
Optimistic Actor-Critic with Parametric Policies:
Unifying Sample Efficiency and Practicality

Max Qiushi Lin
Simon Fraser University
maxqslin@gmail.com

Reza Asad
Simon Fraser University

rasad@sfu.ca

Kevin Tan
University of Pennsylvania

kevtan@umich.edu

Haque Ishfaq
Mila and McGill University

haque.ishfaq@mail.mcgill.ca

Csaba Szepesvári
Google DeepMind and University of Alberta

szepi@google.com

Sharan Vaswani
Simon Fraser University

vaswani.sharan@gmail.com

Abstract

Although actor-critic (AC) methods have been successful in practice, their theo-
retical analyses have several limitations. Specifically, existing theoretical work
either sidesteps the exploration problem by making strong assumptions or analyzes
impractical methods that require complicated algorithmic modifications. More-
over, the AC methods analyzed for finite-horizon MDPs often construct “implicit”
policies without explicitly parameterizing them, further exacerbating the mismatch
between theory and practice. To that end, we propose an optimistic AC frame-
work with parametric policies that is both practical and equipped with theoretical
guarantees for episodic linear MDPs. In particular, we introduce a tractable re-
gression objective for the actor to train log-linear policies. This enables us to
control the error between the parameterized actor and the easier-to-analyze implicit
policies induced by natural policy gradient. To train the critic, we use approximate
Thompson sampling via Langevin Monte Carlo to obtain optimistic value estimates.
This results in a principled, yet flexible exploration scheme without any additional
assumptions on the MDP. We prove that our algorithm achieves an Õ(ϵ−4) sample
complexity in the on-policy setting and an Õ(ϵ−2) complexity in the off-policy
setting. Our algorithm matches prior theoretical work in achieving state-of-the-art
sample efficiency, while being more aligned with practice.

1 Introduction

Reinforcement learning (RL) is a general framework for sequential decision making under uncertainty
and has been successful in various real-world applications, such as robotics [Kober et al., 2013] and
aligning language models [Uc-Cetina et al., 2023]. Policy Gradient (PG) methods [Williams, 1992,
Sutton et al., 1999, Kakade, 2001, Schulman et al., 2017a] are an important class of algorithms that
assume a differentiable parameterization of the policy, and directly optimize the policy parameters
using the return from interacting with the environment. PG methods are widely used in practice
as they can easily handle function approximation or structured state-action spaces. However, since
the environment is typically stochastic in practice, the estimated returns usually have high variance,
resulting in poor sample efficiency [Dulac-Arnold et al., 2019].

2nd Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2025).

Actor-critic (AC) methods [Konda and Tsitsiklis, 1999, Peters et al., 2005, Bhatnagar et al., 2009]
alleviate this issue by using value-based approaches in conjunction with PG methods. In particular,
they utilize a critic that estimates the policy’s value and an actor that performs PG to improve the
policy towards obtaining higher returns. These AC methods have been proven to be empirically
successful in both on-policy [Schulman et al., 2015, 2017b] and off-policy [Lillicrap et al., 2015,
Fujimoto et al., 2018, Haarnoja et al., 2018] settings.

Subsequently, there have been many attempts to provide a theoretical understanding of actor-critic
methods, especially in the presence of function approximation [Cai et al., 2020, Zhong and Zhang,
2023, Liu et al., 2023]. However, there are two prevalent issues that result in mismatches between
theory and practice: the studied methods either (i) do not consider strategic exploration in a systematic
manner or (ii) analyze complicated and impractical variants of the algorithm. In particular, much of
the literature makes unrealistic assumptions to avoid dealing with exploration, a central challenge in
RL. For instance, existing work on PG methods [Agarwal et al., 2021a, Yuan et al., 2023, Alfano
and Rebeschini, 2022, Asad et al., 2025] obtains convergence rates that involve a mismatch ratio
between the optimal policy and the initial state distribution. These results are only meaningful
if the mismatch ratio is bounded. However, a bounded mismatch ratio indicates that the initial
state distribution already provides a good coverage over the state space, thereby sidestepping the
exploration problem. Within actor-critic methods, some early analyses make assumptions on the
reachability of the state-action space or the coverage of collected data [Abbasi-Yadkori et al., 2019,
Neu et al., 2017, Bhandari and Russo, 2024, Agarwal et al., 2021a, Cen et al., 2022, Gaur et al.,
2024], which again imply that the state-action space is already relatively easy to explore. Follow-up
work [Hong et al., 2023, Fu et al., 2021, Xu et al., 2020, Cayci et al., 2024] assumes a bounded
mismatch ratio, while others [Khodadadian et al., 2022, Gaur et al., 2023] require mixing assumptions
on the induced Markov chain.

On the other hand, recent work [Cai et al., 2020, Jin et al., 2021, Zanette et al., 2021, Zhong and
Zhang, 2023, Agarwal et al., 2023, He et al., 2023, Liu et al., 2023, Sherman et al., 2023, Cassel and
Rosenberg, 2024, Tan et al., 2025] tackles the exploration issue directly. However, the algorithms
analyzed are significantly different from those implemented in practice. Much of this body of work
studies AC methods that use the natural policy gradient (NPG) update for policy optimization. However,
the canonical implementation of the NPG update does not consider an explicit policy parameterization.
Instead, the update involves constructing “implicit” policies on the fly using all previously stored
Q-functions. Consequently, this implementation has a memory complexity that is linear in the
number of updates. This drastically deviates from practice, where algorithms typically employ
explicitly parameterized complex models as learnable policies and optimize them with gradient
descent-based methods. Furthermore, in the off-policy setting, these works require complicated
algorithmic modifications, further exacerbating the mismatch between theory and practice. For
example, Sherman et al. [2023] adopts a warm-up procedure from Wagenmaker et al. [2022] that
does not resemble policy optimization and is difficult to implement in practice. Although Cassel and
Rosenberg [2024] can avoid the warm-up phase, it still requires feature contraction techniques that
are non-standard in practice, and difficult to extend beyond linear function approximation. The issues
above indicate a significant gap between theory and practice for AC methods. Thus, we address the
following question:

Can we design a provably sample-efficient, yet practical, actor–critic algorithm
with parametric policies for both the on- and off-policy regimes?

Contributions We answer the above question affirmatively, and make the following contributions.

1. General framework with an explicitly parameterized actor. In Section 3, we propose a general
optimistic actor-critic framework that employs an explicitly parameterized policy. We analyze this
framework in the setting of linear function approximation for both the environment (i.e., linear
MDP [Jin et al., 2020]) and the policy (i.e., log-linear policy class). In Section 4, we propose an actor
algorithm that learns a log-linear policy by solving a specific regression problem at each iteration.
This allows us to directly control the error between the explicitly parametrized policy and the implicit
policy induced by NPG. Using this error bound in conjunction with the well-established theoretical
results of NPG [Hazan et al., 2016, Szepesvári, 2022] enables us to analyze the performance of the
parameterized actor. We show that the proposed algorithm benefits from a substantially improved
memory complexity, while retaining similar theoretical guarantees.

2

2. LMC critic for practical strategic exploration. In Section 5, instead of constructing UCB
bonuses [Jin et al., 2020], which are ubiquitous within prior work [Cassel and Rosenberg, 2024,
Sherman et al., 2023, Liu et al., 2023, Zhong and Zhang, 2023], we adopt a more practical approach.
We employ Langevin Monte Carlo (LMC) [Welling and Teh, 2011] to update the critic parameters at
each episode. Unlike UCB-based approaches that require computing confidence sets at every episode,
LMC simply perturbs (by Gaussian noise) the gradient descent update on the critic loss. This gradient
descent-based approach is both easier to implement [Ishfaq et al., 2025] and to extend to general
function approximation [Ishfaq et al., 2024b]. Furthermore, the LMC algorithm directly leads to an
optimistic estimate of the Q-function that has similar guarantees as UCB bonuses. Nevertheless,
previous works have only successfully designed provably efficient algorithms for solving multi-armed
bandits Mazumdar et al. [2020], contextual bandits [Xu et al., 2022], and linear MDPs via value-based
methods [Ishfaq et al., 2024a]. Our paper is the first to analyze an LMC based approach in the context
of policy optimization.

3. End-to-end theoretical guarantees for actor-critic. In Section 6, we analyze the proposed
actor-critic framework in both the on-policy and off-policy settings without making any assumptions
on the mismatch ratio or data coverage. In particular, in the on-policy setting, we prove that our
method requires Õ(1/ϵ4) samples to learn an ϵ-optimal policy. This matches the result in [Liu et al.,
2023] that uses an implicit NPG policy in conjunction with UCB bonuses. On the other hand, we also
prove that our framework can attain a sample complexity of Õ(1/ϵ2) in the off-policy setting. This
matches the results of Sherman et al. [2023], Cassel and Rosenberg [2024], Tan et al. [2025], but
with a far less complicated algorithm design.

We thus demonstrate that our optimistic actor-critic method is both practical and sample-efficient.

2 Preliminaries
In this section, we introduce the episodic linear MDP setting and the log-linear policy class.

Episodic Linear MDP. An episodic MDP is a tupleM = (S,A,P, r,H) where S denotes the
state space, A is the action set and H ∈ Z+ is the length of the horizon, P = {Ph}h∈[H] is a set of
time-dependent transition kernels, and r = {rh}h∈[H] denotes a sequence of reward functions. We
assume that the state space S is a (possibly infinite) measurable space, whereas A is a finite set with
cardinality |A|. We note that Ph(· | s, a) ∈ ∆(S) is the distribution over states when taking action
a ∈ A in state s ∈ S at step h ∈ [H], and rh(s, a) ∈ [0, 1] is the corresponding reward. Additionally,
for any given function V : S → R, we define that [Ph Vh+1](s, a) := Es′∼Ph(·|s,a)Vh+1(s

′).

The agent interacts with the environment by starting at an initial state (w.l.o.g., fixed to be s1 ∈ S).
At step h, the agent first observes the current state sh ∈ S , then takes an action ah ∈ A and receives
the reward rh(sh, ah). After that, the agent transitions to sh+1 ∼ Ph(· | sh, ah) . The agent follows
a given policy π : [H]× S 7→ ∆(A) in which πh(· | s) ∈ ∆(A) is the probability distribution over
A in state s at step h.

To quantify the performance of any given policy π, we define the value function as V π
h (s) :=

E[
∑H

τ=h rτ (sτ , aτ) | sh = s, π], and the corresponding state-action value function is defined as
Qπ

h(s, a) := Eπ,P[
∑H

τ=h rτ (sτ , aτ) | sh = s, ah = a, π], where the expectation is with respect to
the randomness in the stochastic policy and the transition dynamics. The value function (resp. Q-
function) corresponds to the expected cumulative rewards when starting in state s (resp. state-action
(s, a)) at step h, and subsequently following the policy π until reaching step H .

We assume that both P and r are unknown to the agent. In order to efficiently learn these quantities,
we consider the linear MDP assumption [Jin et al., 2020] where both the transition kernel and the
reward function are assumed to be linear functions of given features.
Definition 2.1 (Linear MDP). An episodic MDPM = (S,A,P, r,H) is a linear MDP with a feature
map ϕ : S × A 7→ Rdc if the following holds. There exist H signed measures ψh : S → Rdc and
υh : Rdc such that Ph(s

′ | s, a) = ⟨ϕ(s, a), ψh(s
′)⟩ and rh(s, a) = ⟨ϕ(s, a), υh⟩. It should also

satisfy the following constraints: ∥ϕ(s, a)∥ ≤ 1, ∥ψh(s)∥ ≤
√
dc, and ∥υh∥ ≤

√
dc for all h, s, and

a. Additionally, for any measurable function V : S → [0, 1],
∥∥∫

s∈S V (s)ψh(s) d s
∥∥ ≤ √dc.

According to Jin et al. [2020, Proposition 2.3], for a linear MDP and any policy π, Qπ
h is a linear

function of the features: for all (h, s, a), there exists a wh ∈ Rdc such that Qπ
h(s, a) = ⟨ϕ(s, a), wh⟩.

3

Learning Objective. For this linear MDP setting, we assume that only ϕ is available to the
learner whereas ψ and υ are not. The agent sequentially interacts with the environment for T
episodes and aims to minimize the cumulative regret defined as Reg(T) :=

∑T
t=1[V

⋆
1(s1)−Vπt

1 (s1)],
where V ⋆

1 := V π⋆

1 := supπ V
π
1 is the value function of the optimal policy π⋆ := arg supπ V

π
1 (s1).

Equivalently, if πT denotes the mixture policy that picks a policy among {π1, . . . , πT } uniformly
randomly, we aim to learn an ϵ-optimal πT , i.e., its optimality gap (OG) is bounded such that0

OG(T) := E
[
V⋆

1(s1)−VπT

1 (s1)
]
=

Reg(T)

T
≤ Õ(ϵ) ,

where the expectation is taken with respect to the randomness of the mixture policy.

Log-Linear Policy. We consider a restricted policy class Πlin consisting of log-linear policies.
Log-linear policies are represented using the softmax function with linear function approximation. In
particular, a log-linear policy is defined as follows: for all h ∈ [H],

πh(a | s, θ) =
exp(zh(s, a | θh))∑

a′∈A exp(zh(s, a′ | θh))
, (1)

where zh(s, a | θh) = ⟨φ(s, a), θh⟩ represents the logits parameterized by θh, and φ : S ×A 7→ Rda

are policy features given to the learner. W.l.o.g, we assume that ∥φ(s, a)∥ ≤ 1 for all s and a.
For convenience, we use the shorthand π(θ) : [H] × S → ∆(A) to refer to the log-linear policy
corresponding to the parameters θ.

3 Optimistic Actor-Critic Framework
In this section, we start by introducing our general optimistic actor-critic framework as shown
in Algorithm 1. Starting with a uniform policy π1, at the beginning of every learning episode
t ∈ [T], the agent interacts with the environment using policy πt (Line 4). Our framework allows for
collecting data from the environment in either an on-policy or off-policy fashion. In the on-policy
setting, at episode t, the agent collects N fresh trajectories Dt by interacting with the environment
using the current policy πt. On the other hand, in the off-policy setting, at episode t, the agent
collects only 1 trajectory from the environment using πt. However, the agent stores all the historical
data collected by the previous policies, and hence, Dt consists of t trajectories, each collected by
π1, . . . , πt respectively.

The critic uses the collected data and estimates an (optimistic) Q-function via learning the critic
parameters wt+1 ∈ [H]× Rdc (Line 5). The actor then uses the estimated Q-function, and updates
the parameters of θt ∈ [H]× Rda of the log-linear policy (Line 6). The updated log-linear policy is
denoted by πt+1 (Line 7), and is used to collect data in the next episode.

Algorithm 1 Optimistic Actor-Critic with Parametric Policies

1: Input: number of update steps T , data collection batch size N (only for on-policy)
2: set D0 ← ∅, w1

h ← 0, π1
h(· | s)← U(A) ∀(h, s)

3: for t = 1, . . . , T − 1 do

4: Collect data: Dt ←

{
On-Policy:

{
N fresh traj. i.i.d.∼ πt

}
Off-Policy: Dt−1 ∪ {1 traj. ∼ πt}

5: Update the critic: wt+1 ← Critic(Dt, πt, wt)
6: Update the actor: θt+1 ← Actor(wt+1, θt)
7: Instantiate the parametric policy: πt+1 = π(θt+1)

8: Return: mixture policy πT

Given this general framework, we will next instantiate the actor in Section 4 and the critic in Section 5.

4 Instantiating the Actor: Projected Natural Policy Gradient
In this section, we instantiate the actor using natural policy gradient (NPG) with parametric policies
and analyze its behavior. In particular, in Section 4.1, we devise an algorithm that projects the
standard NPG update onto the class of realizable policies. In Section 4.2, we analyze and control
the errors induced by the projection step. Finally, in Section 4.3, we put everything together and
instantiate the complete actor algorithm for the log-linear policy class.

4

4.1 Projected Natural Policy Gradient

At episode t ∈ [T], given Q̂t
h, the estimated Q-function, NPG updates the policy as: for each (h, s),

πt+1
h (·|s) ∝ πt

h(·|s) exp(η Q̂t
h(s, ·)) (2)

with the corresponding normalization across A. Existing work on policy optimization in linear
MDPs [Liu et al., 2023, Sherman et al., 2023, Cassel and Rosenberg, 2024] uses NPG to update the
actor because of its favorable theoretical properties. Importantly, these works do not consider any
explicit parameterization for the actor. Directly implementing the update in Eq. (2) requiresO(|S||A|)
memory, and is therefore impractical with large state-action spaces. Consequently, existing works
use the following equivalent form of the NPG update: πt+1

h (·|s) ∝ π1
h(·|s) exp(η

∑t
i=1 Q̂

i
h(s, ·)) and

characterize the policy implicitly. In particular, at episode t, for any (h, s, a), we can compute the
policy on the fly if we have access to the sum of all the parameterized Q-functions up to episode
t. However, in Liu et al. [2023], Sherman et al. [2023], Cassel and Rosenberg [2024], the sum of
parameterized Q functions cannot be stored in a succinct manner. Consequently, these existing works
require storing all the parameterized Q functions, and have a memory complexity linear in |S| or T .
Consequently, the resulting algorithm is far from practice that typically uses an explicit (and often
sophisticated) actor parameterization.

To alleviate these issues, we aim to compute a policy that is (i) realizable by the explicit actor
parameterization and (ii) provably approximates the policy induced by the NPG update in Eq. (2)
(referred to as the implicit policy). To this end, we use a projected NPG update:

πt+1
h (· | s) = ProjΠ

[
πt
h(· | s) exp(η Q̂t

h(s, ·))∑
a′ πt

h(a
′ | s) exp(η Q̂t

h(s, a
′))

]
,

where Proj is the projection operator, which will be instantiated subsequently in Section 4.2.

When theoretically analyzing policy optimization methods, an important intermediate result is the
bound on the regret for a specific online linear optimization problem. For the standard NPG update
in Eq. (2), this regret can be bounded by Õ(

√
T) [Hazan et al., 2016, Szepesvári, 2022]. In the

following lemma, we analyze the effect of the projection operator and bound the regret for the
projected NPG.
Lemma 4.1. Given a sequence of linear functions {⟨pt, gt⟩}t∈[T] for a sequence of vectors {gt}t∈[T]

where for any t ∈ [T], pt ∈ ∆(A), gt ∈ R|A|, and ∥gt∥∞ ≤ H . Consider pt∈[T] where p1 is the
uniform distribution, and for all t ∈ [T],

pt+1/2 = argmin
p∈∆A

{〈
p,−η gt

〉
+KL(p ∥ pt)

}
, (3)

pt+1 = ProjΠ(p
t+1/2) . (4)

Let ϵt := KL(u ∥ pt+1)−KL(u ∥ pt+1/2) be the projection error induced by Eq. (4). Then, for any
comparator u ∈ ∆(A), it holds that

T∑
t=1

〈
u− pt, gt

〉
≤

log|A|+
∑T

t=1 ϵ
t

η
+
η H2 T

2
.

The update in Eq. (3) with pt = πt
h(·|s) is equivalent to the standard NPG update in Eq. (2) [Xiao,

2022]. Using this lemma for each state s and step h, with gt = Q̂t
h(s, ·) and an appropriate choice of

η gives the following regret bound1 for the projected NPG:
T∑

t=1

H∑
h=1

max
s∈S
⟨π⋆

h(·|s)− πt
h(·|s), Q̂t

h(s, ·)⟩ ≤ O
(
H2
√

log|A|
√
T +H2

√
ϵ T
)
, (5)

where ϵ := maxt,s,h ϵ
t
h(s) is the largest error across all t, s, and h. For the NPG in Eq. (2) without

projection, ϵ = 0 and the above result recovers the standard regret bound for NPG. The above lemma
suggests that by choosing the projection operator carefully and controlling the projection errors, we
can bound the regret.

1This generalized regret bound holds for any other mirror descent-based policy optimization method (e.g.,
SPMA [Asad et al., 2025] in Appendix B.3), but we discuss NPG within the main text for the ease of exposition.

5

4.2 Controlling the Projection Error for Log-Linear Policies
To bound the projection error in Lemma 4.1, one could choose that ProjΠ(p) =
argminp KL(u ∥ p) − KL(u ∥ pt+1/2), and hence directly control ϵth. However, this results
in a non-convex optimization problem. Consequently, we instead choose Proj to minimize the
following regression loss in the logit space: 1

2∥z − (zt + η gt)∥ where zt is the logit corresponding
to pt such that pt ∝ exp(zt). For the projected NPG with log-linear policies, we aim to minimize
the sum of such regression losses (across all (s, a) ∈ S ×A) at episode t and step h, and obtain the

loss function: 1
2

∑
(s,a)∈S×A

[〈
φ(s, a), θ − θ̂th

〉
− η Q̂t

h(s, a)
]2

, where Q̂t
h(s, a) is the estimated

Q-function from the critic. As a regression problem, this actor loss can be easily optimized via
gradient descent-based methods.

