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ABSTRACT 

Touch interactions with current mobile devices have limited 
expressiveness. Augmenting devices with additional degrees of 
freedom can add power to the interaction, and several 
augmentations have been proposed and tested. However, there is 
still little known about the effects of learning multiple sets of 
augmented interactions that are mapped to different applications. 
To better understand whether multiple command mappings can 
interfere with one another, or affect transfer and retention, we 
developed a prototype with three pushbuttons on a smartphone case 
that can be used to provide augmented input to the system. The 
buttons can be chorded to provide seven possible shortcuts or 
transient mode switches. We mapped these buttons to three 
different sets of actions, and carried out a study to see if multiple 
mappings affect learning and performance, transfer, and retention. 
Our results show that all of the mappings were quickly learned and 
there was no reduction in performance with multiple mappings. 
Transfer to a more realistic task was successful, although with a 
slight reduction in accuracy. Retention after one week was initially 
poor, but expert performance was quickly restored. Our work 
provides new information about the design and use of chorded 
buttons for augmenting input in mobile interactions. 

Keywords: Augmented interaction; modes; chording interfaces. 

Index Terms: H.5.m. Information interfaces and presentation (e.g., 
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1 INTRODUCTION 

Mobile touchscreen devices such as smartphones, tablets, and 
smartwatches are now ubiquitous. The simplicity of touch-based 
interaction is one of the main reasons for their popularity, but touch 
interfaces have low expressiveness – they are limited in terms of 
the number of actions that the user can produce in a single input. 
As a result, touch interactions often involve additional actions to 
choose modes or to navigate menu hierarchies. 

These limitations on touch input can be addressed by adding new 
degrees of freedom to touch devices. For example, both Android 
and IOS devices have augmentations that allow the user to specify 
the difference between scrolling and selecting: Android uses a 
timeout on the initial touch (i.e., a drag starts with either a short 
press or a long press), and some IOS devices use pressure-sensitive 

screens that use different pressure levels to specify selection and 
scrolling [13]. Researchers have also proposed adding a wide 
variety of new degrees of freedom for touch devices – including 
multi-touch and bimanual input [16],[32],[42], external buttons and 
force sensors [44], back-of-device touch [3], sensors for pen state 
[26] or screen tilt [39],[43], and pressure sensors [8],[9].  

Studies have shown these additional degrees of freedom to be 
effective at increasing the expressive power of interaction with a 
mobile device. However, previous research has only looked at these 
new degrees of freedom in single contexts, and as a result we know 
little about how augmented input will work when it is used in 
multiple different applications: if an augmented input is mapped to 
a set of actions that are specific to one application, will there be 
interference when the same augmentations are mapped to a 
different set of actions in another application? 

To find out how multiple mappings for a new degree of freedom 
affect learning and usage for one type of augmentation, we carried 
out a study with a device that provides three buttons on the side of 
a smartphone case. The buttons can be chorded, giving seven inputs 
that can be used for discrete commands or transient modes. We 
developed three different mappings for these chording buttons for 
three different contexts: shortcuts for a launcher app, colour 
selections for a drawing app; and modes for a text-editing app. Our 
study looked at three issues: first, whether learning multiple 
mappings with the chorded buttons would interfere with learning 
or accuracy; second, whether people could transfer their learning 
from training to usage tasks that set the button commands into more 
complex and realistic activities; and third, whether memory of the 
multiple mappings would be retained over one week, without any 
intervening practice. 

Our evaluation results provide new insights into the use of 
chorded buttons as augmented input for mobile devices: 

 Learning multiple mappings did not reduce performance – 
people were able to learn all three mappings well, and 
actually learned the second and third mappings significantly 
faster than the first; 

 Multiple mappings did not reduce accuracy – people were 
as accurate on a memory test with three mappings as they 
were when learning the individual mappings; 

 Performance did transfer from training to more realistic 
usage tasks, although accuracy decreased slightly; 

 Retention after one week was initially poor (accuracy was 
half that of the first session), but performance quickly 
returned to near-expert levels. 

