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Abstract
Data poisoning attacks manipulate victim’s train-
ing data to compromise their model performance,
after training. Previous works on poisoning have
shown the inability of a small amount of poisoned
data at significantly reducing the test accuracy of
deep neural networks. In this work, we propose
an upper bound on the test error induced by ad-
ditive poisoning, which explains the difficulty of
poisoning against deep neural networks. However,
the limited effect of poisoning is restricted to the
setting where training and test data are from the
same distribution. To demonstrate this, we study
the effect of poisoning in an unsupervised domain
adaptation (UDA) setting where the source and
the target domain distributions are different. We
propose novel data poisoning attacks that prevent
UDA methods from learning a representation that
generalizes well on the target domain. Our poison-
ing attacks significantly lower the target domain
accuracy of state-of-the-art UDA methods on pop-
ular benchmark UDA tasks, dropping it to almost
0% in some cases, with the addition of only 10%
poisoned data. The effectiveness of our attacks in
the UDA setting highlights the seriousness of the
threat posed by data poisoning and the importance
of data curation in machine learning.

1. Introduction
Data poisoning (Biggio et al., 2012; Mei & Zhu, 2015;
Jagielski et al., 2018; Chen et al., 2017; Ji et al., 2017;
Mehra et al., 2020) is a training time attack where the at-
tacker has access to the training data which will be used by
the victim for model training. The attacker’s goal is to mod-
ify the training data such that the victim’s model performs
as the attacker intended after training. A popular method for
data poisoning is additive poisoning where victim’s training
data is augmented with a small amount of poisoned data
with the goal of reducing the test accuracy after model train-
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ing. Additive poisoning is very effective when models are
trained with simple classifiers such as logistic regression
(Muñoz-González et al., 2017; Mei & Zhu, 2015; Mehra &
Hamm, 2019). However, its effectiveness against deep neu-
ral networks has been limited (Huang et al., 2020; Shafahi
et al., 2018; Muñoz-González et al., 2017; Mehra & Hamm,
2019), leading to works where several poisoning points are
added to affect the classification of a single test point. In
this work, we analyze additive data poisoning and derive an
upper bound on the test error it can induce. Our upper bound
shows that for flexible classifiers such as deep neural net-
works which can perfectly fit the poisoned training data, the
decrease in test accuracy on the clean data is proportional
to the amount of poisoned data added.

However, this difficulty of additive poisoning is a conse-
quence of the assumption that training and test data are
sampled from the same distribution (single domain poison-
ing). For more practical settings such as unsupervised do-
main adaptation (UDA) where knowledge from a label-rich
source domain is transferred to an unlabeled target domain
with different data distribution, the effect of poisoning has
not been studied. In this work, we propose novel data poi-
soning attacks against UDA methods that learn a domain
invariant representation while minimizing the error on the
source domain data. Our attacks which include clean label
and mislabeled data as poisoning points lead state-of-the-art
UDA methods to learn representations that fail to generalize
on the target domain on popular UDA tasks. The presence
of poisoned data causes UDA methods to either align incor-
rect classes from the two domains or prevent correct classes
from being very close in the representation space. Both of
these lead to the failure of UDA methods at reducing the
target domain error. With the addition of just 10% poisoned
data, our attacks can reduce the target domain accuracy
to almost 0%, showing the extreme vulnerability of UDA
methods to the poisoning. This dramatic failure caused by
the poisoning shows that algorithms that rely on strong as-
sumptions about the data distribution for their success (such
as the assumption made by UDA methods, that alignment
of the source and target distributions can be achieved by
the alignment of their marginal feature distributions without
target domain labels) make these methods vulnerable to poi-
soning. Moreover, our results underscore the importance of
data curation in achieving high performance with machine
learning methods.
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2. Related work
Analysis of UDA: Previous works (Ben-David et al., 2007;
2010; Mansour et al., 2009; Mansour & Schain, 2014) have
studied the problem of learning under the UDA setting, lead-
ing to the upper bound on the target domain error which
inspired many UDA algorithms. Despite the success of
these UDA algorithms on benchmark datasets, some works
(Ganin et al., 2016; Liu et al., 2019; Zhao et al., 2019; Wang
et al., 2019) have presented evidence of their failure in dif-
ferent scenarios. Recently, (Zhao et al., 2019; Combes et al.,
2020) provided a lower bound on target domain error when
label distributions differ across the two domains. However,
their lower bound does not explain all failure cases of UDA
including the failure in presence of poisoned data, since
a small fraction of poisoned data does not change the la-
bel distributions of the two domains. Thus, our poisoning
results warrant further research into failure modes of UDA.

