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ABSTRACT

To obtain deeper understandings of the brain, aligning similarly functioning neu-
rons, or matching neurons, in different neural systems is becoming an important
problem in neuroscience. A major approach for neuronal matching is stimulus-
based approach, where matching is performed through similarity of neuronal ac-
tivity when exerted the same stimulation. This approach, however, is experi-
mentally time-consuming and laborious, and we are in want for a more widely
applicable matching approach that possibly uses more accessible data, such as
spontaneous neural activity. Here we propose a neuronal matching framework
that uses the spontaneous activity. The proposed method is based on an exten-
sion of Gromov-Wasserstein optimal transport (GWOT) (Mémoli, 2011b), which
we named Gromov-Wasserstein optimal transport with multiple distance matrices
(GWOT-MD). As a test of efficacy of the proposed approach, we applied the pro-
posed framework to calcium imaging time series of spontaneous neuronal activi-
ties of Caenorhabditis elegans (C.elegans). Ratios of matching with pre-identified
labels between individual pairs turned out much better than chance level matching
ratios. We also performed neuron label identification using the matching results
and revealed that the top 5 identification accuracy turned out as good as an identi-
fication method using neuronal locations (Sprague et al., 2024).

1 INTRODUCTION

Neuroscience has revealed various knowledge about the brain through comparison —i.e., identify-
ing common or distinct features —of different neural systems. A crucial preliminary step in this
comparative process is to align, or match, neurons that work similarly in different brains. Matching
neurons provides accurate understandings of how similarly or differently the corresponding neurons
act in different systems, helping detect individual differences (Kanai & Rees, 2011; Miller et al.,
2012; Foulkes & Blakemore, 2018) or abnormalities in diseases (Wilson et al., 2023). Matching
is necessary to control the neural systems via direct stimulation into neurons, e.g., optogenet-
ics (Emiliani et al., 2022), as finding corresponding neurons would help reproducing functionally
equivalent activity patterns in different systems (Muldoon et al., 2017; Kamiya et al., 2023). With
the recent rapid developments of experimental techniques that allow spatially or temporally precise
measurement (Ota et al., 2022) and control of neurons (Emiliani et al., 2022; Kravitz et al., 2010;
Liu et al., 2020), elaborating neuronal matching frameworks is becoming a problem of practical
significance in neuroscience rather than purely theoretical importance.

Existing neuronal matching methods can be divided into two major approaches —matching meth-
ods that use neural activity (Fig. 1(b,c)) and ones that use image-based information without neu-
ral activity (Fig. 1(a)). In the image-based approach, matching is performed based on similari-
ties of neuronal morphology, locations, and gene expression patterns obtained as fluorescent colors
(Yemini et al., 2021). Despite having seen massive success in neuronal matching in Caenorhabdi-
tis elegans (C.elegans) roundworms (Sprague et al., 2024; Nejatbakhsh & Varol, 2021; Varol et al.,
2020; Chaudhary et al., 2021; Bubnis et al., 2019; Skuhersky et al., 2022; Toyoshima et al., 2020;
Emmons et al., 2021) and Drosophila fruit flies (Peng et al., 2011; Zhao & Plaza, 2014; Veling et al.,
2019), this approach in principle is limited in use to animals that have stereotypy across individu-
als, i.e., neuronal anatomy, lineage, and number are almost identical across individuals. Thus this
approach cannot be applied to mammalian animals such as mice or human beings, where neuronal
structures are much less stereotypical and far more complex. Furthermore, the neuronal identity de-
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Figure 1: Neuronal matching of neural systems.

termined by anatomy or lineage does not always equate with neuronal functions (Guillermin et al.,
2017; Rengarajan et al., 2019; Nakano et al., 2020; Sato et al., 2021), although many neurons seem
to have consistent functions (Kato et al., 2015).

The other approach matches neurons based on similarity of neural activities. The most typical
strategy is to use common stimuli (Fig. 1(b)) and match neurons according to the similarity of
the responses to the same stimuli (Conroy et al., 2009; Haxby et al., 2011; Conroy et al., 2013;
Thual et al., 2022). Despite its effectiveness, this strategy needs setting up experimental environ-
ments to exert common stimuli, making it laborious and time-consuming. In addition, matching is
only based on only a finite number of stimulus responses, which covers a very small range of all neu-
ral representations (Luczak et al., 2009) and thus may provide a matching that does not generalize
well to other stimuli.

While data using common controlled stimuli may be scarce due to experimental difficulties, a more
accessible and abundant resource is spontaneous activity (Fig. 1(c)). Using spontaneous activ-
ity, neural activity engaging in no behavioral tasks or under no external stimulation, for neuronal
matching would be a powerful and complementary method that provides additional information to
stimulus-based matching. Spontaneous activity is most accessible, which saves experimentalists’
cost and allows us to take data in abundance. Spontaneous activity is also known as ranging in
broad representational spaces (Luczak et al., 2009), thus matching with spontaenous activity might
generalize better than stimulus-based results.

There seems, however, no study of neuronal matching using spontaneous neural activity. This is
apparently due to the difficulties that one faces in using spontaneous activity for matching purposes.
Spontaneous activity does not have reference time points with which time series from different
individuals are aligned, such as stimulus onsets, making it difficult to specify which parts of the
signals should be compared. Thus, we must find another way than aligning time points to match
neurons with spontaneous data.

In this work, we propose a novel neuronal matching framework that uses spontaneous neural ac-
tivity (Fig. 1(c)). Instead of aligning timings, we aligned neurons grounded on the characteristics
of a neuron relative to other neurons during the entire period of spontaneous activity. We made an
assumption that neuron x in the brain A is functionally equivalent to neuron y in the brain B when
the relationship between x and other neurons in A is equivalent to that between y and other neurons
in B. This assumption is built upon the fact that there is a certain degree of commonality in the rela-
tional structures of neurons. (Susoy et al., 2021; Randi et al., 2023). We quantified this relationship
of neurons with the (dis)similarity of spontaneous activity.

