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Abstract

We describe an approach for aligning an LLM-001
based dialogue agent for long-term social dia-002
logue, where there is only a single global score003
given by the user at the end of the session.004
In this paper, we propose the usage of denser005
naturally-occurring multimodal communicative006
signals as local implicit feedback to improve007
the turn-level utterance generation. Therefore,008
our approach (dubbed GELI) learns a local,009
turn-level reward model by decomposing the010
human-provided Global Explicit (GE) session-011
level reward, using Local Implicit (LI) mul-012
timodal reward signals to crossmodally shape013
the reward decomposition step. This decom-014
posed reward model is then used as part of015
the RLHF pipeline to improve an LLM-based016
dialog agent. We run quantitative and qualita-017
tive human studies on two large-scale datasets018
to evaluate the performance of our GELI ap-019
proach, and find that it shows consistent im-020
provements across various conversational met-021
rics compared to baseline methods.022

1 Introduction023

Developing social dialogue agents that can inter-024

act and collaborate with humans over a long hori-025

zon remains a longstanding goal of artificial intelli-026

gence. Large language models (LLM) pretrained027

at scale on the next-word prediction objective and028

then aligned to human preference via RLHF (Rein-029

forcement with Human Feedback) represent a sig-030

nificant step in this direction (Ouyang et al., 2022),031

leading to successful commercial applications.032

However, existing methods for alignment usually033

assume that preference labels are annotated at the034

turn-level (i.e., after each utterance). This makes035

it difficult to extend this framework to cases where036

human preference labels are only available at the037

session-level, i.e., after an entire dialogue session038

(which could span 30 minutes or more). Insofar as039

we are interested in developing dialogue agents that040

can continually learn from session-level dialogue041

data “in the wild” (e.g., through in-person con- 042

versations), there is a need to develop techniques 043

that can (1) align agents based on global rewards 044

at the session level and (2) take into account ex- 045

tralinguistic multimodal signals that are pervasive 046

in naturally-occurring conversations. 047

Concretely, a session-level score obtained post- 048

conversation is a form of global explicit feedback, 049

which provides a holistic assessment of a conver- 050

sation session. Such feedback can be obtained 051

naturally at scale by, for example, asking partici- 052

pants to rate how they felt about the dialog session. 053

However, it is not possible to use such data directly 054

as part of an RLHF pipeline, since current methods 055

generally require local, turn-level signals for align- 056

ing an LLM-based agent to human preferences. 057

Moreover, in real world settings, agents are 058

deployed in multisensory environments (Benford 059

et al., 1997) where they have access to rich mul- 060

timodal signals (e.g., facial expressions during a 061

video conversation). An ideal agent should lever- 062

age these signals as proxy rewards to improve its be- 063

havior. In dialogue, previous work attribute many 064

multimodal cues such as body mimicry, vocal ac- 065

commodation, and emotion, as implicit measures 066

of conversation quality (Louwerse et al., 2012). 067

Hence, we can utilize multimodal signals as local 068

implicit feedback, which presents an opportunity to 069

use multimodal local implicit feedback as signals 070

to crossmodally guide the decomposition of the 071

single global explicit (GE) post-interaction score. 072

In this paper, we describe a joint framework 073

called GELI, which integrates global explicit (GE) 074

and local implicit (LI) feedback. GELI makes it 075

possible to align an LLM-based dialogue agent 076

based on global rewards, while simultaneously tak- 077

ing into account naturally-occurring multimodal 078

signals. Our formulation brings together the idea 079

of training a reward model which decomposes a sin- 080

gle global explicit annotation score that is shaped 081

by local implicit multimodal signals, which is sub- 082
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sequently used to align an LLM-based dialogue083