Algorithms for UDA: Most UDA algorithms (Ganin et al.,
2016; Tzeng et al., 2017; Long et al., 2017; Zhao et al.,
2018) learn a domain invariant representation while mini-
mizing source domain error. DANN (Ganin et al., 2016)
is a popular approach to UDA that uses a discriminator to
identify points from the two domains based on their repre-
sentations. CDAN (Long et al., 2017) is another approach
that combines classifier output and representation to identify
the domain of a point. Recently, IW-DAN and IW-CDAN
(Combes et al., 2020) were proposed as extensions of the
original DANN and CDAN with an importance weighting
scheme to minimize the mismatch between the labeling dis-
tributions of the two domains. Another approach is MCD
(Saito et al., 2018) which uses two task-specific classifiers as
discriminators to align the domains. The method adversari-
ally trains the representation to minimize the disagreement
of the classifiers on the target domain data (classifier dis-
crepancy) while training the classifiers to maximize this
discrepancy. A recent approach, SSL (Xu et al., 2019) uses
self-supervised tasks (e.g. rotation angle prediction) to align
the domains. In this work, we study the effect of poisoning
on these state-of-the-art UDA methods.

3. Effectiveness of poisoning in single domain
versus UDA setting

Notation: X denotes the data domain and D is a distri-
bution defined on this domain. Let f : X → [0, 1] be a
deterministic labeling function, for the given binary classi-
fication task which can be interpreted as Pr[y = 1|x] and
h : X → [0, 1] denote a hypothesis function. Then the prob-
ability of disagreement (Ben-David et al., 2010) between
two hypotheses functions h and g according to the data dis-
tribution D is given by εD(h, g) := Ex∼D|h(x)− g(x)| =
Pr[h(x) 6= g(x)]. Let D̂ denote a sample from the data
distribution D.

3.1. Poisoning in a single domain setting

Here we study the limits of additive data poisoning attacks in
a single domain setting at reducing the test accuracy of mod-
els trained with empirical risk minimization (ERM). The pro-
cess of augmenting victim’s clean training data D̂clean with
a fraction ρ of poisoned data D̂poison to obtain the poisoned
training data D̂poisoned (i.e., D̂poisoned = D̂clean ∪ D̂poison)
has the following probabilistic analog.

Ppoisoned(x) =
1

1 + ρ
Pclean(x) +

ρ

1 + ρ
Q(x),

where 0 < ρ < 1 is the fraction of the poisoned data,
Pclean(x) is the clean data distribution, Q(x) is the distri-
bution of poison data and Ppoisoned is the data distribution
obtained after poisoning. Theorem 1 provides an upper
bound on the target error induced by additive poisoning.
Theorem 1. Let H be the hypothesis class on X . Then
∀h, g ∈ H, εclean(h, g)− εpoisoned(h, g) ≤ ρ.

The theorem implies that if the disagreement between two
hypotheses h and g is minimized on the data distribution
after poisoning then the disagreement between these two
hypotheses on the clean data distribution is upper bounded
by the percentage of poison data ρ. Thus, hypotheses that
work well on the poisoned data cannot be ill-performing
on the clean data, especially in presence of a small fraction
of poison data. This upper bound explains the difficulty of
additive poisoning at significantly reducing the test accuracy
using a small amount of poisoned data, especially when
using deep neural networks for classification.

3.2. Poisoning in UDA setting

In this section, we present novel data poisoning attacks
against UDA methods. Our additive poisoning attacks are
designed to fool UDA methods that learn a domain invariant
representation while minimizing the error on the source
domain into producing a representation that leads to a high
error on the target domain data. As in additive poisoning, the
poisoned data generated through our attacks will be added to
the clean source domain data. The poisoned source domain
data along with unlabeled target domain data will then be
used to train UDA methods. We now describe our attacks
that use mislabeled and watermarked data for poisoning.
Due to space limitation, description and experiments of
clean label attack are presented in the Appendix B.