To obtain matching that preserves such relationship as similar as possible, we performed matching
using Gromov-Wasserstein optimal transport (GWOT) (Mémoli, 2009), which is an unsupervised
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matching method that tries to find the optimal mapping that preserves distance structures between
systems as closely as possible.

Furthermore, to incorporate time delayed dissimilarity structures among neurons, we extend GWOT
into what we named Gromov-Wasserstein optimal transport with multiple distance matrices (GWOT-
MD). We made this extension as time delay structures in neural signals are pointed out to charac-
terize spontaneous activity (Mitra et al., 2015), implying that considering time delay structures may
contribute to better matching.

To test its efficacy, we applied GWOT-MD to spontaneous neural activity of C.elegans. We in-
vestigated how well our neuronal matching results coincide with the neuronal identities provided
in datasets (Atanas et al., 2023; Kato et al., 2015; Uzel et al., 2022), relying on experimental ev-
idence that the neurons of the same identity having relatively consistent functions (Kato et al.,
2015; Susoy et al., 2021; Randi et al., 2023). We found that in matching between individual pairs,
GWOT-MD showed matching ratios much better than chance level matching ratio. We also found
incorporating time delay information contributed in improving matching ratios. To compare our
matching results in previous studies (Sprague et al., 2024; Atanas et al., 2023; Varol et al., 2020;
Chaudhary et al., 2021), we next examined how well we can estimate the neuron identity through
the matching results of an individual to multiple individuals. The result turned out that the estimated
accuracy was as good as information of neuronal locations, presenting that our framework can help
specify neuronal identities in C.elegans.

Our contributions are:

• We proposed a framework for neuronal matching only using spontaneous neuronal activity.

• We proposed an extension of GWOT called GWOT-MD, which can incorporate time delay
structures in matching.

• We applied our framework to C.elegans spontaneous neural activity and revealed a match-
ing results comparable to locational information.

2 BACKGROUND

Gromov-Wasserstein Optimal Transport
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Figure 2: Gromov Wasserstein Opti-
mal Transport (GWOT). The illustra-
tion is based on (Peyré et al., 2016).

In this work, we utilize a mathematical framework called
the Gromov-Wasserstein optimal transport, or GWOT for
short (Mémoli, 2011b; Peyré et al., 2016), to find neu-
ronal matching. GWOT, in short, aims to find the op-
timal way to transport a distribution to another distribu-
tion when we have only access to the distances between
the points within the domain and the target distributions
(Fig. 2).

Let us formulate GWOT in a more formal manner, fol-
lowing (Peyré et al., 2016) (Fig. 2). We summarized the
notation that we used in Appendix A.

Problem 1 (GWOT) Let X,Y be metric spaces equipped with distance dX , resp., dY . We assume
a discrete probability measure on each metric space is given as µX

p =
∑m

i=1 δxipi and µY
q =∑n

j=1 δyjqj , where {xi}mi=1 ⊂ X, {yj}nj ⊂ Y, p ∈ Σm and q ∈ Σn. GWOT problem is formulated
as the next optimization problem:

GW(DX , DY , p, q) := min
Γ∈Cp,q

EDX ,DY (Γ), (1)

where EDX ,DY (Γ) :=
∑
i,k

∑
j,ℓ

L
(
DX

ik, D
Y
jℓ

)
ΓijΓkℓ, (2)

where DX
ik := dX(xi, xk), D

Y
jℓ := dY (yj , yℓ), D

X = {DX
ik}ik, DY = {DY

jℓ}jℓ, and L : R⩾0 ×
R⩾0 → R⩾0 is a measure of discrepancy between a pair of distances.
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We set L as the quadratic loss L(x, y) := 1
2‖x−y‖

2 as this is the most common choice (Peyré et al.,
2016). We also note that we can rewrite the cost function (equation 2) as below,

EDX ,DY (Γ) =
⟨
L(DX , DY )⊗ Γ,Γ

⟩
(3)

where L(DX , DY ) =
(
L
(
DX

ik, D
Y
jℓ

))
ijkℓ

.

The idea behind this minimization is as follows: consider a situation where one wants to transport a
distribution whose histogram is given by p = (p1, · · · , pm) to another distribution with histogram
q = (q1, · · · , qn) in a most effective manner. In this research, we only consider p and q to be
uniform, described in Fig. 2 as the uniform size of dots. Unlike the normal optimal transport prob-
lem (Villani, 2009; Cuturi, 2013) where the cost of transporting pi to qj is pre-determined for each
(i, j) ∈ JmK × JnK, in GWOT we consider situations where the direct cost of transporting mass
from pi to qj is not available, but only the distances of points within the same space are. Equation 2
tries to find Γ ∈ Cp,q such that the discrepancy among the distances with assignment or matching
specified with Γ, whose ij element represents the weight that is carried from pi to qj , defined in
each space becomes the smallest. Put in another way, GWOT problem searches for a transport plan
Γ with which nearby points in X also come close in Y and vice versa and thus the distance structure
is most well preserved. It is also known that equation 2 becomes a metric between the distributions
p and q (Mémoli, 2009), offering a theoretical advantage of GWOT.

GWOT has been applied to many real-world systems to disclose correspondence or matching be-
tween two objects that are difficult to compare directly. Such GWOT applications include transla-
tion between two languages (Alvarez-Melis & Jaakkola, 2018), object matching (Mémoli, 2011a;
Solomon et al., 2016), finding correspondence between two cell lineages (Demetci et al., 2022b;a),
and aligning neural representations in brains (Kawakita et al., 2023; Takeda et al., 2024). The prop-
erty of GWOT that spares any information of labels or correspondence in prior is called unsuper-
vised property in some works (Kawakita et al., 2023; Sasaki et al., 2023), which makes GWOT an
upcoming promising framework in neuroscience.

