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Abstract
Understanding generalization of over-
parametrized models remains a fundamental chal-
lenge in machine learning. The literature mostly
studies generalization from an interpolation point
of view, taking convergence towards a global
minimum of the training loss for granted. This
interpolation paradigm does not seem valid for
complex tasks such as in-context learning or dif-
fusion. It has instead been empirically observed
that the trained models go from global minima to
spurious local minima of the training loss as the
number of training samples becomes larger than
some level we call optimization threshold. This
paper explores theoretically this phenomenon
in the context of two-layer ReLU networks. We
demonstrate that, despite overparametrization,
networks might converge towards simpler solu-
tions rather than interpolating training data, which
leads to a drastic improvement on the test loss.
Our analysis relies on the so called early align-
ment phase, during which neurons align toward
specific directions. This directional alignment
leads to a simplicity bias, wherein the network
approximates the ground truth model without
converging to the global minimum of the training
loss. Our results suggest this bias, resulting in an
optimization threshold from which interpolation
is not reached anymore, is beneficial and
enhances the generalization of trained models.

1. Introduction
Understanding the generalization capabilities of neural net-
works remains a fundamental open question in machine
learning (Zhang et al., 2021; Neyshabur et al., 2017). Tra-
ditionally, research has focused on explaining why neu-
ral networks models can achieve zero training loss while
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still generalizing well to unseen data in supervised learning
tasks (Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and
Vanden-Eijnden, 2022; Chizat and Bach, 2020; Boursier
et al., 2022; Boursier and Flammarion, 2023). This phe-
nomenon is often attributed to overparametrization enabling
models to find solutions that interpolate the training data yet
avoid overfitting (Belkin et al., 2019; Bartlett et al., 2021).
However, the advent of generative AI paradigms—such as
large language models (Vaswani et al., 2017) and diffusion
models (Dhariwal and Nichol, 2021)—has introduced a
paradigm shift in our understanding of generalization. In
these settings, models can generate new data and perform
novel tasks without necessarily interpolating the training
data, raising fresh questions about how and why they gen-
eralize. This shift can be illustrated by two seemingly un-
related applications: in-context learning with transformers
and generative modeling using diffusion methods.

Firstly, in-context learning (ICL) refers to the ability of large
pretrained transformer models to learn new tasks from just a
few examples, without any parameter updates (Brown et al.,
2020; Min et al., 2022). A central question is whether ICL
enables models to learn tasks significantly different from
those encountered during pretraining. While prior work
suggests that ICL leverages mechanisms akin to Bayesian
inference (Xie et al., 2022; Garg et al., 2022; Bai et al.,
2023), the limited diversity of tasks in pretraining datasets
may constrain the model’s ability to generalize. Raventós
et al. (2024) investigated this effect by focusing on regres-
sion problems to quantify how increasing the variety of
tasks during pretraining affects ICL’s capacity to generalize
to new, unseen tasks, in context.

Secondly, diffusion models have made remarkable strides
in generating high-quality images from high-dimensional
datasets (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021). These models learn to generate new samples
by training denoisers to estimate the score function—the
gradient of the log probability density—of the noisy data
distribution (Song and Ermon, 2019). A significant chal-
lenge in this context is approximating a continuous density
from a relatively small training set without succumbing to
the curse of dimensionality. Although deep neural networks
may tend to memorize training data when the dataset is
small relative to the network’s capacity (Somepalli et al.,
2023; Carlini et al., 2023), Yoon et al. (2023); Kadkhodaie
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et al. (2024) observed they generalize well when trained on
sufficiently large datasets, rendering the model’s behavior
nearly independent of the specific training set.

The common thread connecting these examples is a
fundamental change in how gradient descent behaves in
overparametrized models when the number of data points
exceeds a certain threshold. Rather than converging to the
global minimum of the training loss, gradient descent con-
verges to a simpler solution closely related to the true loss
minimizer. In learning scenarios involving noisy data, the
most effective solutions are often those that do not interpo-
late the data. Despite their capacity to overfit, these models
exhibit a simplicity bias, generalizing well to the underlying
ground truth instead of merely fitting the noise in the training
data. While simplicity bias generally refers to the tendency
of models to learn features of increasing complexity, until
reaching data interpolation (Arpit et al., 2017; Rahaman
et al., 2019; Kalimeris et al., 2019; Huh et al., 2023); this
phenomenon seems to stop before full interpolation with
modern architectures (even when training for a very long
time, see e.g. Raventós et al., 2024, Figure 4). This obser-
vation underscores a significant shift in our understanding
and approach to generalization in machine learning.

In this paper, we theoretically investigate this phenomenon
in the toy setting of shallow ReLU networks applied
to a regression problem. While multilayer perceptrons
are foundational elements shared by the aforementioned
models, focusing on shallow networks remains a significant
simplification with respect to the architectures and algo-
rithms used for training transformers and diffusion models.
Despite this simplification, we aim to gain theoretical
insights that shed light on similar behaviors observed in
more complex models. Some recent theoretical works
argued that overparametrized networks do not necessarily
converge to global minima. In particular, Qiao et al. (2024)
showed this effect for unidimensional data by illustrating
the instability of global minima. Boursier and Flammarion
(2024) advanced a different reason for this effect, given
by the early alignment phenomenon: when initialized with
sufficiently small weights, neurons primarily adjust their
directions rather than their magnitudes in the early phase
of training, aligning along specific directions determined
by the stationary points of a certain known function.

Contributions. Our first contribution is to show that this
function driving the early alignment phase concentrates
around its expectation, which corresponds to the true loss
function, as the number of training samples grows large.
For simple teacher architectures, this expected function pos-
sesses only a few critical points. As a result, after the early
alignment phase, the neurons become concentrated in a few
key directions associated with the ground truth model. This
behavior reveals a simplicity bias at the initial stages of train-

ing. Moreover, this directional concentration is believed to
contribute to the non-convergence to the global minimizer
of the training loss. However, this characterization only
pertains to the initial stage of training. Therefore we extend
our analysis to provide, under a restricted data model, a
comprehensive characterization of the training dynamics,
demonstrating that the simplicity bias persists until the end
of training when the number of training samples exceeds
some optimization threshold. We here provide an informal
version of our main theorem, corresponding to Theorem 4.1.

Theorem 1.1 (Informal). Consider a specific regression
setting with n data samples of dimension d. Using a two-
layer ReLU neural network trained with gradient flow and
small random initialization, we show that if n ≳ d3 log d,
then regardless of the network’s width, the learned function
closely approximates the ordinary least squares solution.

In particular, Theorem 1.1 shows that in the over-
parametrized regime, the final estimator does not minimize
the training loss globally, yet it achieves near-optimal per-
formance on the test data. We then confirm empirically our
predictions.

2. Preliminaries
This section introduces the setting and the early alignment
phenomenon, following the notations and definitions of
Boursier and Flammarion (2024).

2.1. Notations

We denote by Sd−1 the unit sphere of Rd and B(0, 1)
the unit ball. We note f(t) = Op (g(t)), if there exists a
constant Cp, that only depends on p such that for any t,
|f(t)| ≤ Cpg(t). We drop the p index, if the constant Cp is
universal and does not depend on any parameter. Similarly
we note f(t) = Ωp(g(t)), if there exists a constant Cp > 0,
that only depends on p such that f(t) ≥ Cpg(t) and
we write f(t) = Θp(g(t)) if both f(t) = Op (g(t)) and
f(t) = Ωp(g(t)). For any bounded set A, U(A) denotes
the uniform probability distribution on the set A.

2.2. Setting

We consider n data points (xk, yk)k∈[n] ∈ Rd+1 drawn
i.i.d. from a distribution µ ∈ P(Rd+1). We also denote by
X = [x⊤

1 , . . . , x
⊤
n ] ∈ Rd×n and y = (y1, . . . , yn) ∈ Rn

respectively the matrix whose columns are given by the
input vectors xk and the vector with coordinates given by
the labels yk. A two layer ReLU network is parametrized
by θ = (wj , aj)j∈[m] ∈ Rm×(d+1), corresponding to the
prediction function

hθ : x 7→∑m
j=1 ajσ(w

⊤
j x),
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where σ is the ReLU activation given by σ(z) = max(0, z).
While training, we aim at minimizing the empirical square
loss over the training data, defined as

L(θ;X,y) =
1

2n

∑n
k=1(hθ(xk)− yk)

2.

As the limiting dynamics of (stochastic) gradient descent
with vanishing learning rates, we study a subgradient flow
of the training loss, which satisfies for almost any t ∈ R+,

θ̇(t) ∈ −∂θL(θ(t);X,y), (1)

where ∂θL stands for the Clarke subdifferential of L w.r.t. θ.

2.3. Early alignment dynamics

Initialization. In accordance to the feature learning
regime (Chizat et al., 2019), the m neurons of the neural
network are initialized as

(aj(0), wj(0)) = λm−1/2 (ãj , w̃j), (2)

where λ > 0 is the scale of initialization and (ãj , w̃j) are
vectors drawn i.i.d. from some distribution, satisfying the
following domination property for any m ∈ N:

|ãj | ≥ ∥w̃j∥ for any j ∈ [m] and
1

m

∑m
j=1 ã

2
j ≤ 1. (3)

This property is common and allows for a simpler analysis,
as it ensures that the signs of the output neurons aj(t)
remain unchanged while training (Boursier et al., 2022).

Neuron dynamics. In the case of two layer neural net-
works with square loss and ReLU activation, Equation (1)
can be written for each neuron i ∈ [m] as

ẇi(t) ∈ ai(t)Dn(wi(t), θ(t))

ȧi(t) = wi(t)
⊤Dn(wi(t), θ(t))⟩,

(4)

where the vector Dn(wi(t), θ(t)) and set Dn(wi(t), θ(t))
are defined as follows, with ∂σ the subdifferential of the
ReLU activation σ:

Dn(w, θ) =
1

n

n∑
k=1

1x⊤
k w>0(yk − hθ(xk))xk,

Dn(w, θ)=

{
1

n

n∑
k=1

ηk(yk − hθ(t)(xk))xk

∣∣ηk∈∂σ(x⊤
k w)

}
.

These derivations directly follow from the subdifferential of
the training loss. In particular, Dn(w, θ) corresponds to a
specific vector (subgradient) in the subdifferential Dn(w, θ).
Also observe that the set Dn(w, θ) depends on w only
through its activations An(w), defined as

An :
Rd → {−1, 0, 1}n
w 7→ sign(w⊤xk)k∈[n]

.

Furthermore, Dn(w, θ) only depends on θ via the predic-
tion function hθ. This observation is crucial to the early
alignment phenomenon.

Early alignment. In the small initialization regime de-
scribed by Equation (2), numerous works highlight an early
alignment phase in the initial stage of training (Maennel
et al., 2018; Atanasov et al., 2022; Boursier and Flammar-
ion, 2024; Kumar and Haupt, 2024; Tsoy and Konstanti-
nov, 2024). During this phase, the neurons exhibit minimal
changes in norm, while undergoing significant changes in
direction. This phenomenon is due to a discrepancy in the
derivatives of the neurons’ norms (which scale with λ) and
of their directions (which scale in Θ(1)). Specifically, for
a sufficiently small initialization scale λ, the neurons align
towards the critical directions of the following function Gn

defined as
Gn : w 7→ w⊤Dn(w,0). (5)

Gn is continuous, piecewise linear and can be interpreted as
the correlation between the gradient information around the
origin (given by Dn(w,0)) and the neuron w. The network
neurons thus align with the critical directions on the sphere
of Gn during the early training dynamics. These critical
directions are called extremal vectors, defined as follows.

Definition 2.1. A vector D ∈ Rd is extremal with respect
to Gn if there exists w ∈ Sd−1 such that both hold

1. D ∈ Dn(w,0);
2. D = 0 or An(D) ∈ {An(w),−An(w)}.

This definition directly follows from the KKT conditions of
the maximization (or minimization) problem, constrained
on the sphere, of the function Gn.

Implications of early alignment. By the end of the early
alignment, most if not all neurons are nearly aligned with
some extremal vector D. Maennel et al. (2018); Boursier
and Flammarion (2024) argue that only a few extremal vec-
tors exist in typical learning models. We further explore this
claim in Section 3. As a consequence, only a few directions
are represented by the network’s weights at the end of the
early dynamics, even though the neurons cover all possible
directions at initialization. Boursier and Flammarion
(2024) even show that this quantization of directions can
prevent the network from interpolating the training set at
convergence despite the overparametrization of the network.

Although this failure of interpolation has been considered
a drawback by Boursier and Flammarion (2024), we show
in Section 4 that it can also lead to a beneficial phenomenon
of simplicity bias. Specifically, Section 4 illustrates on a
simple linear example that for a large number of training
samples, the model does not converge to interpolation.
Instead, it converges towards the ordinary least square
(OLS) estimator of the data. As a consequence, the model
fits the true signal of the data, while effectively ignoring
label noise. Before studying this example, we must first
understand how extremal vectors behave as the number of
training samples increases.
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3. Geometry of alignment with many samples
We here aim to describe the geometry of the function Gn,
with a specific focus on the extremal vectors, as the number
of training samples n becomes large. These vectors are key
in driving the early alignment phase of the training, making
them essential to understanding the initial dynamics of the
parameters.

