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Abstract

Air pollution, a critical issue tied to urban life, is governed by complex physical
processes that make accurate air quality prediction highly challenging. Recent
physics-guided neural networks attempt to address this by modeling physical
and data-driven branches independently and fusing their representations at the
end. However, these approaches often suffer from error accumulation within
each branch and difficulties in the effective fusion of representations. To address
these problems, we propose LIMBO (Linkage InterMediaries Between neural
Ordinary differential equations), a physics-guided neural network augmented with
an information exchange mechanism. LIMBO introduces bidirectional information
exchange between the physical and data-driven branches and employs a dedicated
LIMBO loss function to mitigate error accumulation and enhance collaboration. We
further examine the effect of different exchange intervals on model performance and
validate the contribution of the loss function through ablation studies. Experimental
results show that LIMBO outperforms the state-of-the-art Air-DualODE model in
PM2.5 forecasting, underscoring its practical value for real-world urban air quality
prediction. The code is available at https://github.com/jiaxu-feng/LIMBO.

1 Introduction and related work

Urban air pollution poses a severe threat to global health, causing millions of deaths annually
and reducing healthy life expectancy [18]]. Accurate air quality forecasting is therefore crucial for
protecting public health and guiding urban policy. However, predicting pollutant concentrations is
challenging due to the complexity of the atmospheric system, where emissions, diffusion, advection,
chemical reactions, and deposition interact with meteorological factors such as wind, temperature,
humidity, precipitation, and air pressure [[14]. Traditional physics-based numerical simulations offer
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limited modeling capacity and are computationally expensive [24} 5, 21} [16]. In parallel, data-driven
approaches [9} 117,15, [11}13]] have gained increasing attention, accompanied by recent advances in
time-series modeling [26, 20} 2} 6, [12] and spatiotemporal learning [22} 27, [28]]. However, purely
data-driven models often neglect underlying physical laws, leading to poor generalization. Therefore,
it is difficult for either approach to simultaneously achieve high accuracy and robust predictive
performance.

Recent studies have embedded diffusion—advection equations into Neural ODEs [1]]. For example,
AirPhyNet [8] is the first physics-guided deep learning framework applied to outdoor air quality
forecasting. It models diffusion and advection with GNN-based ODE modules that encode physical
information into a latent space, solves temporal dynamics via Neural ODEs, and finally decodes back
to physical space. This approach substantially reduces errors in PM2.5 forecasting across different
prediction horizons and under sparse data scenarios. Building on this, Air-DualODE [23] introduces
a dual Neural ODE framework with parallel physical and data-driven branches. The physical branch
captures dominant physical processes in the physical space using a diffusion—advection equation
tailored to open systems, while the data-driven branch models dynamic information in the latent space
that the physical branch cannot describe. The two branches cooperate through temporal alignment
and fusion mechanisms to achieve state-of-the-art air quality forecasting performance across multiple
scales and regions.

Nevertheless, existing models still face challenges in coordinating the physical and latent spaces. For
example, although AirPhyNet incorporates diffusion and advection into its Neural ODE networks,
it relies on a high-dimensional latent space to capture spatiotemporal dependencies. These latent
variables are often nonlinear combinations or abstract mappings of physical quantities, and thus
lack direct correspondence to explicit physical variables (e.g., diffusion coefficients, velocity fields),
diminishing their physical interpretability. Similarly, while Air-DualODE decouples physical and
latent representations by modeling them as two separate Neural ODEs, the two branches evolve
independently and interact only through temporal alignment and representation fusion after each
branch has been solved. This design overlooks stepwise interactions between physical space and
latent space information, thereby complicating the fusion of the final embedded representations and
limiting predictive accuracy.

To address these challenges, we propose LIMBO (Linkage InterMediaries Between neural ODEs), a
framework that introduces a bidirectional information exchange mechanism to enhance representation
communication and fusion. The main contributions of this paper are as follows:

* We present a novel physics-guided dual Neural ODE architecture that incorporates a bidi-
rectional information exchange mechanism between the physical and data-driven branches,
complemented by a LIMBO loss function to mitigate error accumulation and strengthen
inter-branch coordination.

