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Abstract

Neurons compute by integrating spatiotemporal excitatory (£) and inhibitory (/)
synaptic inputs received from the dendrites. The investigation of dendritic inte-
gration is crucial for understanding neuronal information processing. Yet quan-
titative rules of dendritic integration and their mathematical modeling remain to
be fully elucidated. Here neuronal dendritic integration is investigated by using
theoretical and computational approaches. Based on the passive cable theory,
a PDE-based cable neuron model with spatially branched dendritic structure is
introduced to describe the neuronal subthreshold membrane potential dynam-
ics, and the analytical solutions in response to conductance-based synaptic in-
puts are derived. Using the analytical solutions, a bilinear dendritic integration
rule is identified, and it characterizes the change of somatic membrane poten-
tial when receiving multiple spatiotemporal synaptic inputs from the dendrites.
In addition, the PDE-based cable neuron model is reduced to an ODE-based
point-neuron model with the feature of bilinear dendritic integration inherited,
thus providing an efficient computational framework of neuronal simulation in-
corporating certain important dendritic functions. The above results are further
extended to active dendrites by numerical verification in realistic neuron sim-
ulations. Our work provides a comprehensive and systematic theoretical and
computational framework for the study of spatial neuron dynamics. © 2021 The
Authors. Communications on Pure and Applied Mathematics published by Wi-
ley Periodicals LLC.
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1 Introduction

Dendrites play an essential role in neuronal computation. In the brain, a neuron
in general receives many excitatory (£) and inhibitory (/) synaptic inputs along
its dendrites, and changes its membrane potential at the soma by integrating these
synaptic inputs. This process is known as dendritic integration [42]45]]. Experi-
ments have demonstrated that the dendritic integration of synaptic inputs is crucial
for supporting complex brain functions. For instance, dendritic integration is able
to enhance motion detection [20L[21]], to shape spiking activity [|13}/69], and to pro-
mote information coding [6}/12]. In addition, dendritic integration fine tunes brain
rhythms by modulating the frequency [2] and improving the robustness [84] of
neuronal oscillations.

Dendritic integration is influenced by multiple factors in complicated ways. Be-
fore the generation of neuronal output signals known as action potentials, an indi-
vidual excitatory postsynaptic potential (EPSP) or inhibitory postsynaptic potential
(IPSP) needs to spread from the dendritic site of their origin to the action potential
initiation zone. The propagation of a postsynaptic potential is substantially affected
by both the passive and active properties of dendrites that determine the propaga-
tion speed and the modulation of the postsynaptic potential amplitude [31}/75].
When two or more synaptic inputs are received, the integration of them is in gen-
eral influenced by their spatial and temporal properties [4,24,42,76,80]. Recent in
vitro and in vivo experiments further show that the integration of synaptic potentials
can be linear [[10,/11]], sublinear [43}/87]], or supralinear [23}/85] under different ex-
perimental conditions. Despite a variety of observations for dendritic integration, a
quantitative characterization of the integration rules for synaptic inputs along with
their mechanistic understanding remain to be fully clarified.

In addition to many experiments, the rules of dendritic integration have also
been under active investigations from theoretical and computational perspectives
[3235,40L{411,53]. The computational approach subdivides a neuron into multiple
interconnected compartments, and simulates the current flow in each compartment
modeled as a resistance-capacitance circuit obeying Kirchhoff’s law [57]]. The
simulation of a multicompartment neuron model enables one to study numerically
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the response of a neuron when receiving multiple synaptic inputs from its den-
drites, and has been used to investigate many aspects of dendritic integration. For
instance, based on the multicompartment neuron simulation, it is discovered that
the nonlinear integration of synaptic inputs mainly takes place within dendritic
branches locally [36]], yielding the computation of logical operations. In addition,
the synaptic inputs are found to be first integrated nonlinearly within each branch,
followed by a linear integration of the branch outputs at the soma [32//53)54]]. These
simulation phenomena are supported by experiments [6,33]]. A recent work further
shows that the integration of in vivo—like synaptic inputs can be well captured by
linear integration with a single global dendritic nonlinearity [83]]. Despite the fact
that the computational approach can help gain insights into rich phenomena of
spatiotemporal dynamics observed at the dendrites, a deep and comprehensive un-
derstanding of dendritic integration requires analytical approaches, as also pointed
out in references [42,(70].

As an effective analytical framework, the cable theory based on partial differ-
ential equations (PDEs) was developed to describe mathematically the dynami-
cal response of a passive neuron with dendritic structures when a neuron receives
synaptic inputs [S7|[71]]. The theory focuses on the subthreshold regime of neuronal
membrane potential, in which voltage-gated channels are weakly activated; hence
the dendrites can be considered as a passive cable. The cable theory has been suc-
cessfully applied to characterize and estimate the electrical properties of dendrites
and synapses in the absence of action potentials [[25}149,(58,|59,/62H64,|68[]. The
analytical solution of an unbranched dendritic cable of finite length in response
to nonuniform current inputs was obtained to describe the shape of EPSP [56].
The solution for current input to a single branch of a special dendritic tree was
later provided by using the principle of superposition [[61,|66]]. Furthermore, the
analytical solution for dendritic trees with arbitrary branching structures was also
calculated [48|]. The solvability of the cable neuron model under injected current
inputs attributes to the linearity of the equation, which allows one to apply the
Green’s function method. However, neurons communicate via synaptic currents.
Consequently, the membrane potential depends nonlinearly on the synaptic con-
ductance input [[34]], which greatly complicates mathematical analysis. In order to
solve the cable model under conductance-based synaptic inputs analytically, one
usually makes the approximation of constant synaptic conductance [28.[81]], or an-
alyzes the steady state of neuronal response by assuming that both the synaptic
conductance and the membrane potential are constant [[24}|34},38/39,[88]]. Such
analyses usually oversimplify the spatial aspect of dendritic integration, and fail to
describe the temporal aspect of dendritic integration, as discussed in detail below.

Based on perturbation analysis, analytical solutions of an unbranched passive
cable neuron model with conductance-based spatiotemporal synaptic inputs have
been derived by the authors recently [40,41[]. The analytical solutions reveal the
mechanism underlying a bilinear rule of dendritic integration that quantifies the
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spatial summation of a pair of E and [ inputs [24], and further generalize the bilin-
ear rule to characterize the spatiotemporal summation of a pair of £ and [ inputs,
a pair of E inputs, a pair of [ inputs, and multiple £ and / inputs [40]. The gen-
eralized rule states that, when a neuron receives two or more synaptic inputs, the
neuronal response at the soma can be well approximated by the linear summation
of all individual postsynaptic potentials induced by each input received alone, with
additional bilinear interactions between all the paired synaptic inputs. By account-
ing for the active property of dendrites, the rule is verified via realistic neuronal
simulations and electrophysiological experiments [24,/40,/41]. The above analy-
sis is limited to the cable neuron model of an unbranched dendrite, in which a
neuron receives synaptic inputs only from the dendritic trunk. In this work, a com-
prehensive analysis of the cable neuron model with spatially branched dendritic
structure is presented, and dendritic integration is analytically investigated for ar-
bitrary branched dendrites, thus establishing that the bilinear dendritic integration
rule is valid in the realistic in vivo case of branched dendrites. Provided with a
valid mathematical foundation, this general bilinear dendritic integration rule of-
fers important insights into the understanding of dendritic computation.

Although being capable of capturing many aspects of dendritic multi-integration
and computations, cable neuron models and the related multicompartment neuron
models are computationally expensive. To be specific, one is required to numer-
ically solve hundreds of differential equations for each neuron in a simulation.
This presents a challenge for the simulation of large-scale neuronal networks com-
posed of millions of neurons, e.g., the number of neurons in the primary visual
cortex of primates, not to mention the whole brain network. In contrast, point
neuron models are computationally feasible for large-scale cortical network sim-
ulations. Many point neuron models have been developed to describe the dynam-
ics of the membrane potential at the soma of a neuron [19,26,30,37,/51,/67,/72].
Despite their broad applications, these point neuron models fail to capture den-
dritic computations. Efforts have been made to incorporate dendritic features into
point neuron models phenomenologically [32,/53,54,/83]]. However, the form of
these models varies under different synaptic input conditions. In addition, the de-
termination of the parameters in these models requires case-by-case experimental
data fitting. Both facts weaken the biological insights and practical applications of
these phenomenological models. Previously a point-neuron model with dendritic
integration incorporated had been derived by the authors based on the analysis of
an idealized static electrical circuit model [39]. The model is named as the den-
dritic integrate-and-fire (DIF) model. The structure of the DIF model has a clear
biological interpretation and has been verified in realistic neuron simulations and
electrophysiological experiments [39]. However, the derivation of the DIF model
was restricted to the simple case of static input to the electrical circuit model. Here,
based on the analysis of the spatially branched cable neuron model with realistic
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time varying synaptic inputs, the original PDE-based model is mathematically re-
duced to the ODE-based DIF model with the appropriately inherited properties of
dendritic integration.

In this work, the aforementioned questions related to dendritic integration will
be addressed using both theoretical and computational approaches. Nonlinear den-
dritic integration can arise in both passive and active dendrites. Here passive but
realistically branched dendrites are treated analytically, and the results are gen-
eralized computationally to the case of active branched dendrites. In Section 2] a
PDE-based cable neuron model is used to represent the subthreshold membrane po-
tential dynamics of a neuron with spatially branched dendritic structure, followed
with a realistic cable neuron model that adds active ion channels to the passive
cable model. In Section [3] analytical solutions to the PDE-based passive cable
neuron model in response to time-varying synaptic inputs are derived. Based on
these analytical solutions, a bilinear dendritic integration rule is identified, which
characterizes the somatic membrane potential’s response when a neuron receives
multiple spatiotemporal synaptic inputs distributed along the branched dendrites.
In Section[d] the PDE-based cable neuron model is reduced to an ODE-based point-
neuron model with the feature of bilinear dendritic integration inherited. Then an
efficient computational framework is proposed for neuronal simulations that incor-
porate important dendritic functions. Note that “regular perturbation analysis” is
sufficient to justify and validate the reduced point-neuron model. All of the above
conclusions are extended to active dendrites with stronger synaptic inputs through
numerical simulations of neurons with realistic branched dendrites. In Section [3]
our main results are summarized, as are the limitations of the current study and
possible directions of the future work.

Our goal in this work is to describe, in rather complete mathematical detail, an
analytical study of a realistic branched passive cable model, with time-dependent
synaptic inputs of moderate strength. This analytical study provides a detailed un-
derstanding of the mechanisms underlying dendritic integration. We also show,
via numerical simulations, that these mechanisms extend to cases beyond the va-
lidity of the perturbation analysis, namely, to realistic models of active branched
dendrites with stronger time-dependent synaptic inputs.

The novelty of this study is twofold. First, it develops an analytical approach to
understand the properties of dendritic integration in a spatial neuron with branched
dendrites—for instance, how dendritic computation quantitatively depends on the
spatiotemporal properties of synaptic inputs. Second, it derives an effective point-
neuron model asymptotically reduced from the cable model with branched den-
drites, which further leads to a fast algorithm for the simulation of large-scale neu-
ronal networks with dendritic integration incorporated. In contrast, the existing
point neuron models, albeit computationally efficient, fail to capture the dendritic
integration effect. Partial versions of some of these results (with little mathematical
detail) have been published previously [38-40]]; however, these partial results were
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restricted to cable models of unbranched dendrites, with static synaptic inputs, or
to both restrictions.