This section provides a general result on the concentration
of gradient information Dn of the train loss and support that
the early alignment behavior in the infinite-data setting does
not differ significantly from that in the large but finite n
case. While the tail bound version of Theorem 3.1 is central
to our analysis in Section 4, the results of Section 3 are not
only stated in a general form for broader applicability, but
also constitute standalone contributions that may be useful
in future work.

Despite non-smoothness of the loss (due to ReLU activa-
tions), we can leverage the piecewise constant structure of
the vector function Dn(w), along with typical Rademacher
complexity arguments, to derive uniform concentration
bounds on the random function w 7→ Dn(w).

Theorem 3.1. If the marginal law of x1 is continuous with
respect to the Lebesgue measure, then for any n ∈ N,

EX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w,0)

∥Dn −D(w)∥2
]
=

O
(√d log n

n
E[∥y1x1∥22]

)
,

where for any w ∈ Sd−1, D(w) = E[1w⊤x1>0y1x1].

Theorem 3.1 indicates that as n grows large, the sets
Dn(w,0) converge to the corresponding vectors for the

true loss, given by D(w), at a rate
√

d logn
n . Moreover this

rate holds uniformly across all possible directions of Rd

in expectation. A probability tail bound version of Theo-
rem 3.1, which bounds this deviation with high probability,
can also be derived (see Theorem D.1 in Appendix D). A
complete proof of Theorem 3.1 is provided in Appendix C.

When n → ∞, the alignment dynamics are thus driven by
vectors Dn which are close to their expected value D(w).
Furthermore, when n → ∞, the activations of a weight
An(w) exactly determine the direction of this weight, as
every possible direction is then covered by the training
inputs xk. Specifically, for an infinite dataset indexed by
N, whose support covers all directions of Rd, and defining
the infinite activation function A as

A :
Sd−1 → {−1, 0, 1}N
w 7→ sign(w⊤xk)k∈N

;

then A is injective. In this infinite data limit, the functions
Gn converge to the function G : w 7→ w⊤D(w), which is

differentiable in this limit, and a vector D ∈ Rd is extremal
with respect to G if there exists w ∈ Sd−1 such that both

1. D = D(w) 2. D = 0 or
D

∥D∥2
∈ {w,−w}. (6)

When n becomes large, the extremal vectors of the data
then concentrate toward the vectors satisfying Equation (6).
This is precisely quantified by Proposition 3.1 below.

Proposition 3.1. Assume the marginal law of x1 is continu-
ous w.r.t. the Lebesgue measure and that E[∥x1y1∥4] < ∞.
Then for any ε > 0, there is n⋆(ε) = Oε,µ (d log d)
such that for any n ≥ n⋆(ε), with probability at least
1−Oµ

(
1
n

)
: for any extremal vector Dn of the finite data

(X,y) ∈ Rn×(d+1), there exists a vector D⋆ ∈ Rd satisfy-
ing Equation (6), such that

∥Dn −D⋆∥2 ≤ ε.

Proposition 3.1 states that for large n, the extremal vectors
concentrate towards the vectors satisfying Equation (6).
Note that Proposition 3.1 is not a direct corollary of
Theorem 3.1, but its proof relies on the tail bound version
of Theorem 3.1 and continuity arguments. A complete
proof is given in Appendix E.

Early alignment towards a few directions. Besides
laying the ground for Theorem 4.1, Proposition 3.1 aims
at describing the geometry of the early alignment when
the number of training samples grows large. In particular,
Proposition 3.1 shows that all extremal vectors concentrate
towards the directions satisfying Equation (6). Although
such a description remains abstract, we believe it is satisfied
by only a few directions for many data distributions. As an
example, for symmetric data distributions, it is respectively
satisfied by a single or two directions, when considering a
one neuron or linear teacher. More generally, we conjecture
it should be satisfied by a small number of directions as
soon as the labels are given by a small teacher network.
Proving such a result is yet left for future work.

The early alignment phenomenon has been described in
many works, to show that after the early training dynam-
ics, only a few directions (given by the extremal vectors)
are represented by the neurons (Bui Thi Mai and Lampert,
2021; Lyu et al., 2021; Boursier et al., 2022; Chistikov et al.,
2023; Min et al., 2024; Boursier and Flammarion, 2024;
Tsoy and Konstantinov, 2024). However, these works all
rely on specific data examples, where extremal vectors can
be easily expressed for a finite number of samples. Propo-
sition 3.1 aims at providing a more general result, showing
that for large n, it is sufficient to consider the directions
satisfying Equation (6), which is easier to characterize from
a statistical perspective. We thus believe that Proposition 3.1
advances our understanding of how sparse is the network
representation (in directions) at the end of early alignment.

4



Simplicity bias and optimization threshold in ReLU networks

Proposition 3.1 implies that for large values of n (≳ d), the
early alignment phase results in the formation of a small
number of neuron clusters, effectively making the neural
network equivalent to a small-width network. Empirically,
these clusters appear to be mostly preserved throughout
training. The neural network then remains equivalent to a
small-width network along its entire training trajectory.

In contrast, when the number of data is limited (n ≲ d),
this guarantee no longer holds and a large number of
extremal vectors may exist. For example in the case of
orthogonal data (which only holds for n ≤ d), there are
Θ(2n) extremal vectors (Boursier et al., 2022). In such
cases, there would still be a large number of neuron clusters
at the end of the early alignment phase, maintaining a
large effective width of the network. Studying how this
effective width is maintained until the end of training in the
orthogonal case remains an open problem. We conjecture
that for a mild overparametrization (n ≲ m ≪ 2n),1 we
would still have a relatively large effective width (increasing
with n) at the end of training.

4. Optimization threshold and simplicity bias
The goal of this section is to illustrate the transition from
interpolating the training data to a nearly optimal estimator
(with respect to the true loss) that can arise when increasing
the size of training data. Toward this end, this section proves
on a toy data example, that for a large enough number of
training samples, an overparametrized network will not
converge to a global minimum of the training loss, but will
instead be close to the minimizer of the true loss. This is
done by analyzing the complete training dynamics, whose
first phase–the so-called early alignment phase–is controlled
using the tail bound version of Theorem 3.1. To this end,
we consider the specific case of a linear data model:

yk = x⊤
k β

⋆ + ηk for any k ∈ [n], (7)

where ηk is some noise, drawn i.i.d. from a centered
distribution. We also introduce a specific set of assumptions
regarding the data distribution.

Assumption 4.1. The samples xk and the noise ηk are
drawn i.i.d. from distributions µX , and µη satisfying, for
some c > 0:

1. µX is symmetric, i.e., xk and −xk follow the same
distribution;

2. µ is continuous with respect to the Lebesgue measure;

3. Px∼µX

(
|x⊤β⋆| ≤ c∥x∥2√

d

)
= 0;

4. ∥Ex∼µX
[xx⊤]− Id∥op < min

(
c

2
√
d∥β⋆∥2

, 3
5

)
;

1Boursier et al. (2022) proved an effective width of 2 at the end
of training when m ≳ 2n.

5. The random vector xk is 1 sub-Gaussian and the noise
satisfies E[η4] < ∞.

Conditions 1, 2 and 5 in Assumption 4.1 are relatively
mild. However, item 3 is quite restrictive: it is needed to
ensure that the volume of the activation cone containing
β⋆ does not vanish when n → ∞. A similar assumption is
considered by Chistikov et al. (2023); Tsoy and Konstanti-
nov (2024), for similar reasons. Additionally, Condition
4 ensures that Ex[xx

⊤]β⋆ and β⋆ are in the same activation
cone. This assumption allows the training dynamics to
remain within a single cone after the early alignment phase,
significantly simplifying our analysis.

As an example, if the samples xk are distributed i.i.d. as

xk = sk
β⋆

∥β⋆∥ +
√
d− 1vk with vk ∼ U(Sd−1 ∩ {β⋆}⊥)

and sk ∼ U ([−1− ε,−1 + ε] ∪ [1− ε, 1 + ε]) ,

for a small enough ε > 0 and µη a standard Gaussian
distribution, then Assumption 4.1 is satisfied. In this section,
we also consider the following specific initialization scheme
for any i ∈ [m]:

wi(0)∼0.5λm−1/2 U(B(0, 1))

and ai(0)∼λm−1/2 U({−1, 1}).
(8)

In addition to the regime considered in Equations (2)
and (3), this initialization introduces a stronger domination
condition, as |ai(0)| ≥ 2∥wi(0)∥. This condition reinforces
the early alignment phase, ensuring that all neurons are
nearly aligned with extremal vectors by the end of this
phase. Assumption 4.1 and Equation (8) are primarily
introduced to enable a tractable analysis and are discussed
further in Section 4.2.

This set of assumptions allows to study the training
dynamics separately on the following partition of the data:

S+ = {k ∈ [n] | x⊤
k β

⋆ ≥ 0} and S− = [n] \ S+.

Hereafter, we denote by X+ ∈ Rd×|S+| (resp. X−), the
matrix with columns given by the vectors xk for k ∈ S+

(resp. k ∈ S−). Similarly, we denote by Y+ ∈ R|S+| (resp.
Y−) the vector with coordinates given by the labels yk for
k ∈ S+ (resp. k ∈ S−).

Studying separately positive (ai > 0) and negative (ai < 0)
neurons, we prove Theorem 4.1 below, which states that at
convergence for a large enough number of training samples,
the sum of the positive (resp. negative) neurons correspond
to the OLS estimator on the subset S+ (resp. S−).

Theorem 4.1. If Assumption 4.1 holds and the initialization
scheme follows Equation (8), then there exists λ⋆ = Θ( 1d )
and n⋆ = Θ(d3 log d) such that for any λ ≤ λ⋆, any m ∈
N and n ≥ n⋆, with probability 1 − O

(
d2

n + 1
2m

)
, the
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parameters θ(t) converge to some θ∞ such that

hθ∞(x) = (β⊤
n,+x)+ − (−β⊤

n,−x)+

for any x ∈ Supp(µX), where Supp(µX) is the support
of the distribution µX , βn,+ = (X+X

⊤
+)

−1X+Y+ and
βn,− = (X−X

⊤
−)

−1X−Y− are the OLS estimator respec-
tively on the data in S+ and S− .

Precisely, the estimator learnt at convergence for a large
enough n behaves µX -everywhere as the difference of two
ReLU neurons, with nearly opposite directions (thanks
to the distribution symmetry), resulting in a nearly linear
estimator. These directions correspond to the OLS estimator
of the data in S+ and in S−, respectively. The complete
proof of Theorem 4.1 is deferred to Appendix F. We
provide a detailed sketch in Section 4.1 below and discuss
further Theorem 4.1 in Section 4.2.

4.1. Sketch of Proof of Theorem 4.1

The proof of Theorem 4.1 examines the complete training
dynamics of positive neurons (ai(0) > 0) and negative
ones (ai(0) < 0) separately. This decoupling is possible at
the end of the early phase, due to Assumption 4.1, and is
handled thanks to Lemma F.3 in the Appendix.

First note that for the given model, there are only two vec-
tors satisfying Equation (6), corresponding to 1

2Σβ
⋆ and

− 1
2Σβ

⋆ respectively, for Σ = Ex∼µX
[xx⊤]. From then and

thanks to the third point of Assumption 4.1, the results from
Section 3 imply that, for a large value of n and with high
probability, there are only two extremal vectors, both of
which are close to the expected ones mentioned above. By
analyzing the early alignment phase similarly to Boursier
and Flammarion (2024), we show that by the end of this
early phase, (i) all neurons have small norms; (ii) positive
(resp. negative) neurons are aligned with Σβ⋆ (resp. −Σβ⋆).
More specifically, at time τ , defined as the end of the early
alignment phase, we show that

∀i ∈ [m],
wi(τ)

ai(τ)

⊤
Σβ⋆ = ∥Σβ⋆∥ − O

(
λε +

√
d2 log n

n

)
.

From that point onward, all positive neurons are nearly
aligned and behave as a single neuron until the end of train-
ing. Moreover, they remain in the same activation cone until
the end of training. Namely for any i ∈ [m] and t ≥ τ ,

ai(t) x
⊤
k wi(t) > 0 for any k ∈ S+,

ai(t) x
⊤
k wi(t) < 0 for any k ∈ S−.

We then show that during a second phase, all positive neu-
rons grow until they reach the OLS estimator on the data in
S+. Mathematically, for some time τ2,+ > τ ,∑

i,ai(0)>0 ai(τ2,+)wi(τ2,+) ≈ βn,+.

Similarly, negative neurons end up close to βn,− after a
different time τ2,−. Proving this second phase is quite tech-

nical and is actually decomposed into a slow growth and
fast growth phases, following a similar approach to Lyu et al.
(2021); Tsoy and Konstantinov (2024).

At the end of the second phase, the estimation function is al-
ready close to the one described in Theorem 4.1. From then,
we control the neurons using a local Polyak-Łojasiewicz
inequality (see Equation (45)) to show that they remain
close to their value at the end of the second phase, and ac-
tually converge to a local minimum corresponding to the
estimation function hθ∞ described in Theorem 4.1.

4.2. Discussion

Theorem 4.1 shows that, under a specific linear data model,
when the number of training samples exceeds a certain
optimization threshold, the learned function converges to the
OLS estimator—even in highly overparametrized settings
where m ≫ n. This result highlights two key insights:

• Despite overparametrization, the network can converge to
a suboptimal solution of the training loss when initialized
at a small scale.

• This training failure can in fact be beneficial: although
suboptimal for the training loss, the resulting estimator is
optimal for the test loss.

We now discuss further on Theorem 4.1 and its limitations.