agent via RLHF. Specifically, we use GELI to learn084

a reward function based on the overall affect of the085

user (i.e., how positive the user felt at the end of the086

conversation) from a large-scale long-horizon mul-087

timodal dialogue dataset (Reece et al., 2023) and088

evaluate on two datasets for the generated dialogue.089

Our local implicit multimodal signal comes from an090

affect classifer based on facial expression. We find091

that the reward function learned via GELI can be092

used train a dialogue agent that has improved abil-093

ity across various metrics of conversational quality094

including sensibleness, reusability, and specificity095

(Lee et al., 2022).096

2 Related Works097

Reward Design The design of the reward func-098

tion can drastically change the performance of099

RL agents. Paradigms such as reward shaping100

have shown to be effective at enabling the RL101

agent to converge quickly and improve perfor-102

mance (Mataric, 1994; Ng et al., 1999a; Devlin103

et al., 2011; Wu and Tian, 2016; Song et al., 2019).104

In addition, inverse RL (Ng et al., 2000; Fu et al.,105

2017) has shown to be useful at extracting rewards106

from human expert trajectories. Furthermore, in-107

trinsic reward functions (Sorg et al., 2010; Zheng108

et al., 2018, 2020; Guo et al., 2018; Gangwani109

et al., 2018), a class of methods which uses the110

agent’s own learning progress, have shown to be111

useful at guiding the agent’s behavior by fostering112

self-improvement and adaptive exploration.113

Temporal Credit Assignment Temporal Credit114

Assignment (TCA) is a concept within the field of115

reinforcement learning and artificial intelligence116

that addresses the challenge of attributing credit to117

actions over time. It involves determining the ex-118

tent to which past actions contributed to the current119

outcome, allowing an intelligent agent to under-120

stand the consequences of its decisions. One way121

to apply TCA to reinforcement learning is by ma-122

nipulating the λ-discount factor and investigating123

how this affects policy learning (Petrik and Scher-124

rer, 2008; Jiang et al., 2015). Recently, a line of125

works have been proposed to treat TCA as a return126

decomposition. RUDDER (Arjona-Medina et al.,127

2019) assigns step-wise credit by the predictive128

difference between two consecutive states. IRCR129

(Gangwani et al., 2020) is an instantiation of uni-130

form reward redistribution. Randomized return de-131

composition (RRD) (Ren et al., 2021) formulate a132

surrogate problem through Monte-Carlo sampling 133

estimating step-wise rewards via least-squares esti- 134

mation. 135

Aligning Language Models To Human Prefer- 136

ences Incorporating human preference feedback 137

into a reward model, and subsequently optimiz- 138

ing a language model to output text that reward 139

model scores highly with an RL algorithm, has 140

been shown to result in language models that gener- 141

ate outputs humans generally prefer (Ouyang et al., 142

2022). This process has been applied to summariza- 143

tion (Ziegler et al., 2019; Stiennon et al., 2020; Wu 144

et al., 2021), answering questions with long-form 145

answers using text retrieved from the web (Nakano 146

et al., 2021; Menick et al., 2022), generating en- 147

gaging responses in a dialogue settings (Thoppilan 148

et al., 2022; Cohen et al., 2022) and following hu- 149

man instructions (Kojima et al., 2021; Suhr and 150

Artzi, 2022; Kim et al., 2023b). However, these 151

methods generally require collecting fine-grained 152

annotations for each generated response to train the 153

reward function, which is difficult to obtain at scale 154

for long-horizon dialogue. 155

Utilizing Implicit Signals for Dialogue Agents 156

There has been previous works that utilize local 157

implicit signals found in the text, such as existence 158

of next human turn, next human turn length, mean 159

conversation length, sentiment and reaction in the 160

next human utterance (Pang et al., 2023), or other 161

metadata such as retry rate, retention rate, or user 162

rating (Irvine et al., 2023). In contrast, ours is the 163

first (1) to additionally utilize multimodal signals, 164

and (2) use global signals in conjunction with the 165

local implicit signals, which has been a crucial 166

finding that contributed significantly to the perfor- 167

mance boost in the human evaluation. 168

3 Background 169

Language Models As Conversational Agents. 170

We are interested in generating conversational re- 171

sponses with an autoregressive language model in a 172

multi-sensory setting. We treat a conversational lan- 173

guage model as an agent with a policy πϕ (Liu et al., 174

2018; Liang et al., 2020; Wen et al., 2016; Thoppi- 175

lan et al., 2022), which is parameterized by ϕ. The 176

utterance generated at turn t, given access to the 177

textual dialogue history st is defined to be the ac- 178

tion at. To be more specific, the dialogue until turn 179

t−1 is defined as s1, a1..., st2 , at−2, st−1 = s[:t−1], 180

for brevity we will call this s[:t−1] = st. Therefore, 181
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the auto-regressive LLM policy, πϕ(st), takes in as182

input st and outputs a distribution over at.183

Reinforcement Learning with Human Feedback184

(RLHF). RLHF is commonly used to adapt an185

agent πϕ to be aligned to human feedback. Given a186

reward function which can gauge the quality of indi-187

vidual generated utterances, we can perform adap-188

tation via reinforcement learning with human feed-189

back (RLHF) (Ouyang et al., 2022; Jaques et al.,190

2020; Stiennon et al., 2020). For turn t, our reward191

function rθ(st, at) parameterized by θ takes in as192

input the context utterance st and the generated193

response at to predict the reward at the utterance194

level. It is common to use a KL term to penalize the195

policy from diverging from the pretrained model,196

resulting in the following objective:197

max
ϕ

E[rθ (st, at)]− γDKL(πϕ (·|st) ||πη (·|st)), (1)198

where πη is a reference model.199

4 Methods: GELI200

The reward function rθ in standard adaptation tech-201

niques relies on intermediate fine-grained anno-202

tations, requiring manual human annotations at203

each generated utterance. However, in many long-204

term dialogue settings there is only a single global205

explicit (GE) annotated reward for each session.206

Given a trajectory of the multi-turn dialogue τ , the207

global explicit reward RGE(τ) is a scalar reward208

at the end of the interaction, such as how posi-209

tively the user felt about the conversation. This210

GE reward can be decomposed via sum decom-211

position (more details in Sec. 4.1) with the GE212

loss function LGE. A core novelty of our proposed213

GELI approach is that the decomposition of the214

GE reward will be guided by some Local Implicit215

(LI) feedback. Concretely, in many dialog applica-216

tions/datasets of interest there are rich multimodal217

signals, which is can provide intermediate signals218

that are useful for the decomposition of the sin-219

gle global explicit reward. We thus perform cross-220

modal distillation of the signals from such multi-221

modal signals into the individually decomposed222

text-only reward function via the LI loss function223

LLI (more details in Sec. 4.2).224

In practice, our reward function rθ is optimized225

with a joint objective which enables the (1) redis-226

tribution of the global explicit (GE) reward and (2)227

inclusion of local implicit (LI) reward signals as a228

reward shaping function.229

LGELI = λLGE(θ) + (1− λ)LLI(θ) (2) 230

In the following sections, we share more details 231

about the global explicit decomposition and local 232

implicit crossmodal reward shaping. 233

4.1 GE: Decomposing One Global Explicit 234

Annotation 235

Global explicit reward is a human annotation at 236

the end of the interaction, which can come in 237

the form of a post-interaction score. Let τ de- 238

note the trajectory of the episode, i.e. τ = 239

⟨s0, a0, s1, a1 · · · , sT , aT ⟩. This reward repre- 240

sents the overall reward of trajectory τ , RGE(τ). 241

The agent in this episodic reinforcement learning 242

paradigm must maximize the expected global ex- 243

plicit reward at the end of the conversation. One 244

way to approximate the global explicit reward 245

RGE(τ) is by sum decomposition via considering 246

the sum of rθ(st, at), across all the previous states 247

st and newly generated at: 248

RGE(τ) ≈
T−1∑
t=0

rθ (st, at) (3) 249

Then, this idea of sum-based return decomposi- 250

tion (RD), can be implemented via a least-squares- 251

based approach, where the reward distribution is 252

given by a learnt reward function, decomposing 253

the episodic reward RGE(τ) in an additive way 254

(Arjona-Medina et al., 2019). 255

LGE(θ) = E
τ∼D

[(
RGE(τ)−

T−1∑
t=0

rθ(st, at)

)2
]

(4) 256

Application to Conversational LLMs: To alle- 257

viate the computation costs arising from the long 258

horizon nature of conversations and language mod- 259

eling costs, we employ an alternative of the least- 260

squares-based return decomposition method, by uti- 261

lizing Randomized Return Decomposition (RRD; 262

Ren et al., 2021). RRD improves the scalability of 263

least-squares-based reward redistribution methods 264

by using a Monte-Carlo estimator to compute the 265

predicted episodic return. We refer the readers to 266

Appendix A for more details on RRD. 267

4.2 LI: Crossmodal Reward Shaping with 268

Local Implicit Multimodal Signals 269

The reward decomposition offers a way to redis- 270

tribute the rewards from a single reward in an 271
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Dialogue History: 
[Previous 10 turns of Dialogue]
…

Alice: How are you?

Bob: Uh huh. All right. And you? 

Alice: Oh yes, good. 

Bob: Yeah. So um what do you would 
like to talk about? Do you have any 
interests or hobbies?"

0.046

-0.032

0.029

0.056

-0.037

Bob: Well? Um 
and I'm kind of 
into video games.

Bob: Mhm. Bob: Um Like 
Grand theft Auto, 
the new ones 
coming out, so I 
can't wait if I ever 
get a PlayStation 
five..

Alice:
Uh huh

Bob: Right…

Examining conversation 
rewards at turn 5 to 10

Alice: Um um I 
don't know. Um I 
like tv shows, I 
like sports which 
which is like my 
hobby?

Alice:
Video 
games?

Alice:
What do you 
play?

Alice:
Okay, 
pray for 
you play 
Fortnite, 
Call of 
Duty.