Poisoning with mislabeled source and target domain
data. We propose two types of poisoning attacks that make
use of mislabeled data, namely, wrong-label correct-domain
attack and wrong-label incorrect-domain attack. In wrong-
label correct-domain attack, poison data is selected from
the source domain. This data along with incorrect labels is
then added to clean source domain data. Since the poison
data only has wrong labels the attack is termed wrong-label
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(a) Effect of wrong-label incorrect-domain poisoning

(b) Effect of poisoning with watermarked data

Figure 1. Poisoning with mislabeled data causes discriminator-
based UDA methods to align wrong classes (+ to -) from the
source and target domains.

correct-domain attack. In wrong-label incorrect-domain
attack, poison data selected from the target domain along
with incorrect labels is used to form the poisoned source
domain data. Since the poisoned source domain contains the
target data, which does not belong to the source domain, the
attack is termed wrong-label incorrect-domain. The failure
of UDA methods in learning a representation that increases
target error in presence of poisoned data generated through
these attacks depends on the labels assigned to the poison
data. We describe two simple yet effective methods for
choosing labels for the poison data in Sec. 4.

Poisoning using watermarked data. In this attack, poi-
soned data is generated by superimposing an image from
the source domain with an image from the target domain
with incorrect labels, while ensuring the target image is not
visible in the poison data. This makes the poison data looks
like the correct source domain data. To generate such wa-
termarked poison data we select an image from the target
domain (t) and a base image from the source domain (s)
such that it has the same class as the target domain image
and lies closest to it (in the input space). The poisoned im-
age (p) is obtained by a convex combination of the base and
target images i.e., p = αt+ (1−α)s where α ∈ [0, 1]. The
value α governs how prominent the target image is in the
poison data. The success of poisoning, as with the previous
attack, depends on the choice of labels used for poison data.

4. Experiments
In this section, we present the results of our data poison-
ing attacks against state-of-the-art UDA methods. We use
DANN (Ganin et al., 2016), CDAN (Long et al., 2017),
MCD (Saito et al., 2018), SSL (Xu et al., 2019) (with
rotation-angle prediction task), IW-DAN (Combes et al.,
2020), and IW-CDAN (Combes et al., 2020) for our experi-
ments. We use two benchmark datasets, namely Digits and
Office-31. Under Digits, we evaluate four tasks using SVHN
(S), MNIST (M), MNIST M (MM), and USPS (U) datasets

and six tasks under the Office-31 using Amazon (A), DSLR
(D), and Webcam (W) datasets. The effect of poisoning is
measured by the difference in the target domain accuracy of
these methods on clean versus poisoned data. We provide an
intuitive picture of how our poisoning attacks prevent UDA
methods from learning a representation that generalizes well
on the target domain data in Fig. 1. The figure illustrates
how discriminator-based UDA methods align wrong classes
from the source and target domains in presence of poisoned
data. The incorrect alignment leads to a significant drop in
the target domain accuracy obtainable with these methods.
We contrast these results with poisoning target domain data
in a single domain setting. In this setting, models are trained
with ERM using labeled target domain training data along
with poisoned data and the effect of poisoning is measured
by the drop in the test accuracy on the target domain. Our
experimental results show that additive poisoning is signifi-
cantly more effective in the UDA setting than in the single
domain setting. Additional experimental details including
model architectures are presented in Appendix C.

Poisoning using mislabeled source and target data. As
mentioned in Sec. 3.2, the effectiveness of poisoning is de-
pendent on the labels of the poisoned data. For the Digits
dataset, poison data is labeled as the class next to their true
class (e.g. poison points with true class one are labeled as
two, points with true class two are labeled as three, and so
on). For the Office-31 dataset, we label the poison point to
be in the class closest (in the representation space learned
using clean source domain data) in the source domain other
than its true class. In this experiment, the attacker is lim-
ited to adding only 10% poisoned data with respect to the
size of the target domain data. The results for wrong-label
correct-domain poisoning are present in rows marked with
Poisonsource in Table 1 and 2. Poisoning with this approach
only causes a minor decrease in target domain accuracy as a
large amount of correctly labeled source domain data pre-
vents the poisoned data from severely affecting the perfor-
mance of UDA methods (similar to single domain poisoning
setting). On the other hand, wrong-label incorrect-domain
poisoning causes the discriminator-based UDA methods
(Ganin et al., 2016; Long et al., 2017) to align wrong classes
from the two domains as shown in Fig 1(a), leading to a
significant drop in the target domain accuracy. This is due to
the domain discriminator being maximally confused when
marginal distributions of the source and target domains are
aligned. However, marginal distribution alignment does not
ensure the alignment of the conditional distributions. More-
over, the objective of achieving low source domain error
pushes the representation learner to correctly classify the
poison data, thereby placing the poison and source data with
the same labels close in the representation space. Since the
poison data is mislabeled target domain data, wrong classes
from the two domains are aligned. For MCD (Saito et al.,
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Table 1. Decrease in the target domain accuracy for UDA methods
trained on poisoned source domain data (with poisons sampled
from source/target domains) compared to accuracy attained with
clean data on the Digits tasks (mean±s.d. of 5 trials).