Our work provides two main contributions. First, we show that 
chorded button input is a successful way to provide a rich input 
vocabulary that can be used with multiple applications. Second, we 
provide empirical evidence that mapping augmented input to 
multiple contexts does not impair performance. Our results provide 
new evidence that augmented input can realistically increase the 
expressive power of interactions with mobile devices. 
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2 RELATED WORK 

2.1 Increasing Interaction Expressiveness 

HCI researchers have looked at numerous ways of increasing the 
richness of interactions with computer systems and have proposed 
a variety of methods including new theories of interaction, new 
input devices and new combinations of existing devices, and new 
ways of organizing interaction. Several researchers have proposed 
new frameworks and theories of interaction that provide 
explanatory and generative power for augmented interactions. For 
example, several conceptual frameworks of input devices and 
capabilities exist (e.g., [7],[19],[22],[23]), and researchers have 
proposed new paradigms of interaction (e.g., for eyes-free 
ubiquitous computing [29] or for post-WIMP devices [4],[5],[24]) 
that can incorporate different types of augmentation. Cechanowicz 
and colleagues also created a framework specifically about 
augmented interactions [9]; they suggest several ways of adding to 
an interaction, such as adding states to a discrete degree of freedom, 
adding an entirely new degree of freedom, or “upgrading” a discrete 
degree of freedom to use continuous input.  

2.2 Chorded Text Input 

Chorded input for text entry has existed for many years (e.g., 
stenographic machines for court reporters, or Engelbart and 
English’s one-hand keyboard in the NLS system [6]). Researchers 
have studied several issues in chorded text input, including 
performance, learning, and device design.  

A longitudinal study of training performance with the Twiddler 
one-handed keyboard [30] showed that users can learn chorded 
devices and can gain a high level of expertise. The study had 10 
participants train for 20 sessions of 20 minutes each; results showed 
that by session eight, chording was faster than the multi-tap 
technique, and that by session 20, the mean typing speed was 26 
words per minute. Five participants who continued the study to 25 
hours of training had a mean typing speed of 47 words per minute 
[30]. Because this high level of performance requires substantial 
training time, researchers have also looked at ways of reducing 
training time for novices. For example, studies have investigated 
the effects of using different types of phrase sets in training [31], 
and the effects of feedback [39],[46]. 

Several chording designs have been demonstrated for text entry 
on keypad-style mobile phones. The ChordTap system added 
external buttons to the phone case [44]; to type a letter, the 
dominant hand selects a number key on the phone (which 
represents up to four letters) and the non-dominant hand presses the 
chording keys to select a letter within the group. A study showed 
that the system was quickly learned, and outperformed multi-tap. A 
similar system used three of the keypad buttons to select the letter 
within the group, allowing chorded input without external buttons 
[33]. The TiltText prototype used the four directions of the phone’s 
tilt sensor to choose a letter within the group [43]. 

2.3 Chorded Input for Touch 

Other types of chording have also been seen in multi-touch devices, 
where combinations of fingers are used to indicate different states. 
Several researchers have looked at multi-touch input for menu 
selection. For example, finger-count menus use the number of 
fingers in two different areas of the touch surface to indicate a 
category (with the left hand) and an item within that menu (with the 
right hand) [2]. Two-handed marking menus [26] also divide the 
screen into left and right sections, with a stroke on the left side 
selecting the submenu and a stroke on the right selecting the item. 
Multitouch marking menus [27] combine these two approaches, 
using vision-based finger identification to increase the number of 
possible combinations. Each multi-finger chord indicates which 
menu is to be displayed, and the subsequent direction in which the 

touch points are moved indicates the item to be selected. 
HandMarks [41] is a bimanual technique that uses the left hand on 
the surface as a reference frame for selecting menu items with the 
right hand. FastTap uses chorded multitouch to switch to menu 
mode and simultaneously select an item from a grid menu [17].  

Other kinds of chording have also been investigated with touch 
devices. The BiTouch system was a general-purpose technique that 
allowed touches from the supporting hand to be used in conjunction 
with touches from the dominant hand [41]. Olafsdottir and Appert 
[32] developed a taxonomy of multi-touch gestures (including 
chords), and Ghomi and colleagues [12] developed a training 
technique for learning multi-touch chords. Finally, multi-finger 
input on a phone case was also shown by Wilson and Brewster [44], 
who developed a prototype with pressure sensors under each finger 
holding the phone; input could involve single fingers or 
combinations of fingers (with pressure level as an added DoF).  

2.4 Augmenting Touch with Other Degrees of Freedom 

Researchers have also developed touch devices and techniques that 
involve other types of additional input, including methods for 
combining pen input with touch [20], using vocal input [18], using 
the back of the device as well as the front [3], using tilt state with a 
directional swipe on the touch surface to create an input vocabulary 
[39], or using a phone’s accelerometers to enhance touch and create 
both enhanced motion gestures (e.g., one-handed zooming by 
combining touch and tilt), and more expressive touch [21]. 