Figure 1: Example of GELI reward score predictions for an unseen conversation from the dataset. Top left: Reward
scores unrolled over an unseen conversation, where the mean is subtracted. We examine a random sampled snippet,
where we find that our decomposed reward function assigns higher values to meaningful utterances.

application-agnostic way. However, in natural di-272

alogue there are rich extralinguistic signals (e.g.,273

facial expressions, prosody) that provide an indi-274

cation of how the conversation is being received.275

We thus propose to guide the decomposition such276

that it is shaped by local implicit (LI) multimodal277

signals. This is essentially using such signals as a278

form of reward shaping, which is valuable if they279

are known to be aligned with the final objective280

(Ng et al., 1999b).281

In our multi-sensory setting, we have access to282

the multimodal signals in response to the agent’s283

actions at, which contains implicit signals that are284

correlated with the final reward. We will call this285

multimodal state smm
at . If we have access such mul-286

timodal signals, we can design a reward function287

Γ which utilizes the multimodal signal smm
at to de-288

termine a proxy reward. Then, we can formulate289

this problem set up as a form of crossmodal knowl-290

edge distillation (KD) (Xue et al., 2022; Thoker291

and Gall, 2019) for reward shaping. Therefore, we292

can express the local implicit reward rLI with a293

proxy label from a multimodal input.294

rLI(s
mm
at

) = Γ(smm
at

) (5)295

Γ indicates a designed score function from do-296

main knowledge which captures the relationship297

the GE reward and the multimodal local implicit298

signals. Therefore, a general formulation of the299

loss function to induce the crossmodal knowledge300

distillation of local implicit multimodal feedback301

signals to the reward function rθ which only has ac-302

cess to textual dialogue states and actions (st, at),303

we have the following:304

LLI(θ) = E
st,at,smm

at
∼D

[
(rLI(s

mm
at

)− rθ (st, at))
2
]

(6)305

Application to Conversational LLMs: Our GE 306

reward indicates how positively the conversation 307

made the other participant feel. It is known from 308

previous work (Ruusuvuori, 2012), that the facial 309

affect of the listener is related to how the conver- 310

sation is being perceived and the implicit conver- 311

sation quality. Thus, we design the shaped reward 312

rLI(s
mm
at ) to capture this intuition. Therefore, we 313

utilize the implicit visual feedback from a facial 314

affect classifier as a way to encourage a decompo- 315

sition informed by visual affective signals. Given a 316

facial affect classifier f and access to multimodal 317

states smm
at (in this case vision), which outputs the 318

affect of the listener, we implement an indicator 319

function where we assign a score of 1 if the facial 320

affect of the listener is positive and 0 otherwise. 321

Γ(smm
at

) =

{
1, f(smm

at
) = positive affect

0, otherwise
(7) 322

Note, that this is one of many ways to design the 323

score function Γ, The design of the score function 324

Γ, to capture the relationship between local multi- 325

modal signals and the single global explicit reward 326

leaves exciting research opportunities. 327

5 Experiments 328

In this section, we describe our experiments to 329

evaluate our proposed GELI framework which per- 330

forms reward function training with global explicit 331

reward decomposition and local implicit visual 332

feedback. All experiments are performed by (1) 333

first, training a reward function (e.g. using GELI or 334

one of its ablation variant only GE or only LI) (2) 335

and use the trained reward functions in a reinforce- 336

ment learning setup with PPO (Schulman et al., 337

2017) to adapt the language model in generating 338
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Figure 2: Overview of our proposed method: GELI.
The reward function training involves decomposing a
single global explicit (GE) feedback, with the guidance
of multimodal local implicit (LI) feedback, such as vi-
sual facial affect. Then, we utilize the decomposed
reward function to update the language model, where
the language model generates utterances and the reward
function assigns a score to be optimized via PPO (Schul-
man et al., 2017). Best viewed zoomed and in color.

better conversational responses. Due to computa-339

tional resources, the training of reward functions340

and adaptations are performed over a single run.341

5.1 Dataset342

Our training and evaluation experiments are based343

on the CANDOR (Reece et al., 2023) dataset, due344

to its long-term dialogue nature (159.4 turns on345

average, 31.3 mins on average, 17.81 words per346

turn), large-size (1656 conversations, 7+ million347

word, 850-hours). The CANDOR dataset also in-348

cludes video data, which is often found in other349

face-to-face conversation datasets. CANDOR is350

used to train our reward function and to sample351

dialogue histories for the generations. We con-352

struct separate held-out sets for the reward func-353

tion training (∼ 30,000 dialogue history-utterance354

pairs) and updating the language model (∼100,000355

history-utterance pairs). We optimize for the356

“overall-affect” global explicit score from the post-357

interaction survey, which given by the answer to the358

following question: “Overall during your conversa-359

tion, to what extent did you feel positive feelings360

(e.g., good, pleasant, happy) or negative feelings361

(e.g., bad, unpleasant, unhappy)?”362

We further evaluate on another dataset SODA363

(Kim et al., 2023a), a large social dialogue dataset364

that was distilled from a social commonsense365

knowledge graph and generated via GPT 3.5. Hu-366

man evaluation demonstrates that the dialogue in367

SODA is more consistent, natural and specific than368

human-authored datasets. We use this data to see369

whether or not our method could generalize to un-370

seen datasets. The dataset consists of 1.5M conver- 371

sations, 7.6 average turns, 16.1 words per turn. 372

5.2 Baseline Models 373

We compare GELI with multiple state-of-the art re- 374

ward decomposition methods which could decom- 375

pose the single global explicit (GE) reward. For 376

fair comparison, we also compare the performance 377

of the reward decomposition when we only use 378

the local implicit (LI) multimodal rewards. For all 379

the methods mentioned below, we fine-tune addi- 380

tional linear layers on top of a small BART (Lewis 381

et al., 2019) language model, which was previously 382

finetuned for conversational summary.1 This also 383

demonstrates that smaller language models may be 384

powerful enough to discern patterns for desirable 385

adaptations. 386

GE: (RRD) Randomized return decomposi- 387

tion (Ren et al., 2021) is aimed at learning a proxy 388

reward function for episodic reinforcement learn- 389

ing. It formulates the decomposition as a surrogate 390

problem through Monte-Carlo sampling, enabling 391

the extension of least-squares-based reward redis- 392

tribution to address long-horizon problems. 393

GE: (IRCR) Iterative Relative Credit Refine- 394

ment (Gangwani et al., 2020) is an instantia- 395

tion of uniform reward redistribution. The non- 396

parametric reward redistribution mechanism em- 397

ployed by IRCR involves setting the proxy reward 398

for a transition as the normalized value of the asso- 399

ciated trajectory return. 400

GE: (RUDDER) Return Decomposition for De- 401

layed Rewards (Arjona-Medina et al., 2019) em- 402

ploys a return predictor trained on trajectories, 403

and step-wise credit assignment is determined by 404

the predictive difference between two consecutive 405

states. Through the utilization of the LSTM warm- 406

up technique, this transformation ensures that its 407

training computation costs are not contingent on 408

the task horizon T, enabling adaptability to long- 409

horizon tasks. 410

LI: Visual Affect (VA): As a form of implicit feed- 411

back, we use facial affect present in visual signals 412

as described in section 4.2. The facial affect classi- 413

fier is a CNN-based image-based emotion detection 414

model trained on AffectNet (Mollahosseini et al., 415

2017). The predictions are captured in 2 second 416

sliding windows. 417

1https://huggingface.co/kabita-choudha
ry/finetuned-bart-for-conversation-summa
ry
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LS: Language Sentiment (LS): We also utilize418