The computationally efficient solutions for GWOT have been proposed in several
works (Peyré et al., 2016; Mishra et al., 2021; Ryner et al., 2023). Among these, the most
well-known is the one proposed in Peyré et al. (2016), where equation 2 is iteratively optimized
using Sinkhorn projection (Peyré & Cuturi, 2018).

3 MATCHING FRAMEWORK USING SPONTANEOUS NEURAL ACTIVITY

3.1 PRINCIPLES OF OUR APPROACH FOR NEURONAL MATCHING

Here, we present our principle of neuronal matching. Our basic idea of matching with spontaneous
neural activity is grounded on the relationship structure that neuronal population makes. That is, we
assumed that neuron x in the brain A is functionally equivalent to neuron y in the brain B when the
relationship between x and other neurons in A is equivalent to that between y and other neurons in
B. This assumption is built upon fact that there is a certain degree of commonality in the relational
structures of neurons across individuals of the same species (Susoy et al., 2021; Randi et al., 2023).

We quantified the relationship of neurons by the dissimilarity of spontaneous activity. As the dis-
similarity measure, we adopted cosine distance dcos, one of the most frequent choices, between time
series:

dcos(u, v) := 1−
tuv

|u||v|
= 1− u1v1 + · · ·uMvM√

u2
1 + · · ·+ u2

M

√
v21 + · · ·+ v2M

. (4)

Here, u and v describe a pair of spontaneous neural activities, u = (u1, · · · , uM ), v =
(v1, · · · , vM ) ∈ RM (M ∈ N).

Grounded on the assumption, what we seek is a matching that preserves the distance structures
between a pair of individuals. As explained in the previous section, GWOT makes a nice path to this
goal. We then proceed to use GWOT where the distances are the cosine distances defined above.
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3.2 GWOT WITH MULTIPLE DISTANCE MATRICES (GWOT-MD)

In this section, we describe the novel matching method called GWOT-MD, an extension of GWOT.
Although matching by GWOT seems a nice start for neuronal matching using spontaneous activity,
it only matches dissimilarities between zero-lag activity, annihilating an important aspect of time se-
ries —time delayed relationships. Considering time delayed neuronal relationships or time dealayed
functional connectivity well characterizes spontaneous activities (Mitra et al., 2015; Liégeois et al.,
2017; Mitra et al., 2018), possibly improving extracting more precise functional relationships be-
tween neurons. We thus consider matching not only distances defined simultaneously but ones
defined by some time delays. To do this, we extend GWOT to GWOT-MD to incorporate time delay
structures, formulated as follows.

Problem 2 (GWOT-MD) Let X,Y be metric spaces equipped with sets of distances {dτX}τ , resp.,
{dτY }τ , each of which has the same finite number of elements. We set p, q, µX

p , µY
q , as in Problem 1.

GWOT-MT problem is formulated as the next optimization problem:
GWtd({DX,τ}, {DY,τ}, p, q) := min

Γ∈Cp,q

E{DX,τ},{DY,τ}(Γ), (5)

where E{DX,τ},{DY,τ}(Γ) :=

h∑
τ=−h

∑
i,j,k,ℓ

wτL
(
DX,τ

ik , DY,τ
jℓ

)
ΓijΓkℓ, (6)

where h ∈ N ∪ {0}, DX,τ
ik := dτX(xi, xk), DY,τ

jℓ := dτY (yj , yℓ), DX,τ = {DX,τ
ik }ik, DY,τ =

{DY,τ
jℓ }jℓ, and L : R⩾0 × R⩾0 → R⩾0 is a measure of discrepancy between a pair of distances.

As seen by the cost function equation 6, the GWOT-MD problem tries to find a matching that makes
each DX,τ

ik and DY,τ
jℓ as close as possible. This forms an extension of GWOT, where matching

is only done distances DX
ik and DY

jℓ. GWOT-MD contains the original GWOT under h = 0 and
{dτX} = {dX}, {dτY } = {dY }.
How can we solve GWOT-MD? GWOT-MD can be readily solved with a similar algorithm that we
employ in GWOT. We sketch this algorithm; see Appendix B for more details. We rewrite the cost
function defined in equation 6 as

E{DX,τ},{DY,τ}(Γ) =
∑
i,j,k,ℓ

[
h∑

τ=−h

wτL
(
DX,τ

ik , DY,τ
jℓ

)]
ΓijΓkℓ (7)

=
⟨
Ltd
(
{DX,τ}, {DY,τ}

)
⊗ Γ,Γ

⟩
, (8)

where

Ltd
(
{DX,τ}, {DY,τ}

)
:=

(
h∑

τ=−h

wτL
(
DX,τ

ik , DY,τ
jℓ

))
ijkℓ

. (9)

Considering that the form of the cost function (equation 8) is analogous to the one in equation 3, we
notice that we only have to replace L(DX , DY ) to Ltd

(
{DX,τ}, {DY,τ}

)
in the computation. This

consequently indicates that we can inherit the solution algorithm of GWOT to solve GWOT-MD.