2.5 Augmented Input for Mode Selection 

Enhanced input can also address issues with interface modes, which 
are often considered to be a cause of errors [35]. Modes can be 
persistent or “spring loaded” (also called quasimodes [35]); these 
are active only when the user maintains a physical action (e.g., 
holding down a key), and this kinesthetic feedback can help people 
remember that they are in a different mode [37]. 

When interfaces involve persistent modes, several means for 
switching have been proposed. For example, Li and colleagues [26] 
compared several mode-switch mechanisms for changing from 
inking to gesturing with a stylus: a pen button, a separate button in 
the non-dominant hand, a timeout, pen pressure, and the eraser end 
of the pen. They found that a button held in the other hand was 
fastest and most preferred, and that the timeout was slow and error 
prone [26]. Other researchers have explored implicit modes that do 
not require an explicit switch: for example, Chu and colleagues 
created pressure-sensitive “haptic conviction widgets” that allow 
either normal or forceful interaction to indicate different levels of 
confidence [9]. Similarly, some IOS devices use touch pressure to 
differentiate between actions such as selection and scrolling [13]. 

Many techniques add new sensing capabilities to create the 
additional modes – for example, pressure sensors have also been 
used to enhance mouse input [8] and pen-based widgets [32]; three-
state switches were added to a mouse to create pop-through buttons 
[46]; and height sensing was used to enable different actions in 
different height layers (e.g., the hover state of a pen [11], or the 
space above a digital table [38]). Other techniques use existing 
sensing that is currently unused in an interaction. For example, 
OrthoZoom exploits the unused horizontal dimension in a standard 
scrollbar to add zooming (by moving the pointer left or right) [1].  

Despite the work that has been carried out in this area, there is 
relatively little research on issues of interference, transfer, or 
retention for augmented interfaces – particularly with multiple 
mappings. The study below provides initial baseline information 
for these issues – but first, we describe the design and construction 
of the prototype that we used as the basis for our evaluation. 



3 CHORDING PHONE CASE PROTOTYPE 

In order to test learning, interference, and retention, we developed 
a prototype that adds three hardware buttons to a custom-printed 
phone case and makes the state of those buttons available to 
applications. This design was chosen because it would enable 
mobile use and provide a large number of states. 

3.1 Hardware  

We designed and 3D-printed a case for an Android Nexus 5 phone, 
with a compartment mounted on the back to hold the circuit boards 
from three Flic buttons (Bluetooth LE buttons made by Shortcut 
Labs). The Flic devices can be configured to perform various 
predetermined actions when pressed; Shortcut Labs also provides 
an Android API for using the buttons with custom software.  

We removed the PCBs containing the Bluetooth circuitry, and 
soldered new buttons to the PCBs (Figure 1). The new pushbuttons 
are momentary switches (i.e., they return to the “off” state when 
released) with 11mm-diameter push surfaces and 5mm travel. We 
tested several button styles and sizes, in order to find devices that 
were comfortable to push, that provided tactile feedback about the 
state of the press, and that were small enough to fit under three 
fingers. This design allows us to use the Flic Bluetooth events but 
with buttons that can be mounted closer together. The new buttons 
do not require any changes to our use of the API. 

The prototype is held as a normal phone with the left hand, with 
the index, middle, and ring fingers placed on the pushbuttons 
(Figure 2). The pushbuttons are stiff enough that these three fingers 
can also grip the phone without engaging the buttons; the fifth 
finger of the left hand can be placed comfortably on the phone case, 
adding stability when performing chorded button combinations. 
We also tested a four-button version, but there were too many 
erroneous presses because of the user needing to grip the phone. 
Finally, we note that the button housing on our prototype was larger 
than would be required by a commercial device; we estimate that 
the hardware could easily be built into a housing that is only 
marginally larger than a typical phone case. 

  

Figure 1: Chording prototype. Left: button housing. Right: Flic 
Bluetooth PCBs (inset shows pushbutton). 

The prototype worked well in our study sessions. No participant 
complained of fatigue or difficulty (although we observed a few 
difficulties matching the timeout period, as described below). The 
phone case was easy to hold, and the button positions were 
adequate for the hand sizes of our participants. Pressing the buttons 
in chords did not appear to cause difficulty for any participant 
(although with some timing issues, as described later). 