2 Neuron Models

In this section, the mathematical model of a passive cable neuron is first intro-
duced, followed by the realistic neuron model that adds active ion channel dynam-
ics to the cable neuron model. All the theoretical derivations and analyses in this
work are based on the passive cable neuron model, and the validations and general-
izations of the theoretical results are carried out by simulating the realistic neuron
model numerically.

2.1 Cable neuron model

The passive neuron model is composed of a soma and branched dendrites. As
shown in Figure the model neuron possesses a realistic morphological struc-
ture reconstructed from experimental measurement [7]]. The neuronal morphology
is subdivided into interconnected cylindrical segments for later analysis and simu-
lation. Dendritic segments are labeled with numbers and the local spatial coordi-
nate is used at each segment. As an illustration, the neuronal membrane potential
relative to the resting potential at location x and at time ¢ on the i™ segment is
denoted by v;(x, ), where x € [0, ;] is the local coordinate on the i segment,
and /; is the length of the i segment. By convention, x = 0 refers to the end
of the segment closer to the soma, and x = /; refers to the other end of the seg-
ment further away from the soma. For the ease of mathematical description, the
global spatial coordinate is also used and is defined as x = (7, x). Accordingly,
vi(x,t) = v(x,t). It is worth emphasizing that the bold symbol x is used to
describe the global coordinate, distinguishing it from the local coordinate x.

The derivation of the model is based on the cable theory developed by Wilfrid
Rall [57,(71]. Experiments show that the membrane of a neuron can be viewed
as an electrical circuit composed of capacitors and resistors [[14}(82]. When one
focuses on a small segment [x, x + Ax] on the i dendritic segment with diameter
d;, as illustrated in Figure various types of electrical currents can be measured,
including the capacitance current, the leak ionic current, the synaptic current, and
the axial current. The capacitance current takes the form of

a .
Ieop = c,-%nd,-Ax + 0o(Ax),

where ¢; is the capacitance per unit area of membrane, and 0(Ax) includes all
higher-order terms. And the leak channel current obeys Ohm’s law, i.e.,

Deak = —gLivindi Ax + o(Ax),
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FIGURE 2.1. The cable neuron model. Left is the morphology of the
model neuron. Right demonstrates four types of currents within a den-
dritic segment.

where g ; is the leak conductance per unit area of membrane. In addition, the
synaptic current also obeys Ohm’s law,

2.1) Iyn == Y gq(vi — eg)md; Ax + o(Ax),
q=FE,I

where gg and gy are the E and [ synaptic conductance densities, and ¢g and ¢f
are their reversal potentials relative to the resting potential, respectively. When the
neuron receives multiple E and / inputs, g4 is the linear summation of all individual
conductance transients with type ¢, i.e.,

8q = qu/'
J

forg = E, 1. For the j™ synaptic input of type g received at time ¢ = lq; and at
site x = x4, , one has

2.2) 8q; = Ja;uq;8(x —xgq;),

where f;; is the input strength of synaptic conductance, ug; is the normalized
conductance, and §(-) is the Dirac delta function. The normalized conductance u;
is often modeled as [[16H18]|

dug,
TZO"[T]'(I_MQj)_IB'MQj’

where u,; is interpreted as the fraction of open synaptic receptors, o and B are
forward and backward rate constants for neurotransmitter binding, and [7’] is the
transmitter concentration. ug, starts to evolve as equation (2.3)) at time 7;, when
the neurotransmitter is released; thus it is denoted by u4 5 (t;t4 j) below. Finally,

(2.3)
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the axial current I,(x) at location x on the i dendritic segment is proportional
to the gradient of membrane potential, which can be derived from Ohm’s law as

ndiz av;
4r; Ox x’

2.4) Li(x) = —

where r; is the axial resistivity of the i segment.
Applying the law of current conservation to the small segment [x, x + Ax] on
the i segment leads t0 Icap = fieak + Lsyn + Laxi(x) — Laxi(x + Ax), ie.,

v
ci%nd,ﬁx = —grivindi Ax — Z gq - (Vi —&g)wdi Ax
—E,I
25) ) 2
_ ﬂ% ﬂaﬁ + o(Ax).
dri Ox |, Ari 0x |y yax

Dividing both sides of equation (2.5)) by Ax, and taking the limit Ax — 0, equa-
tion (2.5) becomes the cable equation describing the dynamics of the membrane
potential on the i dendritic segment in response to spatiotemporal synaptic in-
puts,

(2.6) Gl = —gLivi —gEW; —eg) —gr(vi —er) + di 9
ot 4r; Ix2°
with the conductance
ng
8q(x.1:{xq;.1q;}) = quj“q/' (t514;)8(x —xg;),
j=1

and ng is the total number of the synaptic inputs of type ¢ = E,I. It is worth
mentioning the fact that the neuron response v; depends nonlinearly on the synaptic
input strength f;;, which will be discussed in detail below.

The boundary conditions of the cable neuron model (equation (2.6)) are pro-
posed as follows. The dendritic branch connecting to the soma is first considered.
Applying the law of current conservation at the soma leads to

dv
csSa_ts = —gLsSVs + lends

where § is the somatic membrane area, vy is the somatic membrane potential,
¢s is the capacitance per unit area of membrane at the soma, and gy ¢ is the leak
conductance per unit area of membrane at the soma. The dendritic current flowing
to the soma, /gend, takes the form of equation (2.4) at x = 0 on the dendritic
segment connecting to the soma, which is labeled by index i = 1 in the following.
Because the membrane potential is continuous at the connection point between the
first dendritic segment and the soma, i.e., v5(z) = v1(0, ¢), the boundary condition
on this dendritic branch at x = 0 becomes

vy 7Td12 ovq

2.7 - = — 0,1) + — .
@) | =meenO0+ b
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For the dendritic segments on the tip of the dendrites labeled by {i,, }, because the
ends of these segments are sealed, the boundary conditions on these segments at
x = l;,, are obtained as

av;,,

=0.
dax

(2.8)
x=lj,,

Additional boundary conditions are prescribed at the connection site of several seg-
ments. Suppose that one end of several downstream segments labeled by {i, } with
diameter d;, , d;,, ..., d;, andlength l;,.[;,, ..., I; , respectively, are connected to
the end of the upstream segment i with diameter d; and length /;. Applying the
law of current conservation at the connection point leads to the following boundary
conditions:

rd? dv; £ wd? dv;,

_ in

4r; dx = 4r;, Ox

X=l,‘

2.9)

x=0
In addition, the continuity of membrane potential at the connection point gives
(2.10) v (li, l) = Vi, (0, l) = viz(O, If) ==V (0, If).

The initial condition of the neuron is simply set as v; (x, 0) = 0, which corresponds
to the resting state of the neuronal membrane potential before the neuron receives
any input.

In the special case of an unbranched cylindrical dendrite connecting to an isotro-
pic soma with homogeneous cable properties, the cable neuron model (equations
(2.6)-(2.10)) reduces to the following ball-and-stick model,

@.11) W (w—er)—grw e + L0
. ¢or = ~8LV —8E(W —¢E) —grv —é1 1 92
with boundary conditions
2.12) o 0.0+ LD
. a. = — Uy, o a )
0t | v—o L 4Sr 0x|,—g
d
(2.13) Rl
dx x=I

2.2 Detailed biophysical neuron model

The realistic neuron model is a biologically realistic modification of the passive
cable neuron model (equations (2.6)-(2.10)) introduced above. Active ion channel
currents are added to each dendritic segment, including voltage-gated sodium con-
ductance g g, the delayed rectifier potassium conductance gk, two variants of
A-type potassium conductance g,’éA and g}‘éA that are applied to the proximal and
distal dendrites respectively, and the hyperpolarization-activated conductance gj,.
The ionic current is described as /ion = gion(£rev— V'), where V is the postsynaptic
potential, E., is the reversal potential, and gio, is the ionic channel conductance.
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SPATIAL NEURON DYNAMICS 123

The temporal dynamics of these ion channel currents will be introduced in this
subsection, and their spatial distribution along the dendrites will be introduced in
the next subsection.

The sodium conductance on the dendrites takes the form of gn, = fNam3hs,
where

do Ooo — 0
2= , 6 =m,h,s,
dt Tg
1 am(V)
Tm = s oo — 3
[m (V) + B (V)]OT am(V) + Bm(V)
1 h 1
T, = S =
P W) F B IO T 1 4 V504
L Bs(V) P
T304l + (V)] T T
with
0.4(V + 30) —0.124(V + 30)
tm(V) = [ — e~ (V+30)/7.2° Pm (V) = [ — e(V+30)/72
_0.03(V +45) _ —0.01(V +45)
ap(V) = | — e—(V+45)/1.5° (V) = | — ¢e(V+45)/1.5°
£139.23(V +60) £27-85(V +60)
=" V="
V)= mTe 7 bs(V) = S i6 5T

and T = 34°C is the temperature in unit of Celsius, Q7 = 2 is the temperature
adjustment factor.

The delayed rectifier potassium conductance takes the form of gg, = fk, 7,
where

dn  ne—n _ Brn(V) 1

At o T ol taMor T TranV)

with
—34.81(V—13) —24.37(V —13)
ap(V) = e 2731647 ﬂn(V) — ¢ 273.16FT
and with 7 = 34°C and Q7 = 1.
For the A-type potassium conductance at the proximal dendrites less than 100

um away from the soma, one has gﬁA = IfAkl, where
df  Os —0
_— = o , 0 == k, l,
dt Tg
e B R
0.1l +arWM0r" % 1T+
0.26(V + 50) [ !
7] = U ) TN
! T T+ a(V)
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with
11.60£(V —11) 6.382(V —11)
o = e 27316FT | ﬂk = e 273I6+T |
35(V +56) 1
o) = e23T16+T {=-1.5

1 4 e(V+40)/5°

and with 7 = 34°C and Q1 = 5.

The A-type potassium conductance at the distal dendrites greater than 100 pm
away from the soma is similar to the A-type potassium conductance at the proximal
dendrites except that

4.535(V 4+1) 1
— ¢ 273.16%T - 18 _
Pe=e . g 1.8 1 + e(V+40)/5°

The hyperpolarization-activated conductance takes the form of g;, = f;,z, where
dZ  Zeo—2 1 Bz(V)
. = T ZOO — T U Laav/e° TZ - s
dt 1z 1+ e(V+75)/8 0.011[1 + (V)01
with

_ 0.0832(V+75 _ .0.0333(V+75
ay (V) = 083200475 g — (0.0333(V+75),

and T = 34°Cand Q1 = 1.16.

The realistic neuron model also contains AMPA and GABA 4 receptors, with ki-
netic properties described previously [[16-18]]. The synaptic conductance dynamics
of AMPA and GABA, are identical to those in the passive cable neuron model

dR
T =a-[T]-1=R)=B-R.

where R is the fraction of open receptors, @ and f are forward and backward
rate constants for transmitter binding, and [7'] is the transmitter concentration. The
postsynaptic current is given by Iy = gsyn(Erev— V'), where V is the postsynaptic
potential, Erey is the reversal potential, and gy, is the synaptic conductance. For
AMPA and GABA4 receptors,

g = fmax . Ra

where fnax is the maximum amplitude of synaptic conductance.