Absence of interpolation. For many years, the literature
has argued in favor of the fact that, if overparametrized
enough, neural networks do converge towards interpolation
of the training set, i.e., to a global minimum of the loss
(Jacot et al., 2018; Du et al., 2019; Chizat and Bach, 2018;
Wojtowytsch, 2020).

Yet, some recent works argued in the opposite direction that
convergence towards global minima might not be achieved
for regression tasks, even with infinitely overparametrized
networks (Qiao et al., 2024; Boursier and Flammarion,
2024). Indeed, Theorem 4.1 still holds as m → ∞: al-
though interpolation of the data is possible from a statistical
aspect2, interpolation does not occur for optimization rea-
sons. In this direction, Qiao et al. (2024) claim that for large
values of n and univariate data, interpolation cannot happen
because of the large (i.e., finite) stepsizes used for gradient
descent. Following Boursier and Flammarion (2024), we
here provide a complementary reason, which is due to the
early alignment phenomenon and loss of omnidirectionality
of the weights (i.e., the fact that the weights represent all
directions in Rd). Note that this loss of omnidirectionality is
specific to the (leaky) ReLU activation and does not hold for
smooth activations (see e.g. Chizat and Bach, 2018, Lemma

2Although the absence of bias term in the parametrization limits
the expressivity of the neural network, interpolation is still possible
as long as the data xi are pairwise non-proportional (Carvalho et al.,
2025, Theorem 2).
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Figure 1: Different regimes of generalization: in green (n ≪ d), the trained estimator interpolates the data and leads to
tempered overfitting; after the optimization threshold in blue (n ≫ d), we converge to a spurious stationary point of the
training loss which generalizes well despite overparametrization, this regime is our main focus; in the underparametrized
regime in red (m ≫ n), the global minima do not interpolate anymore and generalize well.

C.10). We experimentally confirm in Appendix A.4 that
both visions are complementary, as interpolation still does
not happen for arbitrarily small learning rates.

Simplicity bias. Simplicity bias has been extensively
studied in the literature (Arpit et al., 2017; Rahaman
et al., 2019; Kalimeris et al., 2019; Huh et al., 2023). It
is often described as the fact that networks learn features
of increasing complexity while learning. In other words,
simpler features are first learnt (e.g., a linear estimator),
and more complex features might be learnt later. This
has been observed in many empirical studies, leading to
improved performance in generalization, except from a few
nuanced cases (Shah et al., 2020). Yet in all these studies,
the network interpolates the training set after being trained
for a long enough time. In consequence, simplicity bias
has been characterized by a first feature learning phase;
and is then followed by an interpolating phase, where the
remaining noise is fitted (Kalimeris et al., 2019).

We here go further by showing that this last interpolating
phase does not even happen in some cases. Theorem 4.1
indeed claims that after the first feature learning phase,
where the network learns a linear estimator, nothing happens
in training. The interpolating phase never starts, no matter
how long we wait for. While interpolation is often observed
for classification problems in practice, it is generally much
harder to reach for regression problems (Stewart et al., 2023;
Yoon et al., 2023; Kadkhodaie et al., 2024; Raventós et al.,
2024). Theorem 4.1 confirms this tendency by illustrating
a regression example where interpolation does not happen
at convergence. Notably, we here focus on the blue regime
in Figure 1 and show that while the global minima poorly
generalize in this regime, the optimization scheme only
converges to a spurious local minimum of the training
loss, which has much better generalization properties.
This in stark contrast to the underparametrized regime –
n ≫ m, in red in Figure 1 – where the global minimum has
good guarantees, thanks to classical generalization bounds
arguments (Bartlett and Mendelson, 2002).

Although implicit bias and simplicity bias often refer to the
same behavior in the literature, we here distinguish the two
terms: implicit bias is generally considered in the regime of

interpolation (Soudry et al., 2018; Lyu and Li, 2019; Chizat
and Bach, 2020; Ji and Telgarsky, 2019), while simplicity
bias still exists in absence of interpolation.

Improved test loss, due to overparametrization thresh-
old. Theorem 4.1 states that for a large enough number of
training samples, the interpolating phase does not happen
during training, and the estimator then resembles the OLS
estimator of the training set. In that regime, the excess
risk scales as O(d/n) (Hsu et al., 2011) and thus quickly
decreases to 0 as the number of training samples grows.
In contrast when interpolation happens, we either observe
a tempered overfitting, where the excess risk does not go
down to 0 as the number of samples grows (Mallinar et al.,
2022); or even a catastrophic overfitting, where the excess
risk instead diverges to infinity as the size of the training
set increases (Joshi et al., 2024).

The fact that the excess risk goes down to 0 as n grows
in our example of Section 4 could not be due to a benign
overfitting (Belkin et al., 2018; Bartlett et al., 2020), as
benign overfitting occurs when the dimension d also grows
to infinity. We here consider a fixed dimension instead,
and this reduced risk is then solely due to the optimization
threshold, i.e., the fact that for a large enough n, the
interpolating phase does not happen anymore. While some
works rely on early stopping before this interpolating phase
to guarantee such an improved excess risk (Ji et al., 2021;
Mallinar et al., 2022; Frei et al., 2023), it can be guaranteed
without any early stopping after this optimization threshold.
A similar threshold has been empirically observed in
diffusion and in-context learning (Yoon et al., 2023;
Kadkhodaie et al., 2024; Raventós et al., 2024), where the
trained model goes from interpolation to generalization as
the number of training samples increases.

Limitations and generality. While Theorem 4.1 con-
siders a very specific setting, it describes a more general
behavior. Although condition 3 of Assumption 4.1 and the
initialization scheme of Equation (8) are quite artificial,
they are merely required to allow a tractable analysis. The
experiments of Section 5 are indeed run without these
conditions and yield results similar to the predictions of
Theorem 4.1 for large enough n.
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(b) Evolution of test loss.

Figure 2: Evolution of both train and test losses at convergence with respect to the number of training samples. σ2

corresponds to the noise variance E[η2].

More particularly, condition 3 of Assumption 4.1 is required
to ensure that only two extremal vectors exist. Without this
condition, there could be additional extremal vectors, but
all concentrated around these two main extremal ones. On
the other hand, Equation (8) is required to enforce the early
alignment phase, so that all neurons are aligned towards
extremal vectors at its end. With a more general initial-
ization, some neurons could move arbitrarily slowly in the
early alignment dynamics, ending unaligned at the end of
early phase. Yet, such neurons would be very rare. Relaxing
these two assumptions would make the final convergence
point slightly more complex than the one in Theorem 4.1.
Besides the two main ReLU components described in Theo-
rem 4.1, a few small components could also be added to the
final estimator, without significantly changing the reached
excess risk, as observed in Section 5. This is observed in
Figure 2, where the training loss is only slightly smaller
than the training loss of OLS, with a comparable test loss.

From a higher level, Theorem 4.1 is restricted to a linear
teacher and a simple network architecture. It remains hard
to assess how well the considered setting reflects the behav-
ior of more complex architectures encountered in practice.
We believe that the different conclusions of our work remain
valid in more complex setups. In particular, additional ex-
periments in Appendix A run with a more complex teacher,
GeLU activations or with Adam optimizer yield similar be-
haviors: the obtained estimator does not interpolate for a
large number of training samples, but instead accurately ap-
proximates the minimizer of the test loss. Similar behaviors
have also been observed on more complex tasks as gener-
ative modeling or in-context learning (Yoon et al., 2023;
Kadkhodaie et al., 2024; Raventós et al., 2024). Despite
overparametrization, the trained model goes from perfect
interpolation to generalization, as it fails at interpolating for
a large number of training samples. In these works as well,
this absence of interpolation does not seem due to an early
stopping, but rather to convergence to a local minimum (see

e.g., Raventós et al., 2024, Figure 4).

Lastly, Theorem 4.1 requires a very large number of
samples with respect to the dimension, i.e., n ≳ d3 log d.
Our experiments confirm that the optimization threshold
only appears for a very large number of training samples
with respect to the dimension. However, similar behaviors
seem to occur for smaller orders of magnitude for n in
more complex learning problems, such as the training of
diffusion models (Yoon et al., 2023; Kadkhodaie et al.,
2024). This dependency in d might indeed be different for
more complex architectures (e.g., with attention) and is
worth investigating for future work.

5. Experiments
This section illustrates our results on experiments on a
toy model close to the setting of Section 4. More pre-
cisely, we train overparametrized two-layer neural networks
(m = 10 000) until convergence, on data from the linear
model of Equation (7). The network is trained via stochastic
gradient descent and the dimension is fixed to d = 5 to allow
reasonable running times. The setup here is more general
than Section 4, since i) the data input xk are drawn from
a standard Gaussian distribution (which does not satisfy
Assumption 4.1); ii) the neurons are initialized as centered
Gaussian of variance 10−5/m (which does not satisfy Equa-
tions (3) and (8)). We refer to Appendix A for details on the
considered experiments and additional experiments.

Figure 2 illustrates the behavior of both train loss and test
loss at convergence, when the size of the training set n
varies. As predicted by Theorem 4.1, when n exceeds some
optimization threshold, the estimator at convergence does
not interpolate the training set. Instead, it resembles the
optimal OLS estimator, which yields a test loss close to the
noise level E[η2]. In contrast for smaller training sets, the
final estimator interpolates the data at convergence, which
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Figure 3: Histogram of the cosine similarities of the neurons with the true OLS estimator β̂, at the end of training.

yields a much larger test loss than OLS, corresponding to
the tempered overfitting regime (Mallinar et al., 2022).

This optimization threshold is here located around
n⋆ = 3000, which suggests that the large dependency of
this threshold in the dimension (which is here 5) in Theo-
rem 4.1 seems necessary–see Appendix A.5 for experiments
with larger dimensions. We still observe a few differences
here with the predictions of Theorem 4.1, which are due to
the two differences in the setups mentioned above. Indeed,
even after this optimization threshold, the test loss of the ob-
tained network is slightly larger than the one of OLS, while
Theorem 4.1 predicts they should coincide. This is because
in the experimental setup, a few neurons remain disaligned
with the extremal ones at the end of the early alignment
phase. These neurons will then later in training grow in
norm, trying to fit a few data points. However there are only
a few of such neurons, whose impact thus becomes limited–
see Figure 3. As a consequence, they only manage to slightly
improve the train loss and have little impact on the test loss.

5.1. Cosine similarity with OLS estimator

To illustrate Theorem 4.1 and the fact that neurons end up
aligned with the OLS estimator beyond the optimization
threshold n⋆, Figure 3 shows histograms of the cosine simi-
larities3 between all the neurons wi of the network at the end
of training and the true OLS estimator β̂ = (XX⊤)−1XY,
for different sample complexities. This experiment follows
the same setup as the one of Figure 2. In particular,
Figure 3(a) shows this histogram for n = 500, where
interpolation of the training data happens (see Figure 2(a));
and Figure 3(b) shows this histogram for n = 5 000, where
interpolation of the training data does not happen anymore,
but the network generalizes well to unseen data.

3The cosine similarity between two vectors u, v ∈ Rd is de-
fined as cos(u, v) = u⊤v

∥u∥ ∥v∥ .

While a majority of the neurons is already nicely aligned
with the true OLS estimator in the n = 500 case, an im-
portant fraction of them are not aligned with this estimator
(69% of them have a cosine similarity smaller than 0.9 in
absolute value). These unaligned neurons contribute to a
prediction function that significantly differs from the OLS
one. On the other hand, nearly all neurons are aligned with
this true estimator as n grows larger (91% of them have a
cosine similarity larger than 0.9 in absolute value), confirm-
ing the predictions of Theorem 4.1. As explained above,
there are still a few vectors that are disaligned with the OLS
estimator here, but they are only a small fraction and thus
have almost no impact on the estimated function.

6. Conclusion
This work illustrates on a simple linear example the phe-
nomenon of non-convergence of the parameters towards
a global minimum of the training loss, despite over-
parametrization. This non-convergence actually yields a
simplicity bias on the final estimator, which can lead to
an optimal fit of the true data distribution. A similar phe-
nomenon has been observed on more complex and realistic
settings (Yoon et al., 2023; Kadkhodaie et al., 2024; Raven-
tós et al., 2024). However, a theoretical analysis remains
out of reach in these cases. It is still unclear whether the
observed non-convergence arises from the early alignment
mechanism proposed in our work, from stability issues as
suggested by Qiao et al. (2024), from other factors, or from
a combination of these effects.

Our result is proven via the description of the early align-
ment phase. Besides the specific data example considered in
Section 4, we also provide concentration bounds on the ex-
tremal vectors driving this early alignment. We believe these
bounds (Theorem 3.1) can be used in subsequent works to
better understand this early phase of the training dynamics,
and how it yields biases towards simple estimators.
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A. Additional experiments
A.1. Experimental details

In the experiments of Figure 2, we initialized two-layer ReLU networks (without bias term) with m = 10 000 neurons,
initialized i.i.d. for each component as a Gaussian of variance 10−5

√
m

. We then generated training samples as

yk = β⋆⊤xk + ηk,

where ηk are drawn i.i.d. as centered Gaussian of variance σ2 = 0.09, xk are drawn i.i.d. as centered Gaussian variables and
β⋆ is fixed, without loss of generality, to β⋆ = (1, 0, . . . , 0). The dimension is fixed to d = 5. We then train these networks
on training datasets of different sizes (each dataset is resampled from scratch).