3.2 Software and Chord Identification 

We wrote a simple wrapper library for Android to attach callback 
functions to the buttons through the Flic API. Android applications 
can poll the current combined state of the buttons through this 
library wrapper. Callback functions attached through the wrapper 
library are put on a short timer, allowing time for multiple buttons 
to be depressed before executing the callback. In all the applications 
we created, we assigned a single callback function to all the 
buttons; this function checks the state of all buttons and determines 
the appropriate behavior based on the combined state. 

Identifying chords represents an interpretation problem for any 
input system. When only individual buttons can be pressed, 
software can execute actions as soon as the signal has been received 
from any button. When chorded input is allowed, however, this 
method is insufficient, because users do not press all of the buttons 
of a chord at exactly the same time. Therefore, we implemented a 
200ms wait time (determined through informal testing) before 
processing input after an initial button signal – after this delay, the 
callback read the state of all buttons, and reported the combined 
pattern (i.e., a chord or a single press). Once an input is registered, 
all buttons must return to their “off” states before another input. 

With three buttons, the user can specify eight states – but in our 
applications, we assume that there is a default state that corresponds 
to having no buttons pressed. This approach prevents the user from 
having to maintain pressure on the buttons during default operation.  

4 EVALUATION 

We carried out a study of our chording system to investigate our 
three main research questions: 
 Interference: does learning additional mappings with the same 

buttons reduce learning or accuracy? 
 Transfer: is performance maintained when users move from 

training to usage tasks that set the button commands into more 
realistic activities? 

 Retention: does memory of the command mappings persist 
over one week (without intervening practice)? 

We chose not to compare to a baseline (e.g., GUI-based commands) 
for two reasons: first, in many small-screen devices screen space is 
at a premium, and dedicating a part of the screen to interface 
components is often not a viable alternative; second, command 
structures stored in menus or ribbons (which do not take additional 
space) have been shown to be significantly slower than memory-
based interfaces in several studies (e.g., [2][17][41]).  

To test whether learning multiple mappings interferes with 
learning rate or accuracy, we created a training application to teach 
three mappings to participants: seven application shortcuts (Apps), 
seven colors (Colors), and seven text-editing commands (Text) 
(Table 1). Participants learned the mappings one at a time, as this 
fits the way that users typically become expert with one application 
through frequent use, then become expert with another. 

To further test interference, after all mappings were learned we 
gave participants a memory test to determine whether they could 
remember individual commands from all of the mappings. This test 
corresponds to scenarios where users switch between applications 
and must remember different mappings at different times. 

To test whether the mappings learned in the training system 
would transfer, we asked participants to use two of the mappings in 
simulated usage tasks. Colors were used in a drawing program 
where participants were asked to draw shapes in a particular line 
color, and Text commands were used in a simple editor where 
participants were asked to manipulate text formatting.  

To test retention, we recruited a subset of participants to carry 
out the memory test and the usage tasks a second time, one week 
after the initial session. Participants were not told that they would 
have to remember the mappings, and did not practice during the 
intervening week. 



Table 1. Button patterns and mappings. 

Buttons Pattern Color Command App 
1 ●○○ Red Copy Contacts 
2 ○●○ Green Paste Browser 
3 ○○● Blue Italic Phone 

1+2 ●●○ Yellow Small font Maps 
1+3 ●○● Magenta Bold Camera 
2+3 ○●● Cyan Large E-Mail 

1+2+3 ●●● Black Select Calendar 
0 ○○○ <panning> <scrolling> <none> 

4.1 Part 1: Learning Phase 

The first part of the study had participants learn and practice the 
mappings over ten blocks of trials. The system displayed a target 
item on the screen, and asked the user to press the appropriate 
button combination for that item (see Figure 2). The system 
provided feedback about the user’s selection (Figure 2, bottom of 
screen); when the user correctly selected the target item, the played 
a short tone, and the system moved on to the next item. Users could 
consult a dialog that displayed the entire current mapping but had 
to close the dialog to complete the trial. The system presented each 
item in the seven-item mapping twice per block (sampling without 
replacement), and continued for ten blocks. The same system was 
used for all three mappings, and recorded selection time as well as 
any incorrect selections (participants continued their attempts until 
they selected the correct item). 

 

Figure 2: Training system showing Apps mapping (target at center 
of screen, selection feedback at bottom). Training for Color 

and Text mappings was similar. 

4.2 Part 2: Usage Tasks 

We created two applications (Drawing and TextEdit) to test usage 
of two mappings in larger and more complex activities.  