2.3 Model parameters

In the realistic neuron model, the parameters used in the AMPA and GABAA
receptors are largely the same as those in the previous reports [[16-18],54], with
minor adjustments to match a previous iontophoretic experiment [24]. Sodium
channels are distributed with a largely constant density (per unit area of membrane)
along the somatodendritic axis [47]. The A-type potassium channels differ in their
kinetics between the proximal and distal populations, and their density increases
progressively by more than sixfold from the soma to a distance of 350 ;#m along the
apical trunk [27//50]]. The density of hyperpolarization-activated cationic current /j,
also increases by more than sixfold from the soma to the distal dendrites [44]]. The
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distribution of AMPA receptors is set with a gradient along the dendrite to achieve
a distance-dependent scaling property [ 1,46,52,/73]].

Based upon the previous experimental results, the parameters used in the real-
istic neuron model are set as follows: the peak conductance fy, = 30 mS/cm?;
fka =5mSlem?; fE (x) = fE°- (1 + x/70), where f{° = 5 mS/cm?, if the
distance from the soma x < 100 pm; fI?A (x) = fz?ﬁ - (1 + x/70) if 100 pm <
X < 350 pum; and flgA (x) =6.5- fI?AO if x > 350 pum, where fI?AO = 5 mS/cm?;
Jh(x) = fno + 9 fro/11.0 + ¢(300-x)/50] "here Jhy = 20 uS/em?. Reversal
potentials are set as: En, = +55mV, Ex = —90mV, Ej = —30 mV.

In both the passive cable model and the realistic neuron model, the resting mem-

brane resistance ry, is set to be nonuniform along the dendritic tree [79]]. The pas-
sive biophysical properties include:

gL = 1/rm, rm = rmg + (rmy — Tmy)/[1.0 + e_(x_300)/50],

where 1y, = 60 k2 - cm? and 7y, = 20 kQ - cm?;

the axial resistance r; = 80 €2 - cm, and the capacitance ¢; = 1 ,uF/cmz. The
resting membrane potential is —70 mV. The parameters of synaptic conductances
are set as follows. For excitatory synapse AMPA, @ = 10 ms—!- mM~!, B = 0.12
ms—!, [T] = 1 mM, and it lasts for 1.2 ms after the transmitter starts to release.
For inhibitory synapse GABAA, @ = I ms™'- mM™!, 8 = 0.02 ms™!, [T] = 1
mM, and it lasts for 1 ms after the transmitter starts to release. Synaptic reversal
potentials are eg = Eampa = 0mV, &7 = Egapa, = —80 mV.

Note that the decay time constants of AMPA and GABA, are set to be slower
than typical values measured in vivo experiments, as here they are chosen mainly
to fit the EPSPs and IPSPs observed in previous rat hippocampal slice experiments
performed in our collaborators’ lab [24,40]], in which the EPSPs and IPSPs are
induced by microiontophoretic applications of glutamate and GABA at the apical
dendrite. However, our conclusions are insensitive to synaptic time scales based
on our analysis and numerical simulations.

2.4 Model properties

With the parameters chosen in Section[2.3] the realistic neuron model represents
arat hippocampal CA1 pyramidal neuron. The physical length of the dendrites can
be as long as 900 pm, measured between the soma and the apical dendritic tufts.
The electrical properties of the neuron model can be characterized by the degree of
voltage attenuation from one location to another. As shown in Figure 2.2JA-C, the
log attenuation factor between a dendritic site and the soma, which is defined as the
natural logarithm of voltage attenuation from the dendritic site to the soma [29,86]],
can be as large as 4 near the resting state measured by constant current drive, and it
can increase to 5 and 7 when 10 Hz and 50 Hz sinusoidal current inputs are given
respectively, reflecting the dendritic property of low pass filter. To be intuitive,
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FIGURE 2.2. The electrical property of the realistic neuron model. (A)-
(C), the voltage attenuation between all dendritic sites and the soma un-
der constant, 10 Hz, and 50 Hz sinusoidal current input drive on each
dendritic site. The log attenuation factor between a dendritic site and
the soma is defined as the logarithm of voltage attenuation from the den-
dritic site to the soma. Inset in (A)—(C) is the electrotonic architecture
of the neuron in which the distance between any two locations is repre-
sented by the log attenuation factor between them. Scale bar represents
one log unit of attenuation, i.e. the distance that signifies an e-fold de-
cay of voltage. (D) The input resistance at different dendritic locations.
(E) The transfer resistance at different dendritic locations. The transfer
resistance is defined as the ratio of local dendritic voltage change to the
current injection at the soma. (F) The attenuation-out ratio at different
dendritic locations. The attenuation-out ratio is defined as the ratio of
local dendritic voltage change to the somatic voltage change when in-
jecting current at the soma. In (A)—(F), each line corresponds to either
the dendritic trunk (red) or a dendritic branch (blue).

the electrotonic architecture of the dendrites is also shown in the inset of Figure
2.2/ A)—~(C). The electrotonic length of the dendrites is 4 as measured between the
soma and the apical tufts.

The input resistance at the soma is about 100 M€2, and the input resistance
at the dendritic tips can be as high as 775 M2, as shown in Figure 2.2(D). In
addition, the transfer resistance, measured as the ratio of local dendritic voltage
change to the current injection at the soma, ranges from about 100 M2 at proximal
dendrites near the soma to about 15 M2 at distal dendrites, as shown in Figure
@KE). Furthermore, the voltage attenuation-out ratio, measured as the ratio of
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FIGURE 2.3. Spatial profile of membrane potentials on the whole den-
drites when the realistic neuron model receives a pair of E and / inputs
simultaneously. Input locations are marked by gray dots in each panel.
Membrane potential is coded by color in the unit of mV. (A), E and [
inputs on the dendritic trunk, the / input is more proximal to the soma
than the E input. (B), E and [ inputs on the dendritic trunk, the / input
is more distal to the soma than the E input. (C), I input on the dendritic
trunk, and E input on a dendritic branch. (D), E and I inputs on the
same dendritic branch. (E), E and [ inputs on two different branches.
All membrane potential values are measured at the time 5 ms after the
inputs are received.

local dendritic voltage change to the somatic voltage change when injecting current
at the soma, reduces from 100% at proximal dendrites near the soma to 15% at
distal dendrites, as shown in Figure[2.2(F). By injecting step currents into the soma,
the membrane time constant of the realistic neuron model is estimated to be 10 ms.
The NEURON software [9]] is used as a numerical solver to compute both the
passive and the active models with the numerical scheme of Crank-Nicolson and
with a time step of 0.1 ms. As an example shown in Figure 2.3] when the realistic
neuron model receives a pair of E and [ inputs on different dendritic locations,
we can simulate the model numerically to obtain its membrane potential change
across the whole dendrites. In particular, we are interested in how the neuron
integrates synaptic inputs and changes its membrane potential at the soma, which
will be investigated in details below. The simulation code is available at https:
//github.com/songting858/dendritic_integrationl

3 Integration Rules of Synaptic Inputs

In this section, the summation rules of synaptic inputs are studied via the mathe-
matical analysis of the cable neuron model, along with the numerical computation
of the realistic neuron model. The integration rule for a pair of E and I synaptic
inputs is first investigated in Section [3.1] and Section [3.2] The characterization of
the integration of multiple £ and / synaptic inputs is then generalized in Section

B3
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3.1 A pair of E and I synaptic inputs

It is noticed that the cable neuron model (equations (2.6)-(2.10)) is mathemat-
ically solvable when the synaptic input Iy, is replaced with an injected current
input /j;. In such a case, the cable equation

av; d; 9%v;
CZW = —gLiVi + Iinj + EW

with the boundary conditions (equations (2.7)-(2.10)) is a linear system. There-
fore, its Green’s function I'(x, y, ¢) in response to a delta-impulse current input at
location y and at time ¢ = 0 exists in principle. Accordingly, the solution of the
neuronal response can be solved as v(x,?) = I" x [;j, where » denotes convolution
in both space and time. However, in contrast to the injected current, the synaptic
current in equation (2.1I) includes the unknown dynamical variable v;. Therefore,
the neuronal response v; depends nonlinearly on the synaptic current inputs, and
this Green’s function method cannot be directly applied to obtain an analytical
solution of equation (2.6) driven by synaptic current inputs. We adopt a regular
perturbation method to develop an analytical representation for the synaptic input
case. The solution of an unbranched cable neuron model with conductance-based
synaptic inputs (equations (2.11)—(2.13)) has been obtained recently [40], but the
solution of the branched cable neuron model (equations (2.6)—(2.10)) has not been

obtained yet. Below we derive the solution of the branched cable neuron model.
When a neuron receives an E input or an / input alone, one can measure the
corresponding EPSP trace or IPSP trace at the soma. It shall be clarified that,
unless stated otherwise, the terms of EPSP and IPSP throughout the article refer to
postsynaptic membrane potentials at the soma rather than those at a local dendritic
site. Note that, within the physiological regime, i.e., the amplitude of an EPSP
being less than 6 mV and the amplitude of an IPSP being less than 3 mV, the
corresponding input strengths fr and f7 are relatively small. Therefore, given
both an F input at xg = (ig,xg) and an [ input at x7 = (i7, x7), the membrane
potential response v(x, ¢) can be represented as a series in the powers of fg and f7,

3.1) v W) =D Y S S vma(x W),

k=0m+n=k

where W C {xg,xy,tg.tr} is the parameter space, xg,tg € W if m # 0,
xy,.ty € Wifn # 0. The parameters are omitted sometimes if self-evident. In
addition, for each dendritic segment i, by switching the global coordinate repre-
sentation to the local coordinate representation, one has

(3.2) Vmn(x, ;W) = vj,, (x,1; V)

for any x = (7, x). Combining equations (3.1)—(3.2) and the cable equation (equa-
tion (2.6)), order by order, one can obtain a hierarchy of differential equations for
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each segment i. For the zeroth order, one has
;i d; 0%vjy,
Ci—a = T8LiYi + i ax2
Using the initial condition v; (x,0) = 0, the solution is simply v;,,(x,¢; @) = 0,
or

3.3) voo(x,#;0) =0

for x on any segment of the neuron. This solution can be interpreted as that a
neuron remains to stay at its resting state in the absence of any zeroth-order input.
For the first order of excitation O( ), one has
. av,-lo ﬁazvilo
"ot 4r; 0x2
With the help of the Green’s function, the solution can be explicitly expressed as
(34)  wiolx.t:xg.tg) =T(x,xg.t) x [up(t;tg)(eg — voo(XE . 1: D))].
Here ‘%’ denotes convolution in time, I'(x, y.¢) is the Green’s function of the
system that is obtained by injecting a §-pulse input as discussed previously, and
voo(xE,t; @) = 0 is given by equation (3.3). This solution can be interpreted
as that, when the local membrane potential is maintained at the resting state vgg,
the neuron changes its membrane potential to the first-order correction fruvig in

response to the synaptic current gg (¢ — voo) at x g. Similarly, one can have the
first-order solution to the / input O( f7),

= —8LiVi + - ME(I; ZE)(S(X - xE)(vioo - SE)'

(3.5) vor(x,t:xp.11) = U(x, xp. 1) * [ur(t5t1)(er —voolxy.1: D))
For the second-order of excitation O( f Ez), one has

av; d; 9%v;
(3.6) ¢ altzo = ~8LiVio + 7 3x220 —ug(t:1g)8(x — X E)viy,.

Because v1g is already given by equation (3.4), the solution of equation (3.6) can
be explicitly expressed as

3.7 wvaolx.t;xg.tg) =D(x,xg.t) x [—ug(t:tg)vio(xE. 1 XE . LE)].