However, note that the above actor loss requires a minimization over the entire state-action space,
which may be impractical. Therefore, we propose to construct a good and preferably small subset
Dexp ⊂ S ×A along with a corresponding distribution ρexp ∈ ∆(Dexp) that offers good coverage
of the feature space. Given Dexp and ρexp, we instantiate the actor loss ℓ̃th(θ):

ℓ̃th(θ) =
1
2

∑
(s,a)∈Dexp

ρexp(s, a)
[〈
φ(s, a), θ − θ̂th

〉
− η Q̂t

h(s, a)
]2
, (6)

In order to construct Dexp and ρexp and to show that optimizing the above actor loss can indeed
bound the projection error, we require the following assumptions. We assume that the given policy
features φ are expressive enough to control the bias when minimizing ℓth(θ).
Assumption 4.1 (Bias). Suppose φ is the given policy feature for the log-linear policy. Then, it holds
that infθ supt,h,s,a

∣∣∣⟨φ(s, a), θ⟩ − η Q̂t
h(s, a)

∣∣∣ ≤ ϵbias.
In practice, ϵbias can be controlled by choosing high-dimensional features (e.g., da ≫ dc) or a
sufficiently expressive policy class (e.g., neural network).

Next, we assume the loss ℓ̃th(θ) is sufficiently minimized.
Assumption 4.2 (Optimization Error). Suppose θth is obtained by minimizing ℓ̃th(θ). Let θ̂t,⋆h =

argminθ ℓ̃
t
h(θ). Then, it holds that supt,h

∥∥∥θth − θ̂t,⋆h

∥∥∥ ≤ ϵopt.
In practice, minimizing ℓ̃th(θ) by Kt steps of gradient descent ensures that ϵopt ≤ O(exp(−Kt)).
Given these two mild assumptions, we can then proceed to bound the projection error. Us-
ing Lemma 4.1 for the projected NPG update at state s, step h, and setting u = π⋆(· | s), the
projection error ϵth(s) can be bounded as follows.
Lemma 4.2. Under Assumptions 4.1 and 4.2, suppose φG := sup(s,a)∈S×A∥φ(s, a)∥G−1 where
G :=

∑
(s,a)∈Dexp

ρexp(s, a)φ(s, a)φ(s, a)
⊤, then, for all (t, h, s),∣∣ϵth(s)∣∣ ≤ ϵ := √2 (φG + 1) ϵbias +

√
2 ϵopt .

The above lemma is true for any choice of Dexp and ρexp, and suggests that if we can control φG, the
projection error can be bounded. Therefore, we would like to construct a suitable Dexp and ρexp to
bound ∥φ(s, a)∥G−1 for any (s, a) ∈ S ×A and solve the following optimization problem:

inf
Dexp∈S×A

ρexp∈∆(Dexp)

sup
(s,a)∈S×A

∥φ(s, a)∥G−1

s.t. G =
∑

(s,a)∈Dexp
ρexp(s, a)φ(s, a)φ(s, a)

⊤ ,

which fits the form of experimental design. Ideally, we would also like |Dexp| to be relatively small
so that the actor parameters can be updated efficiently.

There are standard techniques to solve this problem. The most common approach is the G-
optimal design, which involves constructing a coreset and bounds ∥φ(s, a)∥G−1 . In particular,
the Kiefer–Wolfowitz theorem [Kiefer and Wolfowitz, 1960] guarantees that there exists a coreset
such that ∥φ(s, a)∥G−1 ≤ O(da) and |Dexp| ≤ Õ(da). Constructing such a coreset can be achieved
using various methods, such as the Frank-Wolfe algorithm [Frank et al., 1956, Szepesvári, 2022].
We remark that this method only uses the given policy features φ, and does not involve the linear

6

MDP features. Furthermore, the required coreset can be constructed offline, even before the learning
procedure or without any knowledge of the environment (see Appendix C.1 for details). Given access
to such a coreset, we can guarantee that ϵ ≤ O(da ϵbias + ϵopt), and optimizing the actor loss only
requires O(da) computation.

Rather than forming a coreset, alternative approaches assume φ = ϕ, and use some limited interaction
with the environment to construct Dexp. In particular, under some standard assumptions (e.g., Wagen-
maker and Jamieson, 2022, Assumption 1), we can apply methods such as CoverTraj [Wagenmaker
et al., 2022] and OptCov [Wagenmaker et al., 2022] that bound ∥φ(s, a)∥G−1 and offer similar
guarantees. We defer these details to Appendix C.

4.3 Putting Everything Together: Projected NPG with Log-Linear Policies
In Algorithm 2, we instantiate the complete actor algorithm, which uses the projected NPG update for
log-linear policies. Unlike the standard NPG update, Algorithm 2 alleviates the necessity of storing
past Q-functions, improving the memory complexity to O(da), while enjoying similar theoretical
guarantees. Furthermore, the actor parameters are updated by using gradient descent on a properly
defined surrogate loss, rendering it closer to the practical implementation of common algorithms
(e.g., PPO [Schulman et al., 2017b]).

We remark that although we focused on the log-linear policies, our theoretical guarantees readily
extend to general function approximation when Assumptions 4.1 and 4.2 are satisfied and one has
access to an exploratory policy [Hao et al., 2021, Definition 1]. In the next section, we instantiate the
critic in Algorithm 1.

Algorithm 2 Actor: Projected NPG

1: Input: critic parameters wt, policy optimization learning rate η, number of actor updates Kt,
actor learning rate αt

a, subset and distribution of the state-action space Dexp and ρexp
2: for h = 1, 2, . . . ,H do
3: Q̂t

h(·, ·) = clip[0,H−h+1]

{
maxm∈[M]

〈
ϕ(·, ·),wt,m,Jt

h

〉}
4: Define the actor loss ℓ̃th(θ) using Eq. (6)
5: for k = 1, . . . ,Kt do
6: θt,kh ← θt,k−1

h − αt
a∇θ ℓ̃

t
h(θ

t,k−1
h)

7: Return: actor parameters for the policy θt

5 Instantiating the Critic: Langevin Monte Carlo
In this section, we use Langevin Monte Carlo (LMC) to instantiate the critic. We describe the resulting
algorithm in Section 5.1, and analyze it in Section 5.2.

The LMC approaches allow for sampling from a posterior distribution and have recently been used
in sequential decision-making problems. For example, Mazumdar et al. [2020] achieves optimal
instance-dependent regret bounds for multi-armed bandits using Langevin dynamics for approximate
Thompson sampling. On the other hand, Xu et al. [2022] uses LMC for contextual bandits, achieving
comparable theoretical results to Thompson sampling. More recently, Ishfaq et al. [2024a] leverages
LMC for linear MDPs by using it to sample the Q-function from its posterior distribution, achieving
the optimal Õ(

√
T) regret.

Nevertheless, all existing LMC-based approaches for MDPs, including those for general function
approximation [Ishfaq et al., 2024b, Jorge et al., 2024] use value-based algorithms. To the best of
our knowledge, such approaches have never been theoretically analyzed in the context of policy
optimization. Next, we incorporate the LMC algorithm into our actor-critic framework and provide the
first provable result.

5.1 LMC for Linear MDPs
At episode t, the critic uses the collected dataset Dt to obtain an optimistic estimate of the Q function.
In order to instantiate the critic loss, we consider the dataset Dt as split into H disjoint subsets

{Dt
h}h∈[H], where Dt

h consists of (sh, ah, sh+1) tuples indexed as
{
(sih, a

i
h, s

i
h+1)

}|Dt|
i=1

2. The critic

2|Dt| represents the number of trajectories in Dt or the number of (sh, ah, sh+1) tuples in Dt
h

7

loss at episode t and step h uses the estimated value function at step h+ 1, and forms the following
ridge regression problem:

Lt
h(w) =

1
2

∑|Dt|
i=1

[
rh(s

i
h, a

i
h) + V̂ t

h+1(s
i
h+1)−

〈
ϕ(sih, a

i
h), w

〉]2
+ λ

2 ∥w∥
2
, (7)

For each step h, LMC iteratively adds Gaussian noise to the gradient descent updates on Lt
h(w),

and aims to produce approximate samples of the critic parameters from its underlying posterior
distribution (Line 6-8). In particular, for an arbitrary loss ℓ, the LMC update can be written as:

wt+1 = wt − αt∇wℓ(w
t) +

√
αt/ζ νt ,

where αt is the learning rate, ζ is the inverse temperature parameter, and νt is sampled from an
isotropic Gaussian distribution. After Jt steps of the LMC update on the critic loss (Lines 6-8
in Algorithm 3), the resulting critic parameters are used to produce an optimistic sample of the Q-
function (Line 9). From a theoretical perspective, we note that it is important to clip Qt

h appropriately.
In order to improve the optimism guarantees of the LMC algorithm, we follow the idea in Ishfaq
et al. [2021], and repeat the LMC update M times, taking the maximum over these samples (Line 9).
Iterating this procedure backward from h = H to 1, we can obtain the desired critic parameters.

Note that compared to UCB-based approaches, LMC does not require computing confidence sets at
every episode. Instead, it simply perturbs gradient descent by injecting Gaussian noise, allowing
for a natural extension beyond the linear function approximation setting and rendering it easier to
implement in practice. Moreover, our proposed framework, instantiated by the projected NPG and
LMC, has less space complexity as stated in the following remark.
Remark 5.1. Existing works (e.g., Liu et al. [2023], Sherman et al. [2023], Cassel and Rosenberg
[2024]) that use the standard NPG update (πt+1

h (·|s) ∝ π1
h(·|s) exp(η

∑t
i=1 Q̂

i
h(s, ·))) with UCB

bonuses require storing Dt and all the historical Q-function for every previous iteration, resulting in
the space complexity of O(THd). Our proposed framework, instantiated by the projected NPG and
LMC, does not have such requirement, and only require O(TH +Hd), where O(TH) is for storing
Dt and O(Hd) is for storing the LMC critic parameters.

Algorithm 3 Critic: LMC

1: Input: collected data Dt, policy πt−1, number of critic updates Jt, critic learning rate αh,t
c ,

inverse temperature ζ, number of critic samples M
2: V̂ t

H+1(·)← 0
3: for h = H,H − 1, . . . , 1 do
4: Define the critic loss Lt

h(w) using Eq. (7)
5: wt,m,0

h ← w
t−1,m,Jt−1

h ∀m ∈ [M]
6: for j = 1, . . . , Jt do
7: νt,m,j

h ← N(0, I) ∀m ∈ [M]

8: wt,m,j
h ← wt,m,j−1

h − αh,t
c ∇wLt

h(w
t,m,j−1
h) +

√
αh,t
c /ζ νt,m,j

h ∀m ∈ [M]

9: Q̂t
h(·, ·) = clip[0,H−h+1]

{
maxm∈[M]

〈
ϕ(·, ·),wt,m,Jt

h

〉}
10: V̂ t

h(·) = Ea∼πt−1(·|s)Q̂
t
h(·, a)

11: Return: critic parameters for the estimated Q-function {wt,m,Jt

h }(m,h)∈[M]×[H]

5.2 Optimism Guarantee and Error Bound
In order to theoretically analyze Algorithm 3, we first define the following model prediction error.
Definition 5.1. Given an estimated Q-function Q̂t and the corresponding estimated value function
V̂ t, for all (t, h, s, a), the model prediction error is ιth(s, a) := rh(s, a) + Ph V̂

t
h+1(s, a)− Q̂t

h(s, a).

The theoretical analyses in existing works [Jin et al., 2020, Zhong and Zhang, 2023, Liu et al., 2023]
that use UCB bonuses typically proceed by proving an upper bound of 0 on ιth (optimism) and a lower
bound of Õ(

√
T). The following lemma shows that LMC can offer similar guarantees.

Lemma 5.1. Let Λt
h :=

∑
(s,a,s′)∈Dt

h
ϕ(s, a)ϕ(s, a)⊤ + λ I . With appropriate choices of λ, ζ, Jt,

αh,t
c , M and for any δ ∈ (0, 1), Algorithm 1 with the LMC critic in Algorithm 3 ensures that in both

8

the on-policy and off-policy settings, for all t, h, s, a and some constant ΓLMC = Õ(H dc), with
probability at least 1− δ,

−ΓLMC × ∥ϕ(s, a)∥(Λt
h)

−1 ≤ ιth(s, a) ≤ 0.

The exact definition of ΓLMC varies between the on-policy and off-policy settings, although they are
both bounded by Õ(H dc) (see Appendix D for the full version of this lemma). In order to prove
this result in the on-policy setting, we use the fact that all the data points in Dt

h are collected via
independent trajectories from the same policy πt, and are therefore independent and identically
distributed. Hence, we can use the self-normalized bounds in Abbasi-Yadkori et al. [2011] to analyze
the dependence in h, and prove the corresponding result. In the off-policy setting, since the data
points in Dt

h are collected by different data-dependent policies, these samples are correlated in a
complicated manner. Hence, we use the value-aware uniform concentration result from Jin et al.
[2020]. We remark that this result requires control over the log covering number of the value function
class, which is deferred to Section 6.

Therefore, we conclude that, compared to UCB bonuses, LMC offers significant practical advantages
while still providing similar theoretical guarantees.

6 Sample Complexity Analysis
In this section, we analyze the sample complexity of Algorithm 1 with the projected NPG actor
from Algorithm 2 and the LMC critic from Algorithm 3. Section 6.1 focuses on the on-policy setting,
while Section 6.2 addresses the off-policy setting.

6.1 On-Policy Setting
We now present the following theorem that shows that our proposed algorithm achieves a sample
complexity of Õ(1/ϵ4) in the on-policy setting, matching the result in Liu et al. [2023].
Theorem 6.1. Under Assumptions 4.1 and 4.2, consider Algorithm 1 in the on-policy setting with the
LMC critic (Algorithm 3) and the projected NPG actor (Algorithm 2). For an appropriate choice of the
actor and critic parameters, N = d3c T/(H

2 log|A|) and δ ∈ (0, 1), if ϵ is the projection error in the
actor, then, with probability at least 1− δ,

OG(T) ≤ Õ

(
H2
√
log|A|√
T

+H2
√
ϵ

)
.

Hence, for any ϵ > 0, by setting T = H4 log|A|/ϵ2, Algorithm 1 returns an (ϵ+H2
√
ϵ)-optimal

mixture policy, and therefore requires T ×N = Õ(1/ϵ4) samples.

Proof sketch. We decompose the difference between V πT

1 (s1) and V ⋆
1 (s1) into two terms that only

depend on either the actor or the critic.

E
[
V π⋆

1 − V πT

1 (s1)
]
=

1

T

T∑
t=1

H∑
h=1

Eπ⋆

[〈
π⋆
h(· | sh)− πt

h(· | sh), Q̂t
h(sh, ·)

〉]
︸ ︷︷ ︸

policy optimization (actor) error

+
1

T

T∑
t=1

H∑
h=1

(
Eπ⋆ [ιth(sh, ah)]− Eπt [ιth(sh, ah)]

)
︸ ︷︷ ︸

policy evaluation (critic) error

.

The policy optimization (actor) error can be bounded using Eq. (5), and the policy evaluation (critic)
error is bounded using Lemma D.2. In particular, the lower-bound in Lemma D.2 can be instantiated

as −ιth(s, a) ≤ O
(√

d3cH
4 T log2(N/δ)/N

)
in the on-policy setting. Putting everything together

with the chosen value of N leads to the stated sample complexity.

6.2 Off-Policy Setting

Next, we show that, in the off-policy setting, Algorithm 1 can achieve Õ(1/ϵ2) sample complexity,
matching Sherman et al. [2023], Cassel and Rosenberg [2024].

9

Theorem 6.2 (Off-Policy Sample Efficiency). For an appropriate choice of the actor and critic
parameters, δ ∈ (0, 1), if ϵ is the projection error in the actor, then, with probability at least 1− δ,

OG(T) ≤ Õ

(
d2c max{da,dc}H2

√
log|A|√

T
+H2

√
ϵ

)
.

Hence, for any ϵ > 0, by setting T = H4 log|A|/ϵ2, Algorithm 1 returns a (ϵ + H2
√
ϵ)-optimal

mixture policy, and therefore requires T × 1 = Õ(1/ϵ2) samples.

Proof sketch. The proof uses a similar regret decomposition to Theorem 6.1. Compared to the
on-policy setting, the most significant difference is the bound on the policy evaluation (critic) errors.
We use the uniform concentration argument in Jin et al. [2020] to obtain that

−ιth(s, a) ≤ O
(√

d3cH
4 T log(T/δ)

[√
log(N∆(V)) + T 2∆2

])
,

which involves a bound on log(N∆(V)), the log covering number of the value function class. The
log-covering number is a measure of the complexity of the space of value functions. We show that for
an actor with log-linear policies, we can easily bound the log covering number using the following
lemma.
Lemma 6.1. Let Πlin be the policy class induced by Eq. (1) such that supθ,h,s,a∥zh(s, a | θ)∥ ≤
Z. Let Q =

{
min {⟨ϕ(·, ·), w⟩), H}+ | ∥w∥ ≤W

}
be the Q-function class and V =

{⟨Q(·, ·), π(· | ·, θ)⟩A | Q ∈ Q, π ∈ Πlin} be the corresponding value function class. Then, it

holds that logN∆(V) ≤ V where V := dc log

(
1 + 4W+4H

√
2Z

∆

)
+ da log

(
1 + 4H

√
2Z

∆

)
.

In particular, we can show W ≤ O(
√
T) (Lemma D.7), and Z ≤ O(ϵ T) (Lemma F.1). Putting

everything together and setting ∆ = O(1/T 2) yields that

−ιth(s, a) ≤ Õ(
√
d2c max{da, dc}H4 T .

Following a proof similar to Theorem 6.1 leads to the desired sample complexity.
In order to control this log covering number, previous work [Sherman et al., 2023, Cassel and
Rosenberg, 2024, Tan et al., 2025] has incorporated various algorithmic tweaks, including reward-free
warm-ups, feature contractions, and rare-switching. On the contrary, since our algorithm learns
a parametric policy at each iteration, the log covering number of the policy class is bounded by
O(da log(T)) without any bespoke tricks.

Furthermore, our proposed framework is also compatible with other policy optimization or policy
evaluation methods. For the actor, we can replace the projected NPG with other policy mirror descent-
based methods (e.g., SPMA [Asad et al., 2025]) that can provide a similar bound for the policy
optimization error as in Lemma 4.1 (details in Appendix B.3). We can also instantiate the critic with
the UCB bonuses that can provide a similar bound for the policy evaluation error as in Lemma 5.1.
In this case, we can recover the same guarantees for sample complexity as Liu et al. [2023] for the
on-policy setting and as Sherman et al. [2023], Cassel and Rosenberg [2024] for the off-policy setting.

7 Discussion
We proposed an optimistic actor–critic algorithm with explicitly parameterized policies and a sys-
tematic exploration mechanism. In particular, for the actor, we demonstrated that using projected
NPG with parametric policies is not only practical, but also equipped with theoretical guarantees. For
the critic, we demonstrated that LMC is a principled and easy-to-implement exploration scheme for
policy optimization methods. We derived theoretical guarantees in both the on-policy and off-policy
settings, showcasing that the proposed actor-critic framework can simultaneously achieve sample
efficiency and practicality.

For future work, we aim to investigate the actor-critic methods in more practical setups (e.g., infinite-
horizon discounted MDPs) with more general function approximation schemes beyond linear models
for both the environment and the policy. It would also be fruitful to further explore the practical
implementations of the proposed method and evaluate their performance across standard benchmarks.

10

Acknowledgments
We would like to thank Xingtu Liu and Yunxiang Li for helpful feedback on the paper. This work was
partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery Grant RGPIN-2022-04816, and enabled in part by support provided by the Digital Research
Alliance of Canada (alliancecan.ca).

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic

bandits. Advances in Neural Information Processing Systems, 24, 2011.

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, pages 3692–3702. PMLR, 2019.

Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs,
and mathematical tables, volume 55. US Government Printing Office, 1948.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021a.

Alekh Agarwal, Yujia Jin, and Tong Zhang. VOQL: Towards optimal regret in model-free RL with
nonlinear function approximation. In The Thirty Sixth Annual Conference on Learning Theory,
pages 987–1063. PMLR, 2023.

Naman Agarwal, Syomantak Chaudhuri, Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli.
Online target q-learning with reverse experience replay: Efficiently finding the optimal policy for
linear mdps. arXiv preprint arXiv:2110.08440, 2021b.

Carlo Alfano and Patrick Rebeschini. Linear convergence for natural policy gradient with log-linear
policy parametrization. arXiv preprint arXiv:2209.15382, 2022.

Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A novel framework for policy mirror descent with
general parameterization and linear convergence. Advances in Neural Information Processing
Systems, 36:30681–30725, 2023.

Reza Asad, Reza Babanezhad Harikandeh, Issam H Laradji, Nicolas Le Roux, and Sharan Vaswani.
Fast convergence of softmax policy mirror ascent. In International Conference on Artificial
Intelligence and Statistics, pages 3943–3951. PMLR, 2025.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Opera-
tions Research, 72(5):1906–1927, 2024.