The neural networks are trained via stochastic gradient descent (SGD), with batch size 32 and learning rate 0.01. To ensure
that we reached convergence of the parameters, we train the networks for 8× 106 iterations of SGD, where the training
seems stabilized.

All the experiments were run on a personal MacBook Pro, for a total compute time of approximately 100 hours. The code
can be found at github.com/eboursier/simplicity_bias.

A.2. GeLU activation

Our theoretical results can be directly extended to any homogeneous activation function, i.e., leaky ReLU activation. Yet,
the theory draws different conclusions for differentiable activations functions and claims that for infinitely wide neural
networks, the parameters should interpolate the data at convergence (Chizat and Bach, 2018). This result yet only holds for
infinitely wide networks, and it remains unknown how wide a network should be to actually reach such an interpolation
in practice. Figure 4 below presents experiments similar to Section 5, replacing the ReLU activation by the differentiable
GeLU activation (Hendrycks and Gimpel, 2016). This activation is standard in modern large language models. Notably, it is
used in the GPT2 architecture, which was used in the experiments of Raventós et al. (2024).
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(b) Evolution of test loss.

Figure 4: Evolution of both train and test losses at convergence with respect to the number of training samples, with GeLU
activation.

While infinitely wide GeLU networks should overfit, even very wide networks (m = 10 000) are far from this behavior
in practice. In particular, we observe a phenomenon similar to Section 5 in Figure 4. Surprisingly, it even seems that
interpolation is harder to reach with GeLU activation, as the network is already unable to interpolate for n = 500 training
samples. We believe this is due to the fact that GeLU is close to a linear function around the origin (corresponding to our
small initialization regime), making it harder to overfit noisy labels.

A.3. Momentum based optimizers

Our theoretical results hold for Gradient Flow, which is a first order approximation of typical gradient methods such as
Gradient Descent (GD) or Stochastic Gradient Descent (SGD) (Li et al., 2019). Yet, recent large models implementations
typically use different, momentum based algorithms, such as Adam (Kingma, 2014) or AdamW (Loshchilov and Hutter,
2019). To illustrate the generality of the optimization threshold we proved in a specific theoretical setting, we consider in
Figure 5 below the same experiments as in Section 5, with the exception that i) we used GeLU activation functions (as in
Appendix A.2) and ii) we minimized the training loss through the Adam optimizer, with pytorch default hyperparameters.

We focus on Adam rather than AdamW here to follow the experimental setup of Raventós et al. (2024) and because our
focus is on implicit regularization, thus avoiding explicit regularization techniques.
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Figure 5: Evolution of both train and test losses at convergence with respect to the number of training samples, with GeLU
activation and Adam optimizer.

The observed results are very similar to the ones of Figure 4, leading to similar conclusions than Appendix A.2 and the fact
that considering Adam rather than SGD does not significantly change the final results.

A.4. Stability of minima

Qiao et al. (2024) argue that the non-convergence of the estimator towards interpolation is due to the instability of global
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Figure 6: Evolution of training loss from warm restart with a decaying learning rate schedule (n = 8000, d = 5).

minima. More precisely they claim that for large stepsizes, gradient descent (GD) cannot stabilize around global minima of
the loss for large values of n. We present an additional experiment in this section, illustrating that this non-convergence is
not due to an instability of the convergence point of (S)GD, but to it being a stationary point of the loss as predicted by our
theory.

For that, we consider a neural network initialized from the final point (warm restart) of training for 8 000 samples in the
experiment of Figure 2.4 We then continue training this network on the same training dataset, with a decaying learning rate
schedule. Precisely, we start with a learning rate of 0.01 as in the main experiment, and multiply the learning rate by 0.85
every 50 000 iterations of SGD, so that after 4× 106 iterations, the final learning rate is of order 10−8.

We observe on Figure 6 that the training loss does not change much from the point reached at the end of training with the
large learning rate 0.01. Indeed, the training loss was around 0.082 at the end of this initial training, which is slightly less
than the noise level (0.09). While there seems to be some stabilization happening at the beginning of this decaying schedule,
the training loss seems to converge to slightly more than 0.0815, confirming that the absence of interpolation is not due to
an instability reason, but rather to a convergence towards a spurious stationary point of the loss.

A.5. Influence of dimensionality

Theorem 4.1 predicted an optimization threshold scaling in O
(
d3 log d

)
. However, the experiments of Section 5 consider

a fixed dimension (d = 5), making it unclear how tight is this theoretical optimization threshold and whether a similar
dependency in the dimension is observed in practice. To investigate further this dependency in the dimension, we present in
this section experiments in the same setup described in Appendix A.1, with the sole exception that the dimension is larger,
fixed to d = 10.

Figure 7 illustrates the evolution of both the train and test losses as the number of training samples increases in this larger
dimension setting. In that case, the optimization threshold seems much larger: interpolation stops happening around
n = 10 000 samples, and an estimation close to the OLS estimator really starts happening at much larger values of n, around
n = 80 000.

Comparing with the d = 5 case, it thus seems that the point at which interpolation stops indeed seems to roughly scale in d3.
However, this scaling seems even larger for the point where the estimator corresponds to the OLS one. We believe that
this discrepancy is due to the differences between our theoretical and experimental setups, and in particular to the fact that
multiple intermediate neurons can grow in our experimental setup (see Limitations and generality paragraph in Section 4.2).

A.6. 5 ReLU teacher network

This section presents an additional experiment with a more complex data model. More precisely, we consider the exact same
setup than Section 5 (described in Appendix A.1), with the difference that the labels yk are given by

yk = f⋆(xk) + ηk,

4Another relevant experiment is to train from scratch (no warm restart) with a smaller learning rate. When running the experiment of
Appendix A.1 with a smaller learning rate 0.001, we observe again that the parameters at convergence correspond to the OLS estimator.
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Figure 7: Evolution of both train and test losses at convergence with respect to the number of training samples, with
dimension d = 10.

where f⋆ is a 5 ReLU network:

f⋆(xk) =
1

5

5∑
i=1

(x⊤
k β

⋆
i )+.

The parameters β⋆
i are drawn i.i.d. at random following a standard Gaussian distribution. We use the exact same β⋆

i across
all the runs for different values of n. Also, xk and ηk are generated in the same way as described in in Appendix A.1.

Figure 8 also presents the evolution of the train and test losses as the number of training samples varies. We observe a
behavior similar to Figure 2, where interpolation is reached for small values of n, and is not reached anymore after some
threshold n⋆. While the test loss is far from the optimal noise variance before this threshold, it then becomes close to it
afterwards.

Yet, this transition from interpolation to generalization is slower in the 5 ReLU teacher case than in the linear one. Indeed,
while interpolation does not happen anymore around n = 2000 in both cases, much more samples (around n⋆ = 17000) are
needed to have a simultaneously a training and testing loss close to the noise variance. These experiments suggest that the
behavior predicted by Theorem 4.1 for a linear model also applies in more complex models such as the 5 ReLU teacher, but
that the transition from interpolation to generalization can happen more slowly or with more training samples depending on
the setting.
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Figure 8: Evolution of both train and test losses at convergence with respect to the number of training samples with a 5
ReLU teacher. σ2 corresponds to the noise variance E[η2].
The slight difference with Figure 2 is that this optimization threshold here seems to appear for larger values of n.
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B. Additional Discussions
Double descent. Double descent originally refers to the fact that the test loss obtained at convergence does not behave
monotonically with the number of model parameters. Recently, different types of double descent have been proposed
(Nakkiran et al., 2021). Notably, Henighan et al. (2023) study a data double descent, where the test loss follows a “double
descent” shape when plotted against the number of training examples. The phenomenon we highlight here is different, as
our test loss monotonically decreases with respect to the number of training points, as illustrated in both our experiments
and Figure 1.

However, the toy experiments of Henighan et al. (2023) illustrate a similar phenomenon: for a sufficiently large number of
training points, the training loss remains high while the model learns optimal features. It remains unclear though whether
this high training loss stems from an underparametrized regime (i.e., the model lacks sufficient capacity to memorize the
data) or if optimization fails to reach the empirical risk minimizer in their setup.

Feature learning and NTK regimes. We distinguish in this work between feature learning and the NTK/lazy regime,
as they involve fundamentally different training dynamics (see Chizat et al., 2019, for an in-depth discussion). Our
work specifically focuses on the feature learning regime with small initialization, as indicated by our initialization choice
(Equation (2)), where both the inner and outer layers scale as 1√

m
.

In contrast, in the NTK/lazy regime (corresponding to large initialization scales), theory predicts that interpolation should
occur at convergence, which is contrary to our main result. However, empirically demonstrating this interpolation in our toy
model (with large n) is computationally challenging, as it would require an extremely large number of parameters.

C. Proof of Theorem 3.1
We recall Theorem 3.1 below.

Theorem 3.1. If the marginal law of x1 is continuous with respect to the Lebesgue measure, then for any n ∈ N,

EX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w,0)

∥Dn −D(w)∥2
]
=

O
(√d log n

n
E[∥y1x1∥22]

)
,

where for any w ∈ Sd−1, D(w) = E[1w⊤x1>0y1x1].

Proof. We first show a similar result on the following expectation

EX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2
]
= O

(√
d log n

n
E[∥yx∥22]

)
, (9)

where we recall Dn(w) =
1
n

∑n
k=1 1w⊤xk>0ykxk. We bound this expectation using typical uniform bound techniques for

empirical processes.

A symmetrization argument allows to show, for i.i.d. Rademacher random variables εk ∈ {−1, 1} (see Van Der Vaart and
Wellner, 2023, Lemma 2.3.1.):

EX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2
]
≤ 2 EX,y

[
Eεεε

[
sup

w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

1w⊤xk>0εkykxk

∥∥∥∥∥
2

∣∣ X,y

]]
. (10)

From there, it remains to bound for any value of X,y the conditioned expectation Eεεε[· | X,y]. We consider in the following
a fixed value of X,y. Note that the vector

∑n
k=1 1w⊤xk>0εkykxk, actually only depends on w in the value of the vector

(1w⊤xk>0)k∈[n]. Define
A(X,y) =

{
(1w⊤xk>0)k∈[n] | w ∈ Rd

}
. (11)

We thus have the equality:

sup
w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

1w⊤xk>0εkykxk

∥∥∥∥∥
2

= sup
u∈A(X,y)

∥∥∥∥∥ 1n
n∑

k=1

ukεkykxk

∥∥∥∥∥
2

.
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Moreover, classical geometric arguments (see e.g. Cover, 1965, Theorem 1) allow to bound card (A(X,y)) for any X,y:

card (A(X,y)) ≤ 2

d−1∑
k=0

(
n− 1

k

)
= O

(
nd
)
. (12)

From there, we will bound individually for each u ∈ A(X,y) the norm of 1
n

∑n
k=1 ukεkykxk and use a union bound

argument.

Let u ∈ A(X,y). Define Z ∈ Rd×n the matrix whose column k is given by Z(k) = 1
nukykxk. Then note that

1
n

∑n
k=1 ukεkykxk = Zεεε. Hanson-Wright inequality then allows to bound the following probability (see Rudelson and

Vershynin, 2013, Theorem 2.1) for some universal constant c > 0 and any t ≥ 0:

Pεεε

(∣∣∥Zεεε∥2 − ∥Z∥F
∣∣ > t

∣∣ X,y
)
≤ 2e

− ct2

∥Z∥2op ,

where ∥Z∥F and ∥Z∥op respectively denote the Frobenius and operator norm of Z. In particular, noting that ∥Z∥op ≤ ∥Z∥F,
this last equation implies that for any t > 0

Pεεε

(
∥Zεεε∥2 > (1 + t)∥Z∥F

∣∣ X,y
)
≤ 2e−ct2 . (13)

Moreover, note that

∥Z∥F =

√√√√ n∑
k=1

∥Z(k)∥22

=

√√√√ n∑
k=1

1

n2
∥ukykxk∥22 ≤

√
1

n
C(Z),

where C(Z) = 1
n

∑n
k=1 ∥ykxk∥22 does not depend on u.

Rewriting Equation (13) with this last inequality, and with δ = 2e−ct2 , we finally have for each u ∈ A(X,y):

Pεεε

(
∥Zεεε∥2 > (1 +

√
1

c
ln(2/δ))

√
C(Z)

n

∣∣ X,y

)
≤ δ.

Considering a union bound over all the u ∈ A(X,y), we have for some universal constant c′ > 0, thanks to Equation (12):

Pεεε

(
∃u ∈ A(X,y), ∥Zεεε∥2 >

(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√C(Z)

n

∣∣ X,y

)
≤ δ. (14)

Moreover, conditioned on X,y, ∥Zεεε∥2 is almost surely bounded by
√
n∥Z∥op, and so by

√
C(Z). A direct bound on the

expectation can then be derived using Equation (14) with δ = n−d:

Eεεε

[
sup

u∈A(X,y)

∥∥∥∥∥ 1n
n∑

k=1

ukεkykxk

∥∥∥∥∥
2

]
= O

(√
d log n

n
+ n−d

)√
C(Z).

Wrapping up with Equation (11) and Equation (10) then allows to derive Equation (9),

EX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2
]
= O

(√
d log n

n

)
EX,y

[√
C(Z)

]
≤ O

(√
d log n

n

)√
EX,y [C(Z)]

= O
(√

d log n

n

)√
E [∥yx∥22].