the utterance of the speaker to check whether if419

we could utilize the sentiment of this utterance as a420

form of implicit feedback, equivalent to the method421

in (Pang et al., 2023). We utilize a mDeBERTa (He422

et al., 2020) pretrained sentiment classifier.2.423

Evaluation: For the trained reward functions, we424

compute the Global Loss, LGE(θ), which is the425

MSE between RGE and the sum of all predicted426

rewards rθ(st, at) as described in Eq. 4. We also427

calculate the Local Difference, the difference of the428

expected predicted returns of ∆r̂LI conditioned429

on the local implicit multimodal reward: Γ(smm
t ).430

With our choice of the score function as described431

in Eq. 7, this can be written as:432

∆r̂LI = E [rθ(st, at)|f(smm
at

) = positive affect]
− E [rθ(st, at)|f(smm

at
) ̸= positive affect]

(8)433

Intuitively, this can be seen as the difference in434

the predicted reward scores of the text-only utter-435

ance conditioned on the visual facial expression436

which we are using as local implicit feedback re-437

wards (e.g. the difference of the reward score of the438

utterance when the User responds with a positive439

affect vs. a negative affect). Given our choice of440

the score function Γ, given Eq. 7, ∆r̂LI should441

be greater than 0, if assume that a positive visual442

affect indicates that the associated utterance is con-443

tributing positively to RGE , i.e. how the utterance444

is being received by the listener.445

5.3 Updating Language Models with446

Reinforcement Learning447

We use LLAMA-2 (Touvron et al., 2023) 3 as the448

base model and with a default prompt shown in449

Fig. 10. We adapt the LLAMA-2 model with rein-450

forcement learning with human feedback by utiliz-451

ing the above-mentioned reward functions which452

has been trained to decompose the reward and per-453

form ablations to demonstrate the effectiveness of454

GELI. We utilize TRL implementation of RLHF455

with PPO (von Werra et al., 2020). Furthermore,456

we utilize LoRA (Hu et al., 2021) for computational457

constraints. We share our detailed hyperparameters458

in Appendix F.459

2https://huggingface.co/lxyuan/distil
bert-base-multilingual-cased-sentiment
s-student

3LLAMA-3 was not available during experimentation and
time of writing.

Evaluation: We run a human study based on the 460

8 metrics commonly used in literature to evaluate 461

the quality of the generated utterances (Lee et al., 462

2022). We recruited a total of 300 crowd work- 463

ers on Amazon Mechanical Turk. For each of the 464

sample, including dialogue history and responses, 465

users were asked to rate which model(s) satisfied 466

the given criterion. At the end of the survey, anno- 467

tators were asked to describe which chatbot they 468

would talk to again. 469

6 Results 470

In this section, we discuss the quantitative results 471

and human evaluation of our experiments. 472

6.1 Human Evaluation 473

We refer the reader to Table 1 where we evaluate 474

the performance of GELI on an unseen split of the 475

CANDOR dataset (Reece et al., 2023), We find that 476

the LLAMA-2 model with GELI outperforms all 477

other approaches in most evaluation metrics and 478

performs comparably with other baselines other- 479

wise. We find that the ablations with GE, or LI, 480

leads to a drop in performance which suggests that 481

the joint optimization of GE and LI is crucial. Over- 482

all, compared to the base LLAMA-2, we see that 483

our adaptation on LLAMA-2 leads to a significant 484

improvement in the level of emotional connection 485

(+9%), positivity (+18%), understanding of social 486

context (+10%), and how interesting the responses 487

are (+14%). It is especially impressive to note that 488

there is a large improvement in how inclined peo- 489

ple wanted to talk to our model over others (+11%), 490

and how much they would want to reuse our chatbot 491

again (+14%). We see the greatest improvement 492

in results for positivity, which is the most closely 493

related to our optimization objective overall-affect, 494

and inclination, reuse, indicating which chatbot the 495

User would speak to again. 496

In Table 2, we show generalizability of GELI- 497

adapted LLM by running the same experiment and 498

human evaluation on a new unseen dataset to show 499

generalization on SODA (Kim et al., 2023a). We 500

use the LLAMA2 + GELI model trained and CAN- 501

DOR and evaluate on 100 unseen samples from 502

SODA. We find the GELI performs even better in 503

SODA when compared to CANDOR, performing 504

significantly better results in 7 out of 8 conver- 505

sational metrics compared to the base unadapted 506

LLAMA-2 model (by up to 11%). SODA was 507

generated by GPT-3.5, and we find that our pro- 508

posed approach significantly outperforms GPT-3.5 509
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CANDOR (Reece et al., 2023) Connection Positivity Social Inclination Interestingness Reuse Specific Sensible GELI Score
(/100%) ↑ ↑

Human 16.00 ± 2.83 16.33 ± 4.03 19.67 ± 1.89 17.33 ± 6.65 17.33 ± 6.55 17.33 ± 3.09 82.67 ± 7.93 85.33 ± 4.5 N/A
LLAMA2 30.67 ± 8.73 26.67 ± 6.65 25.67 ± 8.38 26.00 ± 5.66 24.33 ± 7.76 28.0 ± 5.72 77.33 ± 6.18 80.33 ± 5.91 0.4929
LLAMA2 + GE: RRD 21.33 ± 6.80 16.33 ± 1.70 18.00 ± 2.16 17.67 ± 1.25 18.00 ± 2.83 11.33 ± 4.03 68.67 ± 6.34 69.0 ± 5.1 0.5072
LLAMA2 + LI: LS (Language Sentiment) 20.67 ± 7.04 21.00 ± 4.90 21.00 ± 5.72 18.33 ± 8.22 23.00 ± 3.56 22.0 ± 6.98 82.0 ± 3.74 89.67 ± 4.19 0.4852
LLAMA2 + LI: VA (Visual Affect) 22.67 ± 4.19 25.33 ± 5.44 31.33 ± 0.47 28.67 ± 3.4 19.33 ± 3.68 26.0 ± 0.82 67.67 ± 4.71 90.0 ± 2.16 0.4858
LLAMA2 + GELI: RRD+VA (Ours) 39.67 ± 7.32 44.33 ± 12.23 35.33 ± 10.87 37.33 ± 6.85 38.0 ± 10.2 41.67 ± 7.04 80.33 ± 4.5 80.67 ± 10.5 0.5419

Table 1: Human evaluation results on 100 samples for 3 seeds for 8 preference metrics where mean and std. are
reported. Green indicates best score. GELI performs better on 6 out of 8 metrics (emotional connection, positivity,
social understanding, inclination, interestingness, reuse) and comparably to the best performing model on the other
2 metrics: specific and sensible.