* We systematically investigate the effect of different information exchange intervals on model
performance, identify the optimal interval hyperparameter, and provide a detailed analysis
of its influence.

* We conduct extensive experiments to evaluate the effectiveness of LIMBO and demonstrate
that it outperforms the state-of-the-art Air-DualODE model under identical settings on the
KnowAuir dataset.

2 Methodology

2.1 Problem definition

The problem is formulated as follows [, 23]]: let there be N air-quality monitoring stations in the
target region and D meteorological variables. Historical PM2.5 concentrations over the past 1" time
steps are arranged as a tensor X;.7 € RTXNx1 apnd auxiliary meteorological and environmental
covariates (e.g., temperature, wind speed) as A;.; € RT*Nx(D=1)  Based on station locations
we construct an undirected graph G = (V,E) with |V| = N, and the forecasting task is to learn
a mapping f(-) that, given X;.7, A1.7 and G, predicts concentrations for the next 7 time steps,

formally, X7y 1.71, € R™*VX1 with

Xri1r4r = f(Xl:T7 Arr, G)-
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Figure 1: Our proposed architecture, which consists of the physical branch, the data-driven branch,
the fusion module, and the information exchange mechanism (LIMBO)

2.2 Model overview

To address the lack of timely interactions between the physical and data-driven branches in the
baseline Air-DualODE framework [23]], we propose the LIMBO architecture, as shown in Figure[T]
The architecture comprises the following three basic components from the baseline architecture (more
details in Appendix [B) and the information exchange mechanism described in Section 2.3]

Physical branch. The physical branch models atmospheric pollutant transport using an advec-
tion—diffusion equation (see Appendix [A]) for an open system. A Neural ODE captures spatiotemporal
dependencies in physical space, and the ODE solver produces an initial multi-step forecast X7 1.74 .

Data-driven branch. The data-driven branch encodes observations (pollutants and meteorological
covariates) into a latent initial state Zp and evolves it using a Neural ODE with spatial masked
self-attention. This latent trajectory Z%F) 1.7, captures complex effects not described by the advec-
tion—diffusion equation.

Fusion module. Physical predictions X T+1.7+- are encoded into latent space via an encoder to
obtain Z%., ., .. Itis fused with Z£ | ., _ using a graph neural network that aggregates spatial
information and produces the final spatiotemporal prediction.

2.3 Information exchange mechanism

To enable dynamic cooperation and corrective feedback between the physical and data-driven
branches, the model employs an explicit bidirectional information exchange mechanism imple-
mented with two gated recurrent units (GRUs) [13} 4]]. Time is partitioned into intervals of length k;
within each interval, both branches evolve independently via their Neural ODE solvers. The physical
branch solver produces a raw multi-step output X TV mbk41:T+mhk4 k- and the data-driven branch solver

produces a raw latent trajectory Z ?Eyk 1T 4mhksk At the discrete boundary ¢t = T+ mk + k,

information is exchanged in both directions through GRU updates that act as cross-branch messengers.

Specifically, one GRU takes the physical-space terminal forecast )A(}afm &4k s its input and treats the

data-driven branch’s raw latent Z?ffnvz 1 as the hidden state to be updated; the GRU output yields
ZD,new

an updated latent Z5.} 5 ., which becomes the data-driven branch’s initial status for the next ODE

window. Symmetrically, the second GRU ingests Z:]FD_:;“,; ., and updates the physical branch state

X T'ymk-+x 10 produce X T+ mk-+& fOr the ensuing physical integration. This bidirectional exchange
thus provides mutual corrective signals: the physical branch injects physically plausible states into
the data-driven latent dynamics, while the data-driven branch encodes unmodeled complex effects
into physical updates.