Drawing. The Drawing application (Figure 3) is a simple paint 
program that uses the chord buttons to control line color (see Table 
1). The application treated the button input as a set of spring-loaded 
modes – that is, the drawing color was set based on the current state 
of the buttons, and was unset when the buttons were released. For 
example, to draw a red square as shown in Figure 3, users held 
down the first button with their left hand and drew the square with 
their right hand; when the button was released, the system returned 
to its default mode (where touch was interpreted as panning). If the 
user released the buttons in the middle of a stroke, the line colour 
changed back to default grey.  

For each task in the Drawing application, a message on the screen 
asked the participant to draw a shape in a particular color. Tasks 
were grouped into blocks of 14, with each color appearing twice 

per block. A task was judged to be complete when the participant 
drew at least one line with the correct color (we did not evaluate 
whether the shape was correct, but participants did not know this). 
Participants completed three blocks in total. 

 

Figure 3: Drawing Task 

TextEdit. The TextEdit application asked users to select lines of text 
and apply manipulations such as cutting and pasting the text, setting 
the style (bold or italic), and increasing or decreasing the font size. 
Each of these six manipulations was mapped to a button 
combination. The seventh action for this mapping was used for 
selection, implemented as a spring-loaded mode that was combined 
with a touch action. We mapped selection to the combination of all 
three buttons since selection had to be carried out frequently – and 
this combination was easy to remember and execute. 

For each TextEdit task, the lines on the screen told the user what 
manipulations to make to the text (see Figure 4). Each task asked 
the participant to select some text and then perform a manipulation. 
There were six manipulations in total, and we combined copy and 
paste into a single task, so there were five tasks. Tasks were 
repeated twice per block, and there were four blocks. Tasks were 
judged to be correct when the correct styling was applied; if the 
wrong formatting was applied, the user had to press an undo button 
to reset the text to its original form, and perform the task again. 

 

Figure 4: TextEdit task after selecting text. 

4.3 Part 3: Memory Test 

The third stage of the study was a memory test that had a similar 
interface to the learning system described above. The system gave 
prompts for each of the 21 commands in random order (Apps, 



Colors, and Text were mixed together, and sampled without 
replacement). Participants pressed the button combination for each 
prompt, but no feedback was given about what was selected, or 
whether their selection was correct or incorrect. Participants were 
only allowed to answer once per prompt, and after each response 
the system moved to the next item.  

4.4 Part 4: Retention 

To determine participants’ retention of the mappings, after the 
study was over we recruited 8 of the 15 participants to return to the 
lab after one week to carry out the memory test and the usage tasks 
again (two blocks of each of the drawing and text tasks). 
Participants were not told during the first study that they would be 
asked to remember the mappings beyond the study; participants for 
the one-week follow-up were recruited after the initial data 
collection was complete. The usage and memory tests operated as 
described above. 

4.5 Procedure 

After completing an informed consent form and a demographics 
questionnaire, participants were shown the system and introduced 
to the use of the external buttons. Participants were randomly 
assigned to a mapping-order condition (counterbalanced using a 
Latin square), and then started the training tasks for their first 
mapping. Participants were told that both time and accuracy would 
be recorded but were encouraged to use their memory of the chords 
even if they were not completely sure. After the Color and Text 
mappings, participants also completed the usage tasks as described 
above (there was no usage task for the Apps mapping). After 
completing the learning and tasks with each mapping, participants 
filled out an effort questionnaire based on the NASA-TLX survey. 
After all mappings, participants completed the memory test. 

For the retention test, participants filled out a second consent 
form, then completed the memory test with no assistance or 
reminder of the mappings. They then carried out two blocks of each 
of the usage tasks (the Drawing and TextEdit apps had the same 
order as in the first study). 

4.6 Participants and Apparatus 

Fifteen participants were recruited from the local university 
community (8 women, 7 men, mean age 28.6). All participants 
were experienced with mobile devices (more than 30min/day 
average use). All but one of the participants was right-handed, and 
the one left-handed participant stated that they were used to 
operating mobile devices in a right-handed fashion. 

The study used the chording prototype described above. Sessions 
were carried out with participants seated at a desk, holding the 
phone (and operating the chording buttons) with their left hands. 
The system recorded all performance data; questionnaire responses 
were entered on a separate PC. 

4.7 Design 

The main study used two 3x10 repeated-measures designs. The first 
looked at differences across mappings, and used factors Mapping 
(Apps, Colors, Text) and Block (1-10). The second looked at 
interference by analyzing differences by the position of the 
mapping in the overall sequence, and used factors Position (first, 
second, third) and Block (1-10). For the memory tests, we used a 
21x3x7 design with several planned comparisons; factors were Item 
(the 21 items shown in Table 1), Pattern (the 7 button patterns 
shown in column 2 of Table 1), and Mapping (Apps, Colors, Text).  