SODA (Kim et al., 2023a) Connection Positivity Social Inclination Interestingness Reuse Specific Sensible
(/100%) ↑

GPT-3.5 (text-davinci-002) 40.1 ± 7.56 43.05 ± 3.4 48.13 ± 9.08 46.05 ± 3.44 49.11 ± 7.69 44.03 ± 2.01 78.14 ± 9.49 80.07 ± 7.72
LLAMA2 66.04 ± 4.79 70.0 ± 2.51 71.99 ± 6.28 67.0 ± 0.46 55.05 ± 8.24 65.99 ± 6.3 89.04 ± 2.65 89.99 ± 3.81
LLAMA2 + GE: RRD 30.98 ± 2.66 30.98 ± 5.04 34.04 ± 3.28 27.0 ± 7.43 24.98 ± 2.69 30.0 ± 2.51 43.97 ± 3.3 47.06 ± 4.34
LLAMA2 + LI: LS 62.0 ± 3.71 70.06 ± 4.52 75.02 ± 5.06 68.04 ± 3.41 59.0 ± 1.24 68.01 ± 3.72 86.04 ± 2.61 92.99 ± 1.47
LLAMA2 + LI: VA 55.02 ± 1.92 57.1 ± 7.21 63.04 ± 4.76 51.99 ± 0.67 43.97 ± 3.3 51.04 ± 3.08 76.03 ± 2.16 82.0 ± 2.49
LLAMA2 + GELI: RRD + VA (Ours) 71.01 ± 1.27 73.98 ± 1.76 76.98 ± 3.01 71.99 ± 1.65 66.97 ± 6.69 70.0 ± 2.51 90.02 ± 7.53 88.06 ± 4.73

Table 2: Human evaluation results on an unseen dataset, SODA (Kim et al., 2023a) to demonstrate generalizability
across datasets and dialogue scenarios. 33 samples for 3 seeds for 8 preference metrics where mean and std. are
reported. Green indicates best score. GELI outperforms best performing approach 7 out of 8 metrics (emotional
connection, positivity, social understanding, inclination, interestingness, reuse) and comparably for sensible.

by up to 30%. Hence, we can conclude that this510

approach is generalizable across different datasets511

and dialogue scenarios.512

6.2 Reward Function513

As shown in Table 1, the usage of both GE and514

LI leads is critical in the performance boost. We515

describe the quantitative results of the reward func-516

tion in two axes: the global reward decomposition517

LGE and the local reward difference from multi-518

modal feedback ∆r̂LI to elucidate the contribution519

of GE and LI in GELI.520

Global Loss (LGE): We refer the readers to the521

rows corresponding to "GE" on the left side of522

Table 3, where we display the MSE of the reward523

decomposition loss, as described in Eq. 4. We524

find that amongst the three return decomposition525

methods, RRD performs the best. We also compare526

the results when we use only the local implicit (LI)527

multimodal rewards directly as rewards and find528

that they perform significantly worse than that of529

GE decomposition methods.530

Local Difference (∆r̂LI ): On the right side of531

Table 3, we display the difference of the expected532

predicted reward conditioned on the local implicit533

multimodal feedback, ∆r̂LI . In our setting, this is534

the difference of the predicted reward when the vi-535

sual affect is positive and when the visual affect is536

negative. We find that after the GE decomposition537

methods without any LI feedback training is un-538

able to discern between positive and non-positive539

facial affect, as indicated by the ∆r̂LI values be-540

ing close to zero. The LI baseline with only the 541

language sentiment is unsurprisingly unable to as 542

well. On the other hand, the LI baseline with vi- 543

sual response is able to recognize differences in the 544

utterances which will induce positive and negative 545

affect. We refer the reader to Appendix Section M 546

where we run human studies to verify the intuition 547

that conversation quality is associated with visual 548

affect. 549

GELI: Considering Both Global Loss (LGE) and 550

Local Difference (∆r̂LI ) We refer the readers 551

to the bottom of Table 3. The results are shown 552

for the reward function trained with GELI: global 553

explicit reward decomposition informed by local 554

implicit multimodal feedback shaping. We find that 555

the combination of random return decomposition 556

(RRD) and visual affect (VA) achieves the best of 557

both worlds, resulting in low LGE and high ∆r̂LI . 558

The trained reward function with GELI, with low 559

LGE and high ∆r̂LI improves the performance as 560

shown in Tables 1, 2, whereas other reward func- 561

tions that performs only well on LGE , or ∆r̂LI 562

does not yield better performance. 563

7 Discussion 564

We describe components of GELI with ablations 565

and further analysis and visualizations. 566

7.1 Quantitative Analysis and Ablations on 567

GE and LI 568

It is important to look at both error metrics (GE 569

and LI): the LGE metric is evaluating performance 570
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Feedback Baselines LGE ↓ ∆r̂LI > 0
Type (Global Loss) (Local Difference)

Human N/A 0.087 ± 0.05
Mean 245.495 0.000
Mode 289.473 0.000

GE

IRCR 394.041 0.008
RUDDER 285.720 0.003
RRD (K = 32) 172.246 0.007
RRD (K = 160) 188.382 0.008

LI
Visual Affect (VA) 1546.17 0.256
Language Sentiment (LS) 825.31 0.010

GELI
IRCR + VA 722.687 0.392
RUDDER + VA 623.882 0.030
RRD + VA (Ours) 176.897 0.063

Table 3: Automatic Evaluation on Reward Function
Training. Left: Results for Global Loss for reward de-
composition, LGE . We find that RRD and RRD+VA
performs the best. Right: Local Difference: the differ-
ence of expected predicted reward conditioned on the
local implicit multimodal feedback, ∆r̂LI . We find the
GELI achieves the best of both world with low reward
decomposition scores and sufficient delta values.