Method Data S→ M M→ MM M→ U U→ M

Source
only Clean 72.42±1.44 39.05±2.30 87.13±1.75 78.6±1.45

DANN
Clean 78.05±1.15 76.22±2.38 92.17±0.73 92.73±0.71

Poisonsource 70.26±2.84 69.98±3.49 93.44±0.84 92.08±0.68
Poisontarget 1.46±1.12 0.48±0.04 0.97±0.53 5.83±0.82

CDAN
Clean 79.19±0.70 73.88±1.10 93.92±0.97 95.94±0.71

Poisonsource 73.67±4.19 73.36±1.31 92.06±0.59 92.85±0.31
Poisontarget 12.27±5.02 0.59±0.12 1.92±0.42 2.96±0.71

MCD
Clean 96.18±1.53 93.95±0.33 89.96±2.04 88.34±2.50

Poisonsource 85.86±5.66 93.33±0.71 87.99±1.05 83.19±2.98
Poisontarget 0.97±0.94 0.37±0.06 0.66±0.16 2.07±0.69

SSL
Clean 66.85±2.30 92.76±0.91 88.69±1.28 82.23±1.59

Poisonsource 61.97±1.62 91.35±1.13 85.74±2.92 82.56±0.84
Poisontarget 0.31±0.03 0.36±0.02 7.76±1.52 9.88±1.07

Table 2. Decrease in the target domain accuracy for UDA methods
trained on poisoned source domain data (with poisons sampled
from source/target domains) compared to accuracy attained with
clean data on the Office-31 tasks (mean±s.d. of 3 trials).

Method Dataset A→ D A→ W D→ A D→ W W→ A W→ D

Source
only Clean 79.61 73.18 59.33 96.31 58.75 99.68

DANN
Clean 84.06 85.41 64.67 96.08 66.77 99.44

Poisonsource 79.11±0.35 83.98±1.19 44.31±2.94 95.22±0.22 43.35±1.65 96.58±0.87
Poisontarget 59.83±0.20 63.18±1.96 17.58±0.39 76.43±0.62 19.82±0.33 84.20±0.71

CDAN
Clean 89.56 93.01 71.25 99.24 70.32 100

Poisonsource 90.16±0.61 90.94±0.13 53.68±0.37 98.45±0.07 57.27±0.57 99.66±0.23
Poisontarget 71.88±0.20 71.94±0.76 11.19±1.47 86.37±0.36 18.54±0.45 89.08±1.23

IW-DAN
Clean 84.3 86.42 68.38 97.13 67.16 100

Poisonsource 81.25±0.91 83.27±0.45 50.76±1.58 96.68±0.29 48.31±2.02 99.73±0.12
Poisontarget 61.64±0.53 63.43±1.14 15.69±1.76 80.29±0.07 26.54±0.48 88.62±0.23

IW-CDAN
Clean 88.91 93.23 71.9 99.3 70.43 100

Poisonsource 89.83±0.31 90.77±1.27 57.51±0.06 98.41±0.07 61.16±1.21 99.66±0.12
Poisontarget 72.62±0.42 70.15±2.21 14.36±0.66 88.26±0.15 22.36±0.96 87.75±0.53