The exchange interval k is a key hyperparameter controlling the trade-off between fidelity of
continuous-time modeling and correction timeliness. Smaller £ introduces more frequent updates,
incurring higher computational costs and yielding evolution dynamics closer to a discrete-time



RNN. Larger k lowers overhead and preserves smoother ODE behavior but may delay inter-branch
corrections. In practice, k is tuned to balance efficiency, continuity, and timely mutual correction.

2.4 LIMBO loss

To ensure that cross-branch exchanges lead to constructive alignment rather than destructive per-
turbation, we introduce the LIMBO loss: a regularizer that requires the similarity between the two
branches’ latent representations to increase after an exchange. This design allows each branch to
maintain its unique expertise prior to the exchange, followed by a controlled fusion of information
that intentionally drives the system toward consensus, thereby enhancing collaborative effectiveness.
Denote by Encoderp(+) the encoder that maps a sequence of physical forecasts into latent space. At
exchange time T 4+ mk we form the raw and new latent representations from the physical branch:

Praw __ o new oraw Ponew __ new
Zrmre = Encoderp (XT:Ter,FI, XT+mk), Zpymi = Encoderp (XT:Terk),

and the data-driven branch produces corresponding Z%_rf;:’; and Z?jrn;:g before and after GRU
updates. Define
. P,raw D, raw . o P,new D, new
Simi = €08(Zr i 27 Lmk)» SIm e = c0s(Zr ks 21y mi)-
The LIMBO loss aggregates a smooth hinge penalty over exchange points, which penalizes cases
where post-exchange similarity does not exceed pre-exchange similarity.

T/k
k .
LIMBOLoss = — E log(l + exp (S, — Sim%efmk)).
T

m=1

The model is trained using three complementary loss functions: the prediction loss, which measures
the discrepancy between predictions and ground truth; the contrastive learning loss, which aligns
latent representations prior to fusion; and the LIMBO loss, which promotes constructive information
exchange between branches. The pseudocode of the LIMBO architecture is shown below.

Algorithm 1 LIMBO

Require: Past pollutant levels X .7, auxiliary covariates A;.7, and graph structure G
1: Zp < Encoderp (X1.7, A1.7)
: form=0to7/k—1do

3 XYt & ODESolve (X5, FP [T+ mk +1,...,T + mk + k]; ©)
4 P « + ODESolve (ZP% P, [T+ mk+1,.... T +mk + k; ®)

[\

T+mk+1:T+mk+ T+mk>
. v new : — D raw : _ Yraw
5. KB« GRUp.p (input = Z2700 ., hidden = 52, )
D ,new : _ Yraw 3 _ 7D raw
6 ZT+mk+k «~— GRUp_p (mput = X7 kihs hidden = ZT+mk+k)
v new v raw
T X kg T mkak—1 S X Tk LT b h—1
8: ZD,neW - ZD,raw
. T+mk+1:T+mk+k—1 T+mk+1:T+mk+k—1
Praw v new o raw
9 27 s iy < Encoderp (XT:T+mk+k—17 XT+mk+k)
10: end for
. Pnew new
1 Zp o, . < Encoderp (XT+1:T+T)

; P, D,
12: X104 < GNN (ZTfle:“T,”rT’ZTjLnﬁ?UrT)

13: PredictionLoss « MAFE (XT+1:T+77 XST, - +T)

14: ContrastLearningLoss < ContrastLearning (Z?’_ff:v;JrT, ij?_’i:ll(fVTv+T>

15: LIMBOLoss < LIMBOLoss (Zﬁfff; L, ZPmew ghaw gD +T)
16: FinalLoss < PredictionLoss + o x ContrastLearningLoss + 8 x LIMBOLoss
return X7 .74,




3 Experiments

3.1 Model evaluation

We conduct experiments on the KnowAir dataset [25]], which provides 3-hour interval observations
of PM2.5 and 17 meteorological factors across 184 Chinese cities over three years. Our study uses
PM2.5 and five meteorological variables (temperature, surface pressure, relative humidity, and U/V
wind components) as inputs. Using the past 24 time steps (three days) to predict the PM2.5 level
over the next 24 steps (three days), we evaluate the baseline Air-DualODE and our proposed LIMBO
model under different exchange interval k, with results reported in Table

Table 1: Performance of Air-DualODE and LIMBO at different interval k. Table entries are results
from three repeated experiments, presented as “mean (standard deviation)”.