Lemma C.1 below then allows to conclude.
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Lemma C.1. If the marginal law of x is continuous with respect to the Lebesgue measure, then almost surely:

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 ≤ sup
w∈Sd−1

∥Dn(w)−D(w)∥2,

where Dn(w) =
1
n

∑n
k=1 1w⊤xk>0ykxk.

C.1. Proof of Lemma C.1

First observe that if the marginal law of x is continuous, then D is continuous with respect to w.

Consider any w ∈ Sd−1. We recall that the set Dn(w) is defined as

Dn(w) =
{
− 1

n

n∑
k=1

ηkykxk

∣∣∣ ∀k ∈ [n], ηk


∈ [0, 1] if ⟨wt

j , xk⟩ = 0

= 1 if ⟨wt
j , xk⟩ > 0

= 0 otherwise

}
.

If all the values w⊤xk are non-zero, then Dn(w) is the singleton given by Dn(w) and thus

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 = ∥Dn(w)−D(w)∥2.

Otherwise, if w⊤xk = 0 for at least one k, observe that5

Dn(w) = lim inf
ε→0
ε>0

Conv({Dn(w
′) | w′ ∈ S and ∥w − w′∥2 ≤ ε}),

where
S = {w′ ∈ Sd−1 | w′⊤xk ̸= 0 for all k}.

In other words, for any Dn ∈ Dn(w), w can be approached arbitrarily closed by vectors wi ∈ S such that for some convex
combination ηηη,

Dn =
∑
i

ηiDn(wi).

From then, it comes that

∥Dn −D(w)∥ ≤
∑
i

ηi∥Dn(wi)−D(w)∥

≤
∑
i

ηi(∥Dn(wi)−D(wi)∥+ ∥D(wi)−D(w)∥)

≤ sup
w′∈S

∥Dn(w
′)−D(w′)∥+

∑
i

ηi∥D(wi)−D(w)∥.

Since D is continuous and the wi can be chosen arbitrarily close to w, the right sum can be chosen arbitrarily close to 0.

In particular, we have shown that for any Dn ∈ Dn(w),

∥Dn −D(w)∥ ≤ sup
w′∈S

∥Dn(w
′)−D(w′)∥.

This concludes the proof of Lemma C.1.

D. Probability tail bound version of Theorem 3.1
While Theorem 3.1 bounds the maximal deviation of Dn − D(w) in expectation, a high probability tail bound is also
possible, as given by Theorem D.1 below.

5This observation directly follows from the definition of the Clarke subdifferential.
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Theorem D.1. If the marginal law of x is continuous with respect to the Lebesgue measure, then for any n ∈ N and
M ≥ E

[
∥yx∥2

]
,

PX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n

]

≤ 4

3
δ +

4

3
PX,y

[
1

n

n∑
k=1

∥ykxk∥2 > M

]
.

Proof. The proof follows the same lines as the proof of Theorem 3.1 in Appendix C. In particular, we first want to bound in
probability the term supw∈Sd−1

∥Dn(w)−D(w)∥2. To this end, a probabilistic symmetrization argument (Van Der Vaart
and Wellner, 2023, Lemma 2.3.7.) yields for any t > 0

βn(y)PX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2 > t

]
≤ 2PX,y

[
Pεεε

[
sup

w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

εk1w⊤xk>0ykxk

∥∥∥∥∥ >
t

4

∣∣ X,y

]]
, (15)

where βn(t) = 1 − 4n
t2 supw,w′∈Sd−1

Var(1w⊤x>0yw
′⊤x). In particular here, βn(t) ≥ 1 − 4n

t2 E
[
∥yx∥2

]
. Moreover, we

already showed Equation (14) in the proof of Theorem 3.1, which states

Pεεε

(
sup

w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

εk1w⊤xk>0ykxk

∥∥∥∥∥ >
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√C(X,y)

n

∣∣ X,y

)
≤ δ,

where C(X,y) = 1
n

∑n
k=1 ∥ykxk∥2.

Equation (15) then rewrites for any M > 0:

PX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n

]

≤ βn(t)
−1

(
δ + PX,y

[
1

n

n∑
k=1

∥ykxk∥2 > M

])
,

with

t = 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n
.

Note that for any M ≥ E
[
∥yx∥2

]
, βn(t) ≥ 3

4 , which implies

PX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n

]

≤ 4

3
δ +

4

3
PX,y

[
1

n

n∑
k=1

∥ykxk∥2 > M

]
.

Theorem D.1 then follows, thanks to Lemma C.1.

Corollary D.1 below provides a simpler tail bound, directly applying Lemma C.1 with Chebyshev’s inequality to bound
PX,y

[
1
n

∑n
k=1 ∥ykxk∥2 > M

]
. Stronger tail bounds can be provided with specific conditions on the random variables xk

and yk, but the one of Corollary D.1 is enough for our use in Section 4.

Corollary D.1. Assume the marginal law of x is continuous with respect to the Lebesgue measure. Moreover, assume ∥xy∥
admits a fourth moment. Then

PX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√2E[∥yx∥2]
n

]
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≤ 4

3
δ +

4

3

E[∥yx∥4]
nE[∥yx∥2]2 .

Proof. This is a direct consequence of Theorem D.1, using Chebyshev’s inequality to bound PX,y

[
1
n

∑n
k=1 ∥ykxk∥2 > M

]
.

E. Proof of Proposition 3.1
In the following proof, we define the following subsets of the unit sphere in dimension d for any δ > 0:

H = {w ∈ Sd−1 | D(w) satisfies Equation (6)},

H(δ) = D−1

( ⋃
w∈H

B(D(w), δ)

)
∩ Sd−1,

∆(δ) = min(1, inf
w∈Sd−1\H(δ)

min

(
∥ D(w)

∥D(w)∥ − w∥, ∥ D(w)

∥D(w)∥ + w∥, ∥D(w)∥
)
).

Here, B(D(w), δ) denotes the open ball of radius δ, centered in D(w).

Proof. Since the marginal distribution of X is continuous, the function D : w 7→ D(w) is continuous. In particular for any
δ > 0, the infimum defining ∆(δ) is reached, so that ∆(δ) > 0 by definition of H. In the following, we let δ = ε

2 . Thanks
to Corollary D.1, with probability at least 1−Oµ

(
1
n

)
,

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 = Oµ

(√
d log n

n

)
.

In particular, we can choose n⋆(ε) = Oµ

d log

(
d

min(∆( ε
2
)4,ε2)

)
min (∆( ε2 )

2, ε)

 large enough so that for any n ≥ n⋆(ε), with

probability at least 1−Oµ

(
1
n

)
:

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 ≤ 1

2
min

(
∆(

ε

2
)2, ε

)
. (16)

We assume in the following of the proof that Equation (16) holds.

Consider an extremal vector Dn of the finite data (X,y). By definition, there is some w ∈ Sd−1 such that D ∈ Dn(w) and
either

1. Dn = 0,

2. or An(Dn) = An(w),

3. or An(Dn) = −An(w).

In the first case, Equation (16) yields that ∥D(w)∥2 < ∆( ε2 ). Necessarily, by definition of ∆( ε2 ), w ∈ H( ε2 ). This means
by definition of H( ε2 ) that there exists D⋆ ∈ Rd satisfying Equation (6), such that

∥D(w)−D⋆∥2 ≤ ε

2
.

In particular, using Equation (16) again yields ∥Dn −D⋆∥2 ≤ ε.

In the second case (An(Dn) = An(w)), we can assume Dn ̸= 0. In that case, as Dn

∥Dn∥ have the same activations,

Dn(w) = Dn(
Dn

∥Dn∥ ), i.e., we can assume without loss of generality that w = Dn

∥Dn∥ here. Similarly to the first case, if
w ∈ H( ε2 ), then there exists D⋆ ∈ Rd satisfying Equation (6), such that ∥Dn −D⋆∥2 ≤ ε.
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Let us show by contradiction that indeed w ∈ H( ε2 ). Assume w ̸∈ H( ε2 ). In particular, ∥D(w)∥2 ≥ ∆( ε2 ). We can now
bound the norm of D(w)

∥D(w)∥ − w:∥∥∥∥ D(w)

∥D(w)∥ − w

∥∥∥∥
2

=

∥∥∥∥ D(w)

∥D(w)∥ − Dn

∥Dn∥

∥∥∥∥
2

=

∥∥∥∥D(w)−Dn

∥D(w)∥ +
Dn

∥Dn∥

(∥Dn∥ − ∥D(w)∥
∥D(w)∥

)∥∥∥∥
2

≤ ∥D(w)−Dn∥
∥D(w)∥ +

∣∣∥Dn∥ − ∥D(w)∥
∣∣

∥D(w)∥

≤ 2
∥D(w)−Dn∥

∥D(w)∥

≤ 2
∆( ε2 )

2

2∆( ε2 )
= ∆(

ε

2
).

By definition of ∆( ε2 ), this actually implies that w ∈ H( ε2 ), which contradicts the initial assumption. We thus indeed have
w ∈ H( ε2 ), leading to the existence of a D⋆ with the wanted properties such that ∥Dn − D⋆∥2 ≤ ε. In the third case
(An(Dn) = −An(w)), symmetric arguments lead to the same conclusion, which concludes the proof of Proposition 3.1.

F. Proof of Theorem 4.1
F.1. Notations and first classical results

In the whole Appendix F, we define Σ = E[xx⊤] and

Σn,+ =
1

n

∑
k∈S+

xkx
⊤
k , Σn,− =

1

n

∑
k∈S−

xkx
⊤
k

and the following set of neurons:

I+ = {i ∈ [m] | ai(0) ≥ 0} and I− = {i ∈ [m] | ai(0) < 0}.

We first start by stating the following, known balancedness lemma (see, e.g., Arora et al., 2019; Boursier et al., 2022).

Lemma F.1. For any i ∈ [m] and t ∈ R+, ai(t)2 − ∥wi(t)∥2 = ai(0)
2 − ∥wi(0)∥2.

Lemma F.1 can be simply proved by a direct computation of the derivative of ai(t)2 − ∥wi(t)∥2. Thanks to Equation (8),
this yields that the sign ai(t) is constant over time, and thus partitioned by the sets of neurons I+ and I−.

Also, note that with probability 1− 1
2m−1 , the sets I+ and I− are both non empty, which is assumed to hold in the following

of the section.

In this section, all the O,Θ and Ω notations hide constants depending on the fourth moment of η, the norm of β⋆ and
the constant c of Assumption 4.1. Note that due to the sub-Gaussian property of x, its k-th moment can be bounded as
E[∥x∥k]O

(
d

k
2

)
for any k.

F.2. Phase 1: early alignment

Lemma F.2. If Assumption 4.1 holds, there exists λ⋆ = Θ( 1d ) and n⋆ = Θ(d3 log d) such that for any λ ≤ λ⋆ and
ε ∈ (0, 1

4 ), n ≥ n⋆ and for τ = ε ln(1/λ)
∥Σβ⋆∥ , with probability 1−O

(
1
n

)
:

1. output weights do not change until τ :

∀t ≤ τ,∀j ∈ [m], |aj(0)|λ2ε ≤ |aj(t)| ≤ |aj(0)|λ−2ε;

2. all neurons align with ±Σβ⋆:

∀i ∈ [m], ⟨wi(τ)

ai(τ)
,Σβ⋆⟩ = ∥Σβ⋆∥ − O

(
λε +

√
d2 log n

n

)
.
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Proof. We start the proof by computing D(w) for any w ∈ Sd−1:

D(w) = E[1w⊤x>0yx]

= E[1w⊤x>0xx
⊤β⋆]

=
1

2

(
E[1w⊤x>0xx

⊤] + E[1w⊤x<0xx
⊤]
)
β⋆

=
Σβ⋆

2
.

The second inequality comes from the independence between x and η, the third one comes from the symmetry of the
distribution of x and the last one by continuity of this distribution.

Corollary D.1 additionally implies that for some n⋆ = Θ(d3 log d) and any n ≥ n⋆, with probability at least 1−O
(
1
n

)
,

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 ≤ O
(√

d2 log n

n

)
≤ α√

d
, (17)

with α = 1
4 min(c−

√
d∥Σβ⋆ − β⋆∥, ∥Σβ⋆∥). Note6 that α > 0 thanks to the fourth point of Assumption 4.1. Moreover,

using typical concentration inequality for sub-Gaussian vectors, we also have with probability 1−O
(
1
n

)
:∑n

k=1 ∥xk∥2
n

≤ 2EµX
[∥x∥2] = O(d) . (18)

We assume in the following of the proof that both Equations (17) and (18) hold.

Since D(w) = Σβ⋆

2 for any w, we have for any w ∈ Sd−1, Dn ∈ Dn(w) and k ∈ S+:

x⊤
k Dn = x⊤

k (Dn −D(w)) +
1

2
x⊤
k (Σβ

⋆ − β⋆) +
1

2
x⊤
k β

⋆

≥ ∥xk∥
(
−∥Dn −D(w)∥ − 1

2
∥Σβ⋆ − β⋆∥+ c

2
√
d

)
≥ α√

d
∥xk∥ > 0.

Similarly for any k ∈ S−, x⊤
k Dn < 0. This directly implies here that there are only two extremal vectors here:

Dn(β
⋆) = Σn,+β

⋆ +
1

n

∑
k∈S+

ηkxk,

Dn(−β⋆) = Σn,−β
⋆ +

1

n

∑
k∈S−

ηkxk. (19)

We can now show, similarly to Boursier and Flammarion (2024), the early alignment phenomenon in the first phase.7

1. First note that Equation (17) and the definition of α imply that for any w:

∥Dn(w)∥ ≤ ∥Σβ⋆∥. (20)

We define t1 = min{t ≥ 0 |∑m
j=1 aj(t)

2 ≥ λ2−4ε}.