This solution can be interpreted as that, when the local membrane potential is main-
tained at the first-order correction frv1g, the neuron changes its membrane po-
tential to the second-order correction f 5 Upg in response to the synaptic current
—gFE frEv1o at x g. Similarly, one can have the second-order solution to the I input

OUf7):

(3.8) voa(x,t:xy,tr) = U(x,xp, 1) % [—up(¢;61)vor(x .15 x1,11)].
For the order of O( f£ f7), one has

ov; d; 9%v;
(39) Ci allll == —gLiUi“ + ﬁ axlzll - ME(tatE)(t)S(x _xE)vi(n

—uy(t;11)8(x — x)viy,
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whose solution is obtained as
vi1(X, (X g, X1, 1E. 1])
(3.10) =T(x,xg.t) % [—ug(t;tg)vor(xg.t;x1.17)]
+ T(x,xp.0) * [~us(t:t)violxy. 6 x g LE)].

The above procedure and physical interpretation can be generalized to higher or-
ders.

All these analytical solutions involve the Green’s function of the system in re-
ponse to a §-pulse input as discussed previously. The Green’s function of the ball-
and-stick model (equations (2.11)—(2.13))) has been solved previously [40,41}[82].
However, the Green’s function of a branched cable model is difficult to obtain ana-
lytically. Fortunately, it can be efficiently measured numerically using white-noise
input [5], i.e.,

I(x.y. 1) = (vx.OIpi(y.1 — 1)),
where / ig} (y,1) is the standard white noise with unitary variance injected at loca-
tion y, v(x, 1) is the corresponding response measured at location x, and (-) is the
temporal correlation. This method is also known as the reverse correlation method
in neurophysiology [65].

The numerically measured Green’s function of the cable model (equations (2.6])—
(2.10)) enables one to directly evaluate the performance of the perturbation solu-
tions in approximating the numerical solutions of the cable neuron model. When
the cable neuron model receives a pair of E and / synaptic inputs either individ-
ually or jointly on the dendrites, our numerical simulation of the model using the
Crank-Nicolson scheme shows that the second-order perturbation solutions are suf-
ficiently accurate to capture the solutions of physiological membrane potentials, as
demonstrated in Figure Therefore, the EPSP at the soma denoted by Vg in-
duced by an individual £ input alone can be approximated by

Ve ~ fgvio(xs,t) + fEvao(xs. 1),

where x g denotes the location of the soma. The IPSP at the soma denoted by V;
induced by an individual [ input alone can be approximated by

Vi~ frvoi(xs.t) + ffvoa(xs, 1),

and the summed somatic potential (SSP) at the soma denoted by Vs induced by
both E and I inputs can be approximated by

Vs ~ fevio(xs,t) + fEvao(xs,t) + frvoi(xs,t)
+ fPvoa(xs.t) + fE frvii(xs.1).

Based on the second-order perturbation solutions, we can identify a bilinear
dendritic integration rule that captures the somatic membrane potential response
when the neuron receives a pair of £ and / inputs, i.e.,

3.11) Ve =Vg+ Vi +kg1VEVT,
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FIGURE 3.1. Analytical solutions of various orders to the cable neu-
ron model for (A) EPSP, (B) IPSP, and (C) summed somatic potential
(SSP) in comparison with numerical solutions to the cable neuron model.
The dashed blue line is the first-order approximation. The blue circle is
the second-order approximation. The solid black line is the numerical
solution to the cable neuron model. (D) Left, color-coded membrane
potential distribution across the whole dendrites when the cable neuron
receives an E input on the dendritic trunk about 300 um away from the
soma. The membrane potentials are shown at the time when the response
at the input site reaches its peak value. The input location is marked by
a black dot. Right, local conductance, synaptic current, and membrane
potential measured at the input site. The corresponding EPSP measured
at the soma is shown in (A). (E), the same as (D), but for the case of
an [ input received on the dendritic trunk about 200 wm away from the
soma. The membrane potentials on the left are shown at the time when
the response at the input site reaches its trough value. The corresponding
IPSP measured at the soma is shown in (B). All the membrane potentials
are relative to the resting potential.

in which the coefficient x gy is defined as

(3.12)

KEI(XS.,[;XE,X]. IE, IT)
Vs =VE—-VI
Ve - Vi
vi1(xs.0:XE. X1, lE, IT)

= + O(f).

vio(xs.6;xXE. IE) - vo1(xs.t:Xy,17)

-0.65
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Here O(f) = O(fg) + O(f1). equation (3.12) shows that the leading order of
kg1 as a function of time is independent of the input strengths fz and f;. The
variables and parameters will be omitted in the expression of kg7 below as we
only concern with the dendritic integration effects at the soma. In addition, equa-
tion (3.12) indicates that kg ; is determined by the input locations and input arrival
times. Therefore, kg parameterizes the spatiotemporal information of synaptic
inputs. The coefficient kg7 measures the shunting effect of the / input. In partic-
ular, kg7 = 0 corresponds to the special case of linear summation of the £ and /
inputs. Therefore, kg is referred to as the shunting coefficient below. Note that
k g 1 1s anovel measure for the effect of shunting inhibition, different from previous
measures such as input resistance change [22].

A special form of the bilinear integration rule equation (3.11)) was first discov-
ered in an experiment [24], which was measured at a particular time point when
the EPSP reaches its peak value and the E and [ synaptic inputs were received on
the dendritic trunk simultaneously, and its mechanism was analyzed based on the
analysis of the ball-and-stick model (equations (Z.11)—(2.13)) with an unbranched
dendrite [40,41]]. Here the perturbation analysis is performed on the cable neuron
model with branched dendritic structure, and synaptic inputs can be elicited on any
dendritic site of the neuron. The analysis further generalizes the rule to the case
of a pair of unsimultaneous synaptic inputs and the generalized rule holds at any
time moment. Note that the bilinear integration rule (equation (3.11)) holds at any
locations on the neuron, including its soma in particular.

A B C
3 2.5
Linear Sum (Ve+Vi) )
2.5 2
2
EPSP(Ve) SSP(Vs) s g s
= 15 -
>m 1 >m !
05 0.5
> 'PSP(V‘ SC (Vs -Ve+V)
(gl 0 5 10 15 20 0 5 10 15 20
50ms VeV, mv?) VLV, (mv?)

FIGURE 3.2. Dendritic integration of a pair of E and [ inputs on the
dendritic trunk in the realistic neuron model. (A) A set of EPSP, IPSP,
and SSP measured in the realistic neuron model. The linear sum and
SC are calculated correspondingly. (B) The bilinear relation between the
SC and the product of the EPSP and the IPSP at the peak time of EPSP
when the EPSP and the IPSP are induced simultaneously. Each blue dot
corresponds to a set of EPSP, IPSP, and SSP. The black line is linear
fitting. The E and I inputs are given on the dendritic trunk about 311
um and 268 um away from the soma, respectively. (C) The same as (B)
except that the EPSP is induced 20 ms later than the IPSP.
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FIGURE 3.3. Dendritic integration of a pair of E and [ inputs on den-
dritic branches in the realistic neuron model. (A) E on a dendritic branch
and / on the dendritic trunk. (B) E and I on two separate dendritic
branches. (C) E and I on the same dendritic branch. In (A)—(C), in-
set shows the input configuration. Blue and red dots correspond to small
and large strengths of E inputs triggering subthreshold dendritic EPSP
and dendritic spikes, respectively. The black line is linear fitting.

As the rule is derived from the passive cable model, it is necessary to further
validate the rule in realistic neuron simulations in which active channels are taken
into account in the model. The details of the realistic neuron model and the related
computational method can be found in Section[2.2]and Section[2.3] The numerical
computation results are summarized below. As shown in Figure 3.2 A), when the
E and [ inputs are elicited concurrently (i.e., g = f7) at two different locations on
the dendritic trunk, the SSP is found to be always smaller than the linear sum of the
EPSP and the IPSP when elicited separately. The difference between the SSP and
the linear sum of the EPSP and the IPSP is referred to as the shunting component
(SC). The amplitude of the EPSP and the IPSP is then varied by randomly choosing
the input strengths fr and f;. To be consistent with experimental observations
[24]], the amplitude of the EPSP is set to range between 0 mV and 6 mV, and the
amplitude of the IPSP is set to range between 0 mV and —3 mV. For a pair of
fixed input strengths fg and f7, the set of time courses of the EPSP, the IPSP,
and the corresponding SSP is obtained. Using 30 sets of such data with different
input strengths, the amplitude of the SC is found to depend linearly on the product
of the EPSP and IPSP amplitudes at any time point. A special case of the time
when the EPSP reaches its peak value is shown in Figure [3.2(B), in which the
excellent linear fitting shows that the slope kg7 is independent of the amplitudes
of the EPSP and the IPSP. This reproduces the experimental observation [24]. For
the case of nonconcurrent E and [ inputs (i.e., g # t7), when the onset of the /
input is 20 ms earlier than that of the E input, our numerical results show that the
bilinear integration rule (equation (3.11)) still holds in Figure [3.2(C).

The validity of the bilinear integration rule is also investigated for £ and I inputs
randomly distributed on dendritic branches in the realistic neuron model. As shown
in Figure [3.3] when the E input on a branch does not trigger a dendritic spike, the
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FIGURE 3.4. Spatiotemporal dependence of kg in the realistic neu-
ron model for inputs on the dendritic trunk. (A) Left, the locations of
a pair of E and [ inputs indicated by arrows. The time difference be-
tween the E and [ inputs is T = 20 ms. Right, (upper) the temporal
profiles of an EPSP (solid red line) and an IPSP (solid blue line). The ar-
rival times of the EPSP and the IPSP indicated by vertical dashed lines;
(lower) the temporal profile of the shunting coefficient kg ; indicated
by the solid green line. (B)—(C), spatial asymmetry of the shunting co-
efficient k7. (B) kgs as a function of distance between the E input
location and the soma for three fixed / input locations at the dendritic
trunk about 50 pum, 200 pwm, and 350 um away from the soma, respec-
tively, which are marked by colored vertical lines. (C) k gy for an I input
(black dot) fixed at the apical trunk, with an E input scanned throughout
part of the apical dendrites of the realistic neuron model with length less
than 550 um. The value of kg is coded in color.

rule holds for I inputs located either on the dendritic trunk or on dendritic branches.
In addition, when the E input on a branch is strong enough to trigger a dendritic
spike, the bilinear rule remains valid when the / input is located on the dendritic
trunk or on a different branch from the E input. In such input configurations,
despite the large amplitude of a dendritic spike at the E input site, our simulation
indicates that the amplitude of membrane potential attenuates to a small value at
the 7 input site, resulting in the validity of the bilinear integration rule. The bilinear
rule breaks down when the interaction between the E and / inputs is too strong to
be captured by the second-order perturbation method, e.g., when a dendritic spike
is generated near the / input location as shown in Figure [3.3(C).

3.2 Spatiotemporal dependence of « g7

For a fixed pair of E and [ input locations, kg is a function of both time ¢ and
the arrival time difference between the E and [ input v = tg — ¢7, as illustrated
in Figure 3.4(A). Qualitatively, when the / input arrives earlier than the E input,
i.e., t7 < tg, the shunting coefficient x gy remains at zero until the EPSP arrives
at tg. In addition, when ¢ or T becomes large, the SC tends to vanish because Vg
or V7 or both of them will approach zero. In such a case, the bilinear integration
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SPATIAL NEURON DYNAMICS 135

becomes insensitive to the shunting coefficient kg, thus kg7 can be set to an
arbitrary number of order one or simply set to zero without much influence on the
change of SSP.

