,
or RL without constraints?

4) How does the policy learned via autonomous training
perform when evaluated in test settings?

A. Continual Autonomous Improvement

We found the task-relevant autonomy part of the approach to
be critical for continual autonomous improvement. Running the
robot without auto-grasp or goal-cycles, with the full action
space does not lead to any meaningful change in task progress
even over long periods of time. Hence all the experiments
we conduct, including for baselines, utilize the task-relevant
autonomy component so that the robot can make some progress
in the real world in a reasonable time frame.

From Fig.6, we see that our approach of utilizing the
combination of the prior and RL learns to continually improve
with collected experience across all tasks. Note that in every
instance, our approach starts out performing worse than the
prior, and at the same level as RL without the prior. However,
our approach learns significantly faster than RL from scratch
by leveraging the prior. For some tasks, RL from scratch does
improve in performance (e.g., chair move - table middle), but
the rate of improvement is much slower than that of our method.
We observe that in the chair moving experiments, RL spends a

lot of samples with the chair quite far from the goal location.
We verify this by plotting the average reward for the chair tasks
(Fig.7). The reward for this task is of the form −x+e−x, where
x is the distance of the chair to the goal position of the chair.
The negative mean reward for RL without the prior implies that
the distance x to the goal is quite large, meaning that the robot
is often far from the goal. On the other hand, since we execute
the prior and policy sequentially for the chair task, our policy
always starts out reasonably close to the goal. However, the
prior often fails, as can be seen from its low average success
rate reported in Fig.6. In analyzing the qualitative behavior,
we find that when the planner encounters a collision between
the chair and table, it is unable to adapt to correct this. We
depict an example of this planner failure in Fig.8. In contrast,
our approach adapts the policy based on its experience.

Each training run for the robot takes around 8-15 hours. The
variation in time is mostly due to different goal reset strategies
across tasks, and variance in how often there is a failure in
detecting and grasping objects for task relevant autonomy,
which prompts the robot to retry. Hence for fair comparisons
across methods we use the number of real world samples
collected to measure efficiency. The system also needs to be
fairly robust to many different factors of variation in order to
learn these tasks. The training area is exposed to sunlight, and
the robot keeps collecting data and learning throughout the day
with varying degrees of light and often at night. Object starting
positions can vary throughout the play-pen, and object grasps
can vary widely which affects the resulting object dynamics
when performing constrained manipulation.

B. Final Policy Evaluation

We evaluate the final policies obtained after training and find
that our approach obtains an average success rate of 80% across
tasks from Table I. For evaluation, we use the deterministic
policy instead of sampling from the stochastic distribution
which is used during training. Further, we set the initial state
of the objects to be close to the opposite goal in the goal
cycle. For instance, in the sweeping task, we initialize the
paper bag roughly in the location shown in Fig.3-h. This is
different from training, where the paper bag could end up in
any location, and success is continually evaluated. We note
that on the particularly hard task of sweeping, none of the
other methods are successful, while our approach gets 80%
success. The case of long-handle dustpan pickup is notable
since offline RL performs on par with our method, getting about
60% success. While the numerical performance is similar, there
is a considerable qualitative difference in the behavior learned.
Our approach encounters reward via actions not demonstrated
in the prior, and so explores those outcomes and develops
strategies that are quite different from the prior. This involves
raising the robot’s arm and dropping the dustpan, such that it
lands upright. On the other hand, offline RL sticks very close
to the prior distribution and instead learns skills that involve
pushing the dustpan down along with the arm. We observe
that this is the only task for which offline RL is performant,
getting an average success of only 13% on the remaining tasks.



Fig. 8: Left: The prior (RRT* with incomplete model) gets stuck in a collision with the table and is unable to recover as the planner does
not have a model of chair-table interaction dynamics. Right: Our approach effectively recovers from collisions to complete the task.

One explanation for why this is the case is that in the dustpan
task, all the demonstrations involving the prior that succeed
are similar in structure due to a lack of mobility needed for
the task. Hence, it is easier for offline RL to learn successful
strategies since they repeat often in the prior dataset. For chair
moving and sweeping tasks, though, the successful trajectories
are likely more diverse owing to the robot having to move to
a target location, causing offline RL to struggle.

VI. CONCLUSION

We have presented an approach for continuously learning
new mobile manipulation skills via autonomous real-world
RL. This is enabled using the automated collection of useful
data, the acquisition of diverse practices via automated resets
using multi-goal or multi-robot setups, efficient real-world
control using priors, and flexible reward definition. We show
our approach can enable Boston Dynamics Spot robots to
learn challenging mobile manipulation skills, including moving
chairs, picking up long-handled dustpans, and sweeping, with
an average task success rate of about 80%, showing a 3-4X
improvement over previous approaches.
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