To apply GWOT-MD to spontaneous activity time series, we set dτX and dτY as the distances defined
between time points of difference τ . This application tries to match distances defined between
various time delays as close as possible. The distance between time series delayed by τ can be
defined in a similar manner to autocorrelation or autocovariance of a time series. That is, given
u = (u1, · · · , uM ), v = (v1, · · · , vM ) ∈ RM (M ∈ N), the time delayed cosine distance is
defined as

dτcos(u, v) := 1− u1v1+τ + · · ·+ uM−τvM√
u2
1 + · · ·+ u2

M−τ

√
v21+τ + · · ·+ v2M

, (10)

where the time delay τ ∈ {0} ∪ JM − 1K. As {dτX} and {dτY } in Problem 2, we let {dτX} =
{dτcos}hτ=−h and {dτY } = {dτcos}hτ=−h with h ∈ N. Technically, dτcos is not a metric in the math-
ematical sense, as the symmetry, dτcos(x, y) = dτcos(y, x), does not generally hold. We, however,
relaxed the condition of {dτX} and {dτY } being distances in a strict sense, and substituted the values
of {dτcos}hτ=−h as computed from the time series data. We made a tentative choice for the weights
{wτ}τ and set wτ = 1 ∀τ .
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Table 1: The overview of C.elegans datasets. In this study, we chose three datasets that include
spontaneous neuronal activity under two different states: freely moving and immobilized. An indi-
vidual in Uzel et al. (2022) was excluded from analysis because of its exceedingly large FPS (5.05
Hz). FPS = frames per second.

Dataset State n Duration FPS # neurons # labeled neurons

Atanas et al. (2023) Freely moving 21 ≈ 16 min. 1.67 Hz 109-153 60-111
Kato et al. (2015) Immobilized 5 ≈ 15 min. 2.80 - 3.07 Hz 109-135 31- 47
Uzel et al. (2022) Immobilized 5 ≈ 15 min. 3.06 - 3.82 Hz 125-154 47- 58

4 NEURONAL MATCHING OF C.elegans

To test the efficacy of our approach, we next applied our method to calcium imaging data of
C.elegans neurons. We chose C.elegans for the test animal due to the stereotypy in neural sys-
tem, composed of 302 neurons with their own names in any individual White et al. (1986). Each of
these 302 neurons has relatively fixed functions (Ann K. Corsi & Chalfie, 2005; Kato et al., 2015),
although with some exceptions (Rengarajan et al., 2019; Nakano et al., 2020). As we seek for func-
tional matching, we can use these labels as reference, or tentative ground truth, for estimated match-
ing. Technically, not all neurons are identified in most openly available datasets (Atanas et al., 2023;
Kato et al., 2015; Uzel et al., 2022), but 30-95% of the recorded neurons are identified via visual in-
spection by experts, which still work as reference for matching (see Table 1).

We used data from three different openly available datasets, whose details are available in Table 1.
One of these datasets consists of recordings of freely moving individuals (Atanas et al., 2023); the
other two datasets consist of recordings of immobilized individuals (Kato et al., 2015; Uzel et al.,
2022). We excluded one immobilized individual in Uzel et al. (2022) from analysis because its
exceedingly large value of FPS can be problematic in later analysis. We used the latter two datasets
as one extended dataset to increase the number of pairs of immobilized individuals, because the
number of immobilized individuals in each dataset was rather small (n = 5 and 5) compared to the
freely moving individuals (n = 21). We note that, as can be seen from Table 1, the numbers of pre-
identified neurons (or, labeled neurons hereafter) differ among individuals, and thus the numbers
of neurons with common labels differ among individual pairs. Fig. C.1 shows the numbers of the
neurons with common labels for each dataset.

4.1 PROCEDURE AND A DEMONSTRATIVE EXAMPLE OF MATCHING

We applied our framework to the C.elegans calcium imaging data as illustrated in Fig. 3. For a
pair of individuals (Fig. 3(a)), we first compute the simultaneous and time delayed cosine distances
(equation 4, equation 10) using neural activity time series of recorded neurons in all individuals
(Fig. 3(b)). Here as the time series, we used ∆F/F0 after applying the first-order Butterworth high-
pass filter with 0.01Hz cutoff. We applied this filter because we had an increase in representational
similarity analysis (RSA) scores (Kriegeskorte et al., 2008) performed prior to the matching proce-
dure, but the analyses without the filtering showed very similar results with the slightest worsening.
Then obtained distances are substituted in GWOT-MD (Fig. 3(c)).

We then obtained the optimizer matrix Γ∗, which we call the matching matrix hereafter (Fig. 3(d)).
Γ∗ represents the weights at which the neurons in the first individual are assigned to the neurons in
the second. More specifically, Γ∗

ij represents the weight of neuron i in the first individual assigned
to neuron j in the second. We show, as an example, the matching matrix Γ∗ between two freely
moving individuals in Fig. 3(d).

We then evaluated the matching matrix Γ∗ by how much the matching result coincided with the pre-
identified neuron labels. For visualization purposes, we ordered the rows and columns of Γ∗ so that
the neurons with common labels come at the top left in the same order (Fig. 3(d)). The submatrix
consisting of the neurons with common labels is framed with the white square. Note that obtaining
Γ∗ itself does not necessitate neuron label information. If the matching results and pre-identified
labels agree, the submatrix should look like the identity matrix. We can see the diagonal elements
of the submatrix have high values and its non-diagonal elements are relatively sparse, showing the

6
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Figure 3: Procedure of neuronal matching of C.elegans. (a) We show an example using two
individuals, A and B. The data are actual data of two individuals in (Atanas et al., 2023). (b) After
applying a high pass filter, distance matrices (equation 10) are computed. (c,d) We solved GWOT-
MD using these distance matrices to obtain the optimizer Γ∗, or the matching matrix. For ease
of understandability, we rearranged the rows and columns in Γ∗ so that the neurons with common
labels in Individual A and B come to the left top (framed in white square) in the same lexicographical
order. HPF = high pass filter.

similarity to the ground truth identity matrix. Therefore, in this specific example, the matching
results and pre-identified labels seem to agree, despite a rather rough observation.