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor–critic
algorithms. Automatica, 45(11):2471–2482, 2009.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

Asaf Cassel and Aviv Rosenberg. Warm-up free policy optimization: Improved regret in linear
Markov decision processes. Advances in Neural Information Processing Systems, 37:3275–3303,
2024.

Semih Cayci, Niao He, and R. Srikant. Finite-time analysis of entropy-regularized neural natural
actor-critic algorithm. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=BkEqk7pS1I.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

11

https://openreview.net/forum?id=BkEqk7pS1I

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
optimal policy. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=pqZV_srUVmK.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pages 1587–1596. PMLR,
2018.

Mudit Gaur, Amrit Singh Bedi, Di Wang, and Vaneet Aggarwal. On the global convergence of natural
actor-critic with two-layer neural network parametrization. arXiv preprint arXiv:2306.10486,
2023.

Mudit Gaur, Amrit Bedi, Di Wang, and Vaneet Aggarwal. Closing the gap: Achieving global conver-
gence (last iterate) of actor-critic under Markovian sampling with neural network parametrization.
In International Conference on Machine Learning, pages 15153–15179. PMLR, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. Pmlr, 2018.

Botao Hao, Tor Lattimore, Csaba Szepesvári, and Mengdi Wang. Online sparse reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pages 316–324.
PMLR, 2021.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325, 2016.

Jiafan He, Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement
learning for linear markov decision processes. In International Conference on Machine Learning,
pages 12790–12822. PMLR, 2023.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, pages 4607–4616. PMLR,
2021.

Haque Ishfaq, Qingfeng Lan, Pan Xu, A Rupam Mahmood, Doina Precup, Anima Anandkumar, and
Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in reinforcement learning
via langevin monte carlo. In The Twelfth International Conference on Learning Representations,
2024a.

Haque Ishfaq, Yixin Tan, Yu Yang, Qingfeng Lan, Jianfeng Lu, A Rupam Mahmood, Doina Precup,
and Pan Xu. More efficient randomized exploration for reinforcement learning via approximate
sampling. In Reinforcement Learning Conference, 2024b.

Haque Ishfaq, Guangyuan Wang, Sami Nur Islam, and Doina Precup. Langevin soft actor-critic:
Efficient exploration through uncertainty-driven critic learning. In The Thirteenth International
Conference on Learning Representations, 2025.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on learning theory, pages 2137–2143.
PMLR, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. Advances in Neural Information Processing Systems,
34:13406–13418, 2021.

12

https://openreview.net/forum?id=pqZV_srUVmK
https://openreview.net/forum?id=pqZV_srUVmK

Emilio Jorge, Christos Dimitrakakis, and Debabrota Basu. Isoperimetry is all we need: Langevin
posterior sampling for rl with sublinear regret. arXiv preprint arXiv:2412.20824, 2024.

Sham M Kakade. A natural policy gradient. Advances in Neural Information Processing Systems, 14,
2001.

Sajad Khodadadian, Thinh T Doan, Justin Romberg, and Siva Theja Maguluri. Finite-sample analysis
of two-time-scale natural actor–critic algorithm. IEEE Transactions on Automatic Control, 68(6):
3273–3284, 2022.

Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12:363–366, 1960.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in Neural Information Processing
Systems, 12, 1999.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Qinghua Liu, Gellért Weisz, András György, Chi Jin, and Csaba Szepesvári. Optimistic natural
policy gradient: a simple efficient policy optimization framework for online rl. Advances in Neural
Information Processing Systems, 36:3560–3577, 2023.

Eric Mazumdar, Aldo Pacchiano, Yian Ma, Michael Jordan, and Peter Bartlett. On approximate
thompson sampling with langevin algorithms. In international conference on machine learning,
pages 6797–6807. PMLR, 2020.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In European Conference on
Machine Learning, pages 280–291. Springer, 2005.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
arXiv preprint arXiv:1704.06440, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Uri Sherman, Alon Cohen, Tomer Koren, and Yishay Mansour. Rate-optimal policy optimization for
linear markov decision processes. arXiv preprint arXiv:2308.14642, 2023.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in Neural Information Processing
Systems, 12, 1999.

Csaba Szepesvári. Algorithms for reinforcement learning. Springer nature, 2022.

Kevin Tan, Wei Fan, and Yuting Wei. Actor-critics can achieve optimal sample efficiency. arXiv
preprint arXiv:2505.03710, 2025.

13

Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

Victor Uc-Cetina, Nicolás Navarro-Guerrero, Anabel Martin-Gonzalez, Cornelius Weber, and Stefan
Wermter. Survey on reinforcement learning for language processing. Artificial Intelligence Review,
56(2):1543–1575, 2023.

Andrew Wagenmaker and Kevin G Jamieson. Instance-dependent near-optimal policy identification
in linear mdps via online experiment design. Advances in Neural Information Processing Systems,
35:5968–5981, 2022.

Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson. Reward-
free rl is no harder than reward-aware rl in linear markov decision processes. In International
Conference on Machine Learning, pages 22430–22456. PMLR, 2022.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688,
2011.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning
Research, 23(282):1–36, 2022.

Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anandkumar.
Langevin monte carlo for contextual bandits. In International Conference on Machine Learning,
pages 24830–24850. PMLR, 2022.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural)
actor-critic algorithms. Advances in Neural Information Processing Systems, 33:4358–4369, 2020.

Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
natural policy gradient methods with log-linear policies. In International Conference on Learning
Representations, 2023.

Andrea Zanette, Ching-An Cheng, and Alekh Agarwal. Cautiously optimistic policy optimization
and exploration with linear function approximation. In Conference on Learning Theory, pages
4473–4525. PMLR, 2021.

Han Zhong and Tong Zhang. A theoretical analysis of optimistic proximal policy optimization
in linear markov decision processes. Advances in Neural Information Processing Systems, 36:
73666–73690, 2023.

14

Contents of Appendix
A Notation 16

B Analyses for the Actor 16
B.1 Generalized OMD Regret (Proof of Lemma 4.1) 16
B.2 Projection Error (Proof of Lemma 4.2) . 17
B.3 Instantiating the Actor with SPMA . 19
B.4 Technical Tools . 21

C Constructing Dexp via Experimental Design 22
C.1 Kiefer–Wolfowitz Theorem and G-Experimental Design 22
C.2 Exploratory Policy and Minimum Eigenvalue . 22

D Analyses for the Critic 23
D.1 Proof of Lemma 5.1 . 23

D.1.1 Preliminary Properties . 24
D.1.2 Main Analysis . 25

D.2 Proofs of Preliminary Properties . 27
D.2.1 Proof of Lemma D.3 . 27
D.2.2 Proof of Lemma D.4 . 28
D.2.3 Proof of Lemma D.5 . 29
D.2.4 Proof of Lemma D.6 . 32
D.2.5 Proof of Lemma D.7 . 32
D.2.6 Proof of Lemma D.8 . 34
D.2.7 Proof of Lemma D.9 . 36

D.3 Technical Tools . 38

E Sample Complexity in the On-Policy Setting 39
E.1 Proof of Good Event . 39
E.2 Proof of Theorem 6.1 . 39
E.3 Technical Tools . 42

F Sample Complexity in the Off-Policy Setting 43
F.1 Covering Number (Proof of Lemma 6.1) . 43
F.2 Proof of Good Event . 44
F.3 Proof of Theorem 6.2 . 45
F.4 Technical Tools . 47

G Experiments 47
G.1 Environment Setup . 47
G.2 Coreset Construction . 47
G.3 Hyperparameters . 48
G.4 Experimental Results . 48
G.5 Additional Results . 49

15

A Notation
Notation for Problem Setting and Algorithm Design

Table 1: Notation for Problem Setting and Algorithm Design
Notation Meaning

Problem Definition
S , A state space and action space
H , h horizon length (total number of steps), current index of step
r ∈ R|S|×|A| reward function
P ∈ R|S|×|A|×|S| transition probability
ϕ : S ×A 7→ Rdc features for the linear MDP environment
φ : S ×A 7→ Rda features for the learnable policy

Algorithm Design
T , t total number of learning episodes, index of current episode
Dt, Dt

h collected data of at episode t, split data at h-th step (subset of Dt)
N number of samples collected for on-policy learning
w ∈ Rdc learnable critic parameters
J number of critic updates
αc critic learning rate
ν noise vector for LMC sampled from the standard normal distribution
ζ inverse temperature for the LMC critic loss
M number of samples for the critic parameters
Dexp, ρexp subset of S ×A, distribution over Dexp

θ ∈ Rda learnable actor parameters
K number of actor updates
αa actor learning rate
η policy optimization learning rate

Additional Notation Throughout this paper, we use subscripts to represent the index of the step
within the horizon of the episodic MDP and superscripts to denote the index of the episode for
learning. For example, V t

h means the value function for the h-th step derived at the learning episode
t. In some cases, where the subscripts are omitted, it represents a set of H functions for all steps
h ∈ [H] (e.g., V t := {V t

h}h∈[H]). |Dt| represents the number of trajectories in Dt or the number
of (sh, ah, sh+1) tuples in Dt

h. Additionally, for any vector v ∈ Rd and any matrix M ∈ Rd×d, we
denote ∥v∥M =

√
v⊤M v.

B Analyses for the Actor
B.1 Generalized OMD Regret (Proof of Lemma 4.1)
Proof of Lemma 4.1. Given the update of pt+1/2 and the fact that ∆(A) is a convex set, we have
the following optimality condition:〈

u− pt+1/2,−η gt + log(pt+1/2)− log(pt)
〉
≥ 0 . (8)

Then, for each t ∈ [T], we have that〈
u− pt, η gt

〉
=
〈
u− pt+1/2, η gt

〉
+
〈
pt+1/2 − pt, η gt

〉
=
〈
u− pt+1/2, η gt − log(pt+1/2) + log(pt)

〉
+
〈
u− pt+1/2, log(pt+1/2)− log(pt)

〉
+
〈
pt+1/2 − pt, η gt

〉
(i)
≤
〈
u− pt+1/2, log(pt+1/2)− log(pt)

〉
+
〈
pt+1/2 − pt, η gt

〉
(ii)
= KL(u ∥ pt)−KL(u ∥ pt+1/2)−KL(pt+1/2 ∥ pt) +

〈
pt+1/2 − pt, η gt

〉
16

(iii)
≤ KL(u ∥ pt)−KL(u ∥ pt+1/2)−KL(pt+1/2 ∥ pt) + 1

2

∥∥∥pt+1/2 − pt
∥∥∥2
1
+

1

2

∥∥η gt∥∥2∞
(iv)
≤ KL(u ∥ pt)−KL(u ∥ pt+1/2)−KL(pt+1/2 ∥ pt) + KL(pt+1/2 ∥ pt) + η2H2

2

≤ KL(u ∥ pt)−KL(u ∥ pt+1/2) +
η2H2

2

≤ KL(u ∥ pt)−KL(u ∥ pt+1) + KL(u ∥ pt+1)−KL(u ∥ pt+1/2) +
η2H2

2

= KL(u ∥ pt)−KL(u ∥ pt+1) + ϵt +
η2H2

2
.

(i) drops the first term due to the optimality condition from Eq. (8). (ii) applies the three-point property
of Bregman divergence (Lemma B.2) by setting x = u, y = pt+1/2, and z = pt. (iii) follows from the
Hölder’s inequality and then the Young’s inequality (i.e., ⟨u, v⟩ ≤ ∥u∥1∥v∥∞ ≤ ∥u∥

2
1/2+ ∥v∥

2
∞/2),

and (iv) applies the Pinkster’s inequality and |gt| ≤ H . Summing up the above inequality from t = 1
to T yields that

T∑
t=1

〈
u− pt, η gt

〉
=

T∑
t=1

KL(u ∥ pt)−KL(u ∥ pt+1) +

T∑
t=1

ϵt +
η2H2 T

2

= KL(u ∥ p1)−KL(u ∥ pT+1) +

T∑
t=1

ϵt +
η2H2 T

2

(v)
≤ KL(u ∥ p1) +

T∑
t=1

ϵt +
η2H2 T

2

≤
∑
a∈A

u(a) log(u(a))−
∑
a∈A

u(a) log(p1(a)) +

T∑
t=1

ϵt +
η2H2 T

2

(vi)
≤ log |A|+

T∑
t=1

ϵt +
η2H2 T

2
.

(v) follows from the fact that KL-divergence is non-negative, and (vi) stands because the first term is
negative, and for the second term, p1 is a uniform distribution. Dividing both side by η, we have that

T∑
t=1

〈
u− pt, gt

〉
≤

log |A|+
∑T

t=1 ϵ
t

η
+
η H2 T

2
.

This concludes the proof.

B.2 Projection Error (Proof of Lemma 4.2)
Proof of Lemma 4.2. First, we define Φ as the log-sum-exp mirror map and Φ⋆ as negative entropy,
its Fenchel conjugate. Based on this, for any softmax policy π, we can also define its logit as
z := ∇Φ⋆(π) = (∇Φ)−1(π). Consequently, π = ∇Φ(z). Additionally, for any two softmax policies
π, π′ and their corresponding logits z, z′, it holds that, DΦ(z, z

′) = KL(π′, π).

Since we are using the log-linear policy class, we have zth(s, a) =
〈
φ(s, a), θ̂th

〉
for any (s, a) ∈

S ×A where θ̂th represents the parameters we attain at episode t. Therefore, for any s ∈ S,

ϵth(s) = KL(π⋆(· | s) ∥ πt+1
h (· | s))−KL(π⋆

h(· | s) ∥ π
t+1/2
h (· | s))

=DΦ(z
t+1
h (· | s), z⋆h(s, ·))−KL(π⋆

h(· | s) ∥ π
t+1/2
h (· | s))

(i)
=
〈
∇Φ(zt+1

h (s, ·)))−∇Φ(z⋆h(s, ·))), zt+1
h (s, ·))− zt+1/2

h (· | s))
〉
−KL(π⋆

h(· | s) ∥ π
t+1/2
h (· | s))

=
〈
πt+1
h (s, ·)− π⋆

h(s, ·), zt+1
h (s, ·))− zt+1/2

h (s, ·))
〉
−KL(π⋆

h(· | s)) ∥ π
t+1/2
h (· | s)))

17

(ii)
≤
〈
πt+1
h (· | s)− π⋆

h(· | s), zt+1
h (s, ·))− zt+1/2

h (s, ·))
〉

(iii)
≤
∥∥πt+1

h (· | s)− π⋆(· | s)
∥∥
2

∥∥∥zt+1
h (s, ·))− zt+1/2

h (s, ·))
∥∥∥
2

≤
√
2
∥∥∥zt+1

h (s, ·)− zt+1/2
h (s, ·)

∥∥∥
2

(iv)
=
√
2
∥∥∥〈φ(s, ·), θ̂t+1

h − θ̂th
〉
− η Q̂t

h(s, ·)
∥∥∥
2

(v)
≤
√
2
∣∣∣〈φ(s, ·), θ̂t+1

h − θ̂th
〉
− η Q̂t

h(s, ·)
∣∣∣ .

(i) follows from the three-point property of Bregman divergence (Lemma B.2) by setting x =

z
t+1/2
h (· | s), y = zt+1

h (· | s), and z = z⋆h(· | s) where z⋆ is the logit of π⋆. (ii) is based on the
fact that KL-divergence is non-negative. (iii) uses the Cauchy-Schwarz inequality. (iv) uses the NPG
update. (v) holds because ∥·∥2 ≤ ∥·∥1.

Since the actor is designed to minimize the ridge regression in Algorithm 2, the minimizer can be
written as

θ̂t,⋆h = argmin
θh

1

2

∑
(s,a)∈Dexp

ρ(s, a)
[
⟨φ(s, a), θh⟩ − Ẑt

h(s, a)
]2
,

where Ẑt
h(s, a) :=

〈
φ(s, ·), θ̂th(s, ·)

〉
+ η Q̂t

h(s, a) for all t ∈ [T]. We define θ̂t,⋆h as the minimizer,
and it has the following explicit solution:

θ̂t,⋆h = G−1

 ∑
(s′,a′)∈Dexp

ρ(s′, a′) Ẑt
h(s

′, a′)φ(s′, a′)

 ,
where G :=

∑
(s,a)∈Dexp

ρ(s, a)φ(s, a)φ(s, a)⊤ ∈ Rda×da .

Suppose θt,⋆h is the minimizer of the regression loss over the entire state-action space, θ̂t,⋆h is the
minimizer over the coreset, and θ̂th is the parameters produced by the actor afterKt rounds of gradient
descent as shown in Algorithm 2. Then, for any arbitrary (s, a) ∈ S × A, using the triangular
inequality, we have that∣∣∣〈φ(s, a), θ̂th〉− Ẑt

h(s, a))
∣∣∣

≤
∣∣∣〈φ(s, a), θt,⋆h

〉
− Ẑt

h(s, a))
∣∣∣+ ∣∣∣〈φ(s, a), θ̂th〉− 〈φ(s, a), θt,⋆h

〉∣∣∣
= ϵbias +

∣∣∣〈φ(s, a), θ̂th〉− 〈φ(s, a), θt,⋆h

〉∣∣∣
≤ ϵbias +

∣∣∣〈φ(s, a), θ̂th〉− 〈φ(s, a), θ̂t,⋆h

〉∣∣∣+ ∣∣∣〈φ(s, a), θ̂t,⋆h

〉
−
〈
φ(s, a), θt,⋆h

〉∣∣∣
= ϵbias + ϵopt +

∣∣∣〈φ(s, a), θ̂t,⋆h − θ
t,⋆
h

〉∣∣∣ .
Therefore, it suffices to bound

∣∣∣〈φ(s, a), θ̂t,⋆h (s, a)− θt,⋆h (s, a)
〉∣∣∣. To do that, we first define

Υ(s′, a′) := Ẑt
h(s

′, a′)−
〈
φ(s′, a′), θt,⋆h

〉
for any (s′, a′) ∈ Dexp. Then, we have that

θ̂t,⋆h = G−1

 ∑
(s′,a′)∈Dexp

ρ(s′, a′)
[
Υ(s′, a′) +

〈
φ(s′, a′), θt,⋆h

〉]
φ(s′, a′)


= G−1

 ∑
(s′,a′)∈Dexp

ρ(s′, a′)φ(s′, a′)φ(s′, a′)⊤

θt,⋆h

+G−1

 ∑
(s′,a′)∈Dexp

ρ(s′, a′)Υ(s′, a′)φ(s′, a′)


18

= θt,⋆h +G−1

 ∑
(s′,a′)∈Dexp

ρ(s′, a′)Υ(s′, a′)φ(s′, a′)

 .
This implies that

θ̂t,⋆h − θ
t,⋆
h = G−1

 ∑
(s′,a′)∈Dexp

ρ(s′, a′)Υ(s′, a′)φ(s′, a′)

 .
Hence, for any arbitrary (s, a) ∈ S ×A,∣∣∣〈φ(s, a), θ̂t,⋆h − θ

t,⋆
h

〉∣∣∣ =
∣∣∣∣∣∣

∑
(s′,a′)∈Dexp

ρ(s′, a′)Υ(s′, a′)φ(s, a)⊤G−1 φ(s′, a′)

∣∣∣∣∣∣
(vi)
≤

∑
(s′,a′)∈Dexp

|Υ(s′, a′)| ρ(s′, a′)
∣∣φ(s, a)⊤G−1 φ(s′, a′)

∣∣
≤
(

max
(s′,a′)∈Dexp

|Υ(s′, a′)|
) ∑

(s′,a′)∈Dexp

ρ(s′, a′)
∣∣φ(s, a)⊤G−1 φ(s′, a′)

∣∣
≤ ϵbias

∑
(s′,a′)∈Dexp

ρ(s′, a′)
∣∣φ(s, a)⊤G−1 φ(s′, a′)

∣∣
= ϵbias

√(
E(s′,a′)∼ρ |φ(s, a)⊤G−1 φ(s′, a′)|

)2
(vii)
≤ ϵbias

√
E(s′,a′)∼ρ |φ(s, a)⊤G−1 φ(s′, a′)|2

= ϵbias

√√√√√φ(s, a)⊤G−1

 ∑
(s′,a′)∈Dexp

ρ(s′, a′)φ(s′, a′)φ(s′, a′)⊤

G−1φ(s, a)

= ϵbias ∥φ(s, a)∥G−1 .

(vi) applies the Cauchy-Schwarz inequality, and (vii) follows from Jensen’s inequality.

Putting everything together, we have that∣∣∣〈φ(s, a), θ̂th〉− Ẑt
h(s, a))

∣∣∣ ≤ (∥φ(s, a)∥G−1 + 1) ϵbias + ϵopt

≤ (φG + 1) ϵbias + ϵopt .