Metrics Air- LIMBO LIMBO LIMBO LIMBO LIMBO LIMBO
DualODE k=1 k=2 k=4 k=38 k=12 k=24
MAE 18.8747 18.9071  18.9200 18.6979 18.8673  18.9988  18.8692
(0.1088)  (0.1445) (0.1158) (0.1071) (0.0768) (0.1801) (0.1053)
SMAPE 0.4241 0.4242 0.4247 0.4205 0.4238 0.4247 0.4229
(0.0016)  (0.0026) (0.0023) (0.0019) (0.0021) (0.0011) (0.0016)
RMSE 30.3111 30.4519  30.2540 299283 30.4661  30.5770  30.2525

(0.2008)  (0.2457)  (0.3589) (0.1413)  (0.3800) (0.2338) (0.1688)

Experimental results show that when k& = 4, the three-day forecasting performance outperforms the
baseline across all metrics with the lowest error, while errors increase at extremes (k = 1 or k = 24).
Small £ disrupts the Neural ODE evolution with frequent GRU corrections, reducing the model
to an RNN-like structure that struggles to capture continuous dynamics, leading to lower accuracy
and higher computational cost. While a large £ maintains continuous modeling, the lack of timely
corrections causes accumulated deviations. Thus, k = 4 strikes the best balance in our experiment
settings, combining ODE continuity with timely GRU corrections.

3.2 Ablation studies

To assess the constraining effect of the LIMBO loss on information exchange, we conduct ablation
studies (Table[2). For LIMBO (k = 4), adding LIMBO loss significantly improves all evaluation
metrics, increases prediction accuracy, and lowers standard deviation, thereby making the information
exchange mechanism’s contribution to model performance more consistent and reliable.

Table 2: Ablation studies on LIMBOLoss (k = 4). Table entries are results from three repeated
experiments, presented as “mean (standard deviation)”

Metrics w/ LIMBOLoss w/o LIMBOLoss

MAE 18.6979 (0.1071)  18.8015 (0.2643)
SMAPE  0.4205 (0.0019) 0.4221 (0.0040)
RMSE  29.9283 (0.1413) 30.2614 (0.3511)

4 Conclusion and future work

We address atmospheric complexity in air quality forecasting by proposing LIMBO, which introduces
a GRU-based bidirectional information exchange between the physical and data-driven branches to
mitigate error accumulation and improve cross-branch fusion. By mutually correcting branch states
at regular ODE integration intervals, LIMBO achieves tighter collaboration between branches. On
the KnowAir dataset, LIMBO (exchange interval &k = 4) outperforms the state-of-the-art model for
three-day PM2.5 forecasting, reducing the prediction error by 1%. Considering the costs of tuning
hyperparameter k, future work will focus on developing an adaptive step-size information exchange
strategy to dynamically detect error accumulation and trigger exchanges, further improving efficiency
and predictive accuracy.
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Diffusion—-Advection Equation

The transport of atmospheric pollutants is governed by the continuity equation from fluid mechanics,
which states that local concentration changes arise from net flux divergence, assuming source and sink
processes are absent [[10]]. Two primary mechanisms contribute to this flux: diffusion and advection.
Diffusion models the spontaneous spread of particles from high to low concentration regions. By
Fick’s first law, it yields a diffusive flux Fdiﬁ' = —kVX (with diffusion coefficient k) [[19] and
hence a Laplacian term in the governing equation. Advection represents transport by bulk flow (e.g.,
wind) and is expressed by the advective flux fadv = X where ¥(p,t) denotes the velocity field
[7]l. Combining these contributions under the continuity constraint produces the diffusion—advection



equation used to model spatiotemporal pollutant dynamics, where the Laplace term V2 = V - V
captures spatial diffusion and the divergence term captures advection by the velocity field.
0X