Dependent variables were selection time, accuracy (the 
proportion of trials where the correct item was chosen on the first 
try), and errors.  

5 RESULTS 

No outliers were removed from the data. In the following analyses, 
significant ANOVA results report partial eta-squared (𝜂ଶ) as a 
measure of effect size (where .01 can be considered small, .06 
medium, and > .14 large [11]). We organize the results below 
around the main issues under investigation: training performance 
when learning three different mappings, interference effects, 
transfer performance, and retention after one week. 

5.1 Training: Learning Rate, Accuracy, and Effort 

Selection time. Overall, mean selection times for the three 
mappings were 2626ms for Apps (s.d. 2186), 2271 for Colors (s.d. 
2095, and 2405 for Text (s.d. 2193). A 3x10 (Mapping x Block) 
RM-ANOVA showed no effect of Mapping (F2,28=1.06, p=0.36). 
As Figure 5 shows, selection times decreased substantially across 
trial blocks; ANOVA showed a significant main effect of Block 
(F9,126=42.3, p<0.0001, η2=0.40). There was no interaction 
(F18,252=0.40, p=0.98). 

 

Figure 5: Mean selection time (±s.e.), by block and mapping 

Accuracy. Across all blocks, the proportion of trials where the 
correct item was chosen first was 0.83 for both Apps and Colors 
and 0.84 for Text (all s.d. 0.37). RM-ANOVA showed no effect of 
Mapping (F2,28=0.019, p=0.98), but again showed a significant 
effect of Block (F9,126=4.42, p<0.001, η2=0.09), with no interaction 
(F18,252=0.71, p=0.78). Overall error rates (i.e., the total number of 
selections per trial, since participants continued to make selections 
until they got the correct answer) for all mappings were low: 0.25 
errors / selection for Apps, 0.26 for Colors, and 0.24 for Text. 

 

Figure 6: Mean accuracy (±s.e.) by block and mapping. 

During the sessions we identified a hardware-based source of error 
that reduced accuracy. The 200ms timeout period in some cases 
caused errors when people held the buttons for the wrong period of 
time, when the Bluetooth buttons did not transmit a signal fast 
enough, or when people formed a chord in stages. This issue 
contributes to the accuracy rates shown above: our observations 



indicate that people had the button combinations correctly 
memorized but had occasional problem in producing the 
combination with the prototype. We believe that this difficulty can 
be fixed by adjusting our timeout values and by using an embedded 
microprocessor to read button states (to avoid Bluetooth delay).  

Perceived Effort. Responses to the TLX effort questionnaire are 
shown in Figure 7; overall, people felt that all of the mappings 
required relatively low effort. Friedman rank sum tests showed only 
one difference between mappings – people saw themselves as being 
less successful with the Apps mapping (χ2=7, p=0.030). 

 

Figure 7: NASA-TLX responses (±s.e.), by mapping 

In the end-of-session questionnaire, 12 participants stated that 
Colors were easiest to remember (e.g., one person stated “colours 
were easier to remember” and another said that “memorizing the 
colours felt the easiest”).  

5.2 Interference 1: Effects of Learning New Mappings 

To determine whether learning a second and third mapping would 
be hindered because of the already-memorized mappings, we 
analysed the performance data based on whether the mapping was 
the first, second, or third to be learned. Figure 9 shows selection 
time over ten blocks for the first, second, and third mappings (the 
specific mapping in each position was counterbalanced).  

Selection time. A 3x10 RM-ANOVA looked for effects of 
position in the sequence on selection time. We did find a significant 
main effect of Position (F2,28=19.68, p<0.0001, η2=0.22), but as 
shown in Figure 8, the second and third mappings were actually 
faster than the first mapping. Both subsequent mappings were faster 
than the first; follow-up t-tests with Bonferroni correction show 
that these differences are significant, p<0.01). The difference was 
more obvious in the early blocks (indicated by a significant 
interaction between Position and Block, F18,252=4.63, p<0.0001, 
η2=0.14). These findings suggest that adding new mappings for the 
same buttons does not impair learning or performance for 
subsequent mappings. 

 

Figure 8: Mean selection time (±s.e.), by position and block. 