Recall that ϵth(s) ≤
√
2
∥∥∥〈φ(s, ·), θ̂t+1

h (s, ·)
〉
− Ẑt

h(s, ·)
∥∥∥
2
. Therefore, for any s ∈ S,

ϵth(s) ≤
√
2
∣∣∣〈φ(s, ·), θ̂th〉− Ẑt

h(s, a))
∣∣∣ ≤ √2 (φG + 1) ϵbias +

√
2 ϵopt .

This concludes the proof.

B.3 Instantiating the Actor with SPMA
Lemma 4.2 can not only be applied to NPG but also other mirror descent-based policy optimization
methods such as TRPO Schulman et al. (2015), AMPO (Alfano et al., 2023), and SPMA (Asad et al.,
2025). In this section, as an example, we show that the projected variant of SPMA (projected SPMA) is
also compatible with our framework and can enjoy similar sample complexity guarantees as projected
NPG. We can instantiate the actor in Algorithm 1 with the projected SPMA by setting the actor loss
in Algorithm 2 as the following:

ℓ̃th(θ) =
1

2

∑
(s,a)∈Dexp

ρexp(s, a)
[
⟨φ(s, a), θ⟩ − Ẑt

h(s, a)
]2
,

where Ẑt
h(s, a) :=

〈
φ(s, a), θ̂th

〉
+ log

(
1 + η Aπt

(s, ·)
)
.

19

Equivalently, the projected SPMA update can be expressed as follows. For any s ∈ S, π1(· | s) is a
uniform distribution, and

πt+1/2(· | s) = argmin
p∈∆A

{〈
πt(· | s),− log

(
1 + η Aπt

(s, ·)
)〉

+KL
(
p ∥ πt(· | s)

)}
,

πt+1(· | s) = ProjΠ(π
t+1/2(· | s)) .

Hence, we introduce the following alternative lemma to show that Lemma 4.1 also holds for the
projected SPMA.
Lemma B.1. Given a sequence of linear functions {⟨pt, gt⟩}t∈[T] for a sequence of vectors {gt}t∈[T]

where for any t ∈ [T], pt ∈ ∆(A), gt ∈ R|A|, and gt(a) ∈ [0, H] for all a ∈ A. Consider pt∈[T]

where p1 is the uniform distribution, and for all t ∈ [T],

pt+1/2 = argmin
p∈∆A

{〈
p,− log

(
1 + η

(
gt −

〈
pt, gt

〉
1
))〉

+KL(p ∥ pt)
}
,

pt+1 = ProjΠ(p
t+1/2) ,

where 1 ∈ R|A| is an all-one vector. Let ϵt := KL(u ∥ pt+1)−KL(u ∥ pt+1/2) be the projection
error induced by Eq. (4). If η ≤ 1

2H , then for any comparator u ∈ ∆(A), it holds that

T∑
t=1

〈
u− pt, gt

〉
≤

log|A|+
∑T

t=1 ϵ
t

η
+

3 η H2 T

2
.

Proof of Lemma B.1. We first denote that dt = log(1 + η (gt − ⟨pt, gt⟩1)) for all t ∈ [T]. Then,
for all a ∈ A, since η ≤ 1

2H and gt(a) − ⟨pt, gt⟩ ∈ [−H,H], we have η (gt(a)− ⟨pt, gt⟩) > − 1
2

and therefore

dt(a)
(i)
≤ η

(
gt(a)−

〈
pt, gt

〉)
≤ η H ,

dt(a)
(ii)
≥ η

(
gt(a)−

〈
pt, gt

〉)
− η2

(
gt(a)−

〈
pt, gt

〉)2 ≥ η (gt(a)− 〈pt, gt〉)− η H2 ,

where (i) follows from log(1 + x) ≤ x for all x > −1, and (ii) holds because log(1 + x) ≥ x− x2
for all x > − 1

2 .

Given the update of pt+1/2 and the fact that ∆(A) is a convex set, we have the following optimality
condition: 〈

u− pt+1/2,−dt + log(pt+1/2)− log(pt)
〉
≥ 0 . (9)

Then, for all t ∈ [T], we have that〈
u− pt, dt

〉
=
〈
u− pt+1/2, dt

〉
+
〈
pt+1/2 − pt, dt

〉
=
〈
u− pt+1/2, dt − log(pt+1/2) + log(pt)

〉
+
〈
u− pt+1/2, log(pt+1/2)− log(pt)

〉
+
〈
pt+1/2 − pt, dt

〉
(iii)
≤
〈
u− pt+1/2, log(pt+1/2)− log(pt)

〉
+
〈
pt+1/2 − pt, dt

〉
(iv)
= KL(u ∥ pt)−KL(u ∥ pt+1/2)−KL(pt+1/2 ∥ pt) +

〈
pt+1/2 − pt, dt

〉
(v)
≤ KL(u ∥ pt)−KL(u ∥ pt+1/2)−KL(pt+1/2 ∥ pt) + 1

2

∥∥∥pt+1/2 − pt
∥∥∥2
1
+

1

2

∥∥dt∥∥2∞
(vi)
≤ KL(u ∥ pt)−KL(u ∥ pt+1/2)−KL(pt+1/2 ∥ pt) + KL(pt+1/2 ∥ pt) + η2H2

2

≤ KL(u ∥ pt)−KL(u ∥ pt+1/2) +
η2H2

2

≤ KL(u ∥ pt)−KL(u ∥ pt+1) + KL(u ∥ πt+1)−KL(u ∥ pt+1/2) +
η2H2

2

20

= KL(u ∥ pt)−KL(u ∥ pt+1) + ϵt +
η2H2

2
.

(iii) drops the first term due to the optimality condition from Eq. (9). (iv) applies the three-point
property of Bregman divergence (Lemma B.2) by setting x = u, y = pt+1/2, and z = pt. (v)
follows from the Hölder’s inequality and then the Young’s inequality (i.e., ⟨u, v⟩ ≤ ∥u∥1∥v∥∞ ≤
∥u∥21/2 + ∥v∥

2
∞/2), and (vi) applies the Pinkster’s inequality and ∥dt∥∞ ≤ H .

Moreover, we have that〈
u− pt, dt

〉 (vii)
≥
〈
u− pt, η

(
gt −

〈
pt, gt

〉
1
)〉
− η H2

(viii)
≥
〈
u− pt, η gt

〉
− η H2 ,

where (vii) comes from the fact that dt(a) ≥ η (gt(a)− ⟨pt, gt⟩) − η H2 for all a ∈ A, and (viii)
follows from the fact that ⟨pt, gt⟩ ≥ 0 since pt ∈ ∆(A) and gt(a) ∈ [0, H] for all a ∈ A. This
implies that 〈

u− pt, η gt
〉
≤
〈
u− pt, dt

〉
+ η H2

≤ KL(u ∥ pt)−KL(u ∥ pt+1) + ϵt +
3 η2H2

2
.

Summing up the above inequality from t = 1 to T yields that
T∑

t=1

〈
u− pt, η gt

〉
=

T∑
t=1

KL(u ∥ pt)−KL(u ∥ pt+1) +

T∑
t=1

ϵt +
3 η2H2 T

2

= KL(u ∥ p1)−KL(u ∥ pT+1) +

T∑
t=1

ϵt +
3 η2H2 T

2

(ix)
≤ KL(u ∥ p1) +

T∑
t=1

ϵt +
3 η2H2 T

2

≤
∑
a∈A

u(a) log(u(a))−
∑
a∈A

u(a) log(p1(a)) +

T∑
t=1

ϵt +
3 η2H2 T

2

(x)
≤ log |A|+

T∑
t=1

ϵt +
3 η2H2 T

2
.

(ix) follows from the fact that KL-divergence is non-negative, and (x) stands because the first term is
negative, and for the second term, p1 is a uniform distribution. Dividing both side by η, we have that

T∑
t=1

〈
u− pt, gt

〉
≤

log |A|+
∑T

t=1 ϵ
t

η
+

3 η H2 T

2
.

This concludes the proof.

In order to obtain a meaningful regret bound, we should set η = min

{
1

2H ,
√

2 (log |A|+ϵ T)
3H2 T

}
.

Furthermore, we introduce the alternative version of Assumption 4.1.
Assumption B.1 (Bias). Let φ be the policy feature. Then,

inf
θ

sup
t,h,s,a

∣∣∣⟨φ(s, a), θ⟩ − log(1 + η Aπt

h (s, a))
∣∣∣ ≤ ϵbias .

Therefore, under Assumptions 4.2 and B.1, we can easily prove that Lemma 4.2 also holds for the
projected SPMA, and consequently, all the sample complexity guarantees for the projected NPG should
also hold.

B.4 Technical Tools

Lemma B.2 (Three-Point Property of Bregman Divergence). Suppose X ⊆ Rd is closed and convex.
Consider a strictly convex function Φ : X → R. For all x ∈ X and y, z ∈ intX ,

DΦ(x, y) +DΦ(y, z)−DΦ(x, z) = ⟨∇Φ(z)−∇Φ(y), x− y⟩ .

21

C Constructing Dexp via Experimental Design
In this section, we introduce various methods of experimental design to bound φG defined
in Lemma 4.2. The experimental design problem can be written as

inf
Dexp∈S×A

ρexp∈∆(Dexp)

sup
(s,a)∈S×A

∥φ(s, a)∥G−1

s.t. G =
∑

(s,a)∈Dexp

ρexp(s, a)φ(s, a)φ(s, a)
⊤ .

In Appendix C.1, we consider constructing a coreset for the policy features. The Kiefer–Wolfowitz
theorem guarantees that there exists a coreset that can ensure that φG is bounded, and that such a
coreset has a small O(d) size. Such a coreset can be formed using G-experimental design. In Ap-
pendix C.2, we consider using the linear MDP features as the policy features and constructing Dexp

through limited interaction with the environment.

C.1 Kiefer–Wolfowitz Theorem and G-Experimental Design
We first introduce the Kiefer–Wolfowitz theorem (Kiefer and Wolfowitz, 1960) which guarantees that
there exists a coreset Dexp and its corresponding distribution ρexp that can be used to bound φG.
Proposition C.1 (Kiefer–Wolfowitz). Let G :=

∑
(s,a)∈Dexp

ρexp(s, a)φ(s, a)φ(s, a)
⊤ be the

covariance matrix for any Dexp ⊂ S × A and ρ ∈ ∆(Dexp). There exists a coreset Dexp and a
distribution ρexp such that

sup
(s,a)∈Dexp

∥φ(s, a)∥G−1 ≤ 2 da and |Dexp| ≤ 4da log log(da + 4) + 28 .

Note that the size of Dexp is also bounded by Õ(da), suggesting that the computation cost of
calculating the actor loss over Dexp is inexpensive. The problem of constructing such a coreset
is often framed as G-experimental design, and it can typically be solved using numerous efficient
approximation algorithms such as the Franke-Wolfe algorithm (Frank et al., 1956) as mentioned
in Todd (2016); Lattimore and Szepesvári (2020). Using Dexp and ρexp produced by such methods to
construct the actor loss in Algorithm 2 offers the guarantees that φG ≤ O(da), which is consequently
used to bound the projection error in Lemma 4.2 as ϵ ≤ O(da ϵbias + ϵopt).

We remark that the coreset construction can be done before the learning process in the actor-critic
algorithm since it is independent of the linear MDP environment. However, these algorithms typically
require traversing through all the policy features in S ×A, which is not ideal for large state-action
spaces.

C.2 Exploratory Policy and Minimum Eigenvalue
Alternatively, we can choose to use the linear MDP features as the policy features (i.e., φ = ϕ)
and construct Dexp via interacting with the environment. Note that bounding φG is equivalent to
controlling ∥ϕ(s, a)∥G−1 for all (s, a) ∈ S × A. Consequently, given that ∥ϕ(s, a)∥2 ≤ 1 by the
linear MDP assumption and since

∥ϕ(s, a)∥G−1 ≤
∥ϕ(s, a)∥2
λmin(G)

=
1

λmin(G)
,

we only need a well-conditioned covariance matrix G that has a positive minimum eigenvalue.

Several existing works (Hao et al., 2021; Agarwal et al., 2021b) assume access to an exploratory
(not necessarily optimal) policy πexp that is able to collect such covariance matrices with minimum
eigenvalue bounded away from 0. Given that, we can directly apply πexp to roll-out trajectories and
collect observations, which can be used to construct Dexp and the corresponding covariance G.

However, in practice, we rarely have access to such an oracle policy. Consequently, Wagenmaker et al.
(2022) proposed a reward-free approach, CoverTraj, that can effectively collect such observations
without assuming access to an exploratory policy. In particular, the CoverTraj algorithm offers the
following theoretical guarantee.

22

Proposition C.2 (Wagenmaker et al. 2022, Theorem 4). Fix h ∈ [H] and γ ∈ [0, 1]. Suppose there
exists a problem-dependent constant ϵM > 0 such that supπ∈Π λmin

(
Eπ

[
ϕ(s, a)ϕ(s, a)⊤

])
≥ ϵM.

Running K rounds of CoverTraj to collect Dexp = {(sτh, aτh)}
K
τ=1 where

K = Õ
(

1

ϵM
·max

{
dc
γ2
, d4cH

3, log3
(
1

δ

)
)

})
ensures that for any δ ∈ (0, 1), with probability of at least 1− δ,

λmin(G) ≥
ϵM
γ2

,

where G =
∑

(s,a)∈Dexp
ϕ(s, a)ϕ(s, a)⊤.

Note that CoverTraj does not utilize the reward function of the MDP and merely use the transition
kernel when interacting with the environment. Alternatively, Wagenmaker and Jamieson (2022)
provides another approach, OptCov, that utilizes regret minimization algorithms to construct the
desired covariance matrix. According to Wagenmaker and Jamieson (2022, Theorem 9), OptCov can
also offer a similar guarantee of the minimum eigenvalue ensuring that

λmin(G) ≥ max

{
dc log

(
1

δ

)
, ϵM

}
.

To conclude, the Frank-Wolfe algorithm can be used to form a coreset and subsequently bound φG for
any given policy features. If we use the linear MDP features as the policy features, we can construct
Dexp by interacting with the environment. Either having access to an exploratory policy or running
CoverTraj or OptCOv can offer guarantees on the minimum eigenvalues of the covariance matrix,
which will consequently control φG.

D Analyses for the Critic
D.1 Proof of Lemma 5.1
In order to prove Lemma 5.1, we introduce the following “good” event for the estimated value
function.
Lemma D.1 (Good Event). There exists some Cδ > 0 such that for any fixed δ ∈ (0, 1), the following
event,

Eδ :=

∀(t, h) ∈ [T]× [H] :

∥∥∥∥∥∥
∑

(s,a,s′)∈Dt
h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]∥∥∥∥∥∥
(Λt

h)
−1

≤ CδH
√
dc

 ,

holds with probability at least 1− δ (i.e., Pr(Eδ) ≥ 1− δ).

The exact definition of Cδ varies between the on-policy and the off-policy settings. We will prove that
Pr(Eδ) ≥ 1− δ for the on-policy and off-policy setting in Appendix E and Appendix F respectively
where Cδ will be set to Con

δ in Lemma E.1 and Coff
δ in Lemma F.2.

Next, conditioned on the above event, we present a formal version of Lemma 5.1, which provides an
upper and a lower bound for the model prediction error induced by the LMC critic.
Lemma D.2 (Formal version of Lemma 5.1). Consider Algorithm 1 with the LMC critic
from Algorithm 3. Conditioned on Eδ defined in Lemma D.1, if we choose that λ =

1, ζ =
(
2H
√
dc Cδ + 8/3

)−2
, αh,t

c = 1/(2λmax(Λ
t
h), Jt ≥ 2κt log(1/σ), and

M = log(H T/δ)/ log(1/(1− c)) where κt = maxh∈[H] λmax(Λ
t
h)/λmin(Λ

t
h), σ =

1/
(
4H (|Dt|+ 1)

√
dc
)
, and c = 1/(2

√
2eπ), then, for all (t, h, s, a) ∈ [T] × [H] × S × A

and for any δ ∈ (0, 1) , with probability at least 1− δ,

−ΓLMC × ∥ϕ(s, a)∥(Λt
h)

−1 ≤ ιth(s, a) ≤ 0 , (10)

where ΓLMC = CδH
√
dc +

4
3

√
2 dc log (1/δ)

3 ζ + 4
3 .

23

D.1.1 Preliminary Properties
In this section, we introduce some useful properties of LMC and state the supporting lemmas that will
be helpful in proving the above result.

First, we obtain the derivative of the critic loss defined in Algorithm 3.

∇Lt
h(wh) = Λt

hwh − bth, where (11)

Λt
h :=

∑
(s,a)∈Dt

h

ϕ(s, a)ϕ(s, a)⊤ + λ I ,

bth :=
∑

(s,a,s′)∈Dt
h

[
rh(s, a) + V̂ t

h+1(s
′)
]
ϕ(s, a) .

Consequently, by setting∇Lt
h(wh) = 0, we get the minimizer of Lt

h(wh) as

ŵt
h := (Λt

h)
−1 bth . (12)

We now introduce the following lemma, showing that the noisy gradient descent performed by the
LMC critic ensures that the sampled critic parameter w follows a Gaussian distribution.
Lemma D.3 (Ishfaq et al. 2024a, Proposition B.1). Consider Algorithm 1 with the LMC critic
from Algorithm 3. For any (t, h,m) ∈ [T]× [H]× [M], the sampled parameters wt,m,Jt

h follows a

Gaussian distribution N
(
µt,m,Jt

h ,Σt,m,Jt

h

)
. The mean and the covariance are defined as

µt,Jt

h = AJt
t . . . AJ1

1 w1,0 +

t∑
i=1

AJt
t . . . A

Ji+1

i+1 (I −AJi
i) ŵi

h , (13)

Σt,Jt

h =
1

ζ

t∑
i=1

AJt
t . . . A

Ji+1

i+1 (I −A2 Ji
i) (Λi

h)
−1 (I +Ai)

−1A
Ji+1

i+1 . . . AJt
t , (14)

where At := I − αt
c Λ

t
h for all t ∈ [T].

Since wt,m,Jt

h follows the Gaussian distribution of N
(
µt,m,Jt

h ,Σt,m,Jt

h

)
,
〈
ϕh(s, a), w

t,m,Jt

h

〉
also

follows the Gaussian distribution of N
(
ϕh(s, a)

⊤ µt,m,Jt

h , ϕh(s, a)
⊤ Σt,m,Jt

h ϕh(s, a)
)

. Therefore,
we introduce the following lemmas to bound the terms related to the mean and variance.
Lemma D.4. Consider Algorithm 1 with the LMC critic from Algorithm 3. If we follow the hyperpa-
rameter choices of Lemma D.2, then for any (s, a) ∈ S ×A,∣∣∣〈ϕ(s, a),(µt,Jt

h − ŵt
h

)〉∣∣∣ ≤ 4

3
∥ϕ(s, a)∥(Λt

h)
−1 .

Lemma D.5. Consider Algorithm 1 with the LMC critic from Algorithm 3. If we follow the hyperpa-
rameter choices of Lemma D.2, then for any (s, a) ∈ S ×A,

1

2
√
6 ζ
∥ϕ(s, a)∥(Λt

h)
−1 ≤ ∥ϕ(s, a)∥

Σ
t,m,Jt
h

≤ 4

3

√
2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 .

Additionally, we outline the necessary supporting lemmas that are useful for bounding the model
prediction error. Recall that |Dt| := suph∈[H] |Dt

h| represents the number of trajectories in Dt or the
number of (sh, ah, sh+1) tuples in Dt

h, where |Dt| = N in the on-policy setting, and |Dt| = t in the
off-policy setting.
Lemma D.6. Consider Algorithm 1 with the LMC critic from Algorithm 3. For any (t, h) ∈ [T]× [H],
it holds that ∥∥ŵt

h

∥∥
2
≤ 2H

√
dc |Dt|/λ .

Lemma D.7. Consider Algorithm 1 with the LMC critic from Algorithm 3. If we follow the hyperpa-
rameter choices of Lemma D.2, then for any (t,m, h) ∈ [T] × [M] × [H] and for any δ ∈ (0, 1),
with probability at least 1− δ,∥∥∥wt,m,Jt

h

∥∥∥
2
≤W t

δ :=
16

3
H
√
dc |Dt|+

√
2 d3c t

3 ζ δ
.

24

Lemma D.8. Consider Algorithm 1 with the LMC critic from Algorithm 3. If we follow the hyperpa-
rameter choices of Lemma D.2, then for any (t,m, h, s, a) ∈ [T]× [M]× [H]× S ×A and for any
δ ∈ (0, 1), with probability at least 1− δ,∣∣∣〈ϕ(s, a), ŵt

h − w
t,m,Jt

h

〉∣∣∣ ≤ (8

3

√
2 dc log(1/δ)

3 ζ
+

4

3

)
∥ϕ(s, a)∥(Λt

h)
−1 .

Lemma D.9. Consider Algorithm 1 with the LMC critic from Algorithm 3. Conditioned on Eδ defined
in Lemma D.1, if we follow the hyperparameter choices of Lemma D.2, then for any (t, h, s, a) ∈
[T]× [H]× S ×A and for any δ ∈ (0, 1), it holds that∣∣∣〈ϕ(s, a), ŵt

h

〉
− rh(s, a)− PhV̂

t
h+1(s, a)

∣∣∣ ≤ 3CδH
√
dc ∥ϕ(s, a)∥(Λt

h)
−1 .