For a fixed time point, x g 7 is a function of input locations. By fixing the location
of the I input x7, the spatial dependence of the shunting coefficient kg7 on the
E input x g can be theoretically analyzed. In such a case, vo1(xg,#;x7,17) in
equation (3.12) is fixed. In addition, note that v1; in equation (3.10) can be further
simplified by ignoring the first term due to the fact that |eg > |ef|, as a typical

value of eg = 70 mV and ¢ = —10 mV with respect to the resting potential.
Accordingly,
(3.13) vit(x,2) ~ U(x,xp,t) * [-ur(t:1)vio(xr. t: X g LE)];

equation (3.13) indicates that the SC mainly originates from the correction of IPSP
by the outward synaptic current induced by the first-order EPSP measured at site
x7. By using equations (3.12)—(3.13)), the shunting coefficient kg can be ex-
pressed as

D(xs,xp.t)* [~uy()vio(xy, t;xg. 1E)]

(3.14) KE] X
vio(xs, 1 XE,IE)

’

where  is the proportional symbol. A spatial asymmetry property of kg can
be analytically obtained from equation (3.14)); namely, the value of kg ; shows an
asymmetry in its dependence on E and [/ input locations. The spatial asymmetry
property of kg is valid for synaptic inputs distributed on branched dendrites. For
the ease of illustration, here the unbranched ball-and-stick neuron model is first
analyzed. The Green’s function of the ball-and-stick model has been obtained
as [40,41.,82]:

o0
(3.15) Dl y.t) = Y Hylx. v)e™ ¢,

n=0

where

U B r 4y cos[wy (1 — x/ )] cos[wy, (1 — y/1)]
n(x.y) = Ve2d ya+ yAw;, L sin(wy,) cos(wy) + 2 cos?(wy)’

y = (7d?/28)(rd)"Y2, A = 1/4r/d, and w, and k, are solved from w, =
—i+/—kn + gLA, tan(wy,) = —%.
In the small limit of the dendritic length /, one has wg = 0, w, =~ (n — %)n

for n = 1, which corresponds to kg = g1, kn ~ ozw,%/l2 forn = 1 witha =
d/4r. Accordingly, by using equations (3.4) and (3.13) in the limiting case, one
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can obtain the following approximation for vig(x7,t; xg,tg = 0),

e—8Lt/c g

vig ~ [
(3.16)

where 8 = yeg (4r /c?d ) 172 One can further approximate

2
9%, vio(xr, s xg, g = 0)

as

0%vio  Bege X7 +XxE X7 +XE X[ —XE X[ —XE
e (5) () 5 5]
0x% ayl 21 ) 21 )
where §.(-) is the Dirac comb with period 2. Note that there is only one single
delta function at xg = x; with a negative sign for xg ; € [0,/], which means
dxzv10(xr.t;xg, tg = 0) is a step function of xg. From equation (3.16), one
has dx,vio(x7.t;xg,tg = 0) = 0atxg = [. Thus, dx,vio(x7.t;XE. tE = 0)
is a positive constant for xg € [0, x7] and vanishes for xg € [x,!]. Therefore,
vio(xr,t; xg,tg = 0) is a piecewise linear function, increasing for xg between
the soma and xy, whereas being constant when xg exceeds xy. Similarly, one
can further show that vio(xs.t;xg,tg = 0) is a constant when xg € [0,/].
Combining these facts in equation leads to the spatial asymmetry of kg
in the small / limit; i.e., for each I input location, the dependence of kg on the
E input location shows a clear asymmetry for proximal E input versus distal £
input—=k gy decays with the distance between E and [ inputs closer to the soma
than the 7 input, while it remains constant for E inputs more distal to the soma than
the I input.

Intuitively, the spatial asymmetry property of kg for inputs on the dendritic
trunk can be understood through the following argument of equation (3.14). As
xy is fixed, I'(xg,xy,t) is determined. When x g is on the path between the
soma and x 7, given an E input at x g, the membrane potential response measured
at the soma as vio(xgs,?;XEg,fg) and measured at xy as vio(xy7,?;XEg, () are
smaller than the local membrane potential measured at x g as vio(Xg,{; Xg,(E)
due to the current leak along the current propagation path. As x g approaches xp,
vio(xs.?;xg.tg) decreases due to the larger current leak on the way from x g to
the soma. On the contrary, vig(x7.¢; X g, (E) increases due to the smaller current
leak on the way from x g to x7. Therefore, kg7 increases as x g gets closer to xz
when x g is between the soma and x7. When x g is further away from the soma
than x7,bothvio(xs,t;xE,tg)and vio(x1.¢; X E ., tg) start to decrease when x g
gets further. However, the decrease of the numerator and denominator in equation
(3.14) almost cancel out, which leads to the constant kg 7. The spatial dependence
of the shunting coefficient k gy indicates a uniformly high shunting efficacy for all
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FIGURE 3.5. Spatial dependence of kg in the realistic neuron model
for inputs on the dendritic branch. (A) A schematic branched dendrite.
Gray color denotes the I path defined as the path from the [ input site to
the soma. (B) Spatial profile of kg as a function of the E input location
distributed on part of the dendrites. E inputs located on the same branch
connecting to the / path are marked by dots with the same color. E inputs
located on the I path are marked by gray and connected by gray line.
(C) kg for an I input (black dot) fixed at a dendritic branch, with an
E input scanned throughout part of the apical dendrites of the realistic
neuron model with length less than 550 um. The value of kg is coded
in color.

E inputs that are more distal than the [ input, supporting the on-the-path theory [34]
that inhibition is most effective when the I input is on the direct path from the £
input to the soma.

The property of spatial asymmetry of gy is more general than the case of the
passive ball-and-stick neuron. It has been shown that the ball-and-stick neuron
model is mathematically equivalent to a large class of neurons with branched den-
drites [56]. Therefore, the spatial asymmetry property of kg7 remains valid for
neurons in this class. In addition, as shown in Figure [3.4(B)—(C), when the E and
I inputs are on the dendritic trunk, the spatial asymmetry property of kg is vali-
dated through our numerical computation of the realistic neuron model which is a
representative of a wide range of neuron class.

When a pair of E and / inputs are located on dendritic branches, the analysis of
the cable neuron model further predicts the spatial dependence of kg7 below. As
shown in Figure [3.5[(A), for a fixed / input location (marked by the black dot in
Figure[3.5[(A), the I path (marked by gray) is defined as the path between the soma
and the / input. Along the [ path, kg increases as the E input moves away from
the soma towards the [ input, similar to the previous case where the inputs are on
the dendritic trunk. For each branch connecting to the / path, kg is predicted to
be constant for all £ sites on the branch. This can be seen as follows. According
to equation (3.14), kg depends on v10(0,¢; xg) and vio(xs,?; xg) for a fixed
I site. For an arbitrary E site (say, marked by the red dot in Figure [3.5(A) on a
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branch, during the evolution of v1g(x, f; X ), an axial current Ig is initiated by the
input current e g g g (¢) at the E site (equation (3.4)) and then flows to the remain-
ing part of the neuron. The axial current decays to I/ at the branching point £’
(marked by the green dot in Figure 3.5(A). At £/, Ig splits into a flow towards
the soma denoted by Is and a flow towards the I site denoted by I;. If we shift
the stimulus location E to E’ with a new input conductance at £’ so as to keep
Ig’ unchanged, then the flows Ig and I; remain the same. Therefore, after the stim-
ulus site shifted, the membrane potential measured at the soma v1¢(0,¢; xg) and
the I site v1o(xy.¢; xg) remains unchanged. Since any E site on a branch can be
equivalently shifted to the E’ site with certain input strength, while the shunting
coefficient is independent of the input strength, we have the same value of kg at
any site on a branch connecting to the same branching point. The prediction of
the spatial dependence of kg for inputs on dendritic branches is verified in our
realistic neuron simulations in Figure[3.5(B)—(C).

3.3 Multiple synaptic inputs

Based on a similar analysis, it is straightforward to generalize equation (3.11)) to
describe the dendritic integration of a pair of E inputs as

Vs = VE, + VE, + KE, E,VE, VE,,
and the dendritic integration of a pair of / inputs as
VS = Vll + VIZ + K1112V11 Vlza

and the dendritic integration of multiple £ and / synaptic inputs as

Vg = Z VE, + Z Vi, + ZKE,,,I,Z VE,. V1,
i F m,n

+ Z KE,EyVE,VE, + Z k1,1, V1 Vi,

u,w r,s

(3.17)

where Vg, and V7, are the individual EPSP and IPSP, respectively, kg, 1,,, KE, E., »
and «y, 1, are the coefficients encoding the spatiotemporal information of the synap-
tic inputs with
Vi11(XS, 1 XE,  XE,: B, (E,)
v10(XS, 11 XE,  1E,) - V10(X S, [i XEy, LE,,)
Cir = Ull(xSatanyaxIs,tI,at'ls) + o,
vor(xs.1:Xr,.11,) - vor(xs,t; X1, 1)

the leading order of which are independent of synaptic input strengths. The gener-
alized bilinear integration rules have also been verified in realistic neuron simula-
tions for synaptic inputs distributed on the branched dendritic tree. As an illustra-
tion shown in Figure [3.6] we first verify the special case of the bilinear integration
rule when a pair of synaptic inputs of the same type are received on the dendritic
trunk either simultaneously or with a 20 ms delay time interval. It is noted that, de-
spite the validity of the bilinear integration rule for a pair of E inputs received on the

+ O(fE).

KEWEy =
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FIGURE 3.6. Integration of two E inputs and two / inputs in the re-
alistic neuron model. (A) The relation between the SC and the linear
summation of two EPSPs; (B) the bilinear relation between the SC and
the product of the two EPSPs measured at the peak time of one EPSP un-
der the condition when the two EPSPs are induced simultaneously. Each
blue dot corresponds to a set of two EPSPs and the corresponding SSP.
The black line is linear fitting. The two E inputs are given at the dendritic
trunk about 268 um and 311 um away from the soma, respectively. (C)
The same as (B) except that one EPSP is induced 20 ms later than the
other EPSP; (D)—(F) the same as (A)—(C) but for two I inputs.

dendritic trunk, the effect of bilinear integration is small. Accordingly, as shown
in Figure[3.6[A), the integration of two E inputs is approximately linear, consistent
with experimental observations [10,[I1]. The mechanism underlying this phenom-
enon is that the membrane potential response induced by the E inputs is relatively
small compared with the excitatory reversal potential eg = 70 mV. Therefore, the
driving force eg — V of one synaptic input changes little in the presence of an-
other synaptic input, and the synaptic input current is nearly linearly dependent of
the synaptic conductance. This leads to the approximately linear summation of the
E inputs. However, in Figure 3.7(A), when an E input is received on a thin den-
dritic branch, the amplitude of dendritic membrane potential at the input site can be
more than ten times larger than the amplitude of somatic membrane potential, and
a strong E input can even trigger a dendritic spike. In this case, as shown in Figure
[3.7(B), the integration of two E inputs on the same dendritic branch can be substan-
tially sublinear, which is also consistent with previous theoretical and experimental
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FIGURE 3.7. Integration of two E inputs on the same dendritic branch.
(A) Membrane potential change induced by an individual E input mea-
sured at the dendritic input site and at the soma. Left and right corre-
spond to the cases of no dendritic spike and dendritic spike, respectively.
(B) Relation between the SSP and the linear summation of two EPSPs.

observations [53}/55]]. In addition, in Figure B) and previous studies [53}55],
the integration of two E inputs can also be superalinear when a dendritic spike is
triggered by both of the two E inputs received simultaneously but not by either of
them received separately. In these cases, the interaction between two E inputs are
too strong such that the bilinear integration rule may no longer hold.