2018), which uses use classifier discrepancy to detect and
align source and target domains, our poisoned data prevents
it from detecting target examples. This is because the term
that minimizes the error on the poisoned source domain also
reduces the discrepancy of the classifiers on poison data,
which are from the target domain. Thus, both the representa-
tion learner and discriminator (in the form of two classifiers)
become optimal without aligning the two domains. In SSL
(Xu et al., 2019), the representation must correctly classify
source domain data (main task) including the poisoned data.
Although the auxiliary task ensures that representations of
the source and target domains become similar but in pres-
ence of poisoned data, similar representations of source
and target domain classes lead to a drop in the accuracy
of the main task on the poisoned data. This creates a con-
flict between the main and auxiliary tasks, due to which
correct source and target domain classes cannot be aligned.
The t-SNE plots for these are shown in Fig. 3 and 4 in the
Appendix. The results of wrong-label incorrect-domain poi-
soning, in rows marked with Poisontarget in Tables 1 and 2,
show a significant reduction in the target domain accuracy
compared to the accuracy obtained on clean data. This
success of poisoning in the UDA setting is contrasted with
its performance in a single domain setting by adding 10%
poison data in the training set of the target domain. The
attacks decrease the test accuracy of the target domain by
roughly 3% on Digits datasets (As Office-31 does not have

Table 3. Decrease in target accuracy when training different do-
main adaptation methods on poisoned watermarked data in compar-
ison to the target accuracy obtained with clean data on the Digits
task (mean±s.d. of 5 trials).

Method Dataset S→ M M→ MM M→ U U→ M

DANN

Clean 78.05±1.15 76.22±2.38 92.17±0.73 92.73±0.71

Poisonα
68.76±3.910.05 27.36±15.770.05 91.84±0.550.10 88.93±4.360.10

57.96±5.840.10 7.19±2.590.10 85.51±3.010.20 78.29±8.520.20

33.33±4.380.15 4.73±0.380.15 39.29±1.340.30 41.52±7.430.30

CDAN

Clean 79.19±0.70 73.88±1.10 93.92±0.97 95.94±0.71

Poisonα
65.77±4.820.05 55.47±3.870.05 92.05±0.960.10 86.53±1.550.10

57.57±3.110.10 7.37±1.260.10 86.54±2.430.20 77.39±4.840.20

44.83±4.090.15 6.68±1.640.15 88.67±0.440.30 79.54±7.020.30

MCD

Clean 96.18±1.53 93.95±0.33 89.96±2.04 88.34±2.50

Poisonα
74.96±3.200.05 92.18±0.780.05 6.75±4.810.10 30.35±2.300.10

35.85±3.230.10 85.38±3.570.10 0.77±0.220.20 11.34±0.770.20

17.01±1.520.15 70.34±11.490.15 0.71±0.220.30 3.28±0.940.30

SSL

Clean 66.85±2.30 92.76±0.91 88.69±1.28 82.23±1.59

Poisonα
44.64±2.010.05 53.33±13.480.05 32.38±10.770.10 34.72±1.710.10

10.86±1.210.10 26.64±10.10.10 6.12±2.130.20 21.86±1.010.20

3.4±1.110.15 12.14±4.660.15 2.42±0.410.30 11.90±0.810.30

separate test data, we omit single domain poisoning on it).
The result shows the limited impact of poisoning in a single
domain setting as suggested by our Theorem 1.

Poisoning using watermarked data. For this attack, we
use the labeling scheme described previously for Digits to
assign labels to poisoned data and use 10% as poison per-
centage. The illustrative picture of the effect of poisoning
in this scenario is presented in Fig. 1(b). The figure shows
that successful watermarking attacks have the same effect
as wrong-label incorrect-domain poisoning attacks, even
though the poison data looks like the source domain data.
We use different values of α to evaluate the effectiveness
of this attack on the Digits dataset. The results in Table 3
show a significant decrease in the target domain accuracy
even with a small α for all methods except CDAN. This is
because the success of CDAN depends on the correctness
of the pseudo-labels on the target domain data (output of
the classifier), which are used in the discriminator. Correct
pseudo-labels provide CDAN a positive reinforcement to
align correct classes from the two domains. However, as the
amount of watermarking increases, the quality of pseudo la-
bels deteriorates. Thus, providing a negative reinforcement
to CDAN which leads to the alignment of wrong classes
across the two domains causing a high target domain error.