D.1.2 Main Analysis
We will use the above lemmas to complete the main proof in this section.

Proof of Lemma D.2.

Optimism (RHS of Eq. (10)) Using the definition of the model prediction error, we need to
show that with high probability, Q̂t

h(s, a) ≥ rh(s, a) + PhV̂
t
h+1(s, a). Recall that Q̂t

h(s, a) =

min
{〈
ϕ(s, a), wt,m,Jt

h

〉
, H − h+ 1

}
. Since rh(s, a) + PhV̂

t
h+1(s, a) ≤ H − h + 1, when〈

ϕ(s, a), wt,m,Jt

h

〉
> H − h+ 1, the statement is trivially true. Thus, we only need to consider the

case when
〈
ϕ(s, a), wt,m,Jt

h

〉
≤ H − h+ 1 and thus Q̂t

h(s, a) =
〈
ϕ(s, a), wt,m,Jt

h

〉
.

Based on the mean and covariance matrix defined in Lemma D.3, we have that
〈
ϕ(s, a), wt,m,Jt

h

〉
follows the distribution N

(
ϕ(s, a)⊤µt,Jt

h , ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)
)

.

In order to prove that Q̂t
h(s, a) ≥ rh(s, a) + PhV̂

t
h+1(s, a), we consider the following variable

Xt :=
rh(s,a)+PhV̂

t
h+1(s,a)−⟨ϕ(s,a),µt,Jt

h ⟩√
ϕ(s,a)⊤ Σ

t,Jt
h ϕ(s,a)

and will next show that |Xt| ≤ 1. First, we have that∣∣∣rh(s, a) + PhV̂
t
h+1(s, a)−

〈
ϕ(s, a), µt,Jt

h

〉∣∣∣
(i)
≤
∣∣∣rh(s, a) + PhV̂

t
h+1(s, a)−

〈
ϕ(s, a), ŵt

h

〉∣∣∣+ ∣∣∣〈ϕ(s, a), ŵt
h − µ

t,Jt

h

〉∣∣∣
(ii)
≤ CδH

√
dc ∥ϕ(s, a)∥(Λt

h)
−1 +

4

3
∥ϕ(s, a)∥(Λt

h)
−1

=

(
CδH

√
dc +

4

3

)
∥ϕ(s, a)∥(Λt

h)
−1 ,

where (i) uses the triangular inequality, and (ii) is implied by Lemmas D.4 and D.9. Therefore,

|Xt| =

∣∣∣∣∣∣
rh(s, a) + PhV̂

t
h+1(s, a)−

〈
ϕ(s, a), µt,Jt

h

〉
√
ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)

∣∣∣∣∣∣
≤
√
ζ
(
2H

√
dcCδ + 8/3

)
.

Since we choose ζ =
(
2H
√
dcCδ + 8/3

)−2
, we have that |Xt| ≤ 1. Then, using Lemma D.12, we

can get that

Pr
(〈
ϕ(s, a), wt,m,Jt

h

〉
≥ rh(s, a) + PhV̂

t
h+1(s, a)

)
= Pr


〈
ϕ(s, a), wt,m,Jt

h

〉
−
〈
ϕ(s, a), µt,Jt

h

〉
√
ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)
≥
rh(s, a) + PhV̂

t
h+1(s, a)−

〈
ϕ(s, a), µt,Jt

h

〉
√
ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)


25

= Pr


〈
ϕ(s, a), wt,m,Jt

h

〉
−
〈
ϕ(s, a), µt,Jt

h

〉
√
ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)
≥ Xt


≥ 1

2
√
2π

exp (−X2
t /2)

≥ 1

2
√
2eπ

.

The above result holds for any m ∈ [M]. Since we have M parallel critic parameters, it holds that

Pr
(
∃(s, a) ∈ S ×A : Q̂t

h(s, a) ≤ rh(s, a) + PhV̂
t
h+1(s, a)

)
= Pr

(
∃(s, a) ∈ S ×A : max

m∈[M]
Q̂t,m

h (s, a) ≤ rh(s, a) + PhV̂
t
h+1(s, a)

)
= Pr

(
∃(s, a) ∈ S ×A : ∀m ∈ [M], Q̂t,m

h (s, a) ≤ rh(s, a) + PhV̂
t
h+1(s, a)

)
≤ Pr

(
∀m ∈ [M], ∃(sm, am) ∈ S ×A : Q̂t,m

h (sm, am) ≤ rh(sm, am) + PhV̂
t
h+1(s

m, am)
)

=

M∏
m=1

Pr
(
∃(s, a) ∈ S ×A : Q̂t,m

h (s, a) ≤ rh(s, a) + PhV̂
t
h+1(s, a)

)
=

M∏
m=1

(
1− Pr

(
∀(s, a) ∈ S ×A : Q̂t,m

h (s, a) ≥ rh(s, a) + PhV̂
t
h+1(s, a)

))
=

M∏
m=1

(
1− Pr

(
∀(s, a) ∈ S ×A :

〈
ϕ(s, a), wt,m,Jt

h

〉
≥ rh(s, a) + PhV̂

t
h+1(s, a)

))
≤
(
1− 1

2
√
2eπ

)M

.

This further implies that

Pr
(
∀(s, a) ∈ S ×A : ιth(s, a) ≤ 0

)
= Pr

(
∀(s, a) ∈ S ×A : Q̂t

h(s, a) ≥ rh(s, a) + PhV̂
t
h+1(s, a)

)
= 1− Pr

(
∃(s, a) ∈ S ×A : Q̂t

h(s, a) ≤ rh(s, a) + PhV̂
t
h+1(s, a)

)
= 1−

(
1− 1

2
√
2eπ

)M

.

Let 1−
(
1− 1

2
√
2eπ

)M
≥ 1−δ/(H T), which yields that M = log(H T/δ)/ log(1/(1− c)) where

c = 1/(2
√
2eπ). Therefore, we have that

Pr
(
ιth(s, a) ≤ 0, ∀(s, a) ∈ S ×A

)
≥ 1− δ

H T
.

Applying union bound over [H] and [T], we have that ιth(s, a) ≤ 0 with probability 1− δ.

Error Bound (LHS of Eq. (10)) We can lower bound ιth as follows.

−ιth(s, a) = Q̂t
h(s, a)− rh(s, a)− PhV̂

t
h+1(s, a)

= min

{
max
m∈[M]

〈
ϕ(s, a), wt,m,Jt

h

〉
, H − h+ 1

}+

− rh(s, a)− PhV̂
t
h+1(s, a)

≤ max
m∈[M]

〈
ϕ(s, a), wt,m,Jt

h

〉
− rh(s, a)− PhV̂

t
h+1(s, a)

= max
m∈[M]

〈
ϕ(s, a), wt,m,Jt

h

〉
−
〈
ϕ(s, a), ŵt

h

〉
+
〈
ϕ(s, a), ŵt

h

〉
− rh(s, a)− PhV̂

t
h+1(s, a)

26

≤
∣∣∣∣ max
m∈[M]

〈
ϕ(s, a), wt,m,Jt

h

〉
−
〈
ϕ(s, a), ŵt

h

〉∣∣∣∣+ ∣∣∣〈ϕ(s, a), ŵt
h

〉
− rh(s, a)− PhV̂

t
h+1(s, a)

∣∣∣
(iii)
≤

(
CδH

√
dc +

4

3

√
2 dc log (1/δ)

3 ζ
+

4

3

)
∥ϕ(s, a)∥(Λt

h)
−1 ,

where (iii) is derived from Lemmas D.8 and D.9.

This concludes the proof.

D.2 Proofs of Preliminary Properties
D.2.1 Proof of Lemma D.3
Proof. For any (t,m) ∈ [T]× [M], the critic update rule at j-th round can be written as

wt,m,j
h = wt,m,j−1

h − αh,t
c ∇Lt

h(w
t,m,j−1
h) +

√
αh,t
c ζ−1νt,m,j

h .

Considering j = Jt and plugging in Eq. (11), we have that

wt,m,Jt

h = wt,m,Jt−1
h − αh,t

c

(
Λt
h w

t,m,Jt−1
h − bth

)
+

√
αh,t
c ζ−1 νt,m,Jt

h

=
(
I − αh,t

c Λt
h

)
wt,m,Jt−1

h + αh,t
c bth +

√
αh,t
c ζ−1 νt,m,Jt

h

(i)
=
(
I − αh,t

c Λt
h

)Jt
wt,m,0

h +

Jt−1∑
l=0

(
I − αh,t

c Λt
h

)l(
αh,t
c bth +

√
αh,t
c ζ−1 νt,m,Jt−l

h

)

=
(
I − αh,t

c Λt
h

)Jt
wt,m,0

h + αh,t
c

Jt−1∑
l=0

(
I − αh,t

c Λt
h

)l
bth

+

√
αh,t
c ζ−1

Jt−1∑
l=0

(
I − αh,t

c Λt
h

)l
νt,m,Jt−l
h

(ii)
= AJt

t wt,m,0
h + αh,t

c

Jt−1∑
l=0

Al
t Λ

t
h ŵ

t
h +

√
αh,t
c ζ−1

Jt−1∑
l=0

Al
t ν

t,m,Jt−l
h

(iii)
= AJt

t wt,m,0
h + (I −At)

(
A0

t +A1
t + . . .+AJt−1

t

)
ŵt

h +

√
αh,t
c ζ−1

Jt−1∑
l=0

Al
tν

t,m,Jt−l
h

(iv)
= AJt

t wt,m,0
h +

(
I −AJt

t

)
ŵt

h +

√
αh,t
c ζ−1

Jt−1∑
l=0

Al
t ν

t,m,Jt−l
h .

(i) comes from telescoping the previous equation from l = 0 to Jt−1. (ii) uses the definition thatAt =
I −αh,t

c Λt
h and bth = Λt

hŵ
t
h. (iii) uses the definition of At. (iv) follows from I +A+ . . .+An−1 =

(I − An)(I − A)−1. Since we set αh,t
c = 1/(2λmax(Λ

t
h), At satisfies I ≻ At ≻ 0 for all t ∈ [T].

Note that we warm-start the parameters from the previous episode and set wt,m,0
h = w

t−1,m,Jt−1

h .
Therefore, by telescoping the above equation from i = 0 to t, we further have that

wt,m,Jt

h = AJt
t w

t−1,m,Jt−1

h +
(
I −AJt

t

)
ŵt

h +

√
αh,t
c ζ−1

Jt−1∑
l=0

Al
t ν

t,m,Jt−l
h

= AJt
t . . . AJ1

1 w
1,m,0
h +

t∑
i=1

AJt
t . . . A

Ji+1

i+1

(
I −AJi

i

)
ŵi

h

+

t∑
i=1

√
αi
c ζ

−1AJt
t . . . A

Ji+1

i+1

Ji−1∑
l=0

Al
iν

i,Ji−l
h .

27

Note that if ξ ∼ N(0, Id×d), then we have that Aξ + µ ∼ N(µ,AA⊤) for any A ∈ Rd×d and
µ ∈ Rd. This implies that wt,m,Jt

h follows the Gaussian distribution N(µt,m,Jt

h ,Σt,m,Jt

h), where

µt,m,Jt

h = AJt
t . . . AJ1

1 w
1,m,0
h +

t∑
i=1

AJt
t . . . A

Ji+1

i+1

(
I −AJi

i

)
ŵi

h .

We then derive the covariance matrix Σt,m,Jt

h . For any i ∈ [t], we denote that Ai+1 = AJt
t . . . A

Ji+1

i+1 .
Therefore,√

αi
c ζ

−1 Ai+1

Ji−1∑
l=0

Al
i ν

i,Ji−l
h =

Ji−1∑
l=0

√
αi
c ζ

−1 Ai+1A
l
i ν

i,Ji−l
h

∼ N

(
0,

Ji−1∑
l=0

αi
c ζ

−1 Ai+1A
l
i (Ai+1A

l
i)

⊤

)
∼ N

(
0, αi

c ζ
−1 Ai+1

(
Ji−1∑
l=0

A2l
i

)
A ⊤

i+1

)
.

This further implies that

Σt,m,Jt

h =

t∑
i=1

αi
c ζ

−1 Ai+1

(
Ji−1∑
l=0

A2l
i

)
A ⊤

i+1

=

t∑
i=1

αi
c ζ

−1AJt
t . . . A

Ji+1

i+1

(
Ji−1∑
l=0

A2l
i

)
A

Ji+1

i+1 . . . AJt
t

(v)
=

t∑
i=1

αi
c ζ

−1AJt
t . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
I −A2

i

)−1
A

Ji+1

i+1 . . . AJt
t

=

t∑
i=1

αi
c ζ

−1AJt
t . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
Λi
h

) (
Λi
h

)−1
(I −Ai)

−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJt
t

(vi)
=

t∑
i=1

ζ−1AJt
t . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
Λi
h

)−1
(I +Ai)

−1A
Ji+1

i+1 . . . AJt
t .

(v) uses the fact that I + A + . . . + An−1 = (I − An)(I − A)−1, and (vi) uses the fact that
αh,t
c Λt

h = I −At.

This concludes the proof.

D.2.2 Proof of Lemma D.4
Proof. Using Lemma D.3, we first have that

µt,Jt

h = AJt
t . . . AJ1

1 w
1,m,0
h +

t∑
i=1

AJt
t . . . A

Ji+1

i+1

(
I −AJi

i

)
ŵi

h

= AJt
t . . . AJ1

1 w
1,m,0
h +

t∑
i=1

AJt
t . . . A

Ji+1

i+1 ŵi
h −

t∑
i=1

AJt
t . . . AJi

i ŵi
h

= AJt
t . . . AJ1

1 w
1,m,0
h +

t−1∑
i=1

AJt
t . . . A

Ji+1

i+1

(
ŵi

h − ŵi+1
h

)
−AJt

t . . . AJ1
1 ŵ1

h + ŵt
h

= AJt
t . . . AJ1

1

(
w1,m,0

h − ŵ1
h

)
+

t−1∑
i=1

AJt
t . . . A

Ji+1

i+1

(
ŵi

h − ŵi+1
h

)
+ ŵt

h .

This implies that∣∣∣〈ϕ(s, a),(µt,Jt

h − ŵt
h

)〉∣∣∣
= ϕ(s, a)⊤AJt

t . . . AJ1
1

(
w1,m,0

h − ŵ1
h

)
+ ϕ(s, a)⊤

t−1∑
i=1

AJt
t . . . A

Ji+1

i+1

(
ŵi

h − ŵi+1
h

)
28

(i)
=

∣∣∣∣∣ϕ(s, a)⊤
t−1∑
i=0

AJt
t . . . A

Ji+1

i+1

(
ŵi

h − ŵi+1
h

)∣∣∣∣∣
=

∣∣∣∣∣
t−1∑
i=0

ϕ(s, a)⊤AJt
t . . . A

Ji+1

i+1

(
ŵi

h − ŵi+1
h

)∣∣∣∣∣
(ii)
≤

t−1∑
i=0

t∏
j=i+1

(
1− αh,j

c λmin

(
Λj
h

))Jj

∥ϕ(s, a)∥2∥ŵ
i
h − ŵi+1

h ∥2

(iii)
≤

t−1∑
i=0

t∏
j=i+1

(
1− αh,j

c λmin

(
Λj
h

))Jj

∥ϕ(s, a)∥2
(
∥ŵi

h∥2 + ∥ŵi+1
h ∥2

)
(iv)
≤ 4H

√
dc |Dt|/λ

t−1∑
i=0

t∏
j=i+1

(
1− αh,j

c λmin

(
Λj
h

))Jj

∥ϕ(s, a)∥2

(v)
≤ 4H

(∣∣Dt
∣∣+ 1

)√
dc/λ

t−1∑
i=0

t∏
j=i+1

(
1− αh,j

c λmin

(
Λj
h

))Jj

∥ϕ(s, a)∥(Λi
h)

−1

(vi)
≤ 4H

(∣∣Dt
∣∣+ 1

)√
dc

t−1∑
i=0

σt−i∥ϕ(s, a)∥(Λi
h)

−1

(vii)
≤ 4H

(∣∣Dt
∣∣+ 1

)√
dc

(
t−1∑
i=0

σt−i

)
∥ϕ(s, a)∥(Λt

h)
−1

≤ 4H
(∣∣Dt

∣∣+ 1
)√

dc

(
t−1∑
i=0

σt−i

)
∥ϕ(s, a)∥(Λt

h)
−1

= 4H
(∣∣Dt

∣∣+ 1
)√

dc

(
t−1∑
i=1

σi

)
∥ϕ(s, a)∥(Λt

h)
−1

(viii)
≤ 4H

(∣∣Dt
∣∣+ 1

)√
dc

(
σ

1− σ

)
∥ϕ(s, a)∥(Λt

h)
−1

=

(
1

1− σ

)
∥ϕ(s, a)∥(Λt

h)
−1

≤ 4

3
∥ϕ(s, a)∥(Λt

h)
−1 .

For (i), we choosew1,m,0
h = 0 and denote that ŵ0

h = 0. (ii) comes fromAi ≺ (1−αh,j
c λmin

(
Λj
h

)
) I

and the Hölder’s inequality. (iii) uses the triangular inequality. (iv) uses Lemma D.6. (v) uses
the fact that ∥ϕ(s, a)∥ ≤

√
|Dt|+ 1∥ϕ(s, a)∥(Λi

h)
−1 . (vi) hold because we set λ = 1 and

uses Lemma D.16 by setting Jj ≥ κj log (1/σ) where σ = 1/
(
4H (|Dt|+ 1)

√
dc
)
. (vii) fol-

lows from ∥ϕ(s, a)∥(Λi
h)

−1 ≤ ∥ϕ(s, a)∥2 ≤
√
|Dt|+ 1 ∥ϕ(s, a)∥(Λt

h)
−1 . (viii) follows from∑t

i=1 σ
t ≤

∑∞
i=1 σ

i ≤ σ/(1− σ).

This concludes the proof.

D.2.3 Proof of Lemma D.5
Proof. We first bound the RHS. Using Lemma D.3, we have that

ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)

=
1

ζ

t∑
i=1

ϕ(s, a)⊤AJt
t . . . A

Ji+1

i+1

(
I −A2Ji

) (
Λi
h

)−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJt
t ϕ(s, a)

29

(i)
=

1

ζ

t∑
i=1

ϕ(s, a)⊤ Ai+1

(
I −A2Ji

) (
Λi
h

)−1
(I +Ai)

−1A ⊤
i+1 ϕ(s, a)

(ii)
≤ 2

3 ζ

t∑
i=1

ϕ(s, a)⊤Ai+1

((
Λi
h

)−1 −AJi
i

(
Λi
h

)−1
AJi

i

)
A ⊤

i+1 ϕ(s, a)

=
2

3 ζ

(
t∑

i=1

ϕ(s, a)⊤Ai+1

(
Λi
h

)−1
A ⊤

i+1 ϕ(s, a)−
t∑

i=1

ϕ(s, a)⊤Ai

(
Λi
h

)−1
A ⊤

i ϕ(s, a)

)
(iii)
≤ 2

3 ζ

t∑
i=1

ϕ(s, a)⊤Ai+1

(
Λi
h

)−1
A ⊤

i+1 ϕ(s, a)

=
2

3 ζ

(
∥ϕ(s, a)∥2(Λi

h)
−1 +

t−1∑
i=1

∥∥A ⊤
i+1 ϕ(s, a)

∥∥2
(Λi

h)
−1

)

≤ 2

3 ζ
∥ϕ(s, a)∥2(Λt

h)
−1 +

2

3 ζ

t−1∑
i=1

t∏
j=i+1

(
1− αc λmin(Λ

j
h)
)2 Jj

∥ϕ(s, a)∥2(Λi
h)

−1 .

For (i), we denote Ai+1 = AJt
t . . . A

Ji+1

i+1 . (ii) follows from I + Ai ⪰ 3
2I since we set αh,j

c =

1/
(
2λmax(Λ

j
h)
)

. In particular, it is trivial that A and (Λt
h)

−1 are commuting matrices. Hence,

A2Ji
(
Λi
h

)−1
= A2Ji−1 (I − αh,t

c Λt
h) (Λ

t
h)

−1

= A2Ji−1 (Λt
h)

−1 (I − αh,t
c Λt

h)

= A2Ji−1 (Λt
h)

−1A

...

= AJi (Λt
h)

−1AJi .