For any i ∈ [m] and t ∈ [0, t1], Equation (4) rewrites:∣∣∣∣dai(t)dt

∣∣∣∣ = ∣∣wi(t)
⊤Di

n(t)
∣∣

≤ |ai(t)|
(

max
w∈Sd−1

∥Dn(w)∥+
∑n

k=1 ∥xk∥2
n

λ2−4ε

)
6The additional d dependence comes from the expectation of ∥yx∥2 in the square root. Additionally, the probability bound comes

from the fact that Eµ[∥yx∥4]
Eµ[∥yx∥2]2 = O(1) here.

7We could directly reuse Theorem 1 from Boursier and Flammarion (2024) here, but it would not allow us to choose an initialization
scale λ⋆ that does not depend on n.
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≤ |ai(t)|
(
∥Σβ⋆∥+ 2E[∥x∥2]λ2−4ε

)
.

As a consequence, a simple Grönwall argument yields that for any t ∈ [0, t1]:

|ai(t)| ≤ |ai(0)| exp(t∥Σβ⋆∥+ 2tE[∥x∥2]λ2−4ε).

In particular, for our choice of τ , for a small enough λ⋆ = O
(
d−

1
2−4ε

)
, for any t ≤ min(τ, t1):

|ai(t)| < |ai(0)|λ−ε. (21)

Note that this implies that t < t1, i.e., τ < t1. As a consequence. Moreover, we can also show that |ai(t)| > |ai(0)|λε for
any t ≤ τ , which implies the first point of Lemma F.2.

2. For the second point, let i ∈ I+ and denote wi(t) = wi(t)
ai(t)

. Thanks to Lemma F.1, wi(t) ∈ B(0, 1) and ai(t) is of
constant sign. Also, for almost any t ∈ [0, τ ]:

dwi(t)

dt
∈ Dn(wi(t), θ(t))− ⟨wi(t),Dn(wi(t), θ(t))⟩wi(t).

Since ai(t) > 0 for i ∈ I+,

d⟨wi(t),Σβ
⋆⟩

dt
∈ ⟨Dn(wi(t), θ(t)),Σβ

⋆⟩ − ⟨wi(t),Dn(wi(t), θ(t))⟩⟨wi(t),Σβ
⋆⟩

≥ inf
Dn∈Dn(wi(t),θ(t))

⟨Dn,Σβ
⋆⟩ − ⟨wi(t), Dn⟩⟨wi(t),Σβ

⋆⟩

≥ inf
Dn∈Dn(wi(t))

⟨Dn,Σβ
⋆⟩ − ⟨wi(t), Dn⟩⟨wi(t),Σβ

⋆⟩ − 2∥Σβ⋆∥λ2−4ε

≥ ⟨D(wi(t)),Σβ
⋆⟩ − ⟨wi(t), D(wi(t))⟩⟨wi(t),Σβ

⋆⟩

− 2∥Σβ⋆∥
(
λ2−4ε + sup

Dn∈Dn(wi(t)

∥Dn −D(wi(t))∥
)

≥ 1

2

(
∥Σβ⋆∥2 − ⟨wi(t),Σβ

⋆⟩2
)
−O

(
λ2−4ε +

√
d2 log n

n

)
.

Solutions of the ODE f ′(t) = a2 − f(t)2 with f(0) ∈ (−a, a) are of the form f(t) = a tanh(a(t+ t0)) for some t0 ∈ R.
By Grönwall comparison, we thus have

⟨wi(t),Σβ
⋆⟩ ≥ a tanh(

a

2
(t+ tj)), (22)

where a = ∥Σβ⋆∥ − O
(
λ2−4ε +

√
d2 log n

n

)
and ⟨wi(0),Σβ

⋆⟩ = a tanh(
a

2
tj).

Thanks to the choice of initialization given by Equation (8), ∥wi(0)∥ ≤ 1
2 and so ⟨wi(0),Σβ

⋆⟩ ≥ − 1
2∥Σβ⋆∥2. Moreover,

tanh(x) ≤ −1 + 2e2x, so that

−1

2
∥Σβ⋆∥ ≤ a(−1 + 2eatj ).

Since a = ∥Σβ⋆∥ − O
(
λ2−4ε +

√
d2 logn

n

)
, this yields

2aeatj ≥ 1

2
∥Σβ⋆∥+O

(
λ2−4ε +

√
d2 log n

n

)
.

The previous inequality can be rewritten as

−2ae−tj ≥ −4a2

1
2∥Σβ⋆∥+O

(
λ2−4ε +

√
d2 logn

n

)
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≥ −8a2

∥Σβ⋆∥ (1 +O
(
λ2−4ε +

√
d2 log n

n

)
)

≥ 8∥Σβ⋆∥+O
(
λ2−4ε +

√
d2 log n

n

)
.

Using that tanh(x) ≥ 1− 2e−2x, Equation (22) becomes at time τ and n
log(n) = Ω(d2),

⟨wi(τ),Σβ
⋆⟩ ≥ a− 2ae−atje−aτ

≥ ∥Σβ⋆∥ − ∥Σβ⋆∥(8∥Σβ⋆∥+O
(
λ2−4ε +

√
d2 log n

n

)
)e

aε log λ
∥Σβ⋆∥

−O
(
λ2−4ε +

√
d2 log n

n

)

≥ ∥Σβ⋆∥ − O
(
λε +

√
d2 log n

n

)
.

3. The same arguments can be done with negative neurons.

F.3. Decoupled autonomous systems

In the remaining of the proof, we will focus on an alternative solution (w, a), which is solution of the following differential
equations for any t ≥ τ

dwi(t)

dt
= ai(t)D+(t) and

dai(t)

dt
= ⟨wi(t), D+(t)⟩ for any i ∈ I+,

dwi(t)

dt
= ai(t)D−(t) and

dai(t)

dt
= ⟨wi(t), D−(t)⟩ for any i ∈ I−,

(23)

where

D+(t) =
1

n

∑
k∈S+

∑
i∈I+

ai(t)⟨wi(t), xk⟩ − yk

xk,

D−(t) =
1

n

∑
k∈S−

∑
i∈I−

ai(t)⟨wi(t), xk⟩ − yk

xk

and with the initial condition wi(τ), ai(τ) = wi(τ), ai(τ) for any i ∈ [m]. We also note in the following wi =
wi

ai
and the

estimations of the training data xk for any k ∈ [n]I as:

hϑ(xk) =

{∑
i∈I+

ai⟨wi, xk⟩ if k ∈ S+∑
i∈I−

ai⟨wi, xk⟩ if k ∈ S−
.

This construction allows to study separately the dynamics of both sets of neurons I+ and I−, without any interaction
between each other. As precised by Lemma F.3 below, wi, ai coincide with wi, ai as long as the neurons all remain in the
sector they are at the end of the early alignment phase.

Lemma F.3. Define T+ = inf{t ≥ τ | ∃(i, k) ∈ I+ × [n], sign(x⊤
k wi(t)) ̸= sign(x⊤

k β
⋆)}

and T− = inf{t ≥ τ | ∃(i, k) ∈ I− × [n], sign(x⊤
k wi(t)) ̸= −sign(x⊤

k β
⋆)}.

Then for any i ∈ [m] and any t ∈ [τ,min(T+, T−)]: (wi(t), ai(t)) = (wi(t, ai(t)). Moreover, for any t ∈ [τ,min(T+, T−)]
and k ∈ [n], hϑ(t)(xk) = hθ(t)(xk).

While analyzing the complete dynamics of (w, a), we will see that both T+ and T− are infinite in the considered range of
parameters, thus leading to a complete description of the dynamics of (w, a).
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Proof. Thanks to the definition of T+ and T−, the evolution of (wi(t), ai(t)) given by 4 coincides with the evolution of
(wi(t), ai(t)) given by Equation (23) for t ∈ [τ,min(T+, T−)]. The associated ODE is Lipschitz on the considered time
interval and thus admits a unique solution, hence leading to (wi(t), ai(t)) = (wi(t, ai(t)) on the considered interval. The
equality hϑ(t)(xk) = hθ(t)(xk) directly derives from the ReLU activations and definitions of T+ and T−.

F.4. Phase 2: neurons slow growth

For some ε2 > 0, we define the following stopping time for any ◦ ∈ {+,−}:

τ2,◦ = inf{t ≥ τ |
∑
i∈I◦

ai(t)
2 ≥ ε2}.

Lemma F.4. If Assumption 4.1 holds, for any ε ∈ (0, 1
4 ), there exist λ⋆ = Θ( 1d ), ε

⋆
2 = Θ(d−

3
2 ) and n⋆ = Θ(d3 log d) such

that for any λ ≤ λ⋆, n ≥ n⋆, ◦ ∈ {+,−}, ε2 ∈ [λ2−4ε, ε⋆2], with probability 1−O
(
1
n + 1

2m

)
, τ2,◦ < +∞ and at this time,

1. neurons in I◦ are aligned with each other

∀i, j ∈ I◦, ⟨wj(τ2,◦),wi(τ2,◦)⟩ = 1−O
(
λ

1
2

ε2

)
;

2. neurons in I◦ are in the same cone as ◦β⋆ for any t ∈ [τ, τ2,◦]:

∀i ∈ I◦, min
k∈S◦

⟨wi(τ2,◦),
xk

∥xk∥
⟩ = Ω(

1√
d
) and max

k∈S−◦
⟨wi(τ2,◦◦),

xk

∥xk∥
⟩ = −Ω(

1√
d
).

Proof. In the following, we assume without loss of generality that ◦ = +. Additionally, we assume that the random event
I+ ̸= ∅ and Equations (17) and (18) hold. First, by definition of τ2,+, for any t ∈ [τ, τ2,+]:

∥D+(t)−Dn(β
⋆)∥2 ≤ 1

n

∑
i∈I+

ai(t)
2

 ∑
k∈S+

∥xk∥2

≤ 2ε2EµX
[∥x∥2].

This also implies with Equation (20) that ∥D+(t)∥ ≤ ∥Σβ⋆∥+ 2ε2EµX
[∥x∥2]. Additionally, we have with Equation (17)

that

∥D+(t)−
Σβ⋆

2
∥2 ≤ ∥D+(t)−Dn(β

⋆)∥2 + ∥Dn(β
⋆)−D(β⋆)∥2

≤ O
(
dε2 +

√
d2 log n

n

)
. (24)

Then for any k ∈ S+, i ∈ I+ and t ∈ [τ, τ2,+], as long as ⟨wi(t), xk⟩ ≥ 0,

d⟨wi(t),
xk

∥xk∥ ⟩
dt

= ⟨D+(t),
xk

∥xk∥
⟩ − ⟨D+(t),wi(t)⟩⟨wi(t),

xk

∥xk∥
⟩

≥ ⟨Dn(β
⋆),

xk

∥xk∥
⟩ − 2ε2EµX

[∥x∥2]− ∥D+(t)∥⟨wi(t),
xk

∥xk∥
⟩

≥ ⟨Dn(β
⋆),

xk

∥xk∥
⟩ − 2ε2EµX

[∥x∥2]− (∥Dn(β
⋆)∥+ 2ε2EµX

[∥x∥2])⟨wi(t),
xk

∥xk∥
⟩. (25)

As ⟨Dn(β
⋆), xk

∥xk∥ ⟩ ≥
α√
d

(Equation 19), thanks to Lemma F.2 and the third point in Assumption 4.1, and ∥Dn(β
⋆)∥ = O(1),

for a small enough ε⋆2 = Θ(d−
3
2 ), mink∈S+⟨wi(τ),

xk

∥xk∥ ⟩ = Ω( 1√
d
). Equation (27) then implies for a small enough choice

of ε⋆2 = Θ(d−
3
2 ) and ε2 ≤ ε⋆2:

min
t∈[τ,τ2,+

min
k∈S+

⟨wi(τ),
xk

∥xk∥
⟩ = Ω(

1√
d
). (26)

Similarly, we can also show

max
t∈[τ,τ2,+

max
k∈S−

⟨wi(τ),
xk

∥xk∥
⟩ = −Ω(

1√
d
),
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which implies the second point of Lemma F.4. Actually, we even have for this choice of parameters the more precise
inequality (for the same reasons) that for any k ∈ S+, i ∈ I+ and t ∈ [τ, τ2,+],

⟨wi(τ),
xk

∥xk∥
⟩ ≥ ⟨ Dn(β

⋆)

∥Dn(β⋆)∥ ,
xk

∥xk∥
⟩ − O(dε2) . (27)

We now simultaneously lower and upper bound the duration of the second phase τ2,+ − τ2. For any t ∈ [τ, τ2,+]:

1

2

d
∑

i∈I+
ai(t)

2

dt
=
∑
i∈I+

ai(t)
2⟨wi(t), D+(t)⟩

=
1

n

∑
i∈I+

ai(t)
2
∑
k∈S+

(yk − hϑ(t)(xk))⟨wi(t), xk⟩ (28)

≥
∑
i∈I+

ai(t)
2

(∑
k∈S+

yk∥xk∥⟨wi(t),
xk

∥xk∥ ⟩
n

−
ε2
∑

k∈S+
∥xk∥2

n

)
.