globally, comparing the final predicted score of the571

whole conversation with the ground truth (which572

is a single scalar value for the entire conversation).573

The ∆r̂LI metric evaluates the local predictions for574

each speaking turn, confirming whether the local575

predictions are aligned to the local implicit reward.576

It is normal that the GE-RRD baseline performs577

well on the first metric, LGE , since it is optimized578

with this loss function specifically. However, as579

we observe in the human evaluations and the qual-580

itative visualizations, this GE-RRD baseline ends581

up being very conservative in its predictions, with582

little variability in its local predications and often583

converging to the mean (variance of predicted re-584

wards from GE:RRD is 0.0231 ± 0.004, for GELI:585

RRD+VA is 0.0778 ± 0.006). Hence, it is impor-586

tant to also look at the LI metric, ∆r̂LI , where we587

can observe that for GE:RRD in Table 3 is near 0.588

To evaluate the contributions of the individual589

components, we performed ablation studies in Ta-590

ble 1, which shows how the different type of re-591

ward functions with various components affects592

the overall performance. We find the local im-593

plicit rewards (LLAMA2+LI) perform better than594

that of LLAMA2+GE, where we observe up to a595

10% performance boost. However, we find the im-596

provements are often worse than that of the base597

LLAMA-2 model (3 out of 8 evaluation measures598

are worse). This leads to the conclusion that the599

reward signals in GE and LI separately do not con-600

tain enough reward signals to be used as a reward601

model in a reinforcement learning set up to adapt602

the language model to be more conversational. On603

the other hand, we find that GELI, by utilizing both 604

GE and LI, gains consistent performance boosts 605

across most conversational evaluation metrics (6 606

out 8 measures are better, the remaining are com- 607

parable), which indicates the combination of both 608

GE and LI contain valuable reward signals for the 609

RL algorithm to utilize. 610

7.2 Qualitative Analysis 611

Visualization of GELI Decomposed Rewards: 612

In Figure 1, we display the unrolled reward from 613

GELI from an unseen conversation sample from 614

the dataset. We find that the GELI decomposition 615

has learned to assign meaningful scores which indi- 616

cates the contribution of each utterance to the over- 617

all quality of the conversation (i.e interesting, co- 618

herent responses are rewarded, whereas less mean- 619

ingful repetitions and backchannels are assigned 620

lower scores). 621

Qualitative improvement in Generations: We 622

refer the reader to Appendix Fig. 10, where we 623

showcase a randomly sampled generation. We dis- 624

play the generations from our proposed approach 625

GELI alongside human groundtruth, the best per- 626

forming global explicit (GE) decomposition meth- 627

ods: RRD, and local implicit rewards (LI) (visual 628

affect and language sentiment). We find that our 629

approach generates responses that are more aligned 630

to the User’s implicit intent, and is more coherent. 631

Furthermore, the dialogue style is aligned to the 632

optimization objective overall-affect, and speaks in 633

a manner to induce a positive feeling to the User. 634

In comparison, other methods are not proficient 635

at recognizing the intent, being coherent, being 636

empathetic, or too generic. Comparing LI meth- 637

ods with GELI, LI responses are generic, which 638

showcases again the importance of utilizing both 639

global explicit and local implicit feedback (GELI). 640

We highly refer the reader to Appendix J for more 641

examples. 642

8 Conclusion 643

We introduce GELI, which automatically decom- 644

poses a single Global Explicit post-interaction 645

score, incorporating Local Implicit feedback from 646

multimodal behaviors. GELI performs global align- 647

ment of multi-turned interactions by locally reward- 648

ing parts of the interaction, shaped by multimodal 649

local implicit feedback. Our proposed approach 650

complements previous alignment approaches, such 651

as RLHF, alleviating the need for fine-grained man- 652

ual reward annotations. 653
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9 Limitations654

Here we discuss the limitations and risks of our655

work. We present a framework in which global656

explicit rewards, in the form of a single post-657

interaction survey could be used for alignment. In658

addition, we utilize the multimodal signals as form659

of local implicit shaping reward. Our approach660

presents one of many ways in which global explicit661

rewards could be decomposed, and there are many662

other methods which are yet to be explored. Local663

implicit feedback can be not only used as a reward664

shaping function, but in other methods as well, such665

as a meta-learning paradigm. Again, more methods666

to incorporate local implicit feedback needs to be667

researched. Furthermore, the interaction and rela-668

tionship between the local implicit feedback and669

global explicit feedback is understudied. Due to670

computational resources, we were only able to run671

a single run over experiments.672

There are risks that could arise as a result of673

more social, dialogue agents that can interact with674

people in a long-term interaction. Conversational675

agents could be used maliciously for deception,676

manipulation, and the spread of misinformation.677

Furthermore, conversational agents which use mul-678

timodal data could enhance seriousness of these679

issues, as models can detect subtle cues such as680

microexpressions to infer and manipulate the user.681

As a potential measure to mitigate such misuse,682

we plan to release our code and model weights un-683

der a license which prevents the use of our assets by684

any party that support or contribute to false imper-685

sonation or hate speech (Do No Harm, Nonviolent686

Public or Hippocratic License).687
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A Randomized Return Decomposition (Ren et al., 2021)926

LRRD(θ) = E
τ∼D

 E
I∼ρT (·)

(Rep(τ)−
T

|I|
∑
t∈I

R̂θ (st, at)

)2
 (9)927

Randomized return decomposition (RRD), improves the scalability of least-squares-based reward928

redistribution methods by using a Monte-Carlo estimator to compute the predicted episodic return. This929

model is optimized via the above loss function. I denotes a subset of indices. ρT (·) denotes an unbiased930

sampling distribution where each index t has the same probability to be included in I. In this work,931

without further specification, ρT (·) is constructed by uniformly sampling K distinct indices and K is932

a hyper-parameter. Therefore, instead of computing rθ (st, at) for the whole agent trajectory, we are933

efficiently able to estimate the true reward for the trajectory via subsamples in expectation.934

B Human Evaluation Metrics Definitions935

Here list the human evaluation metrics utilized in the study, which we draw from (Lee et al., 2022).936

• Sensibleness (turn-level; binary; reversed scores for the negated question): Mark responses where937

the chatbot did NOT make sense.938

• Specificity (turn-level; binary; reversed scores for the negated question): Mark the responses that939

were NOT specific to what you had said, i.e., responses that could have been used in many different940

situations. For example, if you say “I love tennis” then “That’s nice” would be a non-specific941

response, but “Me too, I can’t get enough of Roger Federer!” would be a specific response.942

• Emotional Connection (turn-level; binary): Which responses did you feel an emotional connection943

to? (EmpatheticDialogues)944

• Social: Which responses made you feel the chatbot understood social contexts and situations?945

(CommonsenseDialogues)946

• Interestingness (turn-level; binary): Mark the responses that were particularly interesting or boring947

• Inclination (turn-level; binary; reversed scores for the negated question): Which responses made you948

NOT want to talk with the chatbot again?949

• Reuse (turn-level; binary): Would you want to talk to this chatbot again?950

• Positivity (turn-level; binary): Which AI responses most likely made User feel positive feelings?951

conversation?952

The human evaluation scores are conducted via a binary-level classification. For a given question, the953

annotators can select the models that satisfy the question. For example, for ‘Positivity’, the annotators are954

given the following question and answer choices:955

Which AI responses most likely made User feel positive feelings? (A) (B) (C) (D) (E) (F)956

The options A-F refer to models which are randomized in order and anonymized. The annotators can957

select multiple models if they satisfy the question. Therefore, Table 1 can be interpreted as the percentage958

of instances out of the samples (300 in our case) where each model satisfied the question.959