(iii) follows from the fact that
∑t

i=1 ϕ(s, a)
⊤Ai

(
Λi
h

)−1
A ⊤

i ϕ(s, a) > 0. Therefore,∥∥∥∥ϕ(s, a)⊤(Σt,Jt

h

)1/2∥∥∥∥
2

=

√
ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)

(iv)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2

3 ζ

t−1∑
i=1

t∏
j=i+1

(
1− αc λmin(Λ

j
h)
)Jj

∥ϕ(s, a)∥(Λi
h)

−1

(v)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2

3 ζ

t−1∑
i=1

σt−i ∥ϕ(s, a)∥(Λi
h)

−1

(vi)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2 (|Dt|+ 1)

3 ζ

(
t−1∑
i=1

σt−i

)
∥ϕ(s, a)∥(Λt

h)
−1

(vii)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2 (|Dt|+ 1)

3 ζ

(
σ

1− σ

)
∥ϕ(s, a)∥(Λt

h)
−1

≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

1

4

√
2

3 ζ

(
1

1− σ

)
∥ϕ(s, a)∥(Λt

h)
−1

≤
(√

2

3 ζ
+

1

3

√
2

3 ζ

)
∥ϕ(s, a)∥(Λt

h)
−1

≤ 4

3

√
2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 .

30

(iv) follows from the fact that
√
a+ b ≤ a + b for all a, b > 0. (v) uses Lemma D.16 by setting

Jj ≥ 2κj log (1/σ) where σ = 1/
(
4H (|Dt|+ 1)

√
dc
)
. (vi) follows from ∥ϕ(s, a)∥(Λi

h)
−1 ≤

∥ϕ(s, a)∥2 ≤
√
|Dt|+ 1 ∥ϕ(s, a)∥(Λt

h)
−1 . (vii) follows from

∑t
i=1 σ

t−i ≤
∑∞

i=1 σ
i ≤ σ/(1− σ).

We then proceed to bound the LHS. Using the definition of Σt,Jt

h from Eq. (14), we have

ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)

=

t∑
i=1

1

ζ
ϕ(s, a)⊤AJt

t . . . A
Ji+1

i+1

(
I −A2Ji

) (
Λi
h

)−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJt
t ϕ(s, a)

(iii)
≥ 1

2 ζ

t∑
i=1

ϕ(s, a)⊤Ai+1

(
I −A2Ji

) (
Λi
h

)−1
A ⊤

i+1 ϕ(s, a)

=
1

2 ζ

t∑
i=1

1

2 ζ
ϕ(s, a)⊤Ai+1

((
Λi
h

)−1 −AJt
t

(
Λi
h

)−1
AJt

t

)
A ⊤

i+1 ϕ(s, a)

=
1

2 ζ

t−1∑
i=1

ϕ(s, a)⊤Ai+1

(
(Λi

h)
−1 − (Λi+1

h)−1
)
A ⊤

i+1 ϕ(s, a)

− 1

2 ζ
ϕ(s, a)⊤AJt

t . . . AJ1
1 (Λ1

h)
−1AJ1

1 . . . AJt
t ϕ(s, a) +

1

2 ζ
ϕ(s, a)⊤(Λt

h)
−1ϕ(s, a) ,

where (iii) follows from (I +At)
−1 ⪰ 1

2 I for all t ∈ [T].∣∣ϕ(s, a)⊤Ai+1

(
(Λi

h)
−1 − (Λi+1

h)−1
)
A ⊤

i+1 ϕ(s, a)
∣∣

≤
∣∣ϕ(s, a)⊤Ai+1 (Λ

i
h)

−1 A ⊤
i+1 ϕ(s, a)

∣∣
+
∣∣〈ϕ(s, a),Ai+1 (Λ

i+1
h)−1 A ⊤

i+1 ϕ(s, a)
〉∣∣

≤
∥∥∥ϕ(s, a)⊤Ai+1 (Λ

i
h)

−1/2
∥∥∥2 + ∥∥∥ϕ(s, a)⊤Ai+1 (Λ

i+1
h)−1/2

∥∥∥2
=

t∏
j=i+1

(
1− αh,j

c λmin(Λ
j
h)
)2 Jj

(
∥ϕ(s, a)∥2(Λi

h)
−1 + ∥ϕ(s, a)∥2(Λi+1

h)−1

)

≤ 2

t∏
j=i+1

(
1− αh,j

c λmin(Λ
j
h)
)2 Jj

∥ϕ(s, a)∥22 ,

where we used 0 < ∥ϕ(s, a)∥(Λi
h)

−1 ≤ ∥ϕ(s, a)∥2. Therefore, we have that

ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)

≥ 1

2 ζ
∥ϕ(s, a)∥2(Λt

h)
−1 −

1

2 ζ

t∏
i=1

(
1− αh,j

c λmin(Λ
i
h)
)2Ji∥ϕ(s, a)∥22

− 1

ζ

t−1∑
i=1

t∏
j=i+1

(
1− αh,j

c λmin(Λ
j
h)
)2 Jj

∥ϕ(s, a)∥22

(iv)
≥ 1

2 ζ

(
∥ϕ(s, a)∥2(Λt

h)
−1 − σt∥ϕ(s, a)∥22 −

t−1∑
i=1

2σi ∥ϕ(s, a)∥22

)
(v)
≥ 1

2 ζ
∥ϕ(s, a)∥2(Λt

h)
−1

(
1−

(∣∣Dt
∣∣+ 1

)
σt − 2

(∣∣Dt
∣∣+ 1

) t−1∑
i=1

σi

)

≥ 1

2 ζ
∥ϕ(s, a)∥2(Λt

h)
−1

(
1− σt−1 − 1

2 (1− σ)

)
≥ 1

2 ζ
∥ϕ(s, a)∥2(Λt

h)
−1

(
1− 1

4
− 2

3

)

31

=
1

24 ζ
∥ϕ(s, a)∥2(Λt

h)
−1 ,

where (iv) uses Lemma D.16 by setting Jj ≥ 2κj log (1/σ) where σ = 1/
(
4H (|Dt|+ 1)

√
dc
)
,

and (v) use ∥ϕ(s, a)∥2 ≤
√
|Dt|+ 1 ∥ϕ(s, a)∥(Λt

h)
−1 .

This concludes the proof.

D.2.4 Proof of Lemma D.6
Proof. Given the definition of ŵt

h in Eq. (12), we have that

∥∥ŵt
h

∥∥ =

∥∥∥∥∥∥(Λt
h

)−1 ∑
(s,a)∈Dt

h

[
rh(s, a) + V̂ t

h+1(s)
]
· ϕ(sh, a)

∥∥∥∥∥∥
≤
√
|Dt|
λ

 ∑
(s,a)∈Dt

h

∥∥∥[rh(s, a) + V̂ t
h+1(s)

]
· ϕ(s, a)

∥∥∥2
(Λt

h)
−1

1/2

≤ 2H

√
|Dt|
λ

 ∑
(s,a)∈Dt

h

∥ϕ(s, a)∥2(Λt
h)

−1

1/2

≤ 2H
√
dc |Dt|/λ ,

where the first inequality follows from Lemma D.15, the second inequality is due to the fact
that V t

h ∈ [0, H] and the reward function is bounded by 1, and the last inequality follows
from Lemma D.10.

D.2.5 Proof of Lemma D.7
Proof. From Lemma D.3, we know wt,m,Jt

h follows Gaussian distribution N(µt,Jt

h ,Σt,Jt

h). Therefore,
we have that ∥∥∥wt,m,Jt

h

∥∥∥
2
=
∥∥∥µt,Jt

h + ξt,Jt

h

∥∥∥
2
≤
∥∥∥µt,Jt

h

∥∥∥
2︸ ︷︷ ︸

(I)

+
∥∥∥ξt,Jt

h

∥∥∥
2︸ ︷︷ ︸

(II)

,

where ξt,Jt

h ∼ N(0,Σt,Jt

h). We first start by bounding Term (I). Given Lemma D.3, by setting
w1,m,0

h = 0, we can obtain that∥∥∥µt,Jt

h

∥∥∥
2
=

∥∥∥∥∥AJt
t . . . AJ1

1 w
1,m,0
h +

t∑
i=1

AJt
t . . . A

Ji+1

i+1

(
I −AJi

i

)
ŵi

h

∥∥∥∥∥
2

≤
t∑

i=1

∥∥∥AJt
t . . . A

Ji+1

i+1

(
I −AJi

i

)
ŵi

h

∥∥∥
2

(i)
≤

t∑
i=1

∥∥∥AJt
t . . . A

Ji+1

i+1

(
I −AJi

i

)∥∥∥
2

∥∥ŵi
h

∥∥
2

(ii)
≤ 2H

√
dc |Dt|

t∑
i=1

∥∥∥AJt
t . . . A

Ji+1

i+1

(
I −AJi

i

)∥∥∥
2

(iii)
≤ 2H

√
dc |Dt|

t∑
i=1

∥At∥Jt

2 . . . ∥Ai+1∥Ji+1

2

∥∥∥(I −AJi
i

)∥∥∥
2

(iv)
≤ 2H

√
dc |Dt|

t∑
i=1

t∏
j=i+1

(
1− αh,j

c λmin(Λ
j
h)
)Jj

(
∥I∥2 + ∥AJi

i ∥2
)

32

(v)
≤ 2H

√
dc |Dt|

t∑
i=1

t∏
j=i+1

(
1− αh,j

c λmin(Λ
j
h)
)Jj

(
∥I∥2 + ∥Ai∥Ji

2

)
(vi)
≤ 2H

√
dc |Dt|

t∑
i=1

t∏
j=i+1

(
1− αh,j

c λmin(Λ
j
h)
)Jj

(
1 +

(
1− αi

c λmin(Λ
i
h)
)Ji
)

≤ 2H
√
dc |Dt|

t∑
i=1

 t∏
j=i+1

(
1− αh,j

c λmin(Λ
j
h)
)Jj

+

t∏
j=i

(
1− αh,j

c λmin(Λ
j
h)
)Jj


(vii)
≤ 2H

√
dc |Dt|

t∑
i=1

 t∏
j=i+1

(1− 1/(2κj))
Jj +

t∏
j=i

(1− 1/(2κj))
Jj

 ,

(i) uses the definition of the matrix norm (i.e., ∥A∥2 := maxx
∥Ax∥2

∥x∥ =⇒ ∥Ax∥2 ≤ ∥A∥2 ∥x∥2).
(ii) uses Lemma D.6 and sets λ = 1. (iii) and (v) come from the submultiplicativity of matrix norm.
(iv) and (vi) use the fact that ∥A∥2 ≤ λmax(A), and (iv) also uses the triangular inequality. (vii) uses

the fact that we set αh,j
c = 1/

(
2λmax(Λ

j
h)
)

and denotes that κj = maxh∈[H] λmax(Λ
j
h)/λmin(Λ

j
h).

Using Lemma D.16. we can set Jj ≥ 2κj log (1/σ) where σ = 1/
(
4H (|Dt|+ 1)

√
dc
)

and further
get that

∥µt,Jt

h ∥2 ≤ 2H
√
dc |Dt|

t∑
i=1

(
σt−i + σt−i+1

)
≤ 4H

√
dc |Dt|

∞∑
i=0

σi

= 4H
√
dc |Dt|

(
1

1− σ

)
=

16

3
H
√
dc |Dt| .

Next, we continue to bound Term (II). Since ξt,Jt

h ∼ N(0,Σt,Jt

h), using Lemma D.11, we have that

Pr

(∥∥∥ξt,Jt

h

∥∥∥
2
≤
√

1

δ
Tr
(
Σt,Jt

h

))
≥ 1− δ .

Recall from Lemma D.3 that

Σt,Jt

h =
t∑

i=1

1

ζ
AJt

t . . . A
Ji+1

i+1

(
I −A2Ji

i

) (
Λi
h

)−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJt
t .

Therefore, we can use Lemma D.13 and derive that

Tr
(
Σt,Jt

h

)
=

t∑
i=1

1

ζ
Tr
(
AJt

t . . . A
Ji+1

i+1

(
I −A2Ji

i

) (
Λi
h

)−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJt
t

)
≤

t∑
i=1

1

ζ
Tr
(
AJt

t

)
. . .Tr

(
A

Ji+1

i+1

)
Tr
(
I −A2Ji

i

)
×

Tr
((

Λi
h

)−1
)
Tr
(
(I +Ai)

−1
)
Tr
(
A

Ji+1

i+1

)
. . .Tr

(
AJt

t

)
.

To bound each term, we first have,

Tr
(
AJi

i

)
≤ Tr

((
1− αi

c λmin(Λ
i
h)
)Ji

I
)

≤ dc
(
1− αi

c λmin(Λ
i
h)
)Ji

33

≤ dc σ ≤ 1 ,

where the first inequality follows from the fact that AJi
i ≺ (1− αt

cλmin(Λ
t
h))

JjI . Similarly, since
we set 0 < αh,j

c < 1/(2λmax(Λj)), we have AJi
i ≻ 1

2Ji
I and therefore,

Tr
(
I −A2Ji

i

)
≤
(
1− 1

22Ji

)
dc < dc .

Similarly, since we set 0 < αh,j
c < 1/(2λmax(Λj)) and thus I +Ai ≻ 3

2I , we have that

Tr
(
(I +Ai)

−1
)
≤ 2

3
dc .

Additionally, since all eigenvalues of Λi
h are greater than or equal to 1,

Tr
(
(Λi

h)
−1
)
≤ dc · 1 = dc .

Finally, we have that

Tr
(
Σt,Jt

h

)
≤

t∑
i=1

1

ζ
· 2
3
· d3c =

2 d3c
3 ζ

t .

Therefore, using Lemma D.11, we have that

Pr

(∥∥∥ξt,Jt

h

∥∥∥
2
≤

√
1

δ
· 2 d

3
c

3 ζ
T

)
≥ Pr

(∥∥∥ξt,Jt

h

∥∥∥
2
≤
√

1

δ
Tr
(
Σt,Jt

h

))
≥ 1− δ .

Putting everything together, with probability at least 1− δ, we can obtain that∥∥∥wt,m,Jt

h

∥∥∥
2
≤W δ :=

16

3
H
√
dc |Dt|+

√
2 d3c t

3 ζ δ
.

This concludes the proof.

D.2.6 Proof of Lemma D.8
Proof. To start, we decompose the LHS using the triangle inequality,∣∣∣〈ϕ(s, a), wt,m,Jt

h − ŵt
h

〉∣∣∣ ≤ ∣∣∣〈ϕ(s, a), wt,m,Jt

h − µt,Jt

h

〉∣∣∣︸ ︷︷ ︸
(I)

+
∣∣∣〈ϕ(s, a), µt,Jt

h − ŵt
h

〉∣∣∣︸ ︷︷ ︸
(II)

,

where µt,Jt

h is defined in Eq. (13). To bound Term (I), we first apply Hölder’s inequality and obtain
that∣∣∣〈ϕ(s, a), wt,m,Jt

h − µt,Jt

h

〉∣∣∣ ≤ ∥∥∥∥ϕ(s, a)⊤(Σt,Jt

h

)1/2∥∥∥∥
2

∥∥∥∥(Σt,Jt

h

)−1/2 (
wt,m,Jt

h − µt,Jt

h

)∥∥∥∥
2

.

Since wt,m,Jt

h ∼ N(µt,Jt

h ,Σt,Jt

h), we know that
(
Σt,Jt

h

)−1/2 (
wt,m,Jt

h − µt,Jt

h

)
∼ N(0, Idc×dc).

Therefore,

Pr

(∥∥∥∥(Σt,Jt

h

)−1/2 (
wt,m,Jt

h − µt,Jt

h

)∥∥∥∥
2

≥ 2
√
dc log (1/δ)

)
≤ δ2 .

Then, we continue to bound
∥∥∥∥ϕ(s, a)⊤(Σt,Jt

h

)1/2∥∥∥∥
2

.

ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)

=
1

ζ

t∑
i=1

ϕ(s, a)⊤AJt
t . . . A

Ji+1

i+1

(
I −A2Ji

) (
Λi
h

)−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJt
t ϕ(s, a)

34

(i)
=

1

ζ

t∑
i=1

ϕ(s, a)⊤ Ai+1

(
I −A2Ji

) (
Λi
h

)−1
(I +Ai)

−1A ⊤
i+1 ϕ(s, a)

(ii)
≤ 2

3ζ

t∑
i=1

ϕ(s, a)⊤Ai+1

((
Λi
h

)−1 −AJi
i

(
Λi
h

)−1
AJi

i

)
A ⊤

i+1 ϕ(s, a)

=
2

3 ζ

(
t∑

i=1

ϕ(s, a)⊤Ai+1

(
Λi
h

)−1
A ⊤

i+1 ϕ(s, a)−
t∑

i=1

ϕ(s, a)⊤Ai

(
Λi
h

)−1
A ⊤

i ϕ(s, a)

)
(iii)
≤ 2

3 ζ

t∑
i=1

ϕ(s, a)⊤Ai+1

(
Λi
h

)−1
A ⊤

i+1 ϕ(s, a)

=
2

3 ζ

(
∥ϕ(s, a)∥2(Λi

h)
−1 +

t−1∑
i=1

∥∥A ⊤
i+1 ϕ(s, a)

∥∥2
(Λi

h)
−1

)

≤ 2

3 ζ
∥ϕ(s, a)∥2(Λt

h)
−1 +

2

3 ζ

t−1∑
i=1

t∏
j=i+1

(
1− αc λmin(Λ

j
h)
)2 Jj

∥ϕ(s, a)∥2(Λi
h)

−1 .

For (i), we use the denotation that Ai+1 = AJt
t . . . A

Ji+1

i+1 . (ii) follows from I +Ai ≻ 3
2I since we set

αh,j
c = 1/

(
2λmax(Λ

j
h)
)

. (iii) follows from the fact that
∑t

i=1 ϕ(s, a)
⊤Ai

(
Λi
h

)−1
A ⊤

i ϕ(s, a) > 0.
Therefore,∥∥∥∥ϕ(s, a)⊤(Σt,Jt

h

)1/2∥∥∥∥
2

=

√
ϕ(s, a)⊤ Σt,Jt

h ϕ(s, a)

(iv)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2

3 ζ

t−1∑
i=1

t∏
j=i+1

(
1− αc λmin(Λ

j
h)
)Jj

∥ϕ(s, a)∥(Λi
h)

−1

(v)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2

3 ζ

t−1∑
i=1

σt−i ∥ϕ(s, a)∥(Λi
h)

−1

(vi)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2 (|Dt|+ 1)

3 ζ

(
t−1∑
i=1

σt−i

)
∥ϕ(s, a)∥(Λt

h)
−1

(vii)
≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

√
2 (|Dt|+ 1)

3 ζ

(
σ

1− σ

)
∥ϕ(s, a)∥(Λt

h)
−1

≤
√

2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 +

1

4

√
2

3 ζ

(
1

1− σ

)
∥ϕ(s, a)∥(Λt

h)
−1

≤
(√

2

3 ζ
+

1

3

√
2

3 ζ

)
∥ϕ(s, a)∥(Λt

h)
−1

≤ 4

3

√
2

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1 .

(iv) follows from the fact that
√
a+ b ≤ a + b for all a, b > 0. (v) uses Lemma D.16 by setting

Jj ≥ κj log (1/σ) where σ = 1/
(
4H (|Dt|+ 1)

√
dc
)
. (vi) follows from ∥ϕ(s, a)∥(Λi

h)
−1 ≤

∥ϕ(s, a)∥2 ≤
√
|Dt|+ 1 ∥ϕ(s, a)∥(Λt

h)
−1 . (vii) follows from

∑t
i=1 σ

t−i ≤
∑∞

i=1 σ
i ≤ σ/(1− σ).

Therefore, we have

Pr

(∣∣∣〈ϕ(s, a), wt,m,Jt

h − µt,Jt

h

〉∣∣∣ ≥ 8

3

√
2 dc log(1/δ)

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1

)

≤ Pr

(∥∥∥∥ϕ(s, a)⊤(Σt,Jt

h

)1/2∥∥∥∥
2

∥∥∥∥(Σt,Jt

h

)−1/2 (
wt,m,Jt

h − µt,Jt

h

)∥∥∥∥
2

≥ 2
√
dc log (1/δ)

∥∥∥∥ϕ(s, a)⊤(Σt,Jt

h

)1/2∥∥∥∥
2

)

35

= Pr

(∥∥∥∥(Σt,Jt

h

)−1/2 (
wt,m,Jt

h − µt,Jt

h

)∥∥∥∥
2

≥ 2
√
dc log (1/δ)

)
= δ2 ≤ δ .

This implies that

Pr

(∣∣∣〈ϕ(s, a), wt,m,Jt

h − µt,Jt

h

〉∣∣∣ ≤ 8

3

√
2 dc log(1/δ)

3 ζ
∥ϕ(s, a)∥(Λt

h)
−1

)
≥ 1− δ .

Putting everything together, with probability at least 1− δ,∣∣∣〈ϕ(s, a), wt,m,Jt

h − ŵt
h

〉∣∣∣ ≤ ∣∣∣〈ϕ(s, a), wt,m,Jt

h − µt,Jt

h

〉∣∣∣+ ∣∣∣〈ϕ(s, a), µt,Jt

h − ŵt
h

〉∣∣∣
≤

(
8

3

√
2 dc log(1/δ)

3 ζ
+

4

3

)
∥ϕ(s, a)∥(Λt

h)
−1 .