Accuracy. We carried out a similar 3x10 RM-ANOVA to look for 
effects on accuracy (Figure 9). As with selection time, performance 
was worse with the first mapping (accuracy 0.8) than the second 
and third mappings (0.85 and 0.86). ANOVA showed a main effect 
of Position on accuracy (F2,28=7.18, p=0.003, η2=0.072), but with 
no Position x Block interaction (F18,252=1.20, p=0.051).  

 

Figure 9: Mean accuracy (±s.e.), by position and block.  

5.3 Interference 2: Memory Test with All Mappings 

The third stage of the study was the memory test, in which 
participants selected each of the 21 commands from all three 
mappings, in random order. Participants answered once per item 
with no feedback. The overall accuracy was 0.87 (0.86 for Apps, 
0.86 for Colors, and 0.89 for Text); see Figure 11. Note that this 
accuracy is higher that seen with the individual mappings during 
the training sessions. 

To determine whether there were differences in accuracy for 
individual items, mappings, or button patterns, we carried out a 
21x3x7 (Item x Mapping x Pattern) RM-ANOVA. We found no 
significant effects of any of these factors (for Item, F20,240=1.55, 
p=0.067; for Mapping: F2,24=0.43, p=0.65; for Pattern, 
F6,12=0.0004, p=0.99), and no interactions. 

 

Figure 10: Memory test 1. Mean accuracy (±s.e.), by item 
and mapping. Button patterns shown in parentheses for each 

item. 

Figure 10 also shows that multi-finger chords are not substantially 
different from single-finger button presses. Accuracy was only 
slightly lower with the (101) and (011) patterns than the single-
finger patterns, and the one three-finger pattern (111) had an 
accuracy above 90% for two of the three mappings. 



5.4 Transfer: Performance Transfer to Usage Tasks 

After learning the Color and Text mappings, participants carried 
out usage tasks in the TextEdit and Drawing applications. Accuracy 
results are summarized in Figure 10 (note that the text task had four 
blocks, and the drawing task had three blocks). Accuracy in the 
usage tasks ranged from 0.7 to 0.8 across the trial blocks – slightly 
lower than the 0.8-0.9 accuracy seen in the training stage of the 
study. It is possible that the additional mental requirements of the 
task (e.g., determining what to do, working with text, drawing lines) 
disrupted people’s memory of the mappings – but the overall 
difference was small. 

 

Figure 11: Mean accuracy (±s.e.), by task and block. 

5.5 Retention: Performance After One Week 

The one-week followup asked eight participants to carry out the 
memory test and two blocks of each of the usage tasks, to determine 
whether participants’ memory of the mappings had persisted 
without any intervening practice (or even any knowledge that they 
would be re-tested). Overall, the follow-up showed that accuracy 
decayed substantially over one week – but that participants quickly 
returned to their previous level of expertise once they started the 
usage tasks. In the memory test, overall accuracy dropped to 0.49 
(0.43 for Apps, 0.50 for Colors, and 0.54 for Text), with some 
individual items as low as 10% accuracy. Only two items 
maintained accuracy above 0.85 – “Red” and “Copy”.  

The two usage tasks (Drawing and Text editing) were carried out 
after the memory test, and in these tasks, participant accuracy 
recovered considerably. In the first task (immediately after the 
memory test), participants had an overall 0.60 accuracy in 
selection; and by the second block, performance rose to accuracy 
levels similar to the first study (for Drawing, 0.82; for Text, 0.70).  

This follow-up study is limited – it did not compare retention 
when learning only one mapping, so it is impossible to determine 
whether the decay arose because of the number of overloaded 
mappings learned in the first study. However, the study shows that 
retention is an important issue for designers of chorded memory-
based techniques. With only a short training period (less than one 
hour for all three mappings) appears to be insufficient to ensure 
retention after one week with no intervening practice; however, in 
an ecological context users would likely use the chords more 
regularly. In addition, participants’ memory of the mappings was 
restored after only a few minutes of use. 

6 DISCUSSION 

Our study provides several main findings: 
 The training phase showed that people were able to learn all 

three mappings quickly (performance followed a power law), 
and were able to achieve 90% accuracy after training; 

 Overloading the buttons with three mappings did not cause 
any problems for participants – the second and third mappings 

were learned faster than the first, and there was no difference 
in performance across the position of the learned mappings; 

 People were able to successfully transfer their expertise from 
the training system to the usage tasks – although performance 
dropped by a small amount; 

 Performance in the memory test, which mixed all three 
mappings together, was very strong, with many of the items 
remembered at near 100% accuracy; 

 Retention over one week without any intervening practice was 
initially poor (about half the accuracy of the first memory test), 
but recovered quickly in the usage tasks to near the levels seen 
in the first sessions. 

