
Learning Multiple Mappings: an Evaluation of Interference,

Transfer, and Retention with Chorded Shortcut Buttons

Carl Gutwin†, Carl Hofmeister†, David Ledo‡, and Alix Goguey*
†University of Saskatchewan

‡University of Calgary

*Grenoble Alpes University

ABSTRACT

Touch interactions with current mobile devices have limited
expressiveness. Augmenting devices with additional degrees of
freedom can add power to the interaction, and several
augmentations have been proposed and tested. However, there is
still little known about the effects of learning multiple sets of
augmented interactions that are mapped to different applications.
To better understand whether multiple command mappings can
interfere with one another, or affect transfer and retention, we
developed a prototype with three pushbuttons on a smartphone case
that can be used to provide augmented input to the system. The
buttons can be chorded to provide seven possible shortcuts or
transient mode switches. We mapped these buttons to three
different sets of actions, and carried out a study to see if multiple
mappings affect learning and performance, transfer, and retention.
Our results show that all of the mappings were quickly learned and
there was no reduction in performance with multiple mappings.
Transfer to a more realistic task was successful, although with a
slight reduction in accuracy. Retention after one week was initially
poor, but expert performance was quickly restored. Our work
provides new information about the design and use of chorded
buttons for augmenting input in mobile interactions.

Keywords: Augmented interaction; modes; chording interfaces.

Index Terms: H.5.m. Information interfaces and presentation (e.g.,
HCI)

1 INTRODUCTION

Mobile touchscreen devices such as smartphones, tablets, and
smartwatches are now ubiquitous. The simplicity of touch-based
interaction is one of the main reasons for their popularity, but touch
interfaces have low expressiveness – they are limited in terms of
the number of actions that the user can produce in a single input.
As a result, touch interactions often involve additional actions to
choose modes or to navigate menu hierarchies.

These limitations on touch input can be addressed by adding new
degrees of freedom to touch devices. For example, both Android
and IOS devices have augmentations that allow the user to specify
the difference between scrolling and selecting: Android uses a
timeout on the initial touch (i.e., a drag starts with either a short
press or a long press), and some IOS devices use pressure-sensitive

screens that use different pressure levels to specify selection and
scrolling [13]. Researchers have also proposed adding a wide
variety of new degrees of freedom for touch devices – including
multi-touch and bimanual input [16],[32],[42], external buttons and
force sensors [44], back-of-device touch [3], sensors for pen state
[26] or screen tilt [39],[43], and pressure sensors [8],[9].

Studies have shown these additional degrees of freedom to be
effective at increasing the expressive power of interaction with a
mobile device. However, previous research has only looked at these
new degrees of freedom in single contexts, and as a result we know
little about how augmented input will work when it is used in
multiple different applications: if an augmented input is mapped to
a set of actions that are specific to one application, will there be
interference when the same augmentations are mapped to a
different set of actions in another application?

To find out how multiple mappings for a new degree of freedom
affect learning and usage for one type of augmentation, we carried
out a study with a device that provides three buttons on the side of
a smartphone case. The buttons can be chorded, giving seven inputs
that can be used for discrete commands or transient modes. We
developed three different mappings for these chording buttons for
three different contexts: shortcuts for a launcher app, colour
selections for a drawing app; and modes for a text-editing app. Our
study looked at three issues: first, whether learning multiple
mappings with the chorded buttons would interfere with learning
or accuracy; second, whether people could transfer their learning
from training to usage tasks that set the button commands into more
complex and realistic activities; and third, whether memory of the
multiple mappings would be retained over one week, without any
intervening practice.

Our evaluation results provide new insights into the use of
chorded buttons as augmented input for mobile devices:

 Learning multiple mappings did not reduce performance –
people were able to learn all three mappings well, and
actually learned the second and third mappings significantly
faster than the first;

 Multiple mappings did not reduce accuracy – people were
as accurate on a memory test with three mappings as they
were when learning the individual mappings;

 Performance did transfer from training to more realistic
usage tasks, although accuracy decreased slightly;

 Retention after one week was initially poor (accuracy was
half that of the first session), but performance quickly
returned to near-expert levels.

Our work provides two main contributions. First, we show that
chorded button input is a successful way to provide a rich input
vocabulary that can be used with multiple applications. Second, we
provide empirical evidence that mapping augmented input to
multiple contexts does not impair performance. Our results provide
new evidence that augmented input can realistically increase the
expressive power of interactions with mobile devices.

carl.gutwin@usask.ca,
carl.hofmeister@usask.ca,
david.ledo@ucalgary.ca
alix.goguey@univ-grenoble-alpes.fr

2 RELATED WORK

2.1 Increasing Interaction Expressiveness

HCI researchers have looked at numerous ways of increasing the
richness of interactions with computer systems and have proposed
a variety of methods including new theories of interaction, new
input devices and new combinations of existing devices, and new
ways of organizing interaction. Several researchers have proposed
new frameworks and theories of interaction that provide
explanatory and generative power for augmented interactions. For
example, several conceptual frameworks of input devices and
capabilities exist (e.g., [7],[19],[22],[23]), and researchers have
proposed new paradigms of interaction (e.g., for eyes-free
ubiquitous computing [29] or for post-WIMP devices [4],[5],[24])
that can incorporate different types of augmentation. Cechanowicz
and colleagues also created a framework specifically about
augmented interactions [9]; they suggest several ways of adding to
an interaction, such as adding states to a discrete degree of freedom,
adding an entirely new degree of freedom, or “upgrading” a discrete
degree of freedom to use continuous input.