D.2.7 Proof of Lemma D.9
Proof. Recall that Ph V (s, a) := Es′∼Ph(·|s,a)V (s′) and Ph(· | s, a) = ⟨ϕ(s, a), ψh(·)⟩ due to

the linear MDP assumption (Definition 2.1). We also denote that Ψ̂t
h :=

〈
ψh, V̂

t
h+1

〉
S

and thus

PhV̂
t
h+1(s, a) =

〈
ϕ(s, a), Ψ̂t

h

〉
. Then, we have that

PhV̂
t
h+1(s, a) =

〈
ϕ(s, a), Ψ̂t

h

〉
= ϕ(s, a)⊤

(
Λt
h

)−1
Λt
h Ψ̂

t
h

= ϕ(s, a)⊤
(
Λt
h

)−1

 ∑
(s,a,s′)∈Dt

h

ϕ(s, a)ϕ(s, a)⊤ + λI

 Ψ̂t
h

= ϕ(s, a)⊤
(
Λt
h

)−1

 ∑
(s,a,s′)∈Dt

h

ϕ(s, a)(PhV̂
t
h+1)(s, a) + λ Ψ̂t

h

 .

This further implies that〈
ϕ(s, a), ŵt

h

〉
− rh(s, a)− PhV̂

t
h+1(s, a)

= ϕ(s, a)⊤
(
Λt
h

)−1 ∑
(s,a,s′)∈Dt

h

[
rh(s, a) + V̂ t

h+1(s
′)
]
· ϕ(s, a)− rh(s, a)

− ϕ(s, a)⊤
(
Λt
h

)−1

 ∑
(s,a,s′)∈Dt

h

ϕ(s, a)(PhV̂
t
h+1)(s, a) + λ Ψ̂t

h


= ϕ(s, a)⊤(Λt

h)
−1

 ∑
(s,a,s′)∈Dt

h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]
︸ ︷︷ ︸

(I)

+ ϕ(s, a)⊤(Λt
h)

−1

 ∑
(s,a,s′)∈Dt

h

rh(s, a)ϕ(s, a)

− rh(s, a)
︸ ︷︷ ︸

(II)

−λϕ(s, a)⊤(Λt
h)

−1 Ψ̂t
h︸ ︷︷ ︸

(III)

.

We first start by bounding Term (I). With probability at least 1− δ, it holds that

ϕ(s, a)⊤(Λt
h)

−1

 ∑
(s,a,s′)∈Dt

h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]
36

(i)
≤

∥∥∥∥∥∥
∑

(s,a,s′)∈Dt
h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]∥∥∥∥∥∥
(Λt

h)
−1

∥ϕ(s, a)∥(Λt
h)

−1

(ii)
≤ CδH

√
dc ∥ϕ(s, a)∥(Λt

h)
−1 ,

where (i) follows from the Cauchy-Schwarz inequality, and (ii) follows from the good event defined
in Lemma D.1.

Next, we continue to bound Term (II). We observe that

ϕ(s, a)⊤(Λt
h)

−1

 ∑
(s,a,s′)∈Dt

h

rh(s, a)ϕ(s, a)

− rh(s, a)
(iii)
= ϕ(s, a)⊤(Λt

h)
−1

 ∑
(s,a,s′)∈Dt

h

rh(s, a)ϕ(s, a)

− ϕ(s, a)⊤θh
= ϕ(s, a)⊤(Λt

h)
−1

 ∑
(s,a,s′)∈Dt

h

rh(s, a)ϕ(s, a)− Λt
hθh


= ϕ(s, a)⊤(Λt

h)
−1

 ∑
(s,a,s′)∈Dt

h

rh(s, a)ϕ(s, a)−
∑

(s,a,s′)∈Dt
h

ϕ(s, a)ϕ(s, a)⊤ θh − λ θh


(iv)
= ϕ(s, a)⊤(Λt

h)
−1

 ∑
(s,a,s′)∈Dt

h

rh(s, a)ϕ(s, a)−
∑

(s,a,s′)∈Dt
h

ϕ(s, a) rh(s, a)− λ θh


= −λϕ(s, a)⊤ (Λt

h)
−1 θh

(v)
≤ λ ∥ϕ(s, a)∥(Λt

h)
−1∥θh∥(Λt

h)
−1

(vi)
≤
√
λ dc ∥ϕ(s, a)∥(Λt

h)
−1 .

(iii) and (iv) follow from the definition rh(s, a) = ⟨ϕ(s, a), θh⟩. (v) applies the Cauchy-Schwarz in-
equality. (vi) follows from ∥ϕ(s, a)∥(Λt

h)
−1 ≤

√
1/λ ∥ϕ(s, a)∥2 and ∥θh∥2 ≤

√
dc (Definition 2.1).

Lastly, we derive the bound for Term (III).

λϕ(s, a)⊤ (Λt
h)

−1 Ψ̂t
h

(vii)
≤ λ ∥ϕ(s, a)∥(Λt

h)
−1

∥∥∥Ψ̂t
h

∥∥∥
(Λt

h)
−1

(viii)
≤
√
λ ∥ϕ(s, a)∥(Λt

h)
−1

∥∥∥Ψ̂t
h

∥∥∥
2

≤
√
λ ∥ϕ(s, a)∥(Λt

h)
−1

∥∥∥〈ψh, V̂
t
h+1

〉
S

∥∥∥
2

= H
√
λ ∥ϕ(s, a)∥(Λt

h)
−1

∥∥∥∥∫
s∈S

ψh(s)
(
V̂ t
h+1(s)/H

)
d s

∥∥∥∥
2

(xiv)
≤ H

√
λ dc ∥ϕ(s, a)∥(Λt

h)
−1 .

(vii) applies the Cauchy-Schwarz inequality. (viii) follows from
∥∥∥Ψ̂t

h

∥∥∥
(Λt

h)
−1
≤
√
λ
∥∥∥Ψ̂t

h

∥∥∥
2
. (xiv)

comes from the assumption that
∥∥∥∫s∈S ψh(s)

(
V̂ t
h+1(s)/H

)
d s
∥∥∥
2
≤
√
dc (Definition 2.1).

Putting everything together and setting λ = 1, we have with probability at least 1− δ,∣∣∣〈ϕ(s, a), ŵt
h

〉
− rh(s, a)− PhV̂

t
h+1(s, a)

∣∣∣
37

≤
(
CδH

√
dc +

√
λ dc +H

√
λ dc

)
∥ϕ(s, a)∥(Λt

h)
−1

= 3CδH
√
dc ∥ϕ(s, a)∥(Λt

h)
−1 .

This concludes the proof.

D.3 Technical Tools

Lemma D.10 (Jin et al. 2020, Lemma D.1). Let Λ = λI +
∑t

i=1 ϕiϕ
⊤
i , where ϕi ∈ Rd and λ > 0.

Then,
t∑

i=1

ϕ⊤i (Λ)
−1ϕi ≤ d .

Lemma D.11 (Ishfaq et al. 2024a, Lemma E.1). Given a multivariate normal distribution X ∼
N(0,Σd×d), for any δ ∈ (0, 1], it hold that

Pr

(
∥X∥2 ≤

√
1

δ
Tr(Σ)

)
≥ 1− δ .

Lemma D.12 (Abramowitz and Stegun 1948). Suppose X is a Gaussian random variable X ∼
N(µ, σ2), where σ > 0. For z ∈ [0, 1], it holds that

Pr(X > µ+ z σ) ≥ e−z2/2

√
8π

and Pr(X < µ− z σ) ≥ e−z2/2

√
8π

.

Additionally, for any z ≥ 1,

e−z2/2

2 z
√
π
≤ Pr(|X − µ| > z σ) ≤ e−z2/2

z
√
π
.

Lemma D.13. If A and B are positive semi-definite square matrices of the same size, then

[Tr(AB)]2 ≤ Tr(A2) Tr(B2) ≤ [Tr(A)]2[Tr(B)]2 .

Lemma D.14. Given two symmetric positive semi-definite square matricesA andB such thatA ⪰ B,
it holds that ∥A∥2 ≥ ∥B∥2.

Proof. Note that A−B is also positive semi-definite. Then, we have that

∥B∥2 = sup
∥x∥=1

x⊤Bx ≤ sup
∥x∥=1

(
x⊤Bx+ x⊤(A−B)x

)
= sup

∥x∥=1

x⊤Ax = ∥A∥2 .

Lemma D.15. Let A ∈ Rd×d be a positive definite matrix where its largest eigenvalue λmax(A) ≤ λ.
Given that v1, . . . , vn are n vectors in Rd, it holds that∥∥∥∥∥A

n∑
i=1

vi

∥∥∥∥∥ ≤
√√√√λn

n∑
i=1

∥vi∥2A .

Lemma D.16. Let Λ be a positive definite matrix and κ = λmax(Λ)
λmin(Λ) be the condition number of Λ. If

Λ ≻ I and J ≥ 2κ log(1/σ), then, for any σ > 0,

(1− 1/(2κ))
J
< σ .

Proof. The statement is equivalent to proving that

J ≥ log(1/σ)

log
(

1
1−1/(2κ)

) .

38

Since κ ≥ 1 and for any x ∈ (0, 1), e−x > 1− x, we have that

e−1/(2κ) > 1− 1/(2κ) =⇒ log

(
1

1− 1/(2κ)

)
≥ 1

2κ
.

Therefore, we have that

J ≥ 2κ log(1/σ) ≥ log(1/σ)

log
(

1
1−1/(2κ)

) ,
which concludes the proof.

E Sample Complexity in the On-Policy Setting
E.1 Proof of Good Event

Lemma E.1. Consider Algorithm 1 in the on-policy setting with λ = 1. Then, for any δ ∈ (0, 1),
with probability at least 1− δ, it holds that∥∥∥∥∥∥

∑
(s,a,s′)∈Dt

h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]∥∥∥∥∥∥
(Λt

h)
−1

≤ Con
δ H

√
dc ,

where Con
δ = log(N/δ).

Proof of Lemma E.1. Recall that PhV̂
t
h+1(s, a) = Es′∼Ph

[
V̂ t
h+1(s

′)
]
. Thus, E[V̂ t

h+1(s
′) −

PhV̂
t
h+1(s, a)] = 0. Also,

∣∣∣V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

∣∣∣ ≤ H . Therefore, V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a) is

zero-mean and H-sub Gaussian. Given that, we can invoke Lemma E.3.∥∥∥∥∥∥
∑

(s,a,s′)∈Dt
h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]∥∥∥∥∥∥
(Λt

h)
−1

≤
√
2H

√
log

[
det(Λt

h)
1/2 det(Λ0

h)
−1/2

δ

]

=
√
2H

√√√√log

[(
N + λ

λ

)d/2
]
− log(δ)

=
√
2H

√
dc
2

log(N/δ)

= H
√
dc log(N/δ) ,

where the first equality follows from Lemma E.4, and the second equality holds by setting λ = 1.

This concludes the proof.

E.2 Proof of Theorem 6.1
Using Lemma E.1, we can instantiate Lemma D.2 in the on-policy setting with

Γon
LMC = Con

δ H
√
dc +

4

3

√
2 dc log (1/δ)

3 ζ
+

4

3

= H
√
dc log(N/δ) +

4

3

√
2 dc log (1/δ)

3 ζ
+

4

3
.

39

Proof of Theorem 6.1. The optimal gap for the mixture policy can be written as

E
[
V ⋆
1 (s1)− V πT

1 (s1)
]
=

1

T

T∑
t=1

(
V ⋆
1 (s1)− V πt

1 (s1)
)
.

Then, to decompose the above summation, we have that

T∑
t=1

(
V ⋆
1 (s1)− V πt

1 (s1)
)
=

T∑
t=1

(
V ⋆
1 (s1)− V̂ t

1 (s1)
)
+

T∑
t=1

(
V̂ t
1 (s1)− V πt

1 (s1)
)
.

We can further decompose the first term by invoking Lemma E.2 with π = π⋆ and obtain that

V ⋆
1 (s1)− V̂ t

1 (s1)

=

H∑
h=1

Eπ⋆

[〈
π⋆
h(· | s)− πt

h(· | s), Q̂t
h(s, ·)

〉]
+

H∑
h=1

Eπ⋆

[
rh(s, a) + PhV̂

t
h+1(s, a)− Q̂t

h(s, a)
]
.

Similarly, we can decompose the second term by invoking Lemma E.2 with π = πt and get that

V̂ t
1 (s1)− V πt

1 (s1)

=

H∑
h=1

Eπt

[〈
πt
h(· | s)− πt

h(· | s), Q̂t
h(s, ·)

〉]
−

H∑
h=1

Eπt

[
rh(s, a) + PhV̂

t
h+1(s, a)− Q̂t

h(s, a)
]

= −
H∑

h=1

Eπt

[
rh(s, a) + PhV̂

t
h+1(s, a)− Q̂t

h(s, a)
]
.

Therefore, using the definition of the model prediction error ι in Definition 5.1, we have that

T∑
t=1

(
V ⋆
1 (s1)− V πt

1 (s1)
)

=

T∑
t=1

H∑
h=1

Eπ⋆

[〈
π⋆
h(· | s)− πt

h(· | s), Q̂t
h(s, ·)

〉]
︸ ︷︷ ︸

(I) policy optimization (actor) error

+

T∑
t=1

H∑
h=1

(
Eπ⋆ [ιth(s, a)]− Eπt [ιth(s, a)]

)
︸ ︷︷ ︸

(II) policy evaluation (critic) error

.

Policy optimization error. We first start by bounding Term (I), the policy optimization error.

Term (I) =
T∑

t=1

H∑
h=1

Es∼π⋆

[〈
π⋆
h(· | s)− πt

h(· | s), Q̂t
h(s, ·)

〉]
=

H∑
h=1

Es∼π⋆

(
T∑

t=1

〈
π⋆
h(· | s)− πt

h(· | s), Q̂t
h(s, ·)

〉)

≤ H max
(h,s)∈[H]×S

(
T∑

t=1

〈
π⋆
h(· | s)− πt

h(· | s), Q̂t
h(s, ·)

〉)
(i)
≤ H

(
log |A|+

∑T
t=1∥ϵth(·)∥∞
η

+
η H2 T

2

)
(ii)
≤ H2

√
(log |A|+ ϵ T)/2

√
T

(iii)
≤ O

(
H2
√
log |A|

√
T +H2

√
ϵ T
)
.

(i) follows from Lemma 4.1 with u = π⋆
h(· | s). (ii) is obtained by setting η =

√
2 (log |A|+ϵ T)

H
√
T

. (iii)

is based on that for all a, b ≥ 0,
√
a+ b ≤

√
a+
√
b.

40

Policy evaluation error. Then, we continue to bound Term (II), the policy evaluation error.

Term (II) =
T∑

t=1

H∑
h=1

(
Eπ⋆ [ιth(s, a)]− Eπt [ιth(s, a)]

)
(iv)
≤ −

T∑
t=1

H∑
h=1

Eπt [ιth(s, a)]

(v)
≤ Γon

LMC

T∑
t=1

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
≤ Γon

LMC T max
t∈[T]

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
.

(iv) and (v) both follow from Lemma D.2, where (iv) is based on the optimism guarantee (RHS
of Eq. (10)), while (v) is based on the error bound (LHS of Eq. (10)).

Bounding the sum of bonuses. Since Γon
LMC is bounded, it suffices to bound Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
.

Note that Λt
h =

∑
(s,a,s′)∈Dt

h
ϕ(s, a)ϕ(s, a)⊤ + λ I , and Dt

h only depends on πt in the
on-policy setting. (This is not true for the off-policy setting since Λt

h would depend on
{π1, . . . , πt}.) We then index each data point in Dt

h as
{
(sih, a

i
h, s

i
h+1)

}
i∈[N]

. Let Λt,i
h =(∑i

j=1 ϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤ + λ I
)

. Then, we have that

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

] (vi)
≤ 1

N

N∑
i=1

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt,i

h)
−1

]
=

1

N

N∑
i=1

H∑
h=1

∥∥ϕ(sih, aih)∥∥(Λt,i
h)

−1

+
1

N

N∑
i=1

H∑
h=1

Esh∼P(·|sth−1a
t
h−1)

ah∼πt
h(·|sh)

[
∥ϕ(s, a)∥(Λt,i

h)
−1

]
−
∥∥ϕ(sih, aih)∥∥(Λt,i

h)
−1

︸ ︷︷ ︸
:=Mon

i,h

, (15)

where (vi) follows from the fact that Λt,i
h ⪯ Λt

h.

Applying the elliptical potential lemma. For the first term of Eq. (15), we have that

1

N

N∑
i=1

H∑
h=1

∥∥ϕ(sih, aih)∥∥(Λt,i
h)

−1

=
1

N

H∑
h=1

N∑
i=1

∥∥ϕ(sih, aih)∥∥(Λt,i
h)

−1

(vii)
≤ 1

N

H∑
h=1

√
N

(
N∑
i=1

∥∥ϕ(sih, aih)∥∥2(Λt,i
h)

−1

)1/2

(viii)
≤ O

(√
dcH2 log(N/δ)

N

)
.

(vii) applies the Cauchy-Schwarz inequality, and (viii) follows the elliptical argument
from Lemma E.5.

A martingale difference sequence. For the second term of Eq. (15), since for a fixed i ∈ [N],{
Mon

i,h

}
h∈[H]

forms a martingale sequence adapted to the filtration,

Fon
i,h =

{
(siτ , a

i
τ)
}
τ∈[h−1]

,

41

such that E
[
Mon

i,h | Fon
i,h

]
= 0, where the expectation is with respect to the randomness in the policy

and the environment at step h. Since |Mon
i,h| ≤ 1, we can apply the Azuma–Hoeffding inequality and

obtain that

Pr

(
N∑
i=1

H∑
h=1

Mon
i,h ≥ m

)
≥ exp

(
−m2

2H N

)
.

Setting m =
√

2H N log(1/δ) and using a union bound over i ∈ [N], with probability at least
1− δ, it holds that

1

N

N∑
i=1

H∑
h=1

Mon
i,h ≤

√
2H log(1/δ)

N
≤ O

(√
H log(1/δ)

N

)
.

Putting everything together. Therefore, we have that
H∑

h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
=

1

N

N∑
i=1

H∑
h=1

∥∥ϕ(sih, aih)∥∥(Λt,i
h)

−1 +
1

N

N∑
i=1

H∑
h=1

Mon
i,h ≤ O

(√
dcH2 log(N/δ)

N

)
.

It further implies that, with probability at least 1− δ,

Term (II) ≤ Γon
LMC T max

t∈[T]

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
(ix)
≤ O

√d3cH
4 log2(N/δ)

N
T


≤ Õ

(
H2
√
log|A|

√
T
)
,

where (ix) comes from setting N = d3c T/ log|A|.
Finally, putting everything together, with probability at least 1− δ,

E
[
V ⋆
1 (s1)− V πT

1 (s1)
]
=

1

T
(Term (I) + Term (II)) = Õ

(
H2
√
log |A|√
T

+H2
√
ϵ

)
.

This concludes the proof.

E.3 Technical Tools

Lemma E.2 (Extended Value Difference). Given any π, π′ ∈ ∆(A | S, H) and any Q-function
Q̂ ∈ RH×|S|×|A|, we define V̂h(·) = Ea∼π′

h(s,·)Q̂h(·, a) for any h ∈ [H]. Then,

V̂1(s1)− V π
1 (s1)

=

H∑
h=1

Es∼π

[〈
π′
h(s, ·)− πh(s, ·), Q̂h(s, ·)

〉]
+

H∑
h=1

E(s,a)∼π

[
Q̂h(s, a)− rh(s, a)−

∑
s′∈S

Ph(s
′ | s, a)V̂h+1(s

′)

]
.

Lemma E.3 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011, Theorem 1)).
Let {xt}∞t=1 be a real-valued stochastic process with the correspond filtration {Ft}∞t=0 such that xt
is Ft−1-measurable, and xt is conditionally σ-sub-Gaussian for some σ > 0, i.e.,

∀λ ∈ R, E[exp(λxt) | Ft−1] = exp(λ2 σ2/2) .

42

Let {ϕt}∞t=1 be an Rd-valued stochastic process such that ϕt is Ft−1-measurable. Assume Λ0 is a
d× d positive definite matrix, and let Λt = Λ0 +

∑t
i=1 ϕi ϕ

⊤
i . Then, for any δ > 0, with probability

at least 1− δ, for all t ≥ 0, it holds that∥∥∥∥∥
t∑

i=1

ϕixi

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

[
det(Λt)

1/2 det(Λ0)
−1/2

δ

]
.

Lemma E.4 (Determinant-Trace Inequality (Abbasi-Yadkori et al., 2011, Lemma 10)). Suppose
X1, X2, . . . , Xt ∈ Rd and for any s ∈ [t], ∥X∥2 ≤ L. Let Λt = λ I +

∑t
s=1XsX

⊤
s for some

λ > 0. Then, for all t, it holds that

det(Λt) ≤ (λ+ t L2/d)d .