In the following paragraphs we discuss the reasons for our results, 
and comment on how our findings can be generalized and used in 
the design of richer touch-based interactions. 

6.1 Reasons for results 

People’s overall success in learning to map twenty-one total items 
to different button combinations is not particularly surprising – 
evidence from other domains such as chording keyboards suggests 
that with practice, humans can be very successful in this type of 
task. It is more interesting, however, that these 21 items were 
grouped into three overloaded sets that used the same button 
combinations – and we did not see any evidence of interference 
between the mappings. One reason for people’s success in learning 
with multiple button mappings may be that the contexts of the three 
mappings were quite different, and there were few conceptual 
overlaps in the semantics of the different groups of items (e.g., 
colors and application shortcuts are quite different in the ways that 
they are used). However, there are likely many opportunities in 
mobile device use where this type of clean separation of semantics 
occurs – suggesting that overloading can be used to substantially 
increase the expressive power of limited input. 

People were also reasonably successful in using the learned 
commands in two usage tasks. This success shows that moving to 
more realistic tasks does not substantially disrupt memories built 
up during a training exercise – although it is likely that the added 
complexity of the tasks caused the reduction in accuracy compared 
to training. The overall difference between the training and usage 
environments was relatively small, however; more work is needed 
to examine transfer effects to real-world use. 

The relatively low accuracy of our system (between 80% and 
90%) is a potential problem for real-world use. The error rate in our 
device may have been inflated due to the timeout issue described 
above; further work is needed to investigate ways of reducing this 
cause of error. We note, however, that there are still situations in 
which techniques with non-perfect accuracy can still be effective 
(such as interface for setting non-destructive parameters and 
states).  

Finally, the additional decay in memory of the mappings over 
one week may simply be an effect of the human memory system – 
our training period was short, and early studies on “forgetting 
curves” show approximately similar decay to what we observed. It 
is likely that in real-world settings, the frequency of mobile phone 
use would have provided intervening practice that would have 
maintained users’ memory – but this issue requires further study.  

6.2 Limitations and opportunities for future work 

The main limitations of our work are in the breadth and realism of 
our evaluations, and in the physical design of the prototype. First, 
although our work takes important steps towards ecological validity 
for augmented input, our study was still a controlled experiment. 
We designed the study to focus on real-world issues of interference, 
transfer, and retention but the realism of our tasks was relatively 
low. Therefore, a critical area for further work is in testing our 
system with real tasks in real-world settings. The Flic software 



allows us to map button inputs to actions in real Android 
applications, so we plan to have people use the next version of the 
system over a longer time period and with their own applications.  

Second, it is clear that additional engineering work can be done 
to improve both the ergonomics and the performance of the 
prototype. The potential errors introduced by our 200ms timeout 
are a problem that can likely be solved, but the timeout caused other 
problems as well – once participants were expert with the 
commands, some of them felt that holding the combination until the 
application registered the command slowed them down. Adjusting 
the timeout and ensuring that the system does not introduce 
additional errors is an important area for our future work. We also 
plan to experiment with different invocation mechanisms (e.g., 
selection on button release) and with the effects of providing 
feedback as the chord is being produced. 

An additional opportunity for future work that was identified by 
participants during the study is the potential use of external chorded 
buttons as an eyes-free input mechanism. The button interface 
allows people to change input modes without shifting their visual 
attention from the current site of work, and also allows changing 
tools without needing to move the finger doing the drawing (and 
without occluding the workspace with menus or toolbars). 

7 CONCLUSION 

Expressiveness is limited in mobile touch interfaces. Many 
researchers have devised new ways of augmenting these 
interactions, but there is still little understanding of issues of 
interference, transfer, and retention for augmented touch 
interactions, particularly those that use multiple mappings for 
different usage contexts. To provide information about these issues 
with one type of augmented system, we developed a phone case 
with three pushbuttons that can be chorded to provide seven input 
states. The external buttons can provide quick access to command 
shortcuts and transient modes, increasing the expressive power of 
interaction. We carried out a four-part study with the system, and 
found that people can successfully learn multiple mappings of 
chorded commands, and can maintain their expertise in more-
complex usage tasks (although overall accuracy was low). 
Retention was also an important issue – accuracy dropped over one 
week, but was quickly restored after a short period of use. Our work 
provides new knowledge about the use of chorded input, and shows 
that adding simple input mechanisms such as chording buttons have 
promise as a way to augment mobile interactions. 
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