To quantitatively evaluate matching, using Γ∗ we computed a measure that we call top-k ratio. This
is a ratio of labeled neurons whose top-k matched neurons include the corresponding neuron in the
other. We examined the ratio under three values of k: k = 1, 5, 10. See Fig. D.1 for a more specific
and detailed explanation. We computed the top-k ratio of Γ∗ of all pairs in each dataset.
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Figure 4: Top-1, 5, and 10 matching ratios within the same individual, but between different
time windows. Left: freely moving individuals. Top-k matching ratios are plotted under h =
0, 10. Setting h = 10 amounts to 6 seconds in actual time. Right: immobilized individuals. Top-k
matching ratios are plotted under h = 0, 20. Setting h = 20 amounts to 6 sec in actual time. To
test if these increases were statistically significant, we utilized the Wilcoxon signed-rank test. CL =
chance level.

4.2 MATCHING WITHIN THE SAME INDIVIDUAL BETWEEN DIFFERENT TIME WINDOWS

To determine the upper limit of neuronal matching across different worms, we first checked how
the proposed matching results coincide with pre-identified neuron labels within the same individual
in different but adjacent time windows. We performed the matching procedure in Fig. 3 within
the same individual, regarding the first half and the second half of the time series data as different
individuals. Assuming that there is little functional shift in neuron populations in an adjacent time
window pair that is of ' 10 minutes length, the matching results of different individuals can not
surpass the matching within the same individual. We describe our results of top-k ratios in Fig. 4
under h = 0 and under h = 10 in the freely moving individuals and h = 20 in the immobilized
individuals1. We made an arbitrary choice of the values h = 10 and h = 20 so that the time intervals
within which time delayed cosine distances (equation 10) were calculated became roughly the same
(about 6 seconds). In the freely moving individuals, the top-k ratios were 34%, 63%, and 74% in top
1, top 5, and top 10 neurons, respectively, under h = 0. These values did not change significantly to
39%, 63%, and 70% under h = 10 (Fig. 4 (Left)). In the immobilized individuals, the top-k ratios
were 20%, 54%, and 60% under h = 0. The values showed significant increase under h = 20,
hitting 37%, 65%, and 78% (Fig. 4 (Right)). We can use these values as the references that settle the
maxima of the extent to which the matching given by the proposed framework and the pre-identified
labels agree.

4.3 MATCHING BETWEEN DIFFERENT INDIVIDUALS

We examined to what extent neuronal matching coincide with neural labels between pairs of different
individuals. In both the freely moving individuals and the immobilized individuals, we observed that
the top-1, 5,, and 10 ratios become greater than the chance level values, indicated in CL (Fig. 5). In
the freely moving individuals, the top-k ratios were 3%, 18%, and 27% in top 1, top 5, and top 10
neurons, respectively, under h = 0. The values showed significant increase under h = 10 and were
5%, 22%, and 30% (Fig. 5 (Left)). In the immobilized individuals, the top-k ratios were 5%, 25%,
and 40% under h = 0. The values showed significant increase under h = 20 and were 12%, 38%,
and 52% (Fig. 5 (Right)). These results show that incorporating time delays improved the matching
to the pre-identified labels.

Here we chose h values arbitrarily, but the matching ratios reached plateau at h = 10 in freely
moving individuals and h = 20 in immobilized ones, as shown in Figs. E.1 to E.6.

1Unlike the uniform FPS values in the freely moving individuals (1.67 Hz), the FPS values were different
among the immobilized individuals (2.80 − 3.82 Hz). We, however, made no correction in FPS to compute
time delayed cosine distances, as these FPS took mostly close values.
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Figure 5: Top-1, 5, and 10 matching ratios between different individuals. Left: freely moving
individuals. Top-k matching ratios of all 420 pairs (among 21 individuals) are plotted under h =
0, 10. Setting h = 10 amounts to 6 seconds in actual time. Right: immobilized individuals. Top-k
matching ratios of all 90 pairs (among 10 individuals) are plotted under h = 0, 20. Setting h = 20
amounts to 6 sec in actual time. To test if these increases were statistically significant, we utilized
the Wilcoxon signed-rank test. CL = chance level.

Table 2: Top 5 identification accuracy by “majority vote” compared to previous results.
Median values of the top 5 accuracy are shown. The results of CPD (Coherent Point Drift)
(Myronenko & Song, 2009), StatAtlas (Varol et al., 2020), and CRFID (Chaudhary et al., 2021)
were based on Sprague et al. (2024). (direct comparison difficult)

Methods in (Sprague et al., 2024)

Method GWOT-MD (ours) CPD StatAtlas CRFID

Top 5 accuracy 46% 42% 64% 80%

Information
Spontaneous

activity Locations
Shapes &
locations

Location &
gene expression

# of training individuals 9 10 10 10

4.4 NEURON LABEL IDENTIFICATION ACCURACY COMPARED TO PREVIOUS STUDIES

To compare the matching performance with results in a previous study (Sprague et al., 2024), we
next examined how well we can identify the label of neurons in individuals. To use our matching
results for identification purpose, next performed what we call the “majority vote”. In this majority
vote, we estimated the label of a neuron in an individual by “voting” based on matching results with
nine teacher worms whose labels were accessible. We tentatively allowed five votes for each teacher
worm. See Appendix F for details.