Note that E[1k∈S+
yk∥xk∥] ≥ cE[∥x∥2]

2
√
d

. Using Chebyshev inequality, we thus have for a small enough choice of ε⋆2 =

Θ(d−
3
2 ), for any t ∈ [τ, τ2,+]:

d
∑

i∈I+
ai(t)

2

dt
≥ Ω(1)

∑
i∈I+

ai(t)
2.

A Grönwall comparison then directly yields τ2,+ < ∞.

We now want to show that the neurons wi are almost aligned at the end of the second phase. For that, we first need to lower
bound the duration of the phase. Note that Equation (28), with Equation (26), also leads for any t ∈ [τ, τ2,+] to

1

2

d
∑

i∈I+
ai(t)

2

dt
≤ 1

n

∑
i∈I+

ai(t)
2
∑
k∈S+

yk⟨wi(t), xk⟩

=
∑
i∈I+

ai(t)
2⟨wi(t), Dn(β

⋆)⟩

≤
∑
i∈I+

ai(t)
2∥Dn(β

⋆)∥.

Note that by continuity,
∑

i∈I+
ai(τ2,+)

2 = ε2. As
∑

i∈I+
ai(τ)

2 ≤ λ2−4ε, thanks to Lemma F.2, a Grönwall inequality
argument leads to the following as ε2 ≥ λ2−4ε,

τ2,+ − τ ≥ 1

2∥Dn(β⋆)∥ ln
( ε2
λ2−4ε

)
. (29)

For any pair of neurons i, j ∈ I+, we consider the evolution of the mutual alignment:

d⟨wi(t),wj(t)⟩
dt

= ⟨D+(t),wi(t) + wj(t)⟩(1− ⟨wi(t),wj(t)⟩)
= (⟨Dn(β

⋆),wi(t) + wj(t)⟩ − O(ε2)) (1− ⟨wi(t),wj(t)⟩). (30)

Moreover, Equation (27) leads to the following alignment between wi(t) and Dn(β
⋆) for any t ∈ [τ, τ2,+]:

⟨Dn(β
⋆),wi(t)⟩ =

1

n

∑
k∈S+

yk⟨xk,wi(t)⟩

=
1

n

∑
k∈S+

yk⟨xk,
Dn(β

⋆)

∥Dn(β⋆)∥⟩ − ∥xk∥O(dε2)

= ⟨Dn(β
⋆),

Dn(β
⋆)

∥Dn(β⋆)∥⟩ − O(dε2)

= ∥Dn(β
⋆)∥ − O(dε2) .
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Equation (30) then rewrites for any t ∈ [τ, τ2,+] as

d⟨wi(t),wj(t)⟩
dt

≥ (2∥Dn(β
⋆)∥ − O(dε2)) (1− ⟨wi(t),wj(t)⟩).

Moreover, thanks to Lemma F.2, a simple algebraic manipulation yields8 ⟨wi(τ),wj(τ)⟩ ≥ 1 − O
(
λε +

√
d2 logn

n

)
.

Grönwall inequality then yields, for the considered range of parameters,

⟨wi(τ2,+),wj(τ2,+)⟩ ≥ 1− (1− ⟨wi(τ),wj(τ)⟩) e−(2∥Dn(β
⋆)∥−O(dε2))(τ2,+−τ)

≥ 1−O
(
λε +

√
d2 log n

n

)
λ2−4ε

ε2
eO (dε2 ln(

ε2
λ2−4ε ))

≥ 1−O
(

λ

ε2

)
λ−(2−4ε)O(dε2).

The second inequality comes from the bound on τ2,+− τ in Equation (29). The third one comes from the fact that ε ≤ 1
3 and

ε2 ln(ε2) = O(1). Noticing that 2− 4ε ≥ 1 finally yields the first item of Lemma F.4 for a small enough ε⋆2 = Θ(d−
3
2 ).

F.5. Phase 3: neurons fast growth

The third phase is defined for some ε3 > 0 and δ3 by the following stopping time, for any ◦ ∈ {+,−}:

τ3,◦ = inf{t ≥ τ2,◦ | ∥β̂◦(t)− βn,◦∥Σn,◦ ≤ ε3 or ∃i ∈ I◦, k ∈ S◦, ⟨wi(t),
xk

∥xk∥
⟩ ≤ δ3},

where β̂◦(t) =
∑
i∈I◦

ai(t)wi(t).

Lemma F.5. If Assumption 4.1 holds, for any ε ∈ (0, 1
4 ), there exist λ⋆ = Θ( 1d ), ε

⋆
2 = Θ(d−

3
2 ), n⋆ = Θ(d3 log d),

α0 = Θ(1), δ3 = Θ( 1√
d
) and ε⋆3 = Θ(1) such that for any λ ≤ λ⋆, n ≥ n⋆, ◦ ∈ {+,−}, ε2 ∈ [λ2−4ε, ε⋆2] and

ε3 ∈ [λα0εε2 , ε⋆3], with probability 1−O
(

d2

n + 1
2m

)
, τ3,◦ < +∞ and

1. neurons in I◦ are in the same cone as ◦β⋆ for any t ∈ [τ, τ2,◦]:

∀i ∈ I◦, min
k∈S◦

⟨wi(t),
xk

∥xk∥
⟩ ≥ 2δ3 and max

k∈S−◦
⟨wi(t),

xk

∥xk∥
⟩ ≤ −2δ3.

In particular, ∥β̂◦(τ3,◦)− βn,◦∥Σn,◦ = ε3 by continuity.

Proof. Similarly to the proof of Lemma F.4, we assume that ◦ = +, that the random event I+ ̸= ∅, Equations (17) and (18)
and the first and second items states in Lemma F.4 all hold. We can first show that for any t ∈ [τ2,+, τ3,+],∑

i∈I+

ai(t)
2 ≥ ε2.

Indeed, recall that the output weights ai evolve for any t ∈ [τ2,+, τ3,+] as

dai(t)

dt
= ⟨wi(t), D+(t)⟩

= ⟨wi(t), Dn(β
⋆)⟩ − 1

n

∑
k∈S+

hϑ(t)(xk)⟨wi(t), xk⟩

≥ ai(t)

 1

n

∑
k∈S+

⟨wi(t), xk⟩⟨β⋆, xk⟩+
1

n

∑
k∈S+

⟨wi(t), ηkxk⟩ − O

d
∑
i∈I+

ai(t)
2

 . (31)

8A similar manipulation can be found in (Boursier and Flammarion, 2024, proof of Lemma 5).
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The last inequality comes from the fact that
∑

k∈S+
∥xk∥2

n = O(d). From then, note that 1
n

∑
k∈S+

⟨wi(t), xk⟩⟨β⋆, xk⟩ ≥
Ω(δ3

√
d) during this phase. Moreover, using Chebyshev inequality, we can show for any z > 0 that with probability at least

1−O
(

d
z2n

)
1

n

∥∥∥∥∥∥
∑
k∈S+

ηkxk

∥∥∥∥∥∥
2

≤ z. (32)

Taking a small enough z = Θ(δ3), Equation (32) holds with probability 1−O
(

d
δ23n

)
and, along Equation (31), this implies

that for any t ∈ [τ2,+, τ3,+] and i ∈ I+:

dai(t)

dt
≥ ai(t)

Ω(δ3)−O

d
∑
i∈I+

ai(t)
2

 .

In particular, there exists r = Θ( δ3d ) such that if
∑

i∈I+
ai(t)

2 ≤ r, all the ai(t) are increasing. Moreover thanks to

Lemma F.4,
∑

i∈I+
ai(τ2,+)

2 = ε2. As δ3 = Θ( 1√
d
), we can choose ε⋆2 = Θ(d−

3
2 ) small enough so that during the third

phase, ∑
i∈I+

ai(t)
2 ≥ ε2. (33)

Now note that by definition of βn,+,

D+(t) = − 1

n

∑
k∈S+

xkx
⊤
k β̂+(t)− xkyk

= −Σn,+(β̂+(t)− βn,+) (34)

As a consequence, β̂+(t) evolves as follows:

dβ̂+(t)

dt
=
∑
i∈I+

(
ai(t)

2Id + wi(t)wi(t)
⊤)D+(t)

= −

∑
i∈I+

ai(t)
2Id +

∑
i∈I+

wi(t)wi(t)
⊤

Σn,+(β̂+(t)− βn,+)

In particular, this implies:

1

2

d∥β̂+(t)− βn,+∥2Σn,+

dt
=

〈
dβ̂+(t)

dt
,Σn,+(β̂+(t)− βn,+)

〉
(35)

= −(β̂+(t)− βn,+)
⊤Σn,+

∑
i∈I+

ai(t)
2Id +

∑
i∈I+

wi(t)wi(t)
⊤

Σn,+(β̂+(t)− βn,+). (36)

The matrix Σ
1/2
n,+

(∑
I+

ai(t)
2Id +

∑
I+

wi(t)wi(t)
⊤
)
Σ

1/2
n,+ is symmetric, positive definite. Thanks to Equation (33),

its smallest eigenvalue is larger than ε2λmin(Σn,+), where λmin(·) denotes the smallest eigenvalue of a matrix. Using
typical concentration inequalities on the empirical covariance (see e.g. Vershynin, 2018, Section 4.7), with probability

1 −O
(
1
n

)
, ∥Σn,+ − Σ

2 ∥op = O
(√

d+logn
n

)
. With the fourth point in Assumption 4.1, we then have for a large enough

n⋆ = Θ(d3 log d) and with probability 1−O
(
1
n

)
,

O(1) ≥ λmax(Σn,+) ≥ λmin(Σn,+) ≥ Ω(1)

and
λmax(Σn,+)

λmin(Σn,+)
=

λmax(Σ)

λmin(Σ)
+O

(√
d+ log n

n

)
,

(37)

where λmax(·) denotes the largest eigenvalue.
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Assume Equation (37) holds in the following, so that the smallest eigenvalue of
Σ

1/2
n,+

(∑
I+

ai(t)
2Id +

∑
I+

wi(t)wi(t)
⊤
)
Σ

1/2
n,+ is larger than a term of order ε2. As a consequence, Equation (36) yields

1

2

d∥β̂+(t)− βn,+∥2Σn,+

dt
≤ −Ω(ε2)∥β̂+(t)− βn,+∥2Σn,+

.

Since the third phase ends if ∥β̂+(t)− βn,+∥2Σn,+
becomes smaller than ε23, this yields:

τ3,+ − τ2,+ = O
(

1

ε2
ln(

1

ε3
)

)
. (38)

Now recall that for any i, j ∈ I+,

d(1− ⟨wi(t),wj(t)⟩)
dt

= −⟨D+(t),wi(t) + wj(t)⟩(1− ⟨wi(t),wj(t)⟩)
≤ 2∥D+(t)∥2(1− ⟨wi(t),wj(t)⟩).

Notice from Equation (34) and the previous discussion that ∥D+(t)∥2 = O(1). As a consequence, a simple Grönwall
inequality with Equation (38) yields that for any t ∈ [τ2,+, τ3,+]:

⟨wi(t),wj(t)⟩ ≥ 1− (1− ⟨wi(τ2,+),wj(τ2,+)⟩) exp((t− τ2,+)O(1))

≥ 1−O
(
λ

1
2

ε2

)
exp

(
O
(

1

ε2
ln(

1

ε3
)

))
≥ 1−O

(
λ

1
2−ε
)
.

The second inequality comes from the value of (1− ⟨wi(τ2,+),wj(τ2,+)⟩), thanks to Lemma F.4. The last one comes from
our choice of ε3 for a large enough α0 = Θ(1).

In particular, this last inequality can be used to show9 that for any i, j ∈ I+ and t ∈ [τ2,+, τ3,+], wi(t) = wj(t)+O
(
λ

1−2ε
4

)
.

In particular, this yields for any i ∈ I+ and t ∈ [τ2,+, τ3,+]

β̂+(t) =
∑
j∈I+

aj(t)
2wj(t) (39)

=

∑
j∈I+

aj(t)
2

(wi(t) +O
(
λ

1−2ε
4

))
. (40)

Since ∥wi(t)∥2 = 1−O
(
λ

1
2−ε
)

, this last equality actually yields the following comparison for t ∈ [τ2,+, τ3,+]:

∥β̂+(t)∥2 ≤
∑
j∈I+

aj(t)
2 ≤ (1 +O

(
λ

1−2ε
4

)
)∥β̂+(t)∥2. (41)

In particular, since ∥β̂+(t)∥2 = O(1), this yields
∑

j∈I+
aj(t)

2 = O(1).
From there, for any xk ∈ S+ and i ∈ I+, ⟨wi(t), xk⟩ evolves as follows during the third phase

d⟨wi(t),
xk

∥xk∥ ⟩
dt

= ⟨D+(t),
xk

∥xk∥
⟩ − ⟨D+(t),wi(t)⟩⟨wi(t),

xk

∥xk∥
⟩

= ⟨βn,+ − β̂+(t),Σn,+
xk

∥xk∥
⟩ − O

(
⟨wi(t),

xk

∥xk∥
⟩
)

=
1

2
⟨βn,+ − β̂+(t),

xk

∥xk∥
⟩+ ⟨(Σn,+ − Id

2
)(βn,+ − β̂+(t)),

xk

∥xk∥
⟩ − O

(
⟨wi(t),

xk

∥xk∥
⟩
)
.

Note that

βn,+ = β⋆ +
Σ−1

n,+

n

∑
k∈S+

ηkxk.