C PPO Objective960

objective (ϕ) =E(x,y)∼D
πRL
ϕ

[
rθ(x, y)− β log

(
πRL
ϕ (y | x)/πSFT(y | x)

)]
+

γEx∼Dpretrain

[
log(πRL

ϕ (x))
] (10)961

General form of PPO objective.962
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D Artifacts & Resources 963

Did you discuss the license or terms for use and/or distribution of any artifacts? 964

TRL (von Werra et al., 2020): Apache License 2.0 965

LLAMA-2 (Touvron et al., 2023): License can be found here: https://ai.meta.com/llama/license/ 966

CANDOR (Reece et al., 2023): Terms of Use from https://betterup-data-requests.herokuapp.com/: 967

These are the terms of use we require all users and downloaders of this dataset, including you, the applicant, 968

to abide by. Please select the answer option "I agree to fully abide by these terms of use" if you wish 969

to continue. Terms of Use: (1) You agree to only use this data for legitimate academic and/or scientific 970

research, meaning no analyses, reviews, or derivative works of this dataset may be used for commercial or 971

for-profit purposes in any way; (2) You agree not to re-publish any new versions of this dataset, whether 972

original or derivative (i.e. modified or updated in some way), without explicit permission from BetterUp, 973

Inc.; (3) You agree not to use any part of this dataset for the purpose of personally identifying, locating, 974

or gathering any kind of information about individuals who appear in the recordings in this dataset, 975

beyond the information that is provided in the dataset itself; (4) In the case that an individual shares 976

personally-identifiable information about themselves in a recording, you agree not to use, analyze, share, 977

or publish that information in any form. 978

Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided 979

that it was specified? For the artifacts you create, do you specify intended use and whether that 980

is compatible with the original access conditions (in particular, derivatives of data accessed for 981

research purposes should not be used outside of research contexts)? 982

We rigorously examined the terms of use and the intended use, and ensured that it is consistent with the 983

intended use. 984

E Data Collection & Anonymization 985

Did you discuss the steps taken to check whether the data that was collected/used contains any 986

information that names or uniquely identifies individual people or offensive content, and the steps 987

taken to protect/anonymize it? 988

We utilize the CANDOR dataset and follow its terms of use by agreeing not to use the dataset personally 989

identifying, locating, or gathering any kind of information about individuals who appear in the recordings 990

in this dataset, beyond the information that is provided in the dataset itself. We do not use any explicit 991

information that uniquely identifies people. 992

Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and linguistic 993

phenomena, demographic groups represented, etc.? Did you report the basic demographic and 994

geographic characteristics of the annotator population that is the source of the data? 995

The coverage of the domains discussed in the CANDOR dataset is presented in the original paper 996

(Reece et al., 2023), we find that the discussion topics are centered around COVID-19, family, politics. 997

The language used is english. The demographic groups represented can also be found in the in the 998

original paper (Reece et al., 2023), specifically in the supplementary Table S.2. We share a screenshot for 999

reference. 1000

Was the data collection protocol approved (or determined exempt) by an ethics review board? 1001

The data is sourced from public available dataset (Reece et al., 2023). The usage was approved by an 1002

ethics review board. The human annotations were approved by an ethics review board. 1003

F Training Details 1004

Did you report relevant statistics like the number of examples, details of train/test/dev splits, etc. for 1005

the data that you used/created? 1006

For reward shaping with LI: we use 500 conversations as the training set and 50 conversations for the 1007

test set. For reward decomposition, we use the same 500 conversations for LI as the training set and 50 1008

conversations for the test set. For LLM adaptation, we use a separate 600 conversations for LI as the 1009

training set. 1010
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Figure 3: Candor Demographics

F.1 Distribution of GE score (overall-affect):1011

• <50: 2.21012

• 50 60: 6.71013

• 60 70: 14.51014

• 70 80: 30.41015

• 80 90: 24.61016

• 90 100: 21.61017

Distribution of Emotions Polarity (only Happiness is considered as positive polarity):1018

• Anger: 3.91019

• Contempt: 0.081020

• Disgust: 1.981021

• Fear: 2.231022

• Sadness: 8.841023

• Neutral: 35.611024

• Happiness: 40.011025

• Surprise: 7.351026

Did you report the number of parameters in the models used, the total computational budget1027

(e.g., GPU hours), and computing infrastructure used?1028

The BART model used for the reward function has 406M parameters. The LLAMA-2 model has 7B1029

parameters. However, we use a LoRA implementation with the hyperparameters in the next question,1030
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resulting in actual training parameters of 13M. We train with 4 NVIDIA RTX A6000 GPUs, each 1031

experiment reward function training and RLHF took around 19 hours. 1032

Did you discuss the experimental setup, including hyperparameter search and best-found hyper- 1033

parameter values? 1034

We perform grid search for all of our experiments and here we report the best parameters. 1035

1036

Reward Function Training: 1037

• learning rate = 5e-6, 1038

• batch size = 32 (for LI), 1 (forGE) , 1039

• optimizer = AdamW, 1040

RLHF: 1041

• batch size = 24, 1042

• clip range = 0.2, 1043

• learning rate = 0.000014, 1044

• gamma = 0.05, 1045

• use score norm = true, 1046

Lora: 1047

• r=24, 1048

• alpha=48, 1049

• dropout=0.05, 1050

15



G Human Annotation Screenshots1051

Did you report the full text of instructions given to participants, including e.g., screenshots, dis-1052

claimers of any risks to participants or annotators, etc.?1053

We show the full text of instructions given to participants below:1054

Figure 4: Mturk experiment for human evaluation fo generated samples
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Figure 5: Mturk experiment for human study on gauging reward scores for visual affect signals

Did you report information about how you recruited (e.g., crowdsourcing platform, students) and 1055

paid participants, and discuss if such payment is adequate given the participants’ demographic 1056

(e.g., country of residence)? 1057

We utilzed the MTurk crowdsourcing platform. We did an internal annotation, given that each assign- 1058

ment took less than 3 minutes to complete, we paid 0.4 USD per assignment, which equates to 8 dollars 1059

per hour of work. 1060

Did you discuss whether and how consent was obtained from people whose data you’re us- 1061

ing/curating (e.g., did your instructions explain how the data would be used)? 1062

As shown in the screenshots above, our instructions explained how the data would be used. i.e. 1063

’You are invited to participate in a research study on understanding human-human communication and 1064

evaluating the quality of conversation. Our goal is to learn what makes up a good conversation You will 1065

examine a response for a given dialogue history and you will examine the respone, you will be asked to 1066

answer feedback questions about the interaction. Data from responses and annotation will be analysed in 1067

deidentified format and extracts edited to preserve confidentiality may be featured in any published work 1068

resulting out of the study.’. 1069

Did you report the basic demographic and geographic characteristics of the annotator population 1070

that is the source of the data? 1071

While we did not explicitly collect the basic demographic and geographic characteristics. The demo- 1072

graphics of Amazon Mturkers (Difallah et al., 2018) are comprised of 75% US workers and 16% India 1073

workers, other countries include Canada, Great Britain, Philippines and Germany. More females work 1074

than males in the US (female: 55%, male: 45%) and more males work females in India (female: 35%, 1075
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male: 65%). Generally, 51% are male, and 49% are female. 20% of the MTurk workers are born after1076