We compared our results to ones in Sprague et al. (2024), where they performed automated neu-
ronal identification using shapes, locations, and gene expressions. The matching accuracies in
(Sprague et al., 2024), together with our result, are given in Table 2. In Sprague et al. (2024),
three methods —CPD (Myronenko & Song, 2009), StatAtlas (Varol et al., 2020), and CRFID
(Chaudhary et al., 2021) —were used for automated neuronal identification, and they utilize dif-
ferent information as shown in Table 2. In this table, we mixed our identification results in the freely
moving and the immobilized individuals, as the results in (Sprague et al., 2024) were a mixture of
several datasets of different locomotive states. We found that our result of 46% top 5 accuracy was
better than CPD (42%), but worse than StatAtlas (64%) and CRFID (80%) (Table 2). Note that
our results and the ones in (Sprague et al., 2024) in a strictly fair manner (where our model uses as
training various combinations of 9 individuals in each dataset and each the model in (Sprague et al.,
2024) uses as training 10 pre-determined worms). The accuracy of the proposed turned out as good
as or slightly better that using locational information, but worse than those using locational, mor-
phological, and genetic information.
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5 DISCUSSION

In this study, we proposed a novel method for neuronal matching using spontaneous neural activity.
As spontaneous activity data is more accessible and abundant than data with stimuli, our matching
method using spontaneous activity is can be a powerful complementary method to match function-
ally equivalent neurons. Also, matching estimated by spontaneous activity can generalize better
than that estimated by stimulus-based method, since the neural activity ranges broader represen-
tational spaces Luczak et al. (2009). The proposed method is based on an optimization problem
that we named GWOT-MD. We extended the normal GWOT to establish GWOT-MD to incorporate
the dissimilarity structures among neurons of different time points. As a test of the efficacy of our
approach, we applied the proposed framework to C.elegans calcium imaging data under the freely
moving and immobilized states. We then computed the ratio of how much our matching result co-
incided with the neuron labels given in the dataset. As a result, the ratios turned much better than
chance levels (Fig. 5). We also compared our results to previous image-based for neuron label iden-
tification, which turned out to be as good as the top 5 identification accuracy using information of
neuronal locations.

Although we evaluated the matching results using pre-identified labels in the datasets, this evaluation
may not be the best way to evaluate functional matching. This is because even for the identical
neurons, their functions are reported to differ depending on time or individuals (Guillermin et al.,
2017; Rengarajan et al., 2019; Nakano et al., 2020; Sato et al., 2021). We still consider that the
pre-identified labels guarantees equity in functions to some extent (Susoy et al., 2021; Randi et al.,
2023). How we can evaluate the goodness of functional matching is a difficult question, and we are
under search of the better way to test functional matching. One possible way could be, for a given
pair, to train a matching matrix using only a part of time series, and check if the similarity of the
series increased after the obtained matching. We are to perform this analysis as a future analysis.

The matching ratios using GWOT-MD showed larger values within the same individuals under the
immobilized state (Fig. 4) and between different individuals under the freely moving and immobi-
lized states (Fig. 5). These results possibly shows that GWOT-MD, where matching is done over
certain time delays, succeeded in unearthing time delayed structures that are to some extent pre-
served across individuals. More study is needed in what circumstances GWOT-MD performs better,
or worse, than GWOT.

On the majority vote result, the top 5 accuracy of our framework was comparable to the previous
automated neuronal identification results (Sprague et al., 2024). We speculate that this fairly large
value of identification accuracy attributes to the same neurons having similar relationships if aver-
aged over many individuals. Our approach using solely the neuronal activity time series can work as
a complementary method to identify neurons, which can be employed with the image-based methods
in tandem. We also are to specify neurons that are more accurately identified than others, possibly
telling which neurons have consistently preserved functions in spontaneous activity.

DATA AVAILABILITY

All data is openly available. The data of the freely moving individuals can be downloaded from
WormWideWeb (https://wormwideweb.org/); the data of the immobilized individuals can
be downloaded from Open Science Framework (https://osf.io/a64uz/).
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Raphaël Liégeois, Timothy O Laumann, Abraham Z Snyder, Juan Zhou, and B T Thomas Yeo.
Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage, 163:
437–455, December 2017.

Weijie Liu, Chao Zhang, Jiahao Xie, Zebang Shen, Hui Qian, and Nenggan Zheng. Partial gromov-
wasserstein learning for partial graph matching. ArXiv, abs/2012.01252, December 2020.
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A NOTATION

The sets of all positive integers, real numbers, and non-negative real numbers are denoted by
N,R, and R⩾0, respectively. For a matrix A, its transpose is denoted by tA. For N ∈ N,
1N := t(1, · · · , 1) ∈ RN , and JNK := {1, · · · , N}. The probability simplex of dimen-
sion N ∈ N, denoted by ΣN , is the set of all N -dimensional histograms, and thus ΣN :={

t(a1, · · · , aN ) ∈ RN
⩾0; ai ⩾ 0, a1 + · · ·+ aN = 1

}
. A coupling between p ∈ Σm and q ∈

Σn (m,n ∈ N) is a m-by-n matrix whose row- and column-wise sums are p and q respectively,
and thus represents a joint distribution whose marginal distributions are p and q. The set of all
couplings between p ∈ Σm and q ∈ Σn, denoted by Cp,q , is given as

Cp,q = {Γ ∈ Rm×n
⩾0 ; Γ1n = p, tΓ1m = q}. (11)

The entropy for a matrix G ∈ Rm×n
⩾0 is defined as H(G) := −

∑
i,j, Gij>0 Gij logGij −Gij . The

discrete probability measure concentrated on x in a measurable space (X,B) is denoted by δx; i.e.,
for A ∈ B δx(A) = 1 whenever x ∈ A and 0 otherwise. Similarly in Peyré et al. (2016), the
tensor–matrix multiplication ⊗ : Rm×n×p×q × Rp×q 3 (L, T ) 7→ L ⊗ T ∈ Rm×n is defined as

L ⊗ T :=

∑
k,l

LijklTkl


ij

. (12)

B SOLUTION FOR GWOT & GWOT-MD

Here we show how we implemented GWOT and GWOT-MD solution algorithms. We start
by presenting a solution for the conventional GWOT. We employed the entropic regularization
GWOT (Peyré et al., 2016), one of the most standard solutions for GWOT. In this framework, we
consider the following entropy-regularized version of the cost function equation 2,

GWε(DX , DY , p, q) := min
Γ∈Cp,q

EDX ,DY (Γ)− εH(T ). (13)

An efficient algorithm for this regularized problem, shown in Algorithm 1, was proposed in
Peyré et al. (2016). This offers an approximation to the original problem if ε is small enough. As
can be seen, this algorithm is strikingly simple.