9For that, we decompose wi = αijwj + uij with uij ⊥ wj and show that αij = 1−O
(
λ

1
2
−ε

)
and ∥uij∥2 = O

(
λ

1
2
−ε

)
.
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This then yields, thanks to Equation (37)

d⟨wi(t),
xk

∥xk∥ ⟩
dt

≥ 1

2
⟨β⋆ − β̂+(t),

xk

∥xk∥
⟩+ ⟨(Σn,+ − Id

2
)(βn,+ − β̂+(t)),

xk

∥xk∥
⟩

− O

 1

n
∥
∑
k∈S+

ηkxk∥2

−O
(
⟨wi(t),

xk

∥xk∥
⟩
)
. (42)

From there, thanks to the third point of Assumption 4.1 and Equation (40):

⟨β⋆ − β̂+(t),
xk

∥xk∥
⟩ ≥ c√

d
−O

(
⟨wi(t),

xk

∥xk∥
⟩
)
−O

(
λ

1−2ε
4

)
. (43)

Additionally, using the fact that ∥βn,+ − β̂+(t)∥Σn,+ is decreasing over time and smaller than ∥βn,+∥Σn,+ +O
(
λ2−4ε

)
at

the beginning of the second phase,

⟨(Σn,+ − Id
2
)(βn,+ − β̂+(t)),

xk

∥xk∥
⟩ ≥ −

∥∥∥∥Σn,+ − Id
2

∥∥∥∥
op
∥βn,+ − β̂+(t)∥2

≥ −1

2
∥Σ− Id∥op

√
1

λmin(Σn,+)
∥βn,+ − β̂+(t)∥Σn,+

−O
(√

d+ log n

n

)

≥ −1

2
∥Σ− Id∥op

√
1

λmin(Σn,+)

(
∥βn,+∥Σn,+ +O

(
λ2−4ε

))
−O

(√
d+ log n

n

)

≥ −1

2
∥Σ− Id∥op

√
λmax(Σn,+)

λmin(Σn,+)
∥βn,+∥2 −O

(
λ2−4ε +

√
d+ log n

n

)

≥ −1

2

√
λmax(Σn,+)

λmin(Σn,+)
∥Σ− Id∥op ∥β⋆∥2

−O

λ2−4ε +
1

n
∥
∑
k∈S+

ηkxk∥2 +
√

d+ log n

n


Now using Equation (37) and the fourth point of Assumption 4.1, note that√

λmax(Σn,+)

λmin(Σn,+)
≤ 2 +O

(√
d+ log n

n

)
.

So that the previous inequality yields

⟨(Σn,+ − Id
2
)(βn,+ − β̂+(t)),

xk

∥xk∥
⟩ ≥ −∥Σ− Id∥op ∥β⋆∥2 −O

λ2−4ε +
1

n
∥
∑
k∈S+

ηkxk∥2 +
√

d+ log n

n

 . (44)

Finally, thanks to Equation (32), 1
n∥
∑

k∈S+
ηkxk∥2 ≤ z′ with probability at least 1 − O

(
d

z′2n

)
. Using Equations (43)

and (44) in Equation (42) finally yields for the third phase:

d⟨wi(t),
xk

∥xk∥ ⟩
dt

≥ c

2
√
d
− ∥Σ− Id∥op∥β⋆∥2 −O

(
λ

1−2ε
4 + z′ +

√
d+ log n

n

)
−O

(
⟨wi(t),

xk

∥xk∥
⟩
)
.

Thanks to the fourth point of Assumption 4.1, c
2
√
d
− ∥Σ− Id∥op∥β⋆∥2 > 0, so that we can choose λ⋆, z′ = Θ(1) small

enough and n⋆ = Θ(d3 log d) large enough so that the previous inequality becomes, with probability at least 1−O
(
d
n

)
d⟨wi(t),

xk

∥xk∥ ⟩
dt

≥ Ω(
1√
d
)−O

(
⟨wi(t),

xk

∥xk∥
⟩
)
.

A simple Grönwall argument with the second point of Lemma F.4 then implies that for any t ∈ [τ2,+, τ3,+], i ∈ I+ and
k ∈ S+,

⟨wi(t),
xk

∥xk∥
⟩ ≥ Ω(

1√
d
).
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Since the term Ω( 1√
d
) here does not depend on δ3, we can choose δ3 = Θ( 1√

d
) small enough so that

⟨wi(t),
xk

∥xk∥
⟩ ≥ 2δ3.

We can show similarly for k ∈ S−, so that point 1 in Lemma F.5 holds, which concludes the proof.

F.6. Phase 4: final convergence

The last phase is defined for some ε4 > ε3 by the following stopping time, for any ◦ ∈ {+,−}:

τ4,◦ = inf{t ≥ τ3,◦ | ∥β̂◦(t)− β̂◦(τ3,◦)∥Σn,◦ ≥ ε4}.

Lemma F.6. If Assumption 4.1 holds, for any ε ∈ (0, 1
4 ), there exist λ⋆ = Θ( 1d ), ε

⋆
2 = Θ(d−

3
2 ), n⋆ = Θ(d3 log d),

α0 = Θ(1), δ3 = Θ( 1√
d
), ε⋆3 = Θ( 1√

d
) and ε4 = Θ(ε⋆3) such that for any λ ≤ λ⋆, n ≥ n⋆, ◦ ∈ {+,−}, ε2 ∈ [λ2−4ε, ε⋆2]

and ε3 ∈ [λα0εε2 , ε⋆3], with probability 1−O
(

d2

n + 1
2m

)
, τ4,◦ = +∞ and

1. neurons in I◦ are in the same cone as ◦β⋆ for any t ≥ τ3,◦:

∀i ∈ I◦, min
k∈S◦

⟨wi(t),
xk

∥xk∥
⟩ > 0 and max

k∈S−◦
⟨wi(t),

xk

∥xk∥
⟩ < 0.

2. limt→∞ ϑ(t) exists and limt→∞ β̂◦(t) = βn,◦.

Proof. Similarly to the previous phases, we assume that ◦ = +, that the random event I+ ̸= ∅, Equations (17), (18) and (37)
and the statements of Lemma F.5 all hold.

Define in the following the positive loss L+ for any ϑ+ ∈ R(d+1)×I+ by

L+(ϑ) =
1

2n

∑
k∈S+

(∑
i∈I+

ai⟨wi, xk⟩ − yk

)2

.

Note that the autonomous system given by Equation (23) actually defines a gradient flow over L+, i.e., for ϑ+ = (ai,wi)i∈I+
,

dϑ+(t)

dt
= −∇L+(ϑ+(t)).

The main argument for this phase is to prove a local Polyak-Łojasiewicz inequality:

∥∇L+(ϑ+)∥22 ≥ Ω(1)(L+(ϑ+)− Ln,+) (45)

for any ϑ+ such that ∥
∑
i∈I+

aiwi − β̂+(τ3,◦)∥Σn,+
≤ ε4,

where Ln,+ =
1

2n

∑
k∈S+

(⟨βn,+, xk⟩ − yk)
2
.

Indeed, we can lower bound ∥∇L+(ϑ+)∥2 for any such ϑ+ as follows

∥∇L+(ϑ+)∥22 ≥
∑
i∈I+

∥∥∥∥∂L+(ϑ+)

∂wi

∥∥∥∥2

=

∑
i∈I+

ai(t)
2

 ∥D+(t)∥22

≥ λmin(Σn,+)

∑
i∈I+

ai(t)
2

 ∥β̂+ − βn,+∥2Σn,+

33



Simplicity bias and optimization threshold in ReLU networks

where β̂+ =
∑

i∈I+
aiwi. The last inequality comes from Equation (34). Note that for a small enough choice of ε⋆3 = O(1)

and ε4 = Θ(ε⋆3),
∑

i∈I+
ai(t)

2 = Ω(1) in the considered set. Moreover, Equation (37) implies λmin(Σn,+) = Ω(1), so that

∥∇L+(ϑ+)∥22 ≥ Ω(1)∥β̂+ − βn,+∥2Σn,+
. (46)

On the other hand, a simple algebraic manipulation yields for any ϑ+:

L+(ϑ+)− Ln,+ =
1

2n

∑
k∈S+

(
⟨β̂+, xk⟩ − yk

)2
− (⟨βn,+, xk⟩ − yk)

2

=
1

2n

∑
k∈S+

(
β̂+ − βn,+

)⊤
xk −

(
x⊤
k (β̂+ − βn,+ + 2βn,+)− 2yk

)
=

1

2

(
β̂+ − βn,+

)⊤
Σn,+

(
β̂+ − βn,+

)
+

1

n
Xn,+(X

⊤
n,+βn,+ − y),

where Xn,+ is the |S+| × d matrix, whose rows are given by xk for k ∈ S+. By definition of the OLS estimator βn,+,
X⊤

n,+βn,+ − y = 0, so that

L+(ϑ+)− Ln,+ =
1

2
∥β̂+ − βn,+∥2Σn,+

. (47)

Combining Equation (46) with Equation (47) finally yields the Polyak-Łojasiewicz inequality given by Equation (45).

From there, this implies by chain rule for any t ∈ [τ3,+, τ4,+]

dL+(ϑ+(t))

dt
= −∥∇L+(ϑ+)∥22
≤ −Ω(1)(L+(ϑ+(t))− Ln,+).

By Grönwall inequality, this implies for some ν = Θ(1), for any t ∈ [τ3,+, τ4,+]

L+(ϑ+(t))− Ln,+ ≤ (L+(ϑ+(τ3,+))− Ln,+)e
−ν(t−τ3,+)

≤ ε23
2
e−ν(t−τ3,+). (48)

The last inequality comes from the fact that at the end of the third phase, ∥β̂+(t)− βn,+∥Σn,+ = ε3.

We bounded by below the norm of ∇L+(ϑ+(s)), but it can also easily be bounded by above as

∥∇L+(ϑ+(s))∥22 ≤

∑
i∈I+

ai(t)
2 + ∥wi(t)∥22

 ∥D+(t)∥22

≤ 2λmax(Σn,+)

∑
i∈I+

ai(t)
2

 ∥β̂+(t)− βn,+∥2Σn,+

≤ O(1) (L+(ϑ+(t))− Ln,+)

From there, the variation of ϑ+(t) can easily be bounded for any t ∈ [τ3,+, τ4,+] as

∥ϑ+(t)− ϑ(τ3,+)∥2 ≤
∫ t

τ3,+

∥∇L+(ϑ+(s))∥ds

≤ O(1) ε3
∫ t−τ3,+

0

e−
ν
2 sds

≤ O(ε3) . (49)

Moreover, note that

β̂+(t)− β̂◦(τ3,+) =
∑
I+

(ai(t)− ai(τ3,+))wi(τ3,+) +
∑
I+

(wi(t)− wi(τ3,+))ai(τ3,+).

In particular,

∥β̂+(t)− β̂◦(τ3,+)∥2 ≤
∑
I+

|ai(t)− ai(τ3,+)|∥wi(τ3,+)∥2 +
∑
I+

∥wi(t)− wi(τ3,+)∥2ai(τ3,+)
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≤
√∑

I+

(ai(t)− ai(τ3,+))2
√∑

I+

∥wi(τ3,+)∥22 +
√∑

I+

∥wi(t)− wi(τ3,+)∥22
√∑

I+

ai(τ3,+)2

≤ O(1) ∥ϑ(t)− ϑ(τ3,+)∥2
≤ O(ε3) .

We can thus choose ε⋆3 = O(1) and ε4 = Θ(ε⋆3) small enough such that Equation (46) still holds, but ε4 large enough with
respect to ε⋆3 such that the previous inequality ensures for any t ∈ [τ3,+, τ4,+]:

∥β̂+(t)− β̂◦(τ3,+)∥Σn,+
≤ ε4

2
.

In particular, this implies that τ4,+ = +∞. Since ϑ+(t) has finite variation (Equation 49), this also implies that
limt→∞ ϑ+(t) exists. The same holds for ϑ−(t) by symmetric arguments, so that limt→∞ ϑ(t) exists. Moreover, Equa-
tions (47) and (48) imply that

lim
t→∞

β̂+(t) = βn,+.

This yields the second point of Lemma F.6.

It now remains to prove the first point of Lemma F.6. Note that for any t ≥ τ3,+ and i ∈ I+:

∥wi(t)− wi(τ3,+)∥2 ≤ 2

∫ t

τ3,+

∥D+(s)∥2ds

≤ O(ε3) .
Thanks to the first point of Lemma F.5, we can choose ε⋆3 = Θ( 1√

d
) small enough so thatfor any t ≥ τ3,+ and i ∈ I+:

min
k∈S+

⟨wi(t),
xk

∥xk∥
⟩ > 0 and max

k∈S−
⟨wi(t),

xk

∥xk∥
⟩ < 0,

which concludes the proof of Lemma F.6.

Proof of Theorem 4.1. We can conclude the proof of Theorem 4.1 by noticing that we can indeed choose ε, ε2, ε3, ε4 such
that for any λ ≤ λ⋆ = Θ( 1d ) and n ≥ n⋆ = Θµ(d

3 log d), with probability 1−O
(

d2

n + 1
2m

)
, the statements of Lemmas F.2

and F.4 to F.6 all simultaneously hold. In particular, the stopping times T+ and T− defined in Lemma F.3 are infinite.
Lemma F.3 then implies that for any t ≥ τ , ϑ(t) = θ(t). From then, Lemma F.6 implies Theorem 4.1.
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