Lemma E.5 (Abbasi-Yadkori et al. 2011, Lemma 11). Suppose X1, X2, . . . , Xt ∈ Rd and for any
s ∈ [t], ∥X∥2 ≤ L. Let Λt = Λ0 +

∑t
s=1XsX

⊤
s and λmin(Λ0) ≥ max

{
1, L2

}
. Then, for all t, it

hold that

log

(
det(Λt)

det(Λ0)

)
≤

t∑
s=1

∥Xt∥2(Λt)−1 ≤ 2 log

(
det(Λt)

det(Λ0)

)
.

F Sample Complexity in the Off-Policy Setting
F.1 Covering Number (Proof of Lemma 6.1)
We first present a bound for the norm of the logit.
Lemma F.1. Consider Algorithm 1 with the NPG actor in Algorithm 2. Then, under Assumptions 4.1
and 4.2, for all (t, h, s, a) ∈ [T]× [H]× S ×A, it holds that∣∣∣〈φ(s, a), θt,Kt

h (s, a)
〉∣∣∣ ≤ (ϵ+ η H) t ,

where ϵ is defined in Lemma 4.2.

Proof of Lemma F.1. We will prove this by induction. When t = 0, since we set θ0h = 0, the
statement is trivially true. For t ≥ 1, assume that the statement stands true for t−1. Since Algorithm 1
optimizes the actor loss up to some errors that are assumed to be bounded, using the triangular
inequality, we have that∣∣∣〈φ(s, a), θt,Kt

h (s, a)
〉∣∣∣

=
∣∣∣〈φ(s, a), θt,Kt

h − θ̂t,⋆h

〉∣∣∣+ ∣∣∣〈φ(s, a), θ̂t,⋆h (s, a)
〉∣∣∣

≤ ϵopt +
∣∣∣〈φ(s, a), θ̂t,⋆h (s, a)

〉∣∣∣
≤ ϵopt +

∣∣∣〈φ(s, a), θ̂t,⋆h (s, a)− θt−1,Kt−1

h (s, a)
〉
− η Q̂t

h(s, a)
∣∣∣

+
∣∣∣〈φ(s, a), θt−1,Kt−1

h (s, a)
〉
+ η Q̂t

h(s, a)
∣∣∣

≤ ϵopt + ϵbias +
∣∣∣〈φ(s, a), θt−1,Kt−1

h (s, a)
〉
+ η Q̂t

h(s, a)
∣∣∣

≤ ϵ+
∣∣∣〈φ(s, a), θt−1,Kt−1

h (s, a)
〉∣∣∣+ ∣∣∣η Q̂t

h(s, a)
∣∣∣

≤ (ϵ+ η H) t ,

where θ̂t,⋆h denotes the optimal actor parameters when optimizing over Dexp and ρexp,〈
φ(s, a), θ

t−1,Kt−1

h (s, a)
〉
+ η Q̂t

h(s, a) is the optimization target in the actor loss of the projected
NPG, and the last inequality uses the inductive hypothesis.

This concludes the proof.

43

Proof of Lemma 6.1. Consider any Q,Q′ ∈ Q such that Q(·, ·) = min{⟨ϕ(·, ·), w⟩, H}+ and
Q′(·, ·) = min{⟨ϕ(·, ·), w′⟩, H}+. Therefore, we have that

sup
(s,a)∈S×A

|Q(s, a)−Q′(s, a)| ≤ sup
(s,a)∈S×A

|⟨ϕ(s, a), w − w′⟩|

≤ sup
(s,a)∈S×A

∥ϕ(s, a)∥∥w − w′∥

≤ 2W ,

where the first inequality uses the Cauchy-Schwarz inequality, and the second inequality uses Defini-
tion 2.1, the triangular inequality, and the definition of W .

Consider any π, π′ ∈ Πlin such that π(· | s) ∝ exp(⟨ϕ(s, ·), θ⟩) and π′(· | s) ∝ exp(⟨ϕ(s, ·), θ′⟩).
By invoking Lemma F.6 and using Lemma F.1, we can observe that for a fixed s ∈ S,

sup
a∈A
|π(s, a)− π′(s, a)| ≤ ∥π(s, ·)− π′(s, ·)∥1 ≤ 2

√
sup
a
|⟨φ(s, a), θ − θ′⟩| ≤ 2

√
2Z .

Taking the sup over S, we get that

sup
(s,a)∈S×A

|π(s, a)− π′(s, a)| ≤ 2
√
2Z .

Therefore, we can bound the log covering number of the value function class as follows.

logN∆(V) ≤ logN∆/2(Q) + logN∆/(2H)(Πlin)

≤ dc log

(
1 +

4W

∆

)
+ da log

(
1 +

8H
√
2Z

∆

)
,

where the first inequality follows from Lemma F.3, and the second inequality uses Lemma F.5.

This concludes the proof.

F.2 Proof of Good Event

Lemma F.2. Consider Algorithm 1 in the off-policy setting with λ = 1. Then, for any δ ∈ (0, 1),
with probability at least 1− δ, it holds that∥∥∥∥∥∥

∑
(s,a)∈Dt

h

ϕ(s, a)
[
V̂ t
h+1(s)− PhV̂

t
h+1(s, a)

]∥∥∥∥∥∥
(Λt

h)
−1

≤ Coff
δ H

√
dc ,

where

Coff
δ = 3

√√√√1

2
log(T + 1) + log

(
2
√
2T

H

)
+ log

2

δ
+ V ,

V = dc log

(
1 +

4W + 4H
√
2Z

∆

)
+ da log

(
1 +

4H
√
2Z

∆

)
,

W =
16

3
H
√
dc T +

√
2 d3c T

3 ζ δ
, Z = (ϵ+ η H)T .

Proof of Lemma F.2. Since V̂ (·) ∈ [0.H], we can invoke Lemma F.4. Then, we have that for any
∆ > 0, with probability at least 1− δ,∥∥∥∥∥∥

∑
(s,a,s′)∈Dt

h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]∥∥∥∥∥∥
(Λt

h)
−1

44

≤
(
4H2

[
dc
2

log

(
T + λ

λ

)
+ dc log

(
N∆(V)

∆

)
+ log

2

δ

]
+

8T 2∆2

λ

)1/2

≤ 2H

[
dc
2

log

(
T + λ

λ

)
+ dc log

(
N∆(V)

∆

)
+ log

2

δ

]1/2
+

2
√
2T∆√
λ

.

Setting λ = 1, ∆ = H
2
√
2T

, we have that with probability at least 1− δ,∥∥∥∥∥∥
∑

(s,a,s′)∈Dt
h

ϕ(s, a)
[
V̂ t
h+1(s

′)− PhV̂
t
h+1(s, a)

]∥∥∥∥∥∥
(Λt

h)
−1

≤ 2H
√
dc

[
1

2
log(T + 1) + log

(
N∆(V)

H
2
√
2T

)
+ log

2

δ

]1/2
+H

≤ 3H
√
dc

[
1

2
log(T + 1) + log

(
2
√
2T

H

)
+ log

2

δ
+ V

]1/2
,

where the last inequality uses Lemma 6.1 to bound the log covering number.

This concludes the proof.

F.3 Proof of Theorem 6.2
We first instantiate Lemma D.2 in the off-policy setting. Given the above good event, we have that

Γoff
LMC = Coff

δ H
√
dc +

4

3

√
2 dc log (1/δ)

3 ζ
+

4

3
≤ Õ(H dc) .

Proof of Theorem 6.2. Following the proof of Theorem 6.1 (Appendix E.2), we can use the same
regret decomposition as follows.
T∑

t=1

(
V ⋆
1 (s1)− V πt

1 (s1)
)

=

T∑
t=1

H∑
h=1

Eπ⋆

[〈
π⋆
h(· | s)− πt

h(· | s), Q̂t
h(s, ·)

〉]
︸ ︷︷ ︸

(I) policy optimization (actor) error

+

T∑
t=1

H∑
h=1

(
Eπ⋆ [ιth(s, a)]− Eπt [ιth(s, a)]

)
︸ ︷︷ ︸

(II) policy evaluation (critic) error

.

Term (I) can be bounded the same way as in Appendix E.2. Hence, it suffices to bound Term (II).

Term (II) =
T∑

t=1

H∑
h=1

Eπ⋆ [ιth(s, a)]− Eπt [ιth(s, a)]

(i)
≤ −

T∑
t=1

H∑
h=1

Eπt [ιth(s, a)]

(ii)
≤ Γoff

LMC

T∑
t=1

H∑
h=1

Eπt

[∥∥ϕ(sth, ath)∥∥(Λt
h)

−1

]
.

(i) and (ii) both follow from Lemma D.2, where (i) is based on the optimism guarantee (RHS
of Eq. (10)), while (ii) is based on the error bound (LHS of Eq. (10)).

Bounding the sum of bonuses. Since Γoff
LMC is bounded, it suffices to bound Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
.

We then index each data point in Dt
h as

{
(sih, a

t
h, s

t
h+1)

}
t∈[T]

and get that Λt
h =∑T

t=1 ϕ(s
t
h, a

t
h)ϕ(s

t
h, a

t
h)

⊤ + λ I . Then, we have that
T∑

t=1

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]

45

=

T∑
i=1

H∑
h=1

∥∥ϕ(sth, ath)∥∥(Λt,i
h)

−1

+

T∑
t=1

H∑
h=1

Esh∼P(·|sth−1a
t
h−1)

ah∼πt
h(·|sh)

[
∥ϕ(sh, ah)∥(Λt

h)
−1

]
−
∥∥ϕ(sth, ath)∥∥(Λt

h)
−1

︸ ︷︷ ︸
:=Moff

t,h

. (16)

Applying the elliptical potential lemma. For the first term of Eq. (16), we have that
T∑

t=1

H∑
h=1

∥∥ϕ(sth, ath)∥∥(Λt
h)

−1 =

H∑
h=1

T∑
t=1

∥∥ϕ(sth, ath)∥∥(Λt
h)

−1

(iii)
≤

H∑
h=1

√
T

(
T∑

t=1

∥∥ϕ(sth, ath)∥∥2(Λt
h)

−1

)1/2

(iv)
≤ O

(√
dcH2 T log(T/δ)

)
.

(iii) applies the Cauchy-Schwarz inequality, and (iv) follows the elliptical potential argument
from Lemma E.5.

A martingale difference sequence. For the second term of Eq. (16), since
{
Moff

t,h

}
(t,h)∈[T]×[H]

forms a martingale sequence adapted to the filtration,

Foff
t,h =

{
(siτ , a

i
τ)
}
(i,τ)∈[t−1]×[H]

∪
{
(stτ , a

t
τ)
}
τ∈[h−1]

,

such that E
[
Moff

t,h | Foff
t,h

]
= 0. Since |Moff

i,h| ≤ 1, we can apply the Azuma–Hoeffding inequality
and obtain that

Pr

(
T∑

t=1

H∑
h=1

Moff
t,h ≥ m

)
≥ exp

(
−m2

2H T

)
.

Setting m =
√
2H T log(1/δ), with probability at least 1− δ, it holds that

T∑
t=1

H∑
h=1

Moff
t,h ≤

√
2H T log(1/δ) ≤ O

(√
H T log(1/δ)

)
.

Therefore, we have that
T∑

t=1

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
=

T∑
t=1

H∑
h=1

∥∥ϕ(sih, aih)∥∥(Λt,i
h)

−1 +

T∑
t=1

H∑
h=1

Mon
i,h ≤ O

(√
dcH2 T log(T/δ)

)
.

It further implies that, with probability at least 1− δ,

Term (II) ≤ Γoff
LMC

T∑
t=1

H∑
h=1

Eπt

[
∥ϕ(s, a)∥(Λt

h)
−1

]
≤ Õ

(√
d2c max{dc, da}H4 T

)
.

Putting everything together. Therefore, we have that with probability at least 1− δ,

E
[
V ⋆
1 (s1)− V πT

1 (s1)
]
=

1

T
(Term (I) + Term (II)) = Õ

(
H2
√
d2c max{dc, da} log |A|√

T
+H2

√
ϵ

)
.

This concludes the proof.

46

F.4 Technical Tools

Lemma F.3 (Zhong and Zhang, 2023, Lemma B.1). Consider the value function class V =
{⟨Q(·, ·), π̂(· | ·)⟩A | Q ∈ Q, π̂ ∈ Π}. Then, it holds that

N∆(V) ≤ N∆/2(Q) · N∆/(2H)(Π) .

Lemma F.4 (Value-Aware Uniform Concentration (Jin et al., 2020, Lemma D.4)). Let {st}∞t=1
be a stochastic process on the state space S with the correspond filtration {Ft}∞t=0 such that
st is Ft−1-measurable. Let {ϕt}∞t=1 be an Rd-valued stochastic process such that ϕt is Ft−1-
measurable, and ∥ϕt∥ ≤ 1. Let Λt = I +

∑t
s=1 ϕs ϕ

⊤
s . Assume V is a value function class such

that sups∈S |V (s)| ≤ H . Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0 and any
V ∈ V , it holds that∥∥∥∥∥

t∑
i=1

ϕi {V (si)− E[V (si) | Fi−1]}

∥∥∥∥∥
2

Λ−1
t

≤ 4H2

[
d

2
log

(
t+ λ

λ

)
+ log

(
N∆

δ

)]
+

8 t2 ∆2

λ
,

where N∆ is the ∆-covering number of V with the distance measured by dist(V, V ′) =
sups∈S |V (s)− V ′(s)|.
Lemma F.5 (Covering Number of Euclidean Ball). For any ∆ > 0, the ∆-covering number, N∆, of
the Euclidean ball of radius B > 0 in Rd satisfies that

N∆ ≤
(
1 +

2B

∆

)d

.

Lemma F.6 (Zhong and Zhang 2023, Lemma B.3). For π, π′ ∈ ∆(A) and Z,Z ′ : A → R+, if
π(·) ∝ exp(Z(·)) and π′(·) ∝ exp(Z ′(·)), then it holds that

∥π − π′∥1 ≤ 2
√
∥Z − Z ′∥∞ .

G Experiments
In this section, we evaluate our actor-critic algorithm on a Random MDP and a linear MDP version
of the Deep Sea (Osband et al., 2019) in the off-policy setting.

G.1 Environment Setup
Our experimental setup is an extension of Ishfaq et al. (2024a). In particular, we extend the prior off-
policy setting to test our actor-critic framework on a Random MDP and a linear MDP version of the
Deep Sea (Osband et al., 2019). In particular, we use the linear MDP features as the policy features,
and d := dc = da represents the feature dimension for both the actor and the critic parameters.

For the Deep Sea environment, we use a N ×N grid with N = 10 where the agent always starts
at (0, 0) and can move either bottom-right or bottom-left, receiving rewards of 0 and −0.01/N
respectively. Reaching the bottom-right corner yields a reward of 1. Furthermore, we generate the
actor and critic features by projecting each state-action pair uniformly between [0, d − 1], which
recovers one-hot encoded features for d = |S| × |A|. Given the true transition probabilities and
rewards, and following the linear MDP assumption in Definition 2.1, we solve for ψh and υ⋆h via least
squares and obtain the corresponding Ph and rh.

For the Random MDP environment, we consider 15 states and 5 actions and set d = 30. For each
state s ∈ S , we generate ψh(s) ∈ Rd uniformly at random in [0, 1] and construct tile coded features.
Following Definition 2.1 and using least squares (similar to Deep Sea), we obtain the probability
transitions. The agent always starts from state 0, receiving a small reward of 0.1 upon taking action
0, and obtains the maximum reward when reaching the final state and taking action 1. All other
state-action pairs yield zero reward. Using the same procedure for Deep Sea, we compute rh and
ensure linearity of the MDP.

G.2 Coreset Construction
To construct the coreset, we follow the offline G-experimental design outlined in Algorithm 4. In
particular, in each iteration, this greedy iterative algorithm traverses the entire state-action space
and adds a data point to the coreset that has the highest marginal gain g(s, a) = ∥φ(s, a)∥G−1 . For
a specific threshold ϵG, the algorithm only terminates when gmax = maxs,a∈(S×A) g(s, a) ≤ ϵG,
hence giving us direct control over sup(s,a)∈S×A∥φ(s, a)∥G−1 . In practice, we find that it often
selects too many data points, so we cap the coreset at 80% of the total data.

47

Algorithm 4 Coreset Construction via G-Experimental Design

1: Input: features φ : S ×A 7→ Rda , threshold ϵG ∈ R
2: Initialize: G = Ida×da , Dexp = ∅, gmax =∞
3: while gmax > ϵG do
4: gmax = 0
5: for (s, a) ∈ S ×A do
6: g(s, a) = ∥φ(s, a)∥G−1

7: if gmax < g(s, a) then
8: (s⋆, a⋆) = (s, a)
9: gmax = g(s, a)

10: Dexp = Dexp ∪ {(s⋆, a⋆)}
11: G = G+ φ(s⋆, a⋆)φ(s⋆, a⋆)⊤

G.3 Hyperparameters
In Table 2, we list the hyperparameters we tested across all experiments. For log-linear policies,
the actor loss in Eq. (6) admits a closed-form solution, allowing us to avoid tuning αa and Kt by
minimizing the objective exactly. We swept the hyperparameters and picked the best combination for
each of the considered methods to report the results.

Table 2: Hyperparameter sweep in our experiments.
Hyperparameter LMC LMC-NPG-IMP LMC-NPG-EXP
Policy Optimization Learning Rate (η) ✗ [0.1, 1, 10, 100] [0.1, 1, 10, 100]
Inverse Temperature (ζ−1) [10−2, 10−3, 10−4, 10−5]
Number of Critic Updates (Jt) 100
Critic Learning Rate (αc) [10−2, 10−3, 10−4, 10−5]
Number of Episodes (T) 600
Horizon Length (H) 100

G.4 Experimental Results

Figure 1: Comparison of LMC-NPG-EXP (our proposed framework), LMC-NPG-IMP (memory-intensive
variant), and LMC (value-based baseline) in the Random MDP and the Deep Sea.

We denote by LMC-NPG-EXP our proposed framework with an explicit log-linear policy parameter-
ization that uses LMC for policy evaluation and projected NPG for policy optimization on a coreset.
We denote by LMC-NPG-IMP an idealized implicit variant of NPG that does not have an explicit actor
parameterization and maintains an implicit policy by storing all parameterized Q functions (and
hence requires significantly more memory). As a baseline, we include the value-based algorithm
LMC (Ishfaq et al., 2024a). Following the protocol of Ishfaq et al. (2024a), each algorithm is run
with 20 random seeds. We sweep hyperparameters as discussed in Appendix G.3 and report the best
performance with 95% confidence intervals.

48

For the random linear MDP, Figure 1(left) indicates that LMC-NPG-EXP closely matches LMC-NPG-IMP
while outperforming the value-based baseline, LMC. For the Deep Sea, Figure 1(right) showcases that
LMC-NPG-EXP can achieve comparable performance with LMC-NPG-IMP and LMC.

G.5 Additional Results
Ablation on Feature Dimensions. When using LMC-NPG-EXP, which employs LMC for policy
evaluation to optimize an explicitly parameterized log-linear policy over a coreset, we study the
impact of the feature dimension (d := dc = da). The results in Figure 2 show that larger feature
dimensions d for both the actor and the critic can substantially improve the performance of the
proposed framework.

Figure 2: Effect of feature dimension d in the Deep Sea..

49

	Introduction
	Preliminaries
	Optimistic Actor-Critic Framework
	Instantiating the Actor: Projected Natural Policy Gradient
	Projected Natural Policy Gradient
	Controlling the Projection Error for Log-Linear Policies
	Putting Everything Together: Projected NPG with Log-Linear Policies

	Instantiating the Critic: Langevin Monte Carlo
	LMC for Linear MDPs
	Optimism Guarantee and Error Bound

	Sample Complexity Analysis
	On-Policy Setting
	Off-Policy Setting

	Discussion
	Notation
	Analyses for the Actor
	Generalized OMD Regret (Proof of Lemma 4.1)
	Projection Error (Proof of Lemma 4.2)
	Instantiating the Actor with SPMA
	Technical Tools

	Constructing via Experimental Design
	Kiefer–Wolfowitz Theorem and G-Experimental Design
	Exploratory Policy and Minimum Eigenvalue

	Analyses for the Critic
	Proof of Lemma 5.1
	Preliminary Properties
	Main Analysis

	Proofs of Preliminary Properties
	Proof of Lemma D.3
	Proof of Lemma D.4
	Proof of Lemma D.5
	Proof of Lemma D.6
	Proof of Lemma D.7
	Proof of Lemma D.8
	Proof of Lemma D.9

	Technical Tools

	Sample Complexity in the On-Policy Setting
	Proof of Good Event
	Proof of Theorem 6.1
	Technical Tools

	Sample Complexity in the Off-Policy Setting
	Covering Number (Proof of Lemma 6.1)
	Proof of Good Event
	Proof of Theorem 6.2
	Technical Tools

	Experiments
	Environment Setup
	Coreset Construction
	Hyperparameters
	Experimental Results
	Additional Results