Algorithm 1 Solution for Entropic GWOT

Input: DX ∈ Rm×m
⩾0 , DY ∈ Rn×n

⩾0 , p ∈ Σm, q ∈ Σn

Output: Γ = argminΓ∈C(p,q) EDX ,DY (Γ)− εH(Γ)
Initialize:

Γ ∈ C(p, q)
repeat

Γ← Sinkhorn(L(DX , DY )⊗ Γ, p, q)
until convergence

Above, we set a tensor L ∈ Rm×n×m×n,

Lijkℓ :=
1

2
|DX

ik −DY
jℓ|2, (14)

and Sinkhorn(A, p, q) the Sinkhorn projection of A ∈ Rm×n onto C(p, q). The computational steps
become even faster with an efficient technique to compute L(DX , DY ) ⊗ Γ, which utilizes the
decomposition

L(DX , DY )⊗ Γ = cDX ,DY −DXΓ
t
DY , (15)

where cDX ,DY := 1
2

(
(DX)2p t

1n + 1m
tq

t
(DY )2

)
is independent of Γ (the sign “·2” represents

element-wise square) (Peyré et al., 2016).
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We next move on to explaining the solution algorithm for GWOT-MD (Problem 2). We take the
same path as we did in GWOT and consider the next entropy-regularized GWOT-MD,

GWtd
ε({DX,τ}, {DY,τ}, p, q) := min

Γ∈Cp,q

E{DX,τ},{DY,τ}(Γ)− εH(Γ). (16)

This problem can be solved by only substituting Lijkℓ = instead of equation 14.

Algorithm 2 Solution for Entropic GWOT-MD

Input:
{
DX,τ

}h
τ=−h

∈
(
Rm×m

⩾0

)2h+1

,
{
DY,τ

}h
τ=−h

∈
(
Rn×n

⩾0

)2h+1

, p ∈ Σm, q ∈ Σn

Output: Γ = argminΓ∈C(p,q) E{DX,τ},{DY,τ}(Γ)− εH(Γ)
Initialize:

Γ ∈ C(p, q)
repeat

Γ← Sinkhorn(Ltd
(
{DX,τ}, {DY,τ}

)
⊗ Γ, p, q).

until convergence

The tensor–matrix product is computed, using equation 15, as

(
Ltd
(
{DX,τ}, {DY,τ}

)
⊗ Γ

)
ij
=
∑
k,ℓ

h∑
τ=−h

wτL
(
DX,τ

ik , DY,τ
jℓ

)
Γkℓ (17)

=

h∑
τ=−h

wτ

∑
k,ℓ

L(DX,τ , DY,τ )⊗ Γ (18)

=

h∑
τ=−h

wτ cDX,τ ,DY,τ −
h∑

τ=−h

wτD
X,τΓ

t
DY,τ . (19)

We lastly note that being a non-convex optimization problem, it is generally difficult to obtain the
global minimum of the optimization problem (equation 5) in GWOT-MD. We tried to deal with
this problem by taking multiple ε values and by taking multiple initial values for the iterations. We
performed computation with 21 values of ε: ε ∈ {10−4, 10−3.8, · · · , 10−0.2, 1}. For each ε, we
took 50 initial values. From the 21 × 50 = 1050 values of Γ∗ obtained, we finally chose Γ∗ that
minimize the original cost function (equation 8, equation 9,).
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C NUMBERS OF NEURONS WITH COMMON LABELS

Here we summarize the numbers of neurons with common labels between all pairs.
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Figure C.1: Numbers of neurons with common labels between each pair in the datasets.
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D CALCULATION OF TOP-k RATIO
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1. Select the 𝑘-largest elements in this row.
2. Check if they include the neuron that has 

the corresponding label in the other indivudual 
(or, the diagonal element).

3. Count such neurons in this matching matrix,
and devide the number by the number of neurons
with common labels to obtain top 𝑘 matching ratio
of this matching matrix.

4. Do above with all matching matrices of all pairs.
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Figure D.1: Demonstration of how to calculate the top-k ratio. We here demonstrate using the
same Γ∗ as in Fig. 3 calculation of top-k matching ratio. We evaluated if matching coincides with
the pre-identified labels using an index called the top-k matching ratio (k = 1, 5, 10). This index
quantifies the ratio of neurons whose k-largest candidates in the matching matrix include the pre-
identified label. The details are as follows. First, given a matching matrix between a pair (e.g.,
Individuals A and B as in Fig. 3), we fix a neuron (i) that has a common label (e.g., “AVEL”) in
the pair. Considering Γ∗

ij represents the weight of neuron i assigned to neuron j in the other, we
examined if the k largest elements in the i’th row (i.e., {Γij}j) include the neuron with the same
label (“AVEL”). In this figure, since the neurons with common labels are placed at the left top, one
has to check if the k largest elements in the i’th row include the diagonal element. If this is the case,
we call such a neuron a “good” neuron. We counted the number of “good” neurons and obtained the
ratio of them by dividing the number of “good” neurons by the neurons with common labels. We
repeated the same procedure with matching matrices of all pairs.
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E MATCHING RESULTS WITH VARIOUS TIME DELAYS
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Figure E.1: Top-1 matching ratios of the freely moving individuals. Top-1 matching ratios of all
420 pairs (between 21 individuals) are plotted under h = 0, 5, · · · , 50. CL = chance level.
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Figure E.2: Top-5 matching ratios of the freely moving individuals. Top-5 matching ratios of all
420 pairs plotted under h = 0, 5, · · · , 50. CL = chance level.
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Figure E.3: Top-10 matching ratios of the freely moving datasets. Top-10 matching ratios of all
420 pairs plotted under h = 0, 5, · · · , 50. CL = chance level.
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Figure E.4: Top-1 matching ratios of the immobilized individuals. Top-1 matching ratios of all
90 pairs (between 10 individuals) plotted under h = 0, 10, · · · , 100. CL = chance level.
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Figure E.5: Top-5 matching ratios of the immobilized individuals. Top-5 matching ratios of all
90 pairs under h = 0, 10, · · · , 100. CL = chance level.