1990, 60 % are born after 1980, and 80 1970. Roughly 40 % report being single, and 40 % report being1077

married.1078

H Use of AI assistants1079

Did you use AI assistants (e.g., ChatGPT, Copilot) in your research, coding, or writing?1080

We utilized AI assistants in paraphrasing and summarizing content from our paper, to improve the1081

writing quality and improve precision.1082

I Full Reward Function Training Result1083

Feedback Type Baselines
Reward Decomposition Reward conditioned on Visual Affect

MSE MAE Positive (1) Non-Positive (0) ∆ (↑)

Human N/A N/A 0.607 ± 0.02 0.52 ± 0.03 0.087 ± 0.05
Mean 245.495 15.668 0.458 0.458 0.000
Mode 289.473 17.013 0.438 0.438 0.000

GE

IRCR (Gangwani et al., 2020) 394.041 19.850 0.384 0.375 0.008
RUDDER (Arjona-Medina et al., 2019) 285.720 16.903 0.410 0.407 0.003
RRD (K = 32) (Ren et al., 2021) 172.246 13.124 0.474 0.468 0.007
RRD (K = 160) (Ren et al., 2021) 188.382 13.725 0.457 0.449 0.008

LI
Visual Affect (VA) 1546.17 39.321 0.455 0.199 0.256
Language Sentiment (LS) 825.31 28.728 0.496 0.486 0.010

GELI
IRCR + VA 722.687 26.882 0.752 0.361 0.392
RUDDER + VA 623.882 24.977 0.542 0.513 0.030
RRD + VA (Ours) 176.897 13.300 0.507 0.444 0.063

Table 4: Automatic Evaluation on Reward Function Training. Left: MSE and MAE for return decomposition.
We find that RRD and RRD+VA performs the best. Right: Reward function scores conditioned on positive and
non-positive visual response samples. ∆ indicates the difference of scores between positive and non-positive visual
response samples. We find the GELI: RRD + VA achieves the best of both world with low reward decomposition
scores and sufficient delta in visual response scores

J Generations1084
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K Training Curves 1085
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L Generated utterances with colors indicating aligned conversational topic1086

M ∆r̂LI to distinguish fingrained differences in affect1087

To verify our intuition that visual feedback is correlated with actual perceived conversational quality, we1088

ran a human study (displayed in the first row of Table 3), where we only show annotators the language1089

dialogue history and speaker’s next utterance. They are asked to rate whether the speaker’s next response1090

would induce a positive or non-positive feeling in the listener. We average the scores of their annotations1091

conditioned on non-positive and positive affect samples, where we find a large difference. This indicates1092

that the visual feedback is correlated with people’s perception of the conversation quality.1093
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GELI: RRD + Visual Affect

KLReward

Figure 6: GELI RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence over steps

LI: Language Sentiment

KLReward

Figure 7: LI: Language Sentiment RL Training during adaptation. Left: Reward scores over steps, Right: KL
divergence over steps

LI: Visual Affect

KLReward

Figure 8: LI: Visual Affect RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence
over steps

GE: RRD

KLReward

Figure 9: GE: RRD RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence over
steps
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Dialogue History
AI: Yeah, it's definitely a challenge. But I think it's really good. Like one 
of the things in the pandemic has been um like it's gotten so much 
easier to access like mental health care because like things can um 
happen online now, which I think seems like a good thing, wow.
User: Oh yeah accessibility is uh is always is always great.
AI: Yeah. Yeah.
User: Although there's the whole well there's all this stuff about like 
zoom anxiety is this as good as face to face, but I mean it's certainly 
safer.
AI: Uh Okay. Okay.
User: So mm.
AI: Yeah. Uh I had previously worked from home before the pandemic 
and had a lot of phone calls um and now everyone just wants to do the 
phone calls via zoom and like this doesn't need to be a like zoom call, 
like we can just be on the phone. There's there's not there's like not any 
added value here. It's really it's really interesting like just this sense 
now that everyone is working from home, like this idea that like all 
things are video calls.
User: Yeah I mean I I see a psychiatrist actually I've got I've got a D.
AI: Yeah. Uh huh.
User: D. So I need to I need to get it, I need to get my my prescription 
renewed and talk to a doctor and I used I used to go up to his office 
every two weeks and see him and now we just do it by phone and he 
asked if I wanted to do it in person and I was like yeah that seems 
unnecessary.

GELI: (Visual Affect + Random Return Decomposition)
Yeah, um, that makes a lot of sense. I think it's it's really important to have like 
access to mental health care in like, in a way that's convenient for people, like, 
you know, especially during like a pandemic or something like that. And I think 
it's it's really great that like you can, like, access it in a way that's safe and like, 
you know, it's not like it's not like you have to go to a physical office or anything 
like that. So, like, I think it's really great.

Human:
Uh huh. Yeah. Uh huh. Yeah. Some people prefer video though. Um It's 
interesting how different people's preferences are between phone versus 
video versus texting. Um I think a lot of the like companies that are doing 
mental health care are trying to offer all of them so that you know, no matter 
what like no matter what someone's preferences, they can offer it.

GE: Random Return Decomposition (RRD):
Absolutely, I, like, totally get it, um, it's, uh, really, like, super, you know, 
important to, like, have, like, these, uh, calls, like, for, like, totally, you know, 
mental heath reasons.

LI: Visual Affect (VA):
Okay that makes sense. Yeah it's definitely nice to have more flexibility with 
healthcare.

LI: Language Sentiment (LS):
Okay, yeah. Yeah, I see.

Base LLAMA-2:
Yeah, yeah. Yeah, no, I completely understand. Like, it's definitely nice to have 
the option to do things remotely, especially during the pandemic. But, you know, 
there are definitely some downsides too. Like, as you said, sometimes it can feel 
less personal or less meaningful than in-person interactions. And also, like, there 
are some things that are just better in person, you know? Like, you can read 
people's body language and expressions and get a better sense of their emotions. 
But yeah, I think it's a trade-off.

Prompt: "You are AI. You are having a casual social conversation 
with a User. AI is polite, kind, obedient, honest, and does not 
swear. You are given the dialogue history, generate the response 
to the User in under 100 words."

Figure 10: Generated utterances with colors indicating aligned conversational topics. We display our proposed
approach GELI alongside human groundtruth, the best performing global explicit decomposition methods (RRD),
local implicit rewards (visual affect and language sentiment). We find that GELI adapts the language model to
generate more coherent, personable and empathetic conversational response.
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