5. Conclusion
In this work, we studied the effectiveness of poisoning in
a single domain and UDA settings. We derived an upper
bound on the test error induced by poisoning in a single
domain setting explaining the limited effect of poisoning
against deep neural networks as observed in previous works.
To highlight that the difficulty of poisoning in a single do-
main setting does not undermine the threat posed by poi-
soning to machine learning algorithms, we proposed novel
poisoning attacks in the UDA setting. The failure of popular
UDA methods in presence of the small amount of poisoned
data shows the importance of training-data quality and data
curation for the success of machine learning methods.
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Wang, Z., Dai, Z., Póczos, B., and Carbonell, J. Characteriz-
ing and avoiding negative transfer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11293–11302, 2019.
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Appendix
We present the proof of Theorem 1 in App. A followed
the clean-label poisoning attack against UDA methods in
App. B. We conclude in App. C by providing the details
of the datasets and model architectures used in our experi-
ments.

A. Proofs
Theorem 1. ∀h, g ∈ H, εclean(h, g)− εpoisoned(h, g) ≤ ρ.

Proof. As Pclean(x) = (1 + ρ)Ppoisoned(x) − ρQ(x), we
have,

εclean(h, g)− εpoisoned(h, g)

=

∫
|h− g|(Pclean(x)− Ppoisoned(x)) dx

=

∫
|h− g|ρ(Ppoisoned(x)−Q(x)) dx

≤ ρ

∫
|h− g|Ppoisoned(x) dx ≤ ρ.

B. Poisoning using clean-label data
To generate clean-label poison data that can affect the per-
formance of UDA methods we require solving a bilevel
optimization problem, similar to previous works (Huang
et al., 2020; Mehra & Hamm, 2019; Mehra et al., 2020).
Due to the high computational complexity involved in
solving the bilevel problem, we propose an alternating
optimization-based variant for generating poisoned data and
demonstrate the feasibility of clean-label attacks against
UDA with it. Similar to previous works (Huang et al.,
2020; Shafahi et al., 2018), we consider misclassification
of a single target domain test point (xtargettest , ytargettest ). Let
u = {u1, ..., un} denote the poisoned data. To ensure clean
label, each poison point ui must have a bounded perturba-
tion from a base point xbasei i.e, ‖ui − xbasei ‖ = ‖δi‖ ≤ ε

and has label of the base i.e., ybasei . Thus, D̂poison =

{(ui, ybasei )}Npoison

i=1 , D̂source = {(xsourcei , ysourcei )}Nsource
i=1

and D̂target = {(xtargeti , ytargeti )}Ntarget

i=1 . The clean-
label poison data u is such that when the victim uses
D̂source

⋃
D̂poison and D̂target (without labels) for UDA,

the target domain test point (xtargettest , ytargettest ) is misclassi-
fied. The optimization problem for the clean-label attack is
as follows.

min
u

Npoison∑
i=1

[
‖g(xtargettest ; θ)− g(ui; θ)‖22 + λ‖xbasei − ui‖

]
,

min
θ
LUDA(D̂source

⋃
D̂poison, D̂target; θ),

(1)

where g denotes the representation space embedding of the
data. The first problem minimizes the distance between
the representations of the poison and the target domain test
data (first term) while ensuring the poison data is not too
far from the base data (second term). The second problem
optimizes the parameters of the representation using UDA
methods. Based on the choice of the domain of the base
data we propose two clean-label poisoning attacks. The
first being a clean-label correct-domain attack in which the
base data is picked from the source domain and the sec-
ond being a clean-label incorrect-domain attack in which
base data is chosen from the target domain. Attack success
is evaluated by solving the second problem in Eq. 1 from
scratch and evaluating the classification of xtargettest . Effect
of these poisoning attacks on UDA methods is presented
in Fig. 2(a). Left part of Fig. 2(a) shows the case before
retraining using the poison data generated from Eq. 1 and
the right part shows how poisoning induces misclassifica-
tion. For this experiment, 1% poison data is used to prevent
the alignment of a target test point to its correct class. We
test the attack on binary classification problem (3 vs 8) on
MNIST→ MNIST M. We initialize the poison data from
the class opposite to the true class of the target test point
and using the points closest (in the input space) to the target
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test point. The poison data obtained after solving Eq. 1
is added to the source domain data and UDA methods are
retrained from scratch. The attack is considered successful
if the target test point is misclassified after this retraining.
For the results shown in Fig. 2(b), we randomly targeted
20 points and obtained poison data corresponding to each
UDA method. Attack success is reported after evaluating
UDA methods on five random initializations by adding the
generated poison data in the source domain. To control the
amount of maximum distortion between experiments, we
add a constraint on the maximum permissible distortion to
poison data using `∞ norm and use a value of ε = 0.1. To
generate poison data that remains effective even after UDA
methods are trained from scratch, we make use of multi-
ple randomly initialized networks during poison generation.
Following the work (Huang et al., 2020), we reinitialize
the models at different points during optimization. This
re-initialization scheme helps train UDA methods with dif-
ferent random initializations and for a different number of
epochs making the poison data more resilient to initializa-
tion change that can happen at test-time. The results in
Fig. 2(b) show that using target domain data as base data
is significantly more successful under small permissible
perturbation (ε). Using base data from the source domain
requires large initial distortion to keep the poison data close
to the target point in the representation space and is hence
less successful.

For single domain poisoning, we add poisoned data to the
labeled training set of MNIST M and consider the classi-
fication of a single test point from MNIST M. We use the
same poisoning percentage and maximum distortion as in
the UDA poisoning experiments. Unlike the UDA setting
where attack success is evaluated on models trained with
UDA methods, for single domain setting models are trained
with ERM. The average attack success rate for poisoning
20 randomly chosen test points is 58% in this single do-
main setting. This is lower than the attack success we get
with clean-label incorrect-domain poisoning with most UDA
methods suggesting the difficulty of poisoning in a single
domain setting.

C. Details of the experiments
All codes are written in Python using Tensorflow/Keras and
were run on Intel Xeon(R) W-2123 CPU with 64 GB of
RAM and dual NVIDIA TITAN RTX. Dataset details and
model architectures used are described below.

C.1. Dataset description

Here we describe the details of the datasets used for the
Digits and Office-31 tasks.

Digits: For this task, we use 4 datasets: MNIST,
MNIST M, SVHN, and USPS. We evaluate four

(a) Clean-label correct-domain poisoning attack aligns the target
domain test point (purple with label +) close to the wrong class (-).

(b) The attack success rate of clean-label poisoning using base
data from source/target for a two-class problem in MNIST →
MNIST M.

SOURCE TARGET

Figure 2. Effect of clean-label poisoning attack

popular tasks under this, namely, SVHN→ MNIST,
MNIST→ MNIST M, MNIST→ USPS and
USPS→ MNIST. For SVHN→ MNIST, we train on
73,257 images from SVHN and 60,000 images from
MNIST while testing on 10,000 MNIST images. For
MNIST→ MNIST M, we use 60,000 images from MNIST
and MNIST M for training and test on 10,000 MNIST
images. Lastly, for MNIST→ USPS and USPS→ MNIST,
we use 2,000 images from MNIST and 1,800 images from
USPS for training. We test on the 10,000 MNIST images
and 1,860 USPS images.
Office-31: The dataset contains a total of 4110 images
belonging to 31 categories from 3 domains: Amazon (A),
DSLR(D), and Webcam(W). We evaluate the performance
of UDA on all six tasks, namely, A→ D, A→ W, D→ A,
D→W, W→ A, W→ D.

C.2. Model architecture

Here we describe the model architectures used for different
tasks. To fairly compare the performance of different UDA
methods and eliminate the effect of architecture changes in
improving the performance of different methods, we make
use of similar model architectures for different methods, as
described below. The effectiveness of these architectures
has also been shown by previous works.

Digits: The architectures used for MNIST→ MNIST M,
MNIST→ USPS and USPS→ MNIST involves a shared
convolution neural network. The output of this shared net-
work is fed into a softmax classifier and the discriminator.
The architecture of the shared network consists of a convo-
lution layer with a kernel size of 5x5, 20 filters, and ReLU
activation, followed by a max-pooling layer of size 2x2.
This is followed by another convolution layer with a 5x5
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(a) DANN trained on clean data (b) DANN trained on poisoned
data

(c) CDAN trained on clean data (d) CDAN trained on poisoned
data

SOURCE TARGET POISON

Figure 3. (Best viewed in color.) t-SNE embedding of the data in the representation space (for MNIST→ USPS task) learned using
DANN and CDAN on clean and poisoned source domain data. Without poisoning, correct classes (data from source class 2 is zoomed in)
from two domains are aligned ((a) and (c)). The presence of poisoned data fools the methods into aligning incorrect classes from the two
domains ((b) and (d)). The mismatch between the source and target classes is dependent on the labels of the poison data (due to which,
target class 1 aligned to source class 2).