2.2 Chorded Text Input

Chorded input for text entry has existed for many years (e.g.,
stenographic machines for court reporters, or Engelbart and
English’s one-hand keyboard in the NLS system [6]). Researchers
have studied several issues in chorded text input, including
performance, learning, and device design.

A longitudinal study of training performance with the Twiddler
one-handed keyboard [30] showed that users can learn chorded
devices and can gain a high level of expertise. The study had 10
participants train for 20 sessions of 20 minutes each; results showed
that by session eight, chording was faster than the multi-tap
technique, and that by session 20, the mean typing speed was 26
words per minute. Five participants who continued the study to 25
hours of training had a mean typing speed of 47 words per minute
[30]. Because this high level of performance requires substantial
training time, researchers have also looked at ways of reducing
training time for novices. For example, studies have investigated
the effects of using different types of phrase sets in training [31],
and the effects of feedback [39],[46].

Several chording designs have been demonstrated for text entry
on keypad-style mobile phones. The ChordTap system added
external buttons to the phone case [44]; to type a letter, the
dominant hand selects a number key on the phone (which
represents up to four letters) and the non-dominant hand presses the
chording keys to select a letter within the group. A study showed
that the system was quickly learned, and outperformed multi-tap. A
similar system used three of the keypad buttons to select the letter
within the group, allowing chorded input without external buttons
[33]. The TiltText prototype used the four directions of the phone’s
tilt sensor to choose a letter within the group [43].

2.3 Chorded Input for Touch

Other types of chording have also been seen in multi-touch devices,
where combinations of fingers are used to indicate different states.
Several researchers have looked at multi-touch input for menu
selection. For example, finger-count menus use the number of
fingers in two different areas of the touch surface to indicate a
category (with the left hand) and an item within that menu (with the
right hand) [2]. Two-handed marking menus [26] also divide the
screen into left and right sections, with a stroke on the left side
selecting the submenu and a stroke on the right selecting the item.
Multitouch marking menus [27] combine these two approaches,
using vision-based finger identification to increase the number of
possible combinations. Each multi-finger chord indicates which
menu is to be displayed, and the subsequent direction in which the

touch points are moved indicates the item to be selected.
HandMarks [41] is a bimanual technique that uses the left hand on
the surface as a reference frame for selecting menu items with the
right hand. FastTap uses chorded multitouch to switch to menu
mode and simultaneously select an item from a grid menu [17].

Other kinds of chording have also been investigated with touch
devices. The BiTouch system was a general-purpose technique that
allowed touches from the supporting hand to be used in conjunction
with touches from the dominant hand [41]. Olafsdottir and Appert
[32] developed a taxonomy of multi-touch gestures (including
chords), and Ghomi and colleagues [12] developed a training
technique for learning multi-touch chords. Finally, multi-finger
input on a phone case was also shown by Wilson and Brewster [44],
who developed a prototype with pressure sensors under each finger
holding the phone; input could involve single fingers or
combinations of fingers (with pressure level as an added DoF).

2.4 Augmenting Touch with Other Degrees of Freedom

Researchers have also developed touch devices and techniques that
involve other types of additional input, including methods for
combining pen input with touch [20], using vocal input [18], using
the back of the device as well as the front [3], using tilt state with a
directional swipe on the touch surface to create an input vocabulary
[39], or using a phone’s accelerometers to enhance touch and create
both enhanced motion gestures (e.g., one-handed zooming by
combining touch and tilt), and more expressive touch [21].

2.5 Augmented Input for Mode Selection

Enhanced input can also address issues with interface modes, which
are often considered to be a cause of errors [35]. Modes can be
persistent or “spring loaded” (also called quasimodes [35]); these
are active only when the user maintains a physical action (e.g.,
holding down a key), and this kinesthetic feedback can help people
remember that they are in a different mode [37].

When interfaces involve persistent modes, several means for
switching have been proposed. For example, Li and colleagues [26]
compared several mode-switch mechanisms for changing from
inking to gesturing with a stylus: a pen button, a separate button in
the non-dominant hand, a timeout, pen pressure, and the eraser end
of the pen. They found that a button held in the other hand was
fastest and most preferred, and that the timeout was slow and error
prone [26]. Other researchers have explored implicit modes that do
not require an explicit switch: for example, Chu and colleagues
created pressure-sensitive “haptic conviction widgets” that allow
either normal or forceful interaction to indicate different levels of
confidence [9]. Similarly, some IOS devices use touch pressure to
differentiate between actions such as selection and scrolling [13].

Many techniques add new sensing capabilities to create the
additional modes – for example, pressure sensors have also been
used to enhance mouse input [8] and pen-based widgets [32]; three-
state switches were added to a mouse to create pop-through buttons
[46]; and height sensing was used to enable different actions in
different height layers (e.g., the hover state of a pen [11], or the
space above a digital table [38]). Other techniques use existing
sensing that is currently unused in an interaction. For example,
OrthoZoom exploits the unused horizontal dimension in a standard
scrollbar to add zooming (by moving the pointer left or right) [1].

Despite the work that has been carried out in this area, there is
relatively little research on issues of interference, transfer, or
retention for augmented interfaces – particularly with multiple
mappings. The study below provides initial baseline information
for these issues – but first, we describe the design and construction
of the prototype that we used as the basis for our evaluation.

3 CHORDING PHONE CASE PROTOTYPE

In order to test learning, interference, and retention, we developed
a prototype that adds three hardware buttons to a custom-printed
phone case and makes the state of those buttons available to
applications. This design was chosen because it would enable
mobile use and provide a large number of states.