—_— = 2 — . U
5 = kVIX -V (X7)

B Baseline architecture

Physical branch. This branch encodes a diffusion—advection formulation on a spatial graph and
integrates it within a Neural ODE. Concretely, the instantaneous physical vector field is parameterized
to combine two graph Laplacian terms for diffusion and advection, respectively, and an open-system
correction:

dX
FP(X,;0) = o @0 (k- LagX) + (1—a)® (LaavX) + BO X,
where « is a site-wise gating vector that adaptively weights diffusion versus advection, £ is the
diffusion coefficient, and 3 is an open-system correction that models net local loss and generation of
pollutant mass. Learnable Coefficient Estimators produce k& and 3 from historical local signals. The

physical branch is unrolled by an ODE solver to yield a multi-step physical forecast X TH+1:T+r-
Data-driven branch. It captures residual and contextual effects that the diffusion—advection
equations cannot fully represent (for example, nonlinear chemical interactions or meteorological
modulation). Observations (pollutant fields and auxiliary covariates) are encoded into a latent initial
state Z7, and the branch models its continuous-time evolution via a Neural ODE whose vector field
is implemented with masked self-attention blocks in latent space:

dzP

dt

producing a parallel latent trajectory Z% .1, _ that complements the physically derived forecast.

FP(zZP.®) = = Attention(ZtD,G)7

C Implementation details

Hardware and Software: The model is implemented in PyTorch 2.5.0 and executed on a server
equipped with an NVIDIA H20 GPU and an Intel Xeon Platinum 8469C CPU.

Training Parameters: The Adam optimizer is used with a batch size of 64 and an initial learning
rate of 0.005, which is gradually decayed during training. The number of training epochs is determined
by early stopping: training is terminated if the validation loss fails to improve for 10 consecutive
epochs.

ODE Solvers: The physical branch employs the dopri5 numerical integration method with relative
and absolute tolerances set to 1 x 10~ 2. The data-driven branch uses the rk4 method with relative and
absolute tolerances set to 1 x 10~%. Both branches adopt the adjoint method [[]] for backpropagation.

Model Parameters: Both the physical branch and the fusion module contain 3 GNN layers. The
hidden state dimension of the data-driven branch is set to 64, and the outputs from the physical branch
are encoded into a latent space of the same dimension.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results or proofs. It focuses on
empirical methodology and experimental validation.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.



* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix [C|provides the necessary implementation details to reproduce the
experimental results. In addition, the code has been released alongside the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code has been released alongside the paper.

Guidelines:
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix [C] provides the necessary experiment settings to understand the
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports results with standard deviations from three repeated experi-
ments across all evaluation metrics (MAE, SMAPE, RMSE)), clearly indicating the statistical
variability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies hardware requirements in Appendix |C] including NVIDIA
H20 GPU and Intel Xeon Platinum 8469C CPU specifications, along with software versions
(PyTorch 2.5.0).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research focuses on air quality prediction for public health benefit and
does not involve any ethically problematic methods, data collection, or applications.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper addresses air quality prediction, which has a clear positive societal
impact for public health, yet might yield a negative impact if the prediction is not accurate.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on air quality prediction methodology and does not involve
releasing models or datasets that pose significant misuse risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper cites the KnowAir dataset, which uses the MIT license.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets, pretrained models, or other assets
that would require separate documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects. It
uses existing air quality monitoring data.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects, as it uses existing
air quality monitoring datasets.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology does not involve large language models. The research
focuses on physics-guided neural networks for air quality prediction.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

15


https://neurips.cc/Conferences/2025/LLM

	Introduction and related work
	Methodology
	Problem definition
	Model overview
	Information exchange mechanism
	LIMBO loss

	Experiments
	Model evaluation
	Ablation studies

	Conclusion and future work
	Diffusion–Advection Equation
	Baseline architecture
	Implementation details