We then verify the general case of the bilinear integration rule when the neu-
ron receives multiple synaptic inputs with stochastic input times and are broadly
distributed on the branched dendrites, as shown in Figure [3.§[(A),(B). In addition,
the membrane potentials measured at three dendritic sites are plotted in Figure
3.8(C)—(E). The result indicates that the integration effect of multiple synaptic in-
puts can be different across spatial dendrites, which is largely determined by the
relative synaptic input locations to the recording sites. The integration effect at a
given dendritic site becomes substantial when multiple synaptic inputs are nearby,
as shown in Figure [3.§[(D).

It can be further analyzed that, different from the spatial asymmetry property of
KE, I, the spatial dependence of kg, g,, and kj, j, are nearly symmetric. To be
specific, for a pair of E inputs, if the location of one input at x g,, is fixed while that
of the other input at x g, varies, the coefficient k g, g,, reaches its peak value when
x g, overlaps with x g, , and k g, g,, starts to decay almost in a symmetrical manner
as x g, moves away from x g, towards both directions—either closer to the soma
or further away from the soma. Similarly, «j, s, also possesses the property of
spatial symmetry as K, g -

4 Reduced Model Incorporating Dendritic Integration

In this section, we investigate the issue of how to incorporate the above dendritic
integration rules into a point-neuron model, namely, how to reduce the PDE-based
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cable neuron model (equations (2.6)—(2.10)) to a substantially simpler ODE-based
neuron model. The development of such a model is motivated by the fact that
the simulation of a neuronal network composed of the branched cable neurons is
computationally extremely expensive. This impedes one to study the function of
dendrites at the network level to a certain extent. It is thus important to develop
a simplified model without the loss of important dendritic functions. The reduced
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FIGURE 3.8. Integration of multiple £ and / synaptic inputs in the re-
alistic neuron model. (A) Distribution of 15 E inputs and 15 [ inputs at
part of the apical dendrites of the realistic neuron model with length less
than 550 um. The locations of the E and I inputs overlap (orange dots).
(B) The traces of the somatic membrane potential obtained by setting
the arrival time of each input uniformly distributed from 0 ms to 500 ms.
The input rate at each site is 10 Hz. The SSP from the simulation of the
realistic neuron model (solid black line) nearly overlaps with the SSP
predicted by the bilinear integration rule (equation (3.17)) (blue dots)
while deviating from the trace of the linear summation of all postsynap-
tic potentials induced separately (dashed red line). (C)—(E) Membrane
potential response at three different dendritic sites marked by arrows
in (A).

model receiving an individual input is first derived from the cable neuron model,

followed by the derivation of the reduced model receiving a pair of E and / synaptic
inputs, and finally the reduced model is generalized to the case of multiple £ and /

synaptic inputs.
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4.1 An injecting current input

The traditional way to model a point neuron is based on the idealized assumption
that a neuron can be considered as an electrically compact point with its membrane
potential dynamics V' described by

4.1) CCZ_‘; :_GLV+Isyn+Iinja
where C is the capacitance, Gy, is the leak conductance, Iy, is the synaptic input
current, and /j,; is the externally injected current.

It has been realized that, because of the highly nonuniform distribution of mem-
brane potential across a neuron with branched dendrites [45,74]], the entire neuron
is not electrically compact and thus cannot be simply modeled as a point. On the
other hand, by injecting an external current [j,; into the soma, it has been shown
by experiment that the somatic membrane potential dynamics of a neuron can be
well described by a point leaky integrator [|3,[8]]

4.2) Cd—V = —GLV + Iy;.

dt
Therefore, equation (4.2) suggests one to model the soma rather than the entire
neuron as a point. It is worth mentioning that C and G, in equation (4.2)) are the
whole cell property of the neuron measured at the soma. The determination of
these parameters will be introduced at the end of Section 4.1}

Despite this experimental observation, there is a lack of theoretical demonstra-
tion of how a neuron model with spatial dendritic structure can in general be re-
duced to the point characterization of its soma (equation (4.2))), and how the pa-
rameter sets in the two models relate to each other. In addition, it is unclear how
to incorporate synaptic inputs received from the dendrites into the point-neuron
model, as the point-neuron model does not explicitly account for dendrites.

The validity of the point-neuron model (equation (#.2)) is first proved below
based on the mathematical analysis of the cable neuron model. Again, for the
ease of illustration, one can start the analysis with the ball-and-stick neuron model.
Given a current impulse input /5 = 6(x)&(¢) at the soma of the neuron, the ball-
and-stick neuron model

2
cg—: = —grv + 8(x)8(t) + fTagx—Z
possesses the response kernel (Green’s function) evaluated at the soma as ['(¢) =
>, Hye ™%t according to equation (3.13), where constant coefficients H, and
time constants k, are determined by the geometry and the passive biophysics of
the neuron. Asymptotically, the response kernel can be well approximated by its
leading order with a single time constant, i.e.,

4.3) T'(¢) ~ Hoe %ot
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where kg = g1./c,
Ho = [y/(yA + Drd)(4r/c?d)™V?  withy = (nd?/28)(rd)" /2,

and A = [/ /4r/d. Note that equation (4.3) is precisely the response kernel of the
point-neuron model (equation (4.2)) with the following relation linking the param-
eters in the point-neuron model with those in the ball-and-stick neuron model:

C = 1/H,,

(44) G = ko/Ho.

For any time-dependent somatic current input, the somatic response of the ball-
and-stick neuron can then be described by the convolution of the response kernel
(equation (4.3))) of the point-neuron model with the input, thus reducing the somatic
membrane potential dynamics of the ball-and-stick neuron with somatic input to its
equivalent dynamics of the point neuron (equation (4.2)); equation (4.4) has been
further verified numerically with an error below 10%, which demonstrates that the
point-neuron characterization is reasonably accurate to represent the somatic mem-
brane potential dynamics of the ball-and-stick neuron. In addition, the validity of
the response kernel representation (equation (4.3)) has also been verified numeri-
cally in the general case of the cable neuron model with multiple branches.

While it has been shown that the point neuron (equation (4.2))) is an asymp-
totically valid description of the somatic membrane potential dynamics of a cable
neuron with branched dendrites in response to a current injection at the soma, in the
remainder of this work the experimentalist’s approach is adopted to define the point
neuron representation. In practice, it is capable of accurately measuring the leak
conductance and membrane capacitance experimentally as follows: by injecting a
step current to the soma of the cable neuron model, one can measure the steady-
state response Viieady When the step current is on and the decay time constant of the
voltage response Tgecay When the step current is off. According to equation (#.2),
G = Iinj/Vsteady and C = Tdecaylinj/Vsteady-

4.2 An individual synaptic input

In the presence of synaptic current, whether the injected current in equation
(#@.2) can be simply replaced with the synaptic current remains a question. The
question arises from the fact that the synaptic input is in general received on the
dendrites spatially away from the soma, which is not explicitly described in the
point-neuron model (equation (4.2)). Therefore, to incorporate the synaptic current
into the point-neuron model, it first requires a map from the local input on the
dendrites to the effective input at the soma. The effective input shall be defined as
a hypothetical input received at the soma that induces a response identical to the
somatic response induced by the local input received on the dendrites.

The simple case of an individual synaptic input is first considered. Given an
individual E input with conductance gg at location x g on the dendrites, the cable
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neuron model gives

av; d; 9%v;
o T EHY T g o
1

The second-order perturbation solution at the soma is solved as

VE = fEvio(xs.t) + fAvao(xs.t) + O(f2).

where v19 and v are expressed in equations (3.4) and (3.7), respectively. Accord-
ingly, based on the law of current conservation at the soma, the effective synaptic
current arriving at the soma from the dendrites can be estimated as

—ge(v—¢E).

dVg
eff __
duiolxg,t
(4.5) = f& (C—wgts ) | GLvm(xs,t))
duao(xg,t
+ 3(c2EED 4 6y ungtrs. ) + 00D,

where C and G are the effective capacitance and leak conductance, which can
be determined either from the response kernel of the cable neuron model or from
experimental measurements as discussed in Section .1} We can further define the
effective conductance by casting the effective synaptic current (equation (4.5))) in
the form of Ohm’s law

Ieff
Geff — By
E ¢g —VE
1 dvio(xs,t
_ —[fE (C% + GLUIO(xSat))
(4.6) °E :
dvao(xs,t
+ fé(c%‘g) + Gvao(xssf))
Ry ad
R )] o

equation (4.6) together with equations (3.4) and (3.7) establish the map between
the local and effective conductance. Therefore, in the presence of an individual £
synaptic input, the cable neuron model can be reduced to the point-neuron model
to describe the dynamics of its somatic membrane potential
dv, .

(4.7) cd—tE = —GLVE — G (Vi —ep),
with the effective conductance G%ff defined in equation (4.6).

Similarly, in the presence of an individual [ input, the cable neuron model can
be reduced to the point-neuron model

dVy

(4.8) C7 =—GLV; — GS"(V; —ep),
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with the effective conductance G;ff defined as

1 d Lt
G = —| 1 CM-FGLUM(XS,[)
ey ot

4.9 + fIZ(CW + GLUOZ(xSst))

N flzvm(;s,t) (C 8v01§;s,l) n GLUOI(xS’[))j| + @(fl3),

where vg; and v are expressed in equations (3.5)) and (3.8)).

The accuracy of the second-order approximation to G%ff and G?ff has been
demonstrated in the simulations of the cable neuron model. In the simulation,
an individual £ or / input is given on the dendrites of the cable neuron model, and
the membrane potential change at the soma Vg or V7 is recorded. Subsequently,
the effective synaptic current arriving at the soma is calculated as

dVEg dVvy
ff ff
Igsyn:CW—i_GLVE and Iliyn:CW—i_GLVI’
and the effective E or / conductance is calculated by its definition
]Sff IIeff
G%ff = —"_ and G?ff =2,
¢ — VE er = Vi

As shown in Figure 4.1(A) and {.T(D), the effective conductance can be well ap-
proximated by that obtained from the second-order perturbation solutions in equa-
tion and equation (4.9).

The effective conductance is a new concept proposed by our perturbation anal-
ysis. Although the time scale of the effective and local conductances differs as
shown in Figure @A) and @D), the effective conductance can be viewed as a
proportional indicator of the local conductance on the dendrite as shown in Figure
K.1B),(C) and @.I(E),(F). Moreover, it reflects the functional impact of synaptic
inputs on the spike initiation mechanism and thereby neuronal information process-
ing at the soma. To be specific, the spike initiation of a neuron is largely determined
by the amplitude and the time scale of membrane potential response measured at
the soma, and the somatic response depends not only on the local conductance dy-
namics but also on the synaptic input location [60]. Therefore, knowing the local
conductance alone is insufficient to understand how signals are propagated and ac-
tion potentials are initiated. However, they can be understood from the dynamics
of effective conductance that directly determines the somatic membrane potential
response. Therefore, measuring the effective conductance can be more valuable
than measuring the local conductance for understanding the influence of synaptic
activities on somatic membrane potential change and information coding.