3.1 Hardware

We designed and 3D-printed a case for an Android Nexus 5 phone,
with a compartment mounted on the back to hold the circuit boards
from three Flic buttons (Bluetooth LE buttons made by Shortcut
Labs). The Flic devices can be configured to perform various
predetermined actions when pressed; Shortcut Labs also provides
an Android API for using the buttons with custom software.

We removed the PCBs containing the Bluetooth circuitry, and
soldered new buttons to the PCBs (Figure 1). The new pushbuttons
are momentary switches (i.e., they return to the “off” state when
released) with 11mm-diameter push surfaces and 5mm travel. We
tested several button styles and sizes, in order to find devices that
were comfortable to push, that provided tactile feedback about the
state of the press, and that were small enough to fit under three
fingers. This design allows us to use the Flic Bluetooth events but
with buttons that can be mounted closer together. The new buttons
do not require any changes to our use of the API.

The prototype is held as a normal phone with the left hand, with
the index, middle, and ring fingers placed on the pushbuttons
(Figure 2). The pushbuttons are stiff enough that these three fingers
can also grip the phone without engaging the buttons; the fifth
finger of the left hand can be placed comfortably on the phone case,
adding stability when performing chorded button combinations.
We also tested a four-button version, but there were too many
erroneous presses because of the user needing to grip the phone.
Finally, we note that the button housing on our prototype was larger
than would be required by a commercial device; we estimate that
the hardware could easily be built into a housing that is only
marginally larger than a typical phone case.

Figure 1: Chording prototype. Left: button housing. Right: Flic
Bluetooth PCBs (inset shows pushbutton).

The prototype worked well in our study sessions. No participant
complained of fatigue or difficulty (although we observed a few
difficulties matching the timeout period, as described below). The
phone case was easy to hold, and the button positions were
adequate for the hand sizes of our participants. Pressing the buttons
in chords did not appear to cause difficulty for any participant
(although with some timing issues, as described later).

3.2 Software and Chord Identification

We wrote a simple wrapper library for Android to attach callback
functions to the buttons through the Flic API. Android applications
can poll the current combined state of the buttons through this
library wrapper. Callback functions attached through the wrapper
library are put on a short timer, allowing time for multiple buttons
to be depressed before executing the callback. In all the applications
we created, we assigned a single callback function to all the
buttons; this function checks the state of all buttons and determines
the appropriate behavior based on the combined state.

Identifying chords represents an interpretation problem for any
input system. When only individual buttons can be pressed,
software can execute actions as soon as the signal has been received
from any button. When chorded input is allowed, however, this
method is insufficient, because users do not press all of the buttons
of a chord at exactly the same time. Therefore, we implemented a
200ms wait time (determined through informal testing) before
processing input after an initial button signal – after this delay, the
callback read the state of all buttons, and reported the combined
pattern (i.e., a chord or a single press). Once an input is registered,
all buttons must return to their “off” states before another input.

With three buttons, the user can specify eight states – but in our
applications, we assume that there is a default state that corresponds
to having no buttons pressed. This approach prevents the user from
having to maintain pressure on the buttons during default operation.

4 EVALUATION

We carried out a study of our chording system to investigate our
three main research questions:
 Interference: does learning additional mappings with the same

buttons reduce learning or accuracy?
 Transfer: is performance maintained when users move from

training to usage tasks that set the button commands into more
realistic activities?

 Retention: does memory of the command mappings persist
over one week (without intervening practice)?

We chose not to compare to a baseline (e.g., GUI-based commands)
for two reasons: first, in many small-screen devices screen space is
at a premium, and dedicating a part of the screen to interface
components is often not a viable alternative; second, command
structures stored in menus or ribbons (which do not take additional
space) have been shown to be significantly slower than memory-
based interfaces in several studies (e.g., [2][17][41]).

To test whether learning multiple mappings interferes with
learning rate or accuracy, we created a training application to teach
three mappings to participants: seven application shortcuts (Apps),
seven colors (Colors), and seven text-editing commands (Text)
(Table 1). Participants learned the mappings one at a time, as this
fits the way that users typically become expert with one application
through frequent use, then become expert with another.

To further test interference, after all mappings were learned we
gave participants a memory test to determine whether they could
remember individual commands from all of the mappings. This test
corresponds to scenarios where users switch between applications
and must remember different mappings at different times.

To test whether the mappings learned in the training system
would transfer, we asked participants to use two of the mappings in
simulated usage tasks. Colors were used in a drawing program
where participants were asked to draw shapes in a particular line
color, and Text commands were used in a simple editor where
participants were asked to manipulate text formatting.

To test retention, we recruited a subset of participants to carry
out the memory test and the usage tasks a second time, one week
after the initial session. Participants were not told that they would
have to remember the mappings, and did not practice during the
intervening week.

Table 1. Button patterns and mappings.

Buttons Pattern Color Command App
1 ●○○ Red Copy Contacts
2 ○●○ Green Paste Browser
3 ○○● Blue Italic Phone

1+2 ●●○ Yellow Small font Maps
1+3 ●○● Magenta Bold Camera
2+3 ○●● Cyan Large E-Mail

1+2+3 ●●● Black Select Calendar
0 ○○○ <panning> <scrolling> <none>

4.1 Part 1: Learning Phase

The first part of the study had participants learn and practice the
mappings over ten blocks of trials. The system displayed a target
item on the screen, and asked the user to press the appropriate
button combination for that item (see Figure 2). The system
provided feedback about the user’s selection (Figure 2, bottom of
screen); when the user correctly selected the target item, the played
a short tone, and the system moved on to the next item. Users could
consult a dialog that displayed the entire current mapping but had
to close the dialog to complete the trial. The system presented each
item in the seven-item mapping twice per block (sampling without
replacement), and continued for ten blocks. The same system was
used for all three mappings, and recorded selection time as well as
any incorrect selections (participants continued their attempts until
they selected the correct item).

Figure 2: Training system showing Apps mapping (target at center
of screen, selection feedback at bottom). Training for Color

and Text mappings was similar.

4.2 Part 2: Usage Tasks

We created two applications (Drawing and TextEdit) to test usage
of two mappings in larger and more complex activities.

Drawing. The Drawing application (Figure 3) is a simple paint
program that uses the chord buttons to control line color (see Table
1). The application treated the button input as a set of spring-loaded
modes – that is, the drawing color was set based on the current state
of the buttons, and was unset when the buttons were released. For
example, to draw a red square as shown in Figure 3, users held
down the first button with their left hand and drew the square with
their right hand; when the button was released, the system returned
to its default mode (where touch was interpreted as panning). If the
user released the buttons in the middle of a stroke, the line colour
changed back to default grey.

For each task in the Drawing application, a message on the screen
asked the participant to draw a shape in a particular color. Tasks
were grouped into blocks of 14, with each color appearing twice

per block. A task was judged to be complete when the participant
drew at least one line with the correct color (we did not evaluate
whether the shape was correct, but participants did not know this).
Participants completed three blocks in total.

Figure 3: Drawing Task

TextEdit. The TextEdit application asked users to select lines of text
and apply manipulations such as cutting and pasting the text, setting
the style (bold or italic), and increasing or decreasing the font size.
Each of these six manipulations was mapped to a button
combination. The seventh action for this mapping was used for
selection, implemented as a spring-loaded mode that was combined
with a touch action. We mapped selection to the combination of all
three buttons since selection had to be carried out frequently – and
this combination was easy to remember and execute.

For each TextEdit task, the lines on the screen told the user what
manipulations to make to the text (see Figure 4). Each task asked
the participant to select some text and then perform a manipulation.
There were six manipulations in total, and we combined copy and
paste into a single task, so there were five tasks. Tasks were
repeated twice per block, and there were four blocks. Tasks were
judged to be correct when the correct styling was applied; if the
wrong formatting was applied, the user had to press an undo button
to reset the text to its original form, and perform the task again.

Figure 4: TextEdit task after selecting text.

4.3 Part 3: Memory Test

The third stage of the study was a memory test that had a similar
interface to the learning system described above. The system gave
prompts for each of the 21 commands in random order (Apps,

Colors, and Text were mixed together, and sampled without
replacement). Participants pressed the button combination for each
prompt, but no feedback was given about what was selected, or
whether their selection was correct or incorrect. Participants were
only allowed to answer once per prompt, and after each response
the system moved to the next item.

4.4 Part 4: Retention

To determine participants’ retention of the mappings, after the
study was over we recruited 8 of the 15 participants to return to the
lab after one week to carry out the memory test and the usage tasks
again (two blocks of each of the drawing and text tasks).
Participants were not told during the first study that they would be
asked to remember the mappings beyond the study; participants for
the one-week follow-up were recruited after the initial data
collection was complete. The usage and memory tests operated as
described above.

4.5 Procedure

After completing an informed consent form and a demographics
questionnaire, participants were shown the system and introduced
to the use of the external buttons. Participants were randomly
assigned to a mapping-order condition (counterbalanced using a
Latin square), and then started the training tasks for their first
mapping. Participants were told that both time and accuracy would
be recorded but were encouraged to use their memory of the chords
even if they were not completely sure. After the Color and Text
mappings, participants also completed the usage tasks as described
above (there was no usage task for the Apps mapping). After
completing the learning and tasks with each mapping, participants
filled out an effort questionnaire based on the NASA-TLX survey.
After all mappings, participants completed the memory test.

For the retention test, participants filled out a second consent
form, then completed the memory test with no assistance or
reminder of the mappings. They then carried out two blocks of each
of the usage tasks (the Drawing and TextEdit apps had the same
order as in the first study).

4.6 Participants and Apparatus

Fifteen participants were recruited from the local university
community (8 women, 7 men, mean age 28.6). All participants
were experienced with mobile devices (more than 30min/day
average use). All but one of the participants was right-handed, and
the one left-handed participant stated that they were used to
operating mobile devices in a right-handed fashion.

The study used the chording prototype described above. Sessions
were carried out with participants seated at a desk, holding the
phone (and operating the chording buttons) with their left hands.
The system recorded all performance data; questionnaire responses
were entered on a separate PC.

4.7 Design

The main study used two 3x10 repeated-measures designs. The first
looked at differences across mappings, and used factors Mapping
(Apps, Colors, Text) and Block (1-10). The second looked at
interference by analyzing differences by the position of the
mapping in the overall sequence, and used factors Position (first,
second, third) and Block (1-10). For the memory tests, we used a
21x3x7 design with several planned comparisons; factors were Item
(the 21 items shown in Table 1), Pattern (the 7 button patterns
shown in column 2 of Table 1), and Mapping (Apps, Colors, Text).

Dependent variables were selection time, accuracy (the
proportion of trials where the correct item was chosen on the first
try), and errors.

5 RESULTS

No outliers were removed from the data. In the following analyses,
significant ANOVA results report partial eta-squared (𝜂ଶ) as a
measure of effect size (where .01 can be considered small, .06
medium, and > .14 large [11]). We organize the results below
around the main issues under investigation: training performance
when learning three different mappings, interference effects,
transfer performance, and retention after one week.

5.1 Training: Learning Rate, Accuracy, and Effort

Selection time. Overall, mean selection times for the three
mappings were 2626ms for Apps (s.d. 2186), 2271 for Colors (s.d.
2095, and 2405 for Text (s.d. 2193). A 3x10 (Mapping x Block)
RM-ANOVA showed no effect of Mapping (F2,28=1.06, p=0.36).
As Figure 5 shows, selection times decreased substantially across
trial blocks; ANOVA showed a significant main effect of Block
(F9,126=42.3, p<0.0001, η2=0.40). There was no interaction
(F18,252=0.40, p=0.98).

Figure 5: Mean selection time (±s.e.), by block and mapping

Accuracy. Across all blocks, the proportion of trials where the
correct item was chosen first was 0.83 for both Apps and Colors
and 0.84 for Text (all s.d. 0.37). RM-ANOVA showed no effect of
Mapping (F2,28=0.019, p=0.98), but again showed a significant
effect of Block (F9,126=4.42, p<0.001, η2=0.09), with no interaction
(F18,252=0.71, p=0.78). Overall error rates (i.e., the total number of
selections per trial, since participants continued to make selections
until they got the correct answer) for all mappings were low: 0.25
errors / selection for Apps, 0.26 for Colors, and 0.24 for Text.

Figure 6: Mean accuracy (±s.e.) by block and mapping.

During the sessions we identified a hardware-based source of error
that reduced accuracy. The 200ms timeout period in some cases
caused errors when people held the buttons for the wrong period of
time, when the Bluetooth buttons did not transmit a signal fast
enough, or when people formed a chord in stages. This issue
contributes to the accuracy rates shown above: our observations

indicate that people had the button combinations correctly
memorized but had occasional problem in producing the
combination with the prototype. We believe that this difficulty can
be fixed by adjusting our timeout values and by using an embedded
microprocessor to read button states (to avoid Bluetooth delay).

Perceived Effort. Responses to the TLX effort questionnaire are
shown in Figure 7; overall, people felt that all of the mappings
required relatively low effort. Friedman rank sum tests showed only
one difference between mappings – people saw themselves as being
less successful with the Apps mapping (χ2=7, p=0.030).

Figure 7: NASA-TLX responses (±s.e.), by mapping

In the end-of-session questionnaire, 12 participants stated that
Colors were easiest to remember (e.g., one person stated “colours
were easier to remember” and another said that “memorizing the
colours felt the easiest”).

5.2 Interference 1: Effects of Learning New Mappings

To determine whether learning a second and third mapping would
be hindered because of the already-memorized mappings, we
analysed the performance data based on whether the mapping was
the first, second, or third to be learned. Figure 9 shows selection
time over ten blocks for the first, second, and third mappings (the
specific mapping in each position was counterbalanced).

Selection time. A 3x10 RM-ANOVA looked for effects of
position in the sequence on selection time. We did find a significant
main effect of Position (F2,28=19.68, p<0.0001, η2=0.22), but as
shown in Figure 8, the second and third mappings were actually
faster than the first mapping. Both subsequent mappings were faster
than the first; follow-up t-tests with Bonferroni correction show
that these differences are significant, p<0.01). The difference was
more obvious in the early blocks (indicated by a significant
interaction between Position and Block, F18,252=4.63, p<0.0001,
η2=0.14). These findings suggest that adding new mappings for the
same buttons does not impair learning or performance for
subsequent mappings.

Figure 8: Mean selection time (±s.e.), by position and block.

Accuracy. We carried out a similar 3x10 RM-ANOVA to look for
effects on accuracy (Figure 9). As with selection time, performance
was worse with the first mapping (accuracy 0.8) than the second
and third mappings (0.85 and 0.86). ANOVA showed a main effect
of Position on accuracy (F2,28=7.18, p=0.003, η2=0.072), but with
no Position x Block interaction (F18,252=1.20, p=0.051).

Figure 9: Mean accuracy (±s.e.), by position and block.

5.3 Interference 2: Memory Test with All Mappings

The third stage of the study was the memory test, in which
participants selected each of the 21 commands from all three
mappings, in random order. Participants answered once per item
with no feedback. The overall accuracy was 0.87 (0.86 for Apps,
0.86 for Colors, and 0.89 for Text); see Figure 11. Note that this
accuracy is higher that seen with the individual mappings during
the training sessions.

To determine whether there were differences in accuracy for
individual items, mappings, or button patterns, we carried out a
21x3x7 (Item x Mapping x Pattern) RM-ANOVA. We found no
significant effects of any of these factors (for Item, F20,240=1.55,
p=0.067; for Mapping: F2,24=0.43, p=0.65; for Pattern,
F6,12=0.0004, p=0.99), and no interactions.

Figure 10: Memory test 1. Mean accuracy (±s.e.), by item
and mapping. Button patterns shown in parentheses for each

item.

Figure 10 also shows that multi-finger chords are not substantially
different from single-finger button presses. Accuracy was only
slightly lower with the (101) and (011) patterns than the single-
finger patterns, and the one three-finger pattern (111) had an
accuracy above 90% for two of the three mappings.

5.4 Transfer: Performance Transfer to Usage Tasks

After learning the Color and Text mappings, participants carried
out usage tasks in the TextEdit and Drawing applications. Accuracy
results are summarized in Figure 10 (note that the text task had four
blocks, and the drawing task had three blocks). Accuracy in the
usage tasks ranged from 0.7 to 0.8 across the trial blocks – slightly
lower than the 0.8-0.9 accuracy seen in the training stage of the
study. It is possible that the additional mental requirements of the
task (e.g., determining what to do, working with text, drawing lines)
disrupted people’s memory of the mappings – but the overall
difference was small.

Figure 11: Mean accuracy (±s.e.), by task and block.

5.5 Retention: Performance After One Week

The one-week followup asked eight participants to carry out the
memory test and two blocks of each of the usage tasks, to determine
whether participants’ memory of the mappings had persisted
without any intervening practice (or even any knowledge that they
would be re-tested). Overall, the follow-up showed that accuracy
decayed substantially over one week – but that participants quickly
returned to their previous level of expertise once they started the
usage tasks. In the memory test, overall accuracy dropped to 0.49
(0.43 for Apps, 0.50 for Colors, and 0.54 for Text), with some
individual items as low as 10% accuracy. Only two items
maintained accuracy above 0.85 – “Red” and “Copy”.

The two usage tasks (Drawing and Text editing) were carried out
after the memory test, and in these tasks, participant accuracy
recovered considerably. In the first task (immediately after the
memory test), participants had an overall 0.60 accuracy in
selection; and by the second block, performance rose to accuracy
levels similar to the first study (for Drawing, 0.82; for Text, 0.70).

This follow-up study is limited – it did not compare retention
when learning only one mapping, so it is impossible to determine
whether the decay arose because of the number of overloaded
mappings learned in the first study. However, the study shows that
retention is an important issue for designers of chorded memory-
based techniques. With only a short training period (less than one
hour for all three mappings) appears to be insufficient to ensure
retention after one week with no intervening practice; however, in
an ecological context users would likely use the chords more
regularly. In addition, participants’ memory of the mappings was
restored after only a few minutes of use.

6 DISCUSSION

Our study provides several main findings:
 The training phase showed that people were able to learn all

three mappings quickly (performance followed a power law),
and were able to achieve 90% accuracy after training;

 Overloading the buttons with three mappings did not cause
any problems for participants – the second and third mappings

were learned faster than the first, and there was no difference
in performance across the position of the learned mappings;

 People were able to successfully transfer their expertise from
the training system to the usage tasks – although performance
dropped by a small amount;

 Performance in the memory test, which mixed all three
mappings together, was very strong, with many of the items
remembered at near 100% accuracy;

 Retention over one week without any intervening practice was
initially poor (about half the accuracy of the first memory test),
but recovered quickly in the usage tasks to near the levels seen
in the first sessions.

In the following paragraphs we discuss the reasons for our results,
and comment on how our findings can be generalized and used in
the design of richer touch-based interactions.

6.1 Reasons for results

People’s overall success in learning to map twenty-one total items
to different button combinations is not particularly surprising –
evidence from other domains such as chording keyboards suggests
that with practice, humans can be very successful in this type of
task. It is more interesting, however, that these 21 items were
grouped into three overloaded sets that used the same button
combinations – and we did not see any evidence of interference
between the mappings. One reason for people’s success in learning
with multiple button mappings may be that the contexts of the three
mappings were quite different, and there were few conceptual
overlaps in the semantics of the different groups of items (e.g.,
colors and application shortcuts are quite different in the ways that
they are used). However, there are likely many opportunities in
mobile device use where this type of clean separation of semantics
occurs – suggesting that overloading can be used to substantially
increase the expressive power of limited input.

People were also reasonably successful in using the learned
commands in two usage tasks. This success shows that moving to
more realistic tasks does not substantially disrupt memories built
up during a training exercise – although it is likely that the added
complexity of the tasks caused the reduction in accuracy compared
to training. The overall difference between the training and usage
environments was relatively small, however; more work is needed
to examine transfer effects to real-world use.

The relatively low accuracy of our system (between 80% and
90%) is a potential problem for real-world use. The error rate in our
device may have been inflated due to the timeout issue described
above; further work is needed to investigate ways of reducing this
cause of error. We note, however, that there are still situations in
which techniques with non-perfect accuracy can still be effective
(such as interface for setting non-destructive parameters and
states).

Finally, the additional decay in memory of the mappings over
one week may simply be an effect of the human memory system –
our training period was short, and early studies on “forgetting
curves” show approximately similar decay to what we observed. It
is likely that in real-world settings, the frequency of mobile phone
use would have provided intervening practice that would have
maintained users’ memory – but this issue requires further study.

6.2 Limitations and opportunities for future work

The main limitations of our work are in the breadth and realism of
our evaluations, and in the physical design of the prototype. First,
although our work takes important steps towards ecological validity
for augmented input, our study was still a controlled experiment.
We designed the study to focus on real-world issues of interference,
transfer, and retention but the realism of our tasks was relatively
low. Therefore, a critical area for further work is in testing our
system with real tasks in real-world settings. The Flic software

allows us to map button inputs to actions in real Android
applications, so we plan to have people use the next version of the
system over a longer time period and with their own applications.

Second, it is clear that additional engineering work can be done
to improve both the ergonomics and the performance of the
prototype. The potential errors introduced by our 200ms timeout
are a problem that can likely be solved, but the timeout caused other
problems as well – once participants were expert with the
commands, some of them felt that holding the combination until the
application registered the command slowed them down. Adjusting
the timeout and ensuring that the system does not introduce
additional errors is an important area for our future work. We also
plan to experiment with different invocation mechanisms (e.g.,
selection on button release) and with the effects of providing
feedback as the chord is being produced.

An additional opportunity for future work that was identified by
participants during the study is the potential use of external chorded
buttons as an eyes-free input mechanism. The button interface
allows people to change input modes without shifting their visual
attention from the current site of work, and also allows changing
tools without needing to move the finger doing the drawing (and
without occluding the workspace with menus or toolbars).

7 CONCLUSION

Expressiveness is limited in mobile touch interfaces. Many
researchers have devised new ways of augmenting these
interactions, but there is still little understanding of issues of
interference, transfer, and retention for augmented touch
interactions, particularly those that use multiple mappings for
different usage contexts. To provide information about these issues
with one type of augmented system, we developed a phone case
with three pushbuttons that can be chorded to provide seven input
states. The external buttons can provide quick access to command
shortcuts and transient modes, increasing the expressive power of
interaction. We carried out a four-part study with the system, and
found that people can successfully learn multiple mappings of
chorded commands, and can maintain their expertise in more-
complex usage tasks (although overall accuracy was low).
Retention was also an important issue – accuracy dropped over one
week, but was quickly restored after a short period of use. Our work
provides new knowledge about the use of chorded input, and shows
that adding simple input mechanisms such as chording buttons have
promise as a way to augment mobile interactions.

ACKNOWLEDGMENTS

Funding for this project was provided by the Natural Sciences and
Engineering Research Council of Canada, and the Plant
Phenotyping and Imaging Research Centre.

REFERENCES

[1] Appert, C. and Fekete, J., 2006, OrthoZoom scroller: 1D multi-scale
navigation. Proceedings of the SIGCHI conference on Human Factors
in computing systems 21-30.

[2] Bailly, G., Müller, J., and Lecolinet, E., 2012. Design and evaluation
of finger-count interaction: Combining multitouch gestures and
menus. International Journal of Human-Computer Studies, 70 (10),
673-689.

[3] Baudisch, P. and Chu, G., 2009, Back-of-device interaction allows
creating very small touch devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 1923-1932).

[4] Beaudouin-Lafon, M. Instrumental interaction: an interaction model
for designing post-WIMP user interfaces. Proc. Human Factors in
Computing Systems, 2000, 446-453.

[5] Beaudouin-Lafon, M., 2004, Designing interaction, not interfaces. In
Proceedings of the working conference on Advanced visual interfaces,
15-22.

[6] Bill Buxton, Chorded Keyboards, retrieved from
www.billbuxton.com/input06.ChordKeyboards.pdf

[7] Buxton, W. 1983. Lexical and pragmatic considerations of input
structures. ACM SIGGRAPH Computer Graphics, 17(1), 31-37.

[8] Cechanowicz, J., Irani, P. and Subramanian, S., 2007, Augmenting the
mouse with pressure sensitive input. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 1385-1394.

[9] Cechanowicz, J. and Gutwin, C., 2009, August. Augmented
interactions: A framework for adding expressive power to GUI
widgets. IFIP Conference on Human-Computer Interaction, 878-891.

[10] Chu, G., Moscovich, T. and Balakrishnan, R., 2009, Haptic conviction
widgets. Proceedings of Graphics Interface 2009, 207-210.

[11] Cohen, J. Eta-squared and partial eta-squared in communication
science. Human Communication Research 28(56), 473-490.

[12] Emilien Ghomi, Stéphane Huot, Olivier Bau, Michel Beaudouin-
Lafon, and Wendy E. Mackay. 2013. Arpège: learning multitouch
chord gestures vocabularies. In Proceedings of the 2013 ACM
international conference on Interactive tabletops and surfaces (ITS
'13). 209-218.

[13] Alix Goguey, Sylvain Malacria, and Carl Gutwin. 2018. Improving
Discoverability and Expert Performance in Force-Sensitive Text
Selection for Touch Devices with Mode Gauges. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems
(CHI '18), paper 477.

[14] Hinckley, K., Baudisch, P., Agrawala, M., and Balakrishnan, R.
Hover widgets: using the tracking state to extend the capabilities of
pen-operated devices. Proc. ACM Human Factors in Computing
Systems, 861-870, 2006.

[15] Guimbretiere, F., Baudisch, P., Sarin, R., Agrawala, M. and Cutrell,
E., 2006, The springboard: multiple modes in one spring-loaded
control. In Proceedings of the SIGCHI conference on Human Factors
in computing systems, 181-190.

[16] Guimbretière, F., and Nguyen, C., 2012. Bimanual marking menu for
near surface interactions. In Proc. ACM Human Factors in Computing
Systems (CHI 2012), 825-828.

[17] Gutwin, C., Cockburn, A., Scarr, J., Malacria, S. and Olson, S.C.,
2014, Faster command selection on tablets with FastTap. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2617-2626.

[18] Harada, S., Saponas, T.S. and Landay, J.A., 2007, November.
VoicePen: Augmenting pen input with simultaneous non-linguisitic
vocalization. In Proceedings of the 9th international conference on
Multimodal interfaces, 178-185.

[19] Hartson, H.R., Siochi, A.C. and Hix, D. 1990. The UAN: A user-
oriented representation for direct manipulation interface designs.
ACM Transactions on Information Systems (TOIS), 8(3), 181-203.

[20] Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J.,
Wilson, A., Benko, H. and Buxton, B., 2010, October. Pen+ touch=
new tools. Proceedings of the 23nd annual ACM symposium on User
interface software and technology, 27-36.

[21] Hinckley, K., and Song, H. Sensor synaesthesia: touch in motion, and
motion in touch. Proc. ACM Human Factors in Computing Systems
(2011), 801–810.

[22] Hinckley, K., 2002, Input technologies and techniques. In The human-
computer interaction handbook. Erlbaum, 2002, 151-168.

[23] Jacob, R.J., Sibert, L.E., McFarlane, D.C. and Mullen Jr, M.P., 1994.
Integrality and separability of input devices. ACM Transactions on
Computer-Human Interaction (TOCHI), 1(1), 3-26.

[24] Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O.,
Solovey, E.T. and Zigelbaum, J., 2008, April. Reality-based
interaction: a framework for post-WIMP interfaces. In Proceedings of
the SIGCHI conference on Human factors in computing systems, 201-
210.

[25] Kabbash, P., Buxton, W. and Sellen, A., 1994. Two-handed input in a
compound task. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 417-423.

[26] Kin, K., Hartmann, B., and Agrawala, M. (2011. Two-handed
marking menus for multitouch devices. ACM Transactions on
Computer-Human Interaction, 18(3).

[27] Lepinski, G. J., Grossman, T., & Fitzmaurice, G., 2010. The design
and evaluation of multitouch marking menus. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems 2233-
2242.

[28] Li, Y., Hinckley, K., Guan, Z. and Landay, J.A., 2005, Experimental
analysis of mode switching techniques in pen-based user interfaces.
In Proceedings of the SIGCHI conference on Human factors in
computing systems, 461-470.

[29] Lumsden, J., and Brewster, S. 2003. A paradigm shift: alternative
interaction techniques for use with mobile & wearable devices. In
Proceedings of the 2003 conference of the Centre for Advanced
Studies on Collaborative research (CASCON '03), 197-210.

[30] Lyons, K., Starner, T., & Gane, B., 2006. Experimental evaluations of
the twiddler one-handed chording mobile keyboard. Human-
Computer Interaction, 21(4), 343-392.

[31] Lyons, K., Gane, B., Starner, T., & Catrambone, R., 2005. Improving
Novice Performance on the Twiddler One–Handed Chording
Keyboard. In Proceedings of the International Forum on Applied
Wearable Computing, 145-159.

[32] Halla Olafsdottir and Caroline Appert. 2014. Multi-touch gestures for
discrete and continuous control. In Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces
(AVI '14), 177-184.

[33] Patel, N., Clawson, J., & Starner, T., 2009. A model of two-thumb
chording on a phone keypad. In Proceedings of the 11th International
Conference on Human-Computer Interaction with Mobile Devices
and Services, 8-17.

[34] Ramos, G., Boulos, M. and Balakrishnan, R., 2004, Pressure widgets.
Proceedings of the SIGCHI conference on Human factors in
computing systems, 487-494.

[35] Raskin, J., The humane interface: new directions for designing
interactive systems. Addison-Wesley, 2000.

[36] Saund, E. and Lank, E., 2003, November. Stylus input and editing
without prior selection of mode. In Proceedings of the 16th annual
ACM symposium on User interface software and technology, 213-216.

[37] Abigail J. Sellen, Gordon P. Kurtenbach, and William A. S. Buxton.
1992. The prevention of mode errors through sensory feedback.
Human-Computer Interaction 7, 2 (June 1992), 141-164.

[38] Subramanian, S., Aliakseyeu, D. and Lucero, A., 2006, October.
Multi-layer interaction for digital tables. In Proceedings of the 19th
annual ACM symposium on User interface software and technology,
269-272.

[39] Tarniceriu, A. D., Dillenbourg, P., & Rimoldi, B., 2013. The effect of
feedback on chord typing. In Proceedings of The Seventh
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies.

[40] Tsandilas, T., Appert, C., Bezerianos, A. and Bonnet, D., 2014, April.
Coordination of tilt and touch in one-and two-handed use. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2001-2004.

[41] Md. Sami Uddin, Carl Gutwin, and Benjamin Lafreniere. 2016.
HandMark Menus: Rapid Command Selection and Large Command
Sets on Multi-Touch Displays. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI '16),
5836-5848.

[42] Julie Wagner, Stéphane Huot, and Wendy Mackay. 2012. BiTouch
and BiPad: designing bimanual interaction for hand-held tablets.
Proceedings of SIGCHI Human Factors in Computing Systems, 2317-
2326.

[43] Wigdor, D. and Balakrishnan, R., 2003, November. TiltText: using tilt
for text input to mobile phones. In Proceedings of the 16th annual
ACM symposium on User interface software and technology, 81-90.

[44] Wigdor, D., & Balakrishnan, R., 2004. A comparison of consecutive
and concurrent input text entry techniques for mobile phones. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, 81-88.

[45] Wilson, G., Brewster, S. and Halvey, M., 2013, April. Towards
utilising one-handed multi-digit pressure input. In CHI'13 Extended
Abstracts on Human Factors in Computing Systems 1317-1322.

[46] Wu, F. G., & Shi, W. Z., 2018. The input efficiency of chord
keyboards. International Journal of Occupational Safety and
Ergonomics, 24(4), 638-645.

[47] Zeleznik, R., Miller, T. and Forsberg, A., 2001, November. Pop
through mouse button interactions. In Proceedings of the 14th annual
ACM symposium on User interface software and technology, 195-196.