We here supplement the matching results under various time delays.
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Figure E.6: Top-10 matching ratios of the immobilized individuals. Top-10 matching ratios of
all 90 pairs plotted under h = 0, 10, · · · , 100. CL = chance level.
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F DETAILS OF THE ”MAJORITY VOTE”

Prior to the “voting” procedure, we determined the number of individuals whose labels are available
to us. We referred to a recent study (Sprague et al., 2024), where the authors trained an automated
neuronal identification model with 10 training individuals. To make the comparison between our
results and the results in Sprague et al. (2024) reasonable, we first picked out 9 training individu-
als, whose labels we utilized to identify neuron labels. The number 9 was chosen because it was
the closest number we could take out of the 10 immobilized individuals (as explained below, one
individual should be left for determining the best time delay, h). The remaining 12 (= 21− 9) and
1 (= 10 − 9) individuals, in the freely moving or immobilized datasets respectively, are called the
test individuals.

We first determined the best hyperparameter for time delay, h, using matching results and the labels
of the training individuals. We selected h from {0, 5, · · · , 50} for the freely moving individuals,
and from {0, 10, · · · , 100} for the immobilized individuals, so that the time delays in seconds are
approximately equal. For each h value, we performed leave-one-out label identification using the
training individuals; i.e., we picked one individual from the training set and identified its labels using
the labels of the other 8 individuals, and repeated this for all individuals. We then select the value of
h that showed the best identification result. Under this h, we tested to what extent we could identify
neuron labels of test individuals using the labels of the 9 training individuals.

How did we identify a neuron label with the labels of training individuals based on the matching
results? To identify the label of a neuron x in an individual i, we first drew v(∈ N) most matched
neurons from the matching between i and each of the other individuals. We next examined if the k
most frequent neurons in the list of the most matched neurons included the pre-identified label. If the
pre-identified label of x is in these k labels, x is called a correctly elected label. We then computed
the ratio of the correctly elected neurons, using all neuron labels and individuals. See Fig. F.1 for
additional explanations.

We randomly took 1, 000 combinations of 9 training individuals out of all 21 freely moving indi-
viduals, since the number of all possible combinations is impermissibly large:

(
21
9

)
≈ 300, 000. We

took all 10 (=
(
10
9

)
) combinations of 9 individuals out of all 10 immobilized individuals.

We counted for each individual the numbers of correctly elected labels and calculated the percent-
ages of them. Under v = 5 and k = 5, the ratio of correctly elected neurons was 46% in the
freely moving individuals. The ratio was even larger in the immobilized individuals, hitting as high
as 56%. These rather large values demonstrate the efficacy of our framework. We here presented
results under v = 5 and k = 5 as an example, but changing v = 10 yielded similar results. We show
the results under v = 1, 5, 10 and k = 1, 3, 5 in Appendix Figs F.2 and F.3.
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e.g. Identification of neuron 𝑥 in Individual 1 by “majority vote”

Top 𝑣 matched neurons (Top 𝑣 votes)vs.

AVAL, CA1, noID, …, IL2Indiv. T1

noID, AVAR, AVAL, …, OLQVLIndiv. T2

AVAR, AVAL, MI, …, noIDIndiv. T3

::

CA1, AVAL, noID, …, noIDIndiv. T9

votesCandidates

12AVAL

11noID

10AVAR

::

1OLQVL

Do the 𝑘	(= 1, 5, 10) most popular 
candidates include the true ID (e.g., AVAR)?

Yes or No

Figure F.1: “The majority vote”. This figure describes the identification process by the “majority
vote” for a neuron named x of an individual (called Individual 1) as an example. x has its pre-
identified neuron label (e.g., “AVAR”) but we do not use this information at this point. To identify x,
we take nine individuals {T1, · · · , T9}, whose labels are available. Below we provide a step-by-step
explanation. Step 1) We take the v-largest neurons from each of the matching matrices between
Individual 1 and the nine individuals, or, we let the nine individuals cast v “votes” for the possible
labels of x (leftmost table). v is a predetermined integer, which we set in this work v = 1, 5, 10. Step
2) We sum up how many times a label appeared in the table and arrange them in descending order,
which yields a list of candidate labels for x (middle table). This list can include neurons without
labels, denoted by “noID” in the figure. Step 3) We take the k-largest appearing candidates from
the list and check if these candidates include the pre-identified label. We excluded “noID” from
the k-largest candidates. If the k-largest candidates include the labels with zero votes, we excluded
that label as well from the candidates. In this example, the pre-identified label, “AVAR”, is the third
candidate. Hence this neuron is correctly elected under k = 5 or more, but is not under k = 1.
Step 4) We performed the same procedure for all labeled neurons in an individual and computed the
percentage of the correctly elected neurons. We then carried out this procedure with all individuals
in the dataset.

Figure F.2: Percentages of “correctly elected” neurons in the majority vote procedure under
various v and k values in the freely moving individuals.

Figure F.3: Percentages of “correctly elected” neurons in the majority vote procedure under
various v and k values in the immobilized individuals.
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