4.3 A pair of E and I synaptic inputs

When a neuron receives more than one synaptic input from the dendrites, it
is generally assumed that these synaptic inputs shall be linearly summed when
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FIGURE 4.1. Properties of the effective synaptic conductance. (A) First-
order (dashed blue line) and second-order (blue dots) analytical solutions
to approximate the effective £ conductance measured in the cable neuron
model (solid black line). The normalized local conductance is also plot-
ted in gray. An E input is given on the dendritic trunk 350 wm away from
the soma. (B) Trace of the effective and local E synaptic conductances
measured respectively at the soma and at a synapse on the dendrite of the
cable neuron. Poisson input with rate 150 Hz is given on the dendritic
trunk 350 um away from the soma. (C) Strong correlation between the
amplitude of the effective and local E synaptic conductance. Each blue
dot is sampled at one time point from the corresponding time series in
(B). The gray line is the linear fitting. (D)—(F) The same as (A)—(C)
except for the effective and local I synaptic conductance. (G) The cor-
responding somatic membrane potential responses for (A) and (D). (H)
The corresponding somatic membrane potential responses for (B)
and (E).
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arriving at the soma. Therefore, when a neuron receives a pair of £ and / synaptic
inputs, the traditional point-neuron model gives

dv.
(4.10) cd—ts = —GLVs — G (Vs —eg) — GSM(Vs — &p).

As the dendritic integration of synaptic inputs is nonlinear as discussed in Sec-
tion 3] whether such a model is able to quantitatively capture dendritic integration
is questionable. We next investigate the validity of this model using mathematical
analysis.

When the neuron receives a pair of E and / synaptic inputs, the SSP measured
in the cable neuron model is

Vs = fEvio(xs.t) + fEvao(xs.t) + frvoi(xs.1) + fPvoa(xs.1)
+ fE fron(xs.t) + O(f3).

Here O( f3) includes all the terms of (’)(fé flj) foralli > 0,j > 0,andi+; > 3.
Accordingly, the effective synaptic current arriving at the soma is

dv.
Isegm = Cd_ts + G Vs
dviolxg,t
= fE(C% + Grvio(xs. 1))

dvao(xs.1)
+ r3(c s

dvo1(xg,t
L h(C 01gts )

0 Jt
C% + GLvoa(xs.1))

 po(c s

__ geff eff eff
- IEsyn + Ilsyn + AIsyn’

+ Grvo(xs.1))
+ Grvoi(xs.1))
+ 7(

+ Grvii(xs. 1)) + O(f)

where Alfyﬁfl is defined as

(.11) A@%=ﬁﬂ(c@£giﬁ

ot
From equation (#.T1), the leading order of A& is proportional to the product of

syn
the input strengths fg and f;. Therefore, this current is induced by the nonlinear
integration of E and / synaptic currents, thus referred to as the integration current.

If the integration current is further cast into the form of Ohm’s law, i.e.,

(4.12) AT = _AGEr(V —¢eET),

syn

+@mﬂmJQ+OU%

then the integration conductance takes a bilinear form as

4.13) AGgr = (XEIG%TG?H,
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and
aET
_ C(egerdvnn(xs, 1) + erdivio(xs, vor(xs. 1) + eEdrvor(x s, vio(xs, 1))

ee1(Covio(xs.1) + Grvio(xs.1))(Cdrvor(xs.1) + GLvoi(xs.1))
Gr(eeervii(xs.1) + (e + e1)vio(xs. 1)voi (xs.1)) Lo
eer(Corvio(xs.1) + Grvio(xs.1))(Covor(xs.1) + Grvoi(xs.1)) ’
the leading order of which is independent of the synaptic input strength but is
dependent on the input arrival times and locations according to equations (3.4),
(3.5), and (3.10). Because of the existence of the integration current, the traditional
point-neuron model shall be modified as

dVs

(4.14) dt

= —GLVs — G (Vs —ep) — GS"(Vs — 1)
—ap1GRG (Vs — k1),

which is referred to as the DIF model. Note that, according to our analysis, there
is a degree of freedom for choosing the value of the reversal potential € gy within
the regime in which the ratio of the postsynaptic potential to the reversal potential
is small, and the value of the integration coefficient o g; depends on the choice of
the reversal potential. However, the bilinear interaction between the conductances
remains valid when choosing a different reversal potential value.

Based on our analysis, the integration current and the DIF model (equation
(@.14))) are in general valid for a pair of E and I synaptic inputs distributed on any
dendritic branches with arbitrary arrival times. Next, realistic neuron simulation is
performed to confirm the form of the integration current (equations (.12))—(@.13))
and further the validity of the point-neuron model. In the simulation, an EPSP or
an IPSP is measured at the soma denoted as Vg or Vj after giving an individual £
synaptic input on the dendrite about 311 pm away from the soma or an individual /
synaptic input on the dendrite about 268 pwm away from the soma, respectively. The
effective E and I synaptic currents

dVg dVyp
ff ff
Igsyn = CT + GL VE and Iliyn = CW + GL V]
and the effective conductances at the soma
eff eff
eEff _ Esyn and G?ff _ Isyn
eg — Vg er — Vi

are determined by Vg and V7j, respectively. The neuron is then stimulated given
both the E and I synaptic inputs simultaneously with the input strengths and input
locations being identical to those given individually, and an SSP is measured at
the soma denoted as Vg and the corresponding summed somatic current (SSC) is

calculated as

av.
Isegm = Cd_ts + GrVs.
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FIGURE 4.2. Integration of effective E and I conductances in the re-
alistic neuron model. (A) A set of EPSC (red line), IPSC (blue line),
and SSC (black line) measured in the realistic neuron model. The linear
sum (green line) and the integration current (orange line) are calculated
correspondingly. (B) The bilinear relation between the integration con-
ductance AGEg and the product of the effective E and / conductances
G4 and G$™ at the peak time of G when the EPSP and the IPSP are
induced simultaneously. Each blue dot corresponds to a set of GeEff, G;ff,
and AGEgy. The black line is linear fitting. The E and [ inputs are given
on the dendritic trunk about 311 um and 268 um away from the soma,
respectively. (C) The same as (B) except that the EPSP is induced 20 ms
later than the IPSP.

After constructing the excitatory postsynaptic current (EPSC) and the inhibitory
postsynaptic current (IPSC) as G%ff(s £ — Vs) and G?ff(sl — Vs) respectively, the
SSC is found to be significantly different from the linear summation of the con-
structed EPSC and IPSC, as shown in Figure §.2(A). This indicates the existence
of the synaptic integration current predicted from the perturbation analysis.

The difference between the SSC and the linear summation of the constructed
EPSC and IPSC is denoted as

Aleff — Ieff _Ieff _Ieff

syn Ssyn Esyn Isyn*
Further, the integration conductance AG g obtained from A7 g"'yfrfl is calculated as
eff
AGpy = —2—.
egr — Vs

By randomly varying the strengths of the E and [ inputs with their input locations
fixed, thg: integration conductance AGgy is indeed shown to be proportional to
both G%ﬁ and G}"ff at each time point, confirming the bilinear relation

ff ~eff
AGEI :ocEIG% G; .

The bilinear relation at a particular time point around the peak of the EPSP is
illustrated in Figure f.2(B). The bilinear relation remains valid even when the E
and / inputs do not arrive simultaneously. As an illustration, a particular case of
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the bilinear relation is shown in Figure f.2[C) when the 7 input is elicited 20 ms
earlier than the E input. Consistent with our theoretical predictions, the integration
coefficient « g 7 in the bilinear relation is found to be independent of input strengths
but is dependent on input arrival times.

4.4 Spatiotemporal dependence of g

The spatiotemporal dependence of gy can be obtained from that of kg dis-
cussed in Section [3.2] through a one-to-one mathematical map from a gy to kg
derived below. Based on the DIF model, the individual EPSP denoted by Vg and
IPSP denoted by V7 under separate E and I inputs shall be described by equation
and equation (4.8)), respectively, whereas the SSP denoted by Vg under joint
E and I inputs shall be described by equation (¢.14). With notations

G =G + G + ap GG,

eff eff

I?VISEGE +81G1 eff

ff
+ag1ee1Gy Gy,

one can obtain analytical solutions to equations (.7), (4.8), (@.14) along with their
approximations in an integral form as

t ¢ Geff u e
VE(;)z/ EEGE ) 6, -1/, Giw)/cdv y,,
0

C
41 t Geff U X
(4.15) _ / EEUL (u)eGL(u—t)/C (1 +/ G%ﬂ(v)/Cdv)du
0 C t
+O(f3),

C

4.16 t Geff 124
( ) — / Ell?w)eGL(u—l‘)/C (1 + / G?ff(v)/Cdv)du
0 t

+O(f7).

t ff
V,(z):/ 81MeGL(u—t)/cef,”Ggff(u)/cczudu
0

L oJrev -
Vs(t) :f 28 ,GLu—1)/C, [ GS(v)/Cdv g,
“4.17) 0

t prev u
_ / I8 porunie (1+ / Ggff(v)/Cdv)du+O(,f 3,
0 t

where the approximations are taken with respect to the second order of |, tu G%ff(s)d s,
[} G$"(s)ds, and [;* G&(s)ds in Taylor expansion. All the above approximations

have been numerically verified that the relative error between the analytical and ap-
proximate solutions was less than 5%.
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Then by the definition of the shunting coefficient kg 7, together with equations

(@.15)~@.17), one has
Vs —VE —=V]

(4.18) Kg] = —————— = Aag; + B+ O(f),
VE - V1

where A and B are defined as
ee1C [y G )Gt (u)eCL=/Cqy

A= ’
eper Q(GST. 1) Q(GS 1)
a_ _f(; [EEG;ff(u)Q(Geff, Ll) + EIGgf(u)Q(Geff, u)]du

’

eper QG 1) Q(G, 1)

and Q(f, x) is defined as Q(f,x) = [y eGLO=D/C f£(y)dy. equation @.I8) es-
tablishes a one-to-one map from « gy to kg 7. Because A and B are independent of
input strengths as they cancel out in both the denominator and the numerator, and
o g 1 is also independent of input strengths, thus the leading order of kg is a con-
stant independent of input strengths. Therefore, the DIF model (equation (4.14))
is proved to be able to capture the bilinear integration rule discovered in Section
In addition, from the map (equation (@.18)), similarly to kg7, agy is also
spatiotemporally dependent and possesses the feature of spatial asymmetry.

4.5 Multiple synaptic inputs

When a neuron receives multiple E and I inputs, the membrane potential dy-
namics can be naturally generalized as

dVs

(419) C=5 =G Vs - Z G (Vs —ep) — Z Gy (Vs —er) + Al gy,

i J
where the synaptic integration current A/, Se;rfl is described as

AL =" oFGH,Ginlerr — Vs)
m n
ff ~eff

(4.20) 2D G, Gy e — Vs)

P q

+ 3> GG (e — V).
s t

The synaptic integration current describes the interaction of each pair of synaptic
inputs, and the sets of integration coefficients {77}, {cxﬁqE}, and {aj}} encode
the spatiotemporal information of synaptic inputs on the dendrites. In addition to
the synaptic current description (equation (4.19)), by incorporating the synaptic
integration current (equation (#.20))), the DIF model accurately characterizes the
synaptic currents arriving at the soma.