kernel, 50 filters, and ReLU activation followed by similar
max pooling and a dropout. Then we have a fully con-
nected layer with ReLU activation of size 500 followed by a
dropout layer. For the discriminator, we use two dense lay-
ers with 500 units each followed by a ReLU and a dropout
layer. This is followed by a 2 unit softmax layer. For
MCD, we use the following architecture for the generator
on MNIST→ MNIST M task. A convolution layer with
a kernel size of 5x5, 32 filters, and ReLU activation, fol-
lowed by a max-pooling layer of size 2x2. This is followed
by another convolution layer with a 5x5 kernel, 48 filters,
and ReLU activation followed by a similar max-pooling
layer. For the classifier, we use 2 dense layers with 100
units followed by ReLU activation and dropout layers. This
is followed by the softmax layer. Unlike the original work
MCD (Saito et al., 2018), we do not use batch normaliza-
tion layers in these tasks to make architectures consistent
across different methods. For SVHN→ MNIST we use
the following architecture for the generator. A convolu-
tion layer with a kernel size of 5x5, 64 filters, a stride of 2
followed by batch normalization, dropout, and ReLU acti-
vation layer. This is followed by another convolution layer
with a kernel size of 5x5, 128 filters, a stride of 2 followed
by batch normalization, dropout, and ReLU activation layer.
Then another convolution layer with a kernel size of 5x5,
256 filters, a stride of 2 followed by batch normalization,
dropout, and ReLU activation layer. This is followed by a
dense layer with 512 units followed by batch normalization,
ReLU activation, and a dropout layer. We use the softmax
layer for classification. For the discriminator, we use two

dense layers with 500 units each followed by a ReLU and
a dropout layer. This is followed by a 2 unit softmax layer.
For MCD, we use the same architecture for the generator
except that we use max-pooling instead of convolution lay-
ers with stride 2 to downsample the representation. The
classifier uses the output of the generator and feeds into a
dense layer with 256 units followed by batch normalization
and ReLU activation layers. This is followed by a softmax
layer.

Office-31: For these experiments, we use the publicly avail-
able code2 of the work (Combes et al., 2020) and supply
the poisoned data by adding them to the input files being
used by the code. We use all default options of the code and
use DAN, CDAN, IW-DAN, IW-CDAN algorithms. This is
done to eliminate the effect of hyperparameters on the per-
formance of the UDA algorithms on the Office-31 dataset
and be able to fairly compare the performance of poisoning.

To obtain the representation trained only on the source do-
main data, we initialize a ResNet50 model with weight
pre-trained on Imagenet. We then update the representation
by training on respective source domain data for different
tasks.

2https://bit.ly/34EFb52

https://bit.ly/34EFb52
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(a) MCD trained on clean data (b) MCD trained on poisoned
data

(c) SSL trained on clean data (d) SSL trained on poisoned
data

SOURCE TARGET POISON

Figure 4. (Best viewed in color.) t-SNE embedding of the data in the representation space (for MNIST→ USPS task) learnt using MCD
and SSL on clean and poisoned source domain data. Without poisoning, correct classes (data from source class 2 is zoomed in) from two
domains are aligned ((a) and (c)). The presence of poisoned data prevents the methods from aligning correct classes from the two domains
((b) and (d)).

(a) DANN trained on Water-
marked data

(b) CDAN trained on Water-
marked data

(c) MCD trained on Water-
marked data

(d) SSL trained on Water-
marked data

SOURCE TARGET POISON

Figure 5. (Best viewed in color). t-SNE embedding of the data in the representation space (for MNIST→ USPS task) learned using
DANN, CDAN, MCD, and SSL poisoned watermarked (α = 0.3) data source domain data. Successful poisoning aligns the wrong classes
for discriminator-based approaches, as seen in (a) with DANN. Poisoning fails against CDAN because of the pseudo-labels being correct
on the target data (b). For MCD, we see 20 distinct clusters highlighting the failure of the method at detecting and aligning target domain
data (c). For SSL, the poison data has prevented the correct classes from having very similar representations (d). The failure of most
UDA methods with a small amount of watermarked data not only makes our attack practical but also raises serious concerns about the
vulnerability of these methods to poisoning attacks.