As demonstrated from our realistic neuron simulations shown in Figure [4.3(A)
and [4.3(D), for the special case when the realistic neuron model receives a pair of
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FIGURE 4.3. Integration of effective E-E and I-I conductances in the re-
alistic neuron model. (A) The relation between the SSC induced by two
simultaneous E inputs and the linear sum of the two EPSCs induced by
two separate E inputs. Data are measured at the peak time of G%fi . Each
blue dot corresponds to a set of SSC, EPSC;, and EPSC,. The black
line is linear fitting. The two E inputs are given on the dendritic trunk
about 311 um and 268 um away from the soma, respectively. (B) The
bilinear relation between the integration conductance AGg, g, and the
product of the two effective E conductances G and G when the two
E inputs are received simultaneously. The input information is the same
as in (A). (C) The same as (B) except that one E input is received 10 ms
later than the other E input. (D)—(F) The same as (A)—(C) except for the
I input case.

E inputs or a pair of / inputs on the dendrites, the SSC is different from the linear
summation of the two EPSCs or the two IPSCs induced individually. It has been
observed that the integration between the two EPSCs is more linear than that be-
tween the two IPSCs. This observation is consistent with the integration between
two EPSPs and IPSPs as shown in Figure[3.6(A) and[3.6(D), as it also attributes to
the substantial difference between the E and [ reversal potentials. Despite this, the
bilinear form of the integration conductance remains valid for both the E-E case
and the /-] case, as shown in Figure [4.3] For the integration of multiple synaptic
inputs, given tens of or even hundreds of £ and / synaptic inputs from its dendrites
with uniformly distributed arrival times, the somatic membrane potential of the re-
alistic neuron model nearly overlaps with the SSP predicted by the DIF model with
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FIGURE 4.4. Integration of multiple E and [ inputs in the realistic neu-
ron model. (A) Distribution of 15 E inputs and 15 I inputs at part of the
apical dendrites of the realistic neuron model with length less than 550
um. The locations of the E and I inputs overlap (orange dots). (B) One
trial of membrane potential obtained by setting the arrival time of each
stimulus uniformly distributed from 0 ms to 500 ms. The SSP from the
simulation of the realistic neuron model (solid black line) nearly over-
laps with the SSP predicted by the DIF model (blue dots) while deviating
from the trace of the IF model without including the integration current
(dashed red line). (C) Distribution of 75 E inputs (red dots) and 25 1
inputs (blue dots) at the whole dendrites of the realistic neuron model.
(D) One trial of membrane potential obtained by setting the arrival time
of each stimulus uniformly distributed from 0 ms to 1000 ms. Panel (B)
and panel (D) share the same figure legend.

the synaptic integration current (equations (4.19)—(@.20)) while deviating from the
SSP predicted by the point-neuron model without the synaptic integration current,
as shown in Figure .4

The DIF model (equations (#.19)-(@.20)) provides an efficient computational
framework for simulation of large-scale neuronal networks. The performance of
the DIF model is evaluated by contrasting its computational cost to that of the ca-
ble neuron model. When simulating a morphologically realistic pyramidal neuron,
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it generally requires one to discretize the space of the cable PDEs into approxi-
mately N = 10 spatial points (for example, the dendrites consist of about 200 to
300 segments, each segment being further discretized as about a hundred compart-
ments described by ODEs) at which the temporal dynamics of membrane potentials
is computed. The computational cost to solve these ODEs is O(N7) (e.g., using
the forward Euler scheme). In addition, based on the fact that a cortical pyramidal
neuron in vivo receives about N, = 10% synaptic inputs [15]], there are additional
O(N>) ODE:s to describe the temporal evolution of synaptic conductances. There-
fore, the computational complexity is O(N1) + O(N») for evolving an individual
time step of the membrane potential on all the dendrites of a single neuron. When
simulating a network of N neurons, the computational complexity scales up to
N(O(N1) + O(N3)). In contrast, simulating the DIF model only requires one
to numerically solve O(N3) for one time step evolution of the membrane potential
and synaptic conductances. However, additional cost shall be considered due to the
bilinear integration of synaptic inputs. As cortical pyramidal neurons typically fire
about 10 spikes per second in awake animals [[77,/78]], a pyramidal neuron can be
expected to receive 10° synaptic inputs per second. Therefore, the average number
of synaptic inputs within 10 ms (the scale of the membrane potential time constant
in vivo) is 103. In principle, there are 10 bilinear interactions for all pairs of in-
puts. However, it has been shown that the majority of these interactions are small as
the nonlinear interaction is mainly localized within a branch. Correspondingly, the
number of bilinear interactions linearly scales with synaptic input numbers [39]],
which is about N3 = 103. Therefore, the computational complexity for the bilin-
ear interaction is O(/N3) for the evolution of each time step, and the computational
complexity is O(N2) + O(N3) for evolving an individual time step of the mem-
brane potential of each DIF neuron. When simulating a network of N neurons, the
computational complexity scales up to N(O(Nz) + O(N3)). Therefore, the DIF
model outperforms the cable neuron model by reducing a computational cost of
N(O(Ny) — O(N3)). In practice, the reduced computational cost can be higher
because a smaller time step is often required to meet the stability condition when
solving the cable neuron model. Furthermore, it should be noted that the bilin-
ear integration of synaptic conductances can be computed in parallel with an easy
implementation, which will further save computation time.

In the above computational framework, one is required to look up a library es-
tablished in advance to store the integration coefficients for the interaction between
each pair of inputs. In the case of passive dendrites, the integration coefficients in
the library can be calculated analytically based on equation (4.13). However, in
practice, it is more convenient for one to calculate the integration coefficients by
directly simulating the realistic neuron model and measuring the synaptic conduc-
tance when the realistic neuron model receives a pair of synaptic inputs separately
and then together. The library of integration coefficients shall take the form of a
set of matrices (or a high-dimensional tensor): the row and column indices of each
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matrix correspond to synaptic input locations, and the elements in each matrix cor-
respond to the integration coefficient measured at a particular time point ¢ when
a pair of inputs are received with a particular arrival time difference r. Different
matrices are labeled by the time ¢ and the arrival time interval v. Note that the
establishment of the library can be accomplished in a parallel fashion in order to
save computation time. In addition, the establishment of the library only requires
one-time computation. Later simulations of the same neuron model can directly
use the established library with no need to re-establish a new one.

5 Discussion

In this work, we provide a systematic theoretical analysis of the branched cable
neuron model to investigate the dendritic integration of biological neurons. The
branched cable neuron model has been introduced to describe the subthreshold
membrane potential dynamics of a biological neuron, and the second-order pertur-
bation solutions have been derived and verified to well approximate the response
at the soma of the neuron when receiving conductance-based synaptic inputs. By
using the perturbation solutions, a bilinear integration rule has been identified that
captures the integrated somatic membrane potential in response to multiple spa-
tiotemporal synaptic inputs. In addition, the perturbation solutions further lead to a
model reduction from the PDE-based spatial cable neuron model to the ODE-based
effective point-neuron model with the bilinear integration rule inherited, which pro-
vides an efficient computational framework of neuronal simulation incorporating
certain important dendritic functions. All the theoretical results have been further
extended by numerical verification of the realistic neuron model with biologically
plausible morphological and biophysical properties.

In our modeling and analysis, we consider the realistic case that a neuron re-
ceives synaptic input current that depends on both the synaptic conductance and
the voltage, in contrast to other analytical works that often treat synaptic input cur-
rent as voltage-independent current. Accordingly, the model neuron possesses the
feature of a nonlinear device, i.e., the membrane potential change in response to
a synaptic input depends nonlinearly on the synaptic conductance, even when the
membrane potential stays in the subthreshold regime before generating action po-
tentials. The mathematical origin of the nonlinear input-output relation of a neuron
lies in the form of the synaptic input current /gy, = geyn(esyn — V'), in which Iy,
depends not only on the synaptic conductance gy, but also on the membrane po-
tential (voltage) V' explicitly. Such a feedback mechanism (/sy, changes V', and V'
also affects /gy,) breaks down the principle of linear superposition in the voltage
dynamics of the neuron, giving rise to the phenomenon of nonlinear dendritic inte-
gration when the neuron receives multiple synaptic inputs, as demonstrated in our
work.

To capture the nonlinear input-output relation, we solve the cable neuron model
(equations (2.6)—(2.10)) using a regular perturbation method. By taking the fact
that strengths of synaptic inputs are small, the membrane potential response can be
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represented as a series in the powers of synaptic strengths (equation (3.1])). Conse-
quently, we can obtain a hierarchy of linear cable equations with explicitly known
current inputs, and analytically derive the corresponding perturbation solutions to
all orders (equations (3.3)—(3.10)). A detailed calculation for the case of a pair of
E and I inputs is shown in Section [3.1] Without providing a rigorous error analy-
sis, we instead have verified the accuracy of the perturbation solutions to various
orders by comparing them with the numerical solutions of the cable model. Numer-
ical results show that second-order perturbation solutions are reasonably accurate
in capturing the neuronal membrane potential change in response to synaptic inputs
for input strengths in realistic physiological regimes.

The perturbation scheme works well to reveal the nonlinear dendritic integra-
tion effect in the passive neuron model because it captures the mechanism un-
derlying nonlinear interaction among synaptic inputs, i.e., that the driving force
of one synaptic input is changed by another synaptic input from a different den-
dritic location. In addition, as the change of membrane potential at one synapse
by another synaptic input is relatively small in general, second-order truncation of
the perturbation series is sufficient to capture the nonlinear dendritic integration
effect, leading to the bilinear dendritic integration rule. In the nonlinear case of
active dendrites, there is no Green’s function; thus the direct verification of the
second-order perturbation scheme is challenging. However, in certain active den-
drite cases, the bilinear integration rule derived from the perturbation scheme in the
passive dendrite case can still be verified numerically, indicating the validity of the
perturbation scheme beyond the case of passive dendrites. The bilinear rule breaks
down when the interaction between the synaptic inputs is too strong to be captured
by the second-order perturbation scheme, e.g., when a dendritic spike is generated
near the 7 input location as shown in Figure [3.3(C). Therefore, a practical way to
validate the perturbation method is either to check the level of dendritic activities,
or alternatively to check the validity of the bilinear integration rule that requires
the second-order perturbation solutions to hold.

It is expected that our theoretical and computational framework can be extended
to study many other important scientific questions related to dendritic functions.
For instance, using the same framework presented in this paper, we have identi-
fied the severe drawback of conductance measurement using traditional clamping
methods. In addition, we have developed methods to recover both the effective and
local synaptic conductances under somatic voltage clamp or current clamp. By
overcoming the challenge of the space clamp effect, the recovery of the synaptic
conductance from voltage measurements is an important step toward understanding
neuronal dendritic computation. This work will be published elsewhere.

Despite the successful analysis to understand dendritic integration, there remain
some questions for future investigations. First, the bilinear dendritic integration
rule identified in our work demonstrates that the interaction of multiple inputs can
be decomposed into the summation of pairwise interactions for all pairs of synaptic
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inputs. Numerical simulation shows that this rule may break down when the real-
istic neuron receives hundreds of synaptic inputs in a short time window. In such a
case, the bilinear integration must be modified by taking into account higher-order
interactions. Second, as the perturbation analysis is performed in the passive cable
model, the derived bilinear integration rule may break down when strong nonlinear-
ity occurs on the dendrites, including dendritic spikes and plateau potentials. The
description of active dendritic computation requires the modification of the current
form of the dendritic integration rule. Third, the dendritic integration studied in
this work is limited to the subthreshold regime without accounting for active chan-
nels associated with spike generation. This limitation can possibly be overcome by
modeling spike generation through a firing threshold such as integrate-and-fire rep-
resentations. To fully understand neuronal dendritic integration, all these questions
require further investigation, which goes beyond the regular perturbation analysis
performed in